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Abstract 
Tools enabling closed-loop experiments are crucial to delineate causal relationships between 

the activity of genetically-labeled neurons and specific behaviors. We developed the Raspberry 

Pi Virtual Reality system (PiVR) to conduct closed-loop optogenetic stimulation of neural 

functions in unrestrained animals. PiVR is an experimental platform that operates at high-

temporal resolution (>50 Hz) with low latencies (~10 ms), while being affordable (<$500) and 

easy to build (<6 hours). This tool was designed to be accessible to a wide public, from high-

school students to professional researchers studying systems neuroscience. We illustrate the 

functionality of PiVR by focusing on sensory navigation in response to gradients of chemicals 

(chemotaxis) and light (phototaxis). We show how Drosophila flies perform negative 

chemotaxis by modulating their locomotor speed to avoid locations associated with 

optogenetically-evoked bitter taste. In Drosophila larvae, we use innate positive chemotaxis to 

compare orientation behavior elicited by real- and virtual-odor gradients with static shapes as 

well as by turbulent virtual-odor plumes. Finally, we examine how positive phototaxis emerges 

in zebrafish larvae from the modulation of turning maneuvers during the ascent of virtual 

white-light gradients. Besides its application to study chemotaxis and phototaxis, PiVR is a 

versatile tool designed to bolster efforts to map and to functionally characterize neural circuits. 
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Introduction 

Behavior emerges from the conversion of sensory input into motor output. This process, called 

sensorimotor transformation (1), results from the integrated activity of neural circuits in the 

nervous system (2). Since the advent of molecular tools to map and manipulate the activity of 

genetically-targeted neurons (3, 4), a major goal of systems neuroscience has been to crack the 

neural computations underlying sensorimotor transformation (5, 6). Due to the probabilistic 

nature of behavior (7-9), probing sensorimotor functions requires stimulating an animal 

repeatedly with reproducible patterns of sensory input. These conditions can be achieved by 

immersing  animals in virtual realities (10). 

 

A virtual-reality paradigm consists of a simulated environment perceived by an animal and 

updated based on a readout of its behavior. Historically, virtual realities have been introduced 

to study optomotor behavior in tethered flies and bees (11, 12). For several decades, 

sophisticated computer-controlled methods have been developed to produce ever more 

realistic immersive environments. In FreemoVR, freely-moving flies avoid collisions with fictive 

tridimensional obstacles and zebrafish engage in social interactions with artificial peers (13). 

Spatial learning has been studied in tethered flies moving on a treadmill in two-dimensional 

environments filled with geometrical objects projected on a visual display (14). The same 

technology has been used to record the neural activity of mice exploring a virtual space (15). 

Although virtual realities were initially engineered to study visual behavior, they have been 

generalized to other sensory modalities such as touch and olfaction. In a treadmill system, 

navigation has been studied in mice directed by localized stimulations of their whiskers (16). 

The combination of closed-loop tracking and optogenetic stimulation of genetically-targeted 

sensory neurons has enabled a quantitative analysis of chemotaxis in freely-moving C. elegans 

and in Drosophila larvae immersed in gradients (17, 18).  

 

Virtual-reality assays aim to reproduce the natural feedback that binds behavior to sensation 

(10). First, the behavior of an animal must be accurately classified in real time. In tethered flying 

flies, wing beat patterns have been used to deduce turning maneuvers (19). Likewise, the 

movement of a tethered walking fly or a mouse can be inferred from the rotation of the 
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spherical trackball of a treadmill (15, 20). In freely moving C. elegans and Drosophila larvae, the 

posture of an animal and the position of specific body parts —the head and tail, for instance—

have been tracked during motion in two-dimensional arenas (17, 18). Variables related to the 

behavioral readout —most commonly, the spatial coordinates— are then mapped onto a 

virtual sensory landscape to update the stimulus intensity (15). The effectiveness of the virtual-

reality paradigm is conditioned by the overall temporal delay between the animal’s behavior 

and the update of the stimulus. The shorter this delay, the more authentic the virtual reality is 

perceived.  

 

Irrespective to the model organism under study, the methodology deployed to create efficient 

virtual realities with closed-loop tracking relies on advanced technology that makes behavioral 

setups costly and often difficult to adopt by non-specialists. There is a pressing need to 

complement the existing collection of sophisticated assays with tools that are affordable and 

accessible to most labs. The fly “ethoscope” proposes a hardware solution exploiting 3D 

printing to study the behavior of adult flies (21). In this system, tracking and behavioral 

classification are implemented by a portable and low-cost computer, the Raspberry Pi. 

Although this system can implement a feedback loop between real-time behavioral tracking 

and stimulus delivery (e.g., the physical rotation of an assay to disrupt sleep), it was not 

conceived to create refined virtual-reality environments using optogenetic stimulations.  

 

Here, we present PiVR, a Raspberry Pi Virtual Reality platform enabling the presentation of 

virtual realities to freely-moving small animals. This closed-loop tracker was designed to be 

accessible to a wide range of researchers by keeping the construction costs low and by 

maintaining the basic operations simple and customizable to suit the specificities of new 

experiments. We benchmark the performance of PiVR by studying navigation behavior in the 

Drosophila larva. We then reveal how adult flies adapt their speed of locomotion to avoid areas 

associated with the activation of bitter sensing neurons. Next, we show that zebrafish larvae 

approach a virtual-light source by modifying their turn angle in response to temporal changes in 

light intensity. Finally, we establish that PiVR can create dynamic sensory landscapes to study 

navigation in turbulent odor plumes. 
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Results 

PiVR permits high-performance closed-loop tracking and optogenetic stimulations 

The PiVR system enables high-resolution, optogenetic, closed-loop experiments with small 

freely-moving animals. In its standard configuration, PiVR is composed of a behavioral arena, a 

camera, a Raspberry Pi microcomputer, a LED controller, and a touchscreen (Figure 1A). The 

platform is controlled via a user-friendly graphical interface (Figure 1B). The material for one 

setup amounts to less than $500 with the construction costs decreasing to about $350 when 

several units are built in parallel (S1 Table). In spite of its affordability, PiVR runs a sophisticated 

customized software (Supplementary Figures S1-6) that automatically identifies semi-

transparent animals such as Drosophila larvae embedded in a static background (Figure 2) and 

that monitors movement at a frame rate sufficient to accurately track rapidly-moving animals 

such as walking adult flies and zebrafish larvae (Figures 3 and 4). 

 

PiVR has been designed to create virtual realities by updating the intensity of a homogeneous 

stimulation backlight based on the current position of a tracked animal (Figure 1C, left panel) 

relative to a preset landscape (Figure 1C, middle panel, S1 Movie). Virtual sensory realities are 

generated by optogenetically activating sensory neurons of the peripheral nervous system (3). 

In the present study, we focus on applications involving CsChrimson since the red activation 

spectrum of this light-gated ion channel is largely invisible to Drosophila (22). Depending on the 

light-intensity range necessary to stimulate specific neurons, PiVR features a light pad emitting 

stimulation light at low-to-medium (2 𝜇W/mm2) or high (22 𝜇W/mm2) intensities 

(Supplementary Figures S2C and S2D). A key advantage of the closed-loop methodology of PiVR 

is that it permits the creation of virtual realities with arbitrary properties free of the physical 

constraints of real stimuli. In Figure 2Fi, we illustrate the use of PiVR by immersing Drosophila 

larvae in a virtual-odor gradient that has the shape of a “volcano”. 

 

The ability to create virtual sensory experiences that appear authentic to a test subject critically 

depends on the time (latency) that elapses between an action of the subject, its detection by 

the tracking software and the update of the light intensity. Latencies that are too long can 
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disrupt natural sensorimotor feedback leading to confusion (23). We characterized the overall 

latency of PiVR by measuring the following three parameters: (i) image acquisition time, (ii) 

image processing time and (iii) the time taken for commands issued by the Raspberry Pi to be 

actuated by the LED hardware (Supplementary Figure S1). We find that the image processing 

time is the main time-consuming step. The total latency between the moment an image starts 

being recorded and the intensity of the LED system is updated based on the analysis of that 

image is shorter than 20 ms (Supplementary Figure S1Cii and S1Dii). Thus, PiVR is suited to 

perform on-line tracking of small animals at a frame rate of 50 Hz, which has been shown to be 

sufficiently short to create virtual olfactory realities in Drosophila larvae (17) and virtual visual 

realities in walking adult flies (20).    

 

The PiVR software implements image acquisition, object tracking, and the update of 

background illumination for optogenetic stimulation. It is free, fully open-source and written in 

the programming language Python. At the beginning of each experiment, an auto-detect 

algorithm separates the moving object —the animal— from the background (Supplementary 

Figure S3). During the rest of the experiment, the tracking algorithm operates based on a 

principle of local background subtraction to achieve high frame rates (Supplementary Figure 

S4). Besides locating the position of the animal’s centroid, PiVR uses a Hungarian algorithm to 

tell apart the head from the tail positions (Supplementary Figure S5). For applications involving 

off-line tracking with a separate software (24, 25), the on-line tracking module of PiVR can be 

disabled to record videos at 90 frames per second in an open-loop mode.  

 

The possibility to 3D printing components that once required sophisticated machining has 

empowered the “maker movement” in our scientific community (26). Inspired by this 

philosophy, PiVR is built from hardware parts that are 3D printed. Thus, the modular design of 

the setup can be readily adapted to accommodate the experimental needs of traditional model 

organisms (larvae, adult flies and zebrafish) as well as less conventional small animals 

(Supplementary Figures S2 and S6). For example, we adapted PiVR to acquire movies of 10 fruit-

fly larvae simultaneously with an image quality sufficient to permit off-line tracking of multiple 

animal tracking with the idtracker.ai software (25). To achieve this, we modified the design of 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2019. ; https://doi.org/10.1101/2019.12.20.885442doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.20.885442
http://creativecommons.org/licenses/by/4.0/


 6 

the arena to allow illumination from the side instead of bottom (Supplementary Figure S2B). 

This adaptation of the illumination setup was necessary to enhance contrast in the appearance 

of individual larvae for idtracker.ai to detect idiosyncratic differences between larvae 

(Supplementary Figure S2Bi). The versatility of PiVR was also illustrated by tracking various 

arthropods and a vertebrate with diverse body structures and locomotor properties 

(Supplementary Figure S6, Figures 2, 3, 4 and 5).  

Benchmarking PiVR performances by eliciting larval chemotaxis in virtual-odor gradients 

To demonstrate the use of PiVR, we turned to the navigation behavior evoked by airborne-odor 

gradients (chemotaxis) in the Drosophila larva (27, 28). Larval chemotaxis relies on a set of well-

characterized sensorimotor rules (29). To ascend an attractive odor gradient, larvae modulate 

the alternation of relatively straight runs and reorientation maneuvers (turns). Stops are 

predominantly triggered when the larva undergoes negative changes in odor concentration 

during down-gradient runs. Following a stop, turning is directed towards the gradient through 

an active sampling process that involves lateral head movements (head casts). A key advantage 

of the larva as a model organism for chemotaxis is that robust orientation responses can be 

directed by a functionally reduced olfactory system. The Or42a odor receptor gene is expressed 

in a pair of bilaterally symmetric olfactory sensory neurons (OSNs) (30, 31) that are sufficient to 

direct chemotaxis (32). We exploited this property to compare reorientation performances 

elicited by real and virtual-odor stimulations of the Or42a OSNs. 

 

We started by applying the computer-vision algorithm of PiVR to track larvae with a single 

functional Or42a-expressing OSN (Figure 2A). Individual animals were introduced in a 

rectangular arena comprising a gradient of isoamyl acetate (IAA) at its center (Figure 2B). Once 

exposed to the odor gradient, Or42a-functional larvae quickly identified the position of the 

odor source and they remained in the source’s vicinity (Figures 2B, 2D and S2 Movie). The 

trajectories of consecutively-tested larvae were analyzed by quantifying the time course of the 

distance between the head of the larva and the center of the odor source. The navigation of the 

Or42a-functional larvae yielded an average distance to the source significantly lower than that 

observed in presence of the solvent alone (Figure 2Diii). This result is consistent with the 
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behavior of wild-type larvae in response to attractive odors (33). It establishes that PiVR can 

automatically detect and accurately track animal in real time.  

 

Next, we tested the ability of PiVR to create virtual olfactory realities by optogenetically 

stimulating the larval olfactory system. In past work, robust chemotaxis was elicited in light 

gradients by expressing the blue-light-gated ion channel, channelrodopsin, in the Or42a-

expressing OSN of blind larvae (17). In these experiments, the light stimulus was delivered as a 

point of LED light kept focused on the larva. Using a closed-loop paradigm, the intensity of the 

LED light was updated at a rate of 30 Hz based on the position of the larva’s head mapped onto 

a landscapes predefined by the user (17). PiVR was built on the same principle with the 

following modifications: (i) the spatial resolution of PiVR was reduced due to the fact that the 

field of the view of the camera captures the whole arena and not just the larva; (ii) optogenetic 

stimulation was achieved through homogeneous background illumination instead of a light spot 

that must follow the larva; and (iii) we favored the red-light-gated-ion-channel CsChrimson (22) 

over channelrhodopsin to minimize the innate photophobic response of larvae to the blue light 

range (34).  

 

The simplified hardware design of PiVR produced accurate tracking of the head position of a 

larva exposed to a fictive light gradient (Figure 2B). The spatio-temporal resolution of the 

tracking is illustrated in Figure 2C where spikes in head speed are associated with scanning 

movements of the head on a timescale shorter than 500 ms (35). Head “casts” induced 

transient changes in light intensity 𝐼(𝑡) (17). These changes in stimulus intensity correspond to 

spikes in the relative sensory experience of the larva (&
'
∗ )*
)+

) (Figure 2C, arrowheads in purple 

trace) (29). The tracking resolution of PiVR enabled recording periodic patterns in tail speed 

(Figure 2C, top green trace) that reflect consecutive cycles of acceleration/deceleration during 

forward peristalsis (36). Or42a-functional larvae displayed strong chemotaxis in response to a 

point-source virtual-odor gradient (Figure 2E and S3 Movie) with a level of attraction 

comparable to the behavior evoked by a real-odor gradient (Figure 2D). Moreover, PiVR 

recapitulated the meandering trajectories along the rim of a volcano-shaped virtual-odor 

gradient (Figure 2F), as was originally observed by Schulze, Gomez-Marin (17). Together, the 
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results of Figure 2 and Supplementary Figures S7 validate that PiVR has the tracking accuracy 

and closed-loop performances necessary to elicit genuine navigation responses in virtual-odor 

gradients. 

Adult flies avoid activation of bitter-sensing neurons by modulating their locomotion speed 

After having established the capability of PiVR to create virtual realities in Drosophila larvae, we 

sought to generalize the application of this tool to other popular model organisms. Adult 

Drosophila are covered by a thick and opaque cuticle. Consequently, activating light-gated ion 

channels expressed in the sensory neurons of adult flies requires higher light intensities than in 

semi-transparent larvae (8, 22). The background illumination system of PiVR was modified to 

deliver light intensities as high as 50 µW/mm2 to penetrate the adult-fly cuticle (37). Despite a 

tenfold increase in locomotion speed between adult flies and larvae (peak speed of 12 mm/s 

and 1.6 mm/s, respectively), PiVR accurately monitored the motion of adult fruit flies for the 

entire duration of 5-min trials (Figure 3A-B). We turn to gustation to test the ability of PiVR to 

evoke orientation behavior in adult flies stimulated by virtual chemical gradients.  

 

Drosophila demonstrates innate strong aversion to bitter taste (38). This behavior is mediated 

by a set of sensory neurons expressing the gustatory receptor Gr66a in the labial palps (38). 

Optogenetic activation of the Gr66a-expressing neurons alone is sufficient to elicit aversive 

responses (37). Using the closed-loop tracking capabilities of PiVR (Figure 3A), we examined 

taste-driven responses of flies expressing the red-light-gated ion channel CsChrimson in their 

Gr66a-expressing neurons. As we reasoned that navigation in response to taste might be less 

directed than navigation in response to airborne odors, we presented flies with a two-

dimensional landscape emulating a checkerboard (Figure 3B). In this virtual checkerboard, 

quadrants were associated with either virtual bitter taste (light “on”) or no taste (light “off”). 

Flies adapted their motion to avoid squares paired with virtual bitter taste (Figure 3B-D and S5 

Movies). This result generalized the field of application of PiVR to fast-moving small animals 

such as walking adult flies.  
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To determine how flies actively avoid being exposed to bitter-tasting squares, we interrogated 

the spatial trajectories recorded by PiVR (Figure 3B). By correlating the stimulus dynamics with 

locomotion, we found that flies modulate their locomotion speed in response to excitation of 

their bitter-tasting neurons. When flies were located in a lit square eliciting virtual bitter taste, 

they moved significantly faster than when located in a dark square with no bitter taste. When 

flies encountered sensory relief in a dark square, they frequently stopped (Figure 3E-F). In 

summary, our results establish that PiVR is suitable to track and immerse adult flies in virtual 

sensory realities. Moreover, computational quantification of behavioral data produced by PiVR 

suggests that flies avoid bitter tastes by modulating their locomotion speed — a strategy called 

orthokinesis (39, 40). 

Zebrafish larvae adapt their turn amplitude to stay close to a virtual-light source 

Due to its transparency and amenability to molecular genetics, the zebrafish D. rerio has 

emerged as a popular vertebrate model system to study how sensory representations and 

sensorimotor transformations arise from the activity in neural ensembles (2, 41). Here, we 

show that PiVR is a powerful tool to study the organization of orientation behavior of zebrafish 

larvae immersed in a virtual 2D light gradient (Figure 4A-B). 

 

Zebrafish demonstrate innate positive phototaxis to white light (42). Already at the larval stage, 

individuals are capable of staying confined to virtual disks of white light (43). Using PiVR, we 

examined whether 5-day-post-fertilization (dpf) zebrafish larvae have the navigational 

capabilities to stay near a virtual white light source (Figure 4B and S6 Movie). We observed that 

larvae were strongly attracted by the center of the virtual white light source and that they kept 

returning to this position for the entire duration of the trial (Figure 4D-E and Supplementary 

Figure S8A).  

 

The elementary motor patterns (actions) underlying the behavioral repertoire of zebrafish 

larvae can be decomposed into stops, slow and rapid swims (44). By analyzing the time series of 

the centroid speed recorded by PiVR, we observed periodic increases in swim speed (Figure 4C). 

These episodes correspond to swim bursts or ‘scoots’ (45). To examine the orientation strategy 
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used by zebrafish larvae, we discretized trajectories into scoots. As described in previous work 

(44), each scoot was found to be approximately straight (Figure 4B, green segments comprised 

by the circles). At low light intensities, significant reorientation occurred between consecutive 

scoots compared to the controls (Figure 4G).  

 

Given that the virtual landscape produced by PiVR resulted from a temporal update of the 

intensity of isotropic stimulation light, we can rule out the detection of binocular differences of 

the stimulus (46). What visual features direct the increase in turning at low light intensity? To 

address this question, we analyzed the turn angle as a function of the light intensity 

conditioned by the orientation of the scoots. When zebrafish larvae moved up-gradient 

(positive changes in light intensity), the turn angle was not modulated by the absolute intensity 

of the stimulus (Figure 4H, purple). By contrast, the turn rate increased for scoots oriented 

down-gradient (negative changes in light intensity) at low stimulus intensity (Figure 4H, green).  

Therefore, we conclude that the rate of turning of zebrafish larvae is determined by a 

combination of the absolute light intensity and the sign of changes in stimulus intensity. 

 

Given the ability of zebrafish larvae to efficiently return to the peak of a light gradient (Figure 

4D), we asked whether zebrafish larvae can also bias their turns towards the light source. To 

this end, we defined the turn index (β) to quantify the percentage of turn directed toward the 

light gradient (Figure 4I and Methods). This metric led us to conclude that zebrafish larvae do 

not bias their turns towards the source more often than the control (Figure 4J). In summary, 

our results demonstrate that PiVR can track zebrafish larvae at sufficiently high spatio-temporal 

resolution to identify individual scoot events. We show that zebrafish achieve positive 

phototaxis by increasing the amplitude of their turns when they are moving down-gradient and 

experiencing low light intensities. This new aspect of the sensorimotor strategy controlling 

zebrafish phototaxis has also been reported in an independent, recent study featuring closed-

loop light stimulations in a virtual-reality paradigm (47).  
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Probing the limits of orientation behavior in the larva with dynamic virtual realities 

In the wild, animals rarely encounter static odor gradients. Due to the turbulent nature of the 

atmosphere, natural olfactory scenes experienced by flying insects are discontinuous (48, 49). 

Airborne odors are spatially distributed as discrete filaments or plumes. Until recently, our field 

was lacking adequate technology to study how Drosophila converts the detection of turbulent 

odor plumes into coherent orientation responses. Using smoke to visualize the diffusion of 

small particles in air, (50) pioneered a correlative study between the perception of turbulent 

odor plumes and control of orientation responses in adult fruit flies. Using the closed-loop 

tracking and optogenetic stimulation capabilities of PiVR, this work can now be generalized to 

other experimental conditions.  

 

In the present work, we asked whether Drosophila larvae are capable of processing 

discontinuous olfactory stimuli. To this end, we subjected Or42a>CsChrimson larvae to a 

reconstruction of the turbulent plumes emitted by a real point source in which adult flies were 

tested (50). In the experiments conducted with PiVR (Figure 5), the use of virtual realities had 

the advantage of guaranteeing the same stimulus conditions across trials —a feat impossible to 

achieve with real odor plumes. In addition, the virtual-reality technology permitted modifying 

specific aspects of the dynamic olfactory environment such as the replay speed of the plumes. 

We compared the navigational performances of Or42a>CsChrimson larvae in a static landscape 

corresponding to a “frozen” snapshot of the odor plume (S7 Movie) with the behavior observed 

in a slow odor plume structure corresponding to a 1/15th of the speed of the real odor plume 

(S8 Movie) as well as in a fast odor plume replayed at its original speed (S9 Movie). Our results 

indicate that larvae are capable of orienting in slow-changing but not in fast-changing 

landscapes (Figure 5). 

 

To quantify the ability of larvae to ascend a turbulent olfactory landscape, we divided the 

plume structure into three regions: (i) the inner filament enclosing the medium to high 

intensities of the virtual-odor gradient; (ii) the outer filament enclosing the lower stimulus 

intensities and (iii) the region outside the plume where the virtual-odor is absent (Figure 5D, 

top panels). In the static (frozen) condition, we found that Drosophila larvae stayed in the inner 
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filament region compared to genetic controls (Figure 5C, Figure 5D and Supplementary Figure 

S9A). Also larvae experiencing a slow odor plume structure (red distribution) spent more time 

in the inner filament compared to controls. In the fast odor plume structure (green 

distribution), larvae were unable to remain in the inner filament region longer than the controls 

(Figure 5C, Figure 5D and Supplementary Figure S9A). As larvae are still able to stop correctly 

when moving downgradient (Figure 5E-F), we conclude that larvae must have lost their ability 

to bias turns toward the gradient.  

 

To summarize, Figure 5 provides a proof-of-concept that PiVR can be used to replay naturalistic 

dynamic olfactory landscapes while gaining control over different parameters of the stimulus. 

We find that larvae expressing the optogenetic tool CsChrimson in a single olfactory sensory 

neuron are capable of integrating turbulent olfactory signals to release turning maneuvers 

during down-gradient runs and to orient turns toward the local gradient. As the replay speed of 

the plume increases, the time during which the geometry of the local odor gradient remains 

correlated decreases. When the speed of the plume diffusion exceeds that of the turn 

dynamics, chemotaxis becomes largely compromised.  

Discussion 

Anyone seeking to crack the neural logic underlying a navigation process —whether it is the 

response of a cell to a morphogen gradient or the flight of a seabird guided by the Earth’s 

magnetic field— will face the need to characterize the basic orientation strategy before 

speculating about its molecular and cellular implementation. PiVR is a versatile closed-loop 

experimental platform devised to assist the study of orientation behavior and neural-circuit 

functions. PiVR was developed to create virtual sensory realities by tracking the motion of 

unconstrained small animals subjected to a predefined model of the sensory environment 

(Figure 1). By capitalizing on the latest development of molecular genetics and bioengineering 

(3), virtual sensory stimuli are produced by expressing optogenetic tools in targeted neurons of 

the peripheral nervous system an animal. In the present study, we illustrate the use of PiVR by 

immersing Drosophila at the larval and adult stages in static (Figures 2 and 3) and dynamic 
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(Figure 5) virtual chemosensory gradients and by testing the behavior of zebrafish larvae in a 

virtual-light gradient (Figure 4).  

An experimental platform that is both affordable and customizable 

Prior to the commercialization of consumer-oriented 3D printers and cheap microcomputers 

such as Raspberry Pi, virtual-reality paradigms necessitated using custom setups that cost 

several thousand or even a hundred thousand dollars. The Raspberry Pi Virtual Reality system 

(PiVR) is an affordable (< $500) alternative that enables laboratories without advanced 

technical expertise to conduct sophisticated and high-throughput virtual-reality experiments. 

The creation of realistic immersive virtual realities critically depends on two parameters: the 

update frequency and the update latency of the closed-loop system. The maximal update 

frequency corresponds to the maximally sustained frame rate that the system can support. The 

update latency is the latency between an action of the tested subject and the implementation 

of a change in the virtual-reality environment. In normal working conditions, the update 

frequency of PiVR is 50 Hz while the update latency is 10-20ms (Supplementary Figure S2). 

These characteristics are similar to those routinely used to test optomotor responses with 

visual display streaming during walking behavior in insects (typically 20 Hz, 20), thereby 

ensuring the system’s suitability for a wide range of applications. 

 

Different optogenetic tools require excitation at different wavelengths ranging from blue to 

deep red (22, 51, 52). The modularity of PiVR enables the experimenter to customize the 

illumination system to any wavelength range. Additionally, animals demand distinct levels of 

light intensities to ensure adequate light penetration in transparent and opaque tissues. While 

5 µW/mm2 of red light had been used to activate neurons located in the leg segments of adult 

flies with CsChrimson (37), 1 µW/mm2 is enough to activate olfactory sensory neurons of the 

semi-transparent Drosophila larva (Figure 2). In its standard version, PiVR can emit red-light 

intensities as high as 2 µW/mm2 and white light intensities up to 6000 Lux —a range sufficient 

for most applications in transparent animals (Figures 2, 4 and 5). For animals with an opaque 

cuticle, we devised a higher power version of the backlight illumination system that delivers 

intensities up to 22 µW/mm2 (525 nm) and 50 µW/mm2 (625 nm) (Supplementary Figure S1D  
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and Figure 3). Given that an illumination of 50 µW/mm2 is approaching the LED eye safety limits 

(International Electrotechnical Commission: 62471), it is unlikely that experimenters will want 

to exceed this range for common applications in the lab. 

Defining the nature of taste-driven responses in adult flies 

Adult flies can walk approximately one order of magnitude faster than larvae crawl (12 mm/s 

and 1.6 mm/s, respectively). The detection of bitter taste elicits strong aversive spatial 

responses in adult flies (37).  PiVR can be used to present flies with virtual realities in which 

space is organized according to a checkerboard where quadrants elicit or not virtual bitter 

tastes (Figure 3B). To this end, we expressed CsChrimson in the Gr66a bitter-taste-sensing 

neurons of the labial palps and forelegs. Consistent with a previous report (37), we found that 

flies modulate their movements to avoid staying exposed to virtual bitter taste in the 

illuminated squares. To define the orientation strategy underlying this aversive response, it is 

important to correlate stimulus input with behavioral output (53). We conducted such a 

correlative analysis on the set of trajectories recorded by PiVR for flies immersed in the virtual 

bitter-taste checkerboard (Figure 3D-F). 

 

Historically, sensory-driven orientation strategies have been classified into two groups: (i) 

kinesis, which consists of undirected turns, and (ii) taxis, which consists of directed turns (39, 

40). In the case of a kinesis, the directionality of the behavior results from an integration of 

sensory input to modulate the probability of releasing undirected turns (klinokinesis) and/or to 

modulate the speed of locomotion (orthokinesis). An example of kinesis is the response of 

lamprey larvae to light, which above a stimulus threshold swim in a random direction while 

they stay idle otherwise. Through this orthokinesis strategy, lamprey larvae accumulate in dark 

regions of the environment (54). Bacteria ascend attractive chemical gradients by exploiting a 

klinokinesis principle: when the cell moves up-gradient (positive changes in concentration), the 

probability of implementing an undirected turn is reduced compared to the rate observed 

during down-gradient or in the absence of stimulus changes (55). 
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When immersed in a virtual bitter-taste checkerboard, adult flies readily located the “safe” 

squares devoid of virtual bitter taste. By analyzing the trajectories recorded by PiVR (Figure 3B 

and 3D), we discovered that the optogenetic stimulation of the Gr66a bitter-taste sensing 

neurons make flies move faster (Figure 3E-F). As flies enter a safe dark quadrant, they slow 

down and even stop (Figure 3B). This speed modulation is the hallmark of an orthokinesis 

strategy. The contribution of other orientation mechanisms that integrates spatial information 

is left to be examined in future work. For instance, it is possible that flies implement directed 

turns upon their entry in a bitter-tasting quadrant (Figure 3B and S5 Movie).  

 

Remarkably, the optogenetic stimulation of the Gr66a bitter-taste-sensing neurons produces a 

reduction in locomotion speed at the larval stage. The perception of aversive taste during larval 

foraging triggers stopping and reorientation (56). Thus, it is reasonable to speculate about the 

existence of stage-specific differences in the sensorimotor responses triggered by bitter tastes 

at the larval and adult stages. While the Gr66a-expressing gustatory neurons of the larva are 

likely to be presynaptic to a descending pathway commanding stopping (33), these gustatory 

neurons might also innervate different descending pathways controlling locomotion speed. 

Exploring the ability of zebrafish to orient with minimal graded visual inputs 

Zebrafish larvae move approximately as fast as adult flies. However, their locomotor behavior is 

more discontinuous as it consists of bouts of locomotion with large accelerations followed by 

long deceleration phases (Figure 4). While these conditions make tracking more challenging, 

PiVR successfully monitored zebrafish larvae for several minutes (Figure 4 and S6 Movie). The 

zebrafish larva strongly relies on its visual system to forage, thereby making it a premier model 

system to study optomotor responses (57). Accordingly, we studied the orientation strategy of 

the zebrafish larva in virtual-light gradients. 

 

Zebrafish are innately attracted by (real) sources of white light (42). Positive phototaxis results 

from an alternation between turns towards the light source and forward swims. Turns are 

partly directed by the detection of intensity differences measured between the left and right 

eyes (42, 58). To test the potential contribution of temporal changes in light intensity to the 
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orientation process, Chen and Engert (43) presented larval zebrafish with a virtual white light 

disk. In spite of the fact that this landscape only featured all-or-none changes in light intensity, 

zebrafish larvae managed to stay inside the virtual-light disk. This spatial confinement arose 

from an increase in turning following the fish’s exit from the virtual-light disk (klinokinesis, 39, 

40). In the present study, we used PiVR to ask whether the same mechanism can guide 

phototaxis in a light gradient with a Gaussian shape similar to the landscapes tested by Burgess, 

Schoch (42).  

 

We presented zebrafish larvae with a virtual white light gradient. As in the work of Chen and 

Engert (43) and more recently Karpenko, Wolf (47), PiVR delivered a homogeneous light that 

precluded zebrafish from detecting binocular differences in light intensities. Reorientation in 

the virtual-light landscape of Figure 4 could only be guided by the detection of temporal 

changes in light intensity. In contrast with the all-or-none changes in light intensities produced 

by light disks (43), the Gaussian gradient evoked graded changes in stimulus (Figure 4C). 

Therefore, our results show that zebrafish larvae are capable of staying close to the source of a 

virtual white light source.  

 

In a real white light gradient, fish turn towards the light source by comparing changes in light 

intensity experienced between their two eyes (42, 47). Due to the homogenous stimulation 

illumination in our experiments, fish could not use this strategy. Instead, we found that 

zebrafish larvae did modulate their turn angle as a function of the absolute light intensity 

(Figure 4G). Consistent with the results of a recent study (47), we found that the turn angle 

tended to increase after down-gradient scoots (Figure 4H). This observation is reminiscent of 

the increase in turn angle after leaving a virtual circle (43). Moreover, negative changes in light 

intensity did not produce an increase in turn amplitude when the absolute light intensity was 

sufficiently high (Figure 4H). Finally, zebrafish larvae were unable of biasing their turns toward 

the peak of virtual-light gradients (Figure 4J).  

 

Together, our results highlight a new facet of the sensorimotor control of phototaxis in 

zebrafish. Larval zebrafish are able to stay close to a virtual-light source when the visual 
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stimulus is reduced to an elementary optic flow perceived identically by both eyes. Under these 

conditions, the only sensory information available to the animal are temporal changes in light 

intensity due to motion in the virtual landscape. This information is sufficient for zebrafish 

larvae to stay near an attractive light source. The underlying reorientation strategy involves an 

increase in the amplitude of turns when two conditions are met: (i) the animal must detect a 

negative change in light intensity and (ii) the absolute light intensity must be low enough. Even 

in the absence of bias of individual turns toward the light gradient, the combination of the 

previous two conditions appear sufficient to generate positive phototaxis.  

Exploring the ability of fruit-fly larvae to orient in turbulent olfactory environments 

All virtual realities discussed so far were static: their spatial structure did not change over time. 

The use of static gradients is convenient —if not necessary— to delineate trends in 

sensorimotor responses. Nevertheless, animals tend to navigate dynamic sensory environments 

in the wild. Insects such as the hawkmoth Manduca sexta (49) and the fruit fly Drosophila 

melanogaster (50, 59) orient in turbulent olfactory conditions to pinpoint the source of an 

attractive odor. Vertebrates can solve the same sensory challenge (60). Using PiVR, we 

examined how Drosophila larvae with a single functional olfactory sensory neuron (Figure 2Ei) 

respond to a naturalistic odor plume structure (50). While the chemotactic proficiency of 

Drosophila larvae has already been documented (27, 28, 32), their ability to process and orient 

in responses to dynamic odor plumes was unknown. By exploiting the virtual-reality possibilities 

offered by PiVR, we presented animals with the same dynamic plume structure at different 

playback speeds (Figure 5B).  

 

As expected, larvae were able to stay within a frozen snapshot of the plume (S7 Movie). 

Similarly, when presented with a slowly-changing odor plume, larvae were capable of staying 

confined within or near the odor plume (S8 Movie). Reorientation performances strongly 

degraded when the replay time of the odor plume was unprocessed (Figure 5C and S9 Movie). 

To understand the causes of the inability of larvae to process the information associated with 

fast-moving plumes, we carried out a statistical analysis on the signals triggering turning 

maneuvers (28). For all experimental conditions, we found that the turn-triggered average of 
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the sensory experience showed a decrease in stimulus intensity for several seconds preceding a 

stop (17, 56, 61) (Figure 5E). This characteristic decrease in stimulus has been shown to inhibit 

the activity of the olfactory sensory neurons, which in turn enhances the probability of 

interrupting forward peristalsis (17, 33). 

 

Since Drosophila larvae were capable of releasing stops and turns during down-gradient motion 

in fast-changing plume structures, we reasoned that their inability to stay within the plume 

must be caused by a deficit in the orientation of turning maneuvers. Following a stop, larvae 

engage in lateral head cast to scan the local odor gradient (29). As the spatial organization of 

the plume changed considerably over the timescale of a head cast (~0.5 s) and a turn (~1s), 

larvae were unable to infer the direction of the local gradient to bias their turns toward the 

plume filament. As a result, they gradually drifted away from the center of the plume. In future 

work, it will be interesting to examine whether the combination of olfactory information with 

wind direction (62) improves the navigation performances of larvae in odor plumes. PiVR offers 

a convenient framework to study how sensorimotor mechanisms have adapted to the physical 

properties of natural stimuli. 

Outlook 

While this study focused on sensory navigation to demonstrate the capabilities of PiVR, this tool 

is equally suited to crack the function of neural circuits (6) through optogenetic manipulations. 

To determine the connectivity and function of elements of a neural circuit, one typically 

performs acute excitations of specific neurons during behavior. PiVR permits the time-

dependent or behavior-dependent presentation of light stimuli to produce controlled gain-of-

function manipulations. The use of multiple setups in parallel is ideal to increase the 

throughput of behavioral screens. If the experimenter wishes to define custom stimulation 

rules —for instance, playing a light ramp whenever an animal stops moving— this rule can be 

readily included in the source code of PiVR. For pattern of light stimulation that do not depend 

on the behavior of an animal —for instance, stimulation with a regular series of brief light 

pulses—, groups of animals can be recorded at the same time. Tracking of individuals in groups 

can be achieved by analyzing image sequences with the basic multi-animal tracking algorithm 
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built in PiVR or by delegating tracking to specialized algorithms such as idtracker.ai (25) 

(Supplementary Figure S2Bi). 

 

Until recently, systems neuroscientists had to design and build their own setup to go about 

cracking the function of neural circuits or they had to adapt existing systems that were often 

very expensive and complex. Fortunately, our field has benefited from the publication of a 

series of customizable tools to design and conduct behavioral analysis. The Ethoscope is a cost-

efficient solution based on the use of a Raspberry Pi computer (21), as is the case for PiVR. 

There is also a number of other software packages that can be used to track animals in real-

time on an external computer platform. FreemoVR can produce impressive tridimensional 

virtual visual realities (13). MARGO is a software solution that can track a large number of 

animals tested in separate arenas to present individuals with closed-loop stimulation patterns 

(63). PiVR complements these tools by proposing a versatile and low-cost solution to carry out 

closed-loop tracking with low-latency performance compatible with virtual-reality experiments.  

 

We anticipate that the performance (Supplementary Figure S1) and the resolution of PiVR 

(Methods) will keep improving in the future. Historically, a new and faster version of the 

Raspberry Pi computer has been released every two years. In the near future, the image 

processing time of PiVR might decrease to just a few milliseconds pushing the frequency to well 

above 50Hz. Following the parallel development of transgenic techniques in non-traditional 

genetic model systems, it should be possible to capitalize on the use of optogenetic tools in 

virtually any species. Although PiVR was developed for animals measuring no more than a 

couple of centimeters, it should be easily scalable to accommodate experiments with larger 

animals such as mice and rats. Together with FlyPi (64) and the Ethoscope (21), PiVR represents 

a low-barrier technology that should empower many labs to characterize new behavioral 

phenotypes and crack neural-circuit functions with minimal investment in time and research 

funds.  
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Methods 

Hardware design 

We designed all 3D printed parts using 3D Builder (Microsoft Corporation). An Ultimaker 3 

(Ultimaker, Geldermalsen, Netherlands) with 0.8mm print cores was used to print all parts. We 

used 2.85mm PLA (B01EKFVAEU) as building material and 2.85mm PVA (HY-PVA-300-NAT) as 

support material. The STL files were converted to gCode using Ultimaker’s Cura software 

(https://ultimaker.com/en/products/ultimaker-cura-software). The printed circuit boards 

(PCBs) were designed using Fritzing (http://fritzing.org/home/) and printed by AISLER B.V. 

(Lemiers, Netherlands).  

Hardware parts 

Raspberry Pi components were bought from Newark element 14 (Chicago, US) and Adafruit 

Industries (New York, US). The 850nm longpass filter was bought from Edmond Optics 

(Barrington, US). Other electronics components were obtained from Mouser Electronics 

(Mansfield, US), Digi-Key Electronics (Thief River Falls, US) and Amazon (Seattle, US). Hardware 

was obtained from McMaster (Elmhurst, US). A complete bill of materials is available in 

Supplementary Table S1. Updates will be available on www.PiVR.org and 

https://gitlab.com/LouisLab/PiVR 

Building and using PiVR 

Detailed instructions on how to build a PiVR and how to use it can be found in Supplementary 

S_HTML1. Any updates will be available on www.PiVR.org. 

Data Analysis and Statistics 

All behavioral data shown in the main and Supplementary Figures have been deposited as a 

data package on Dryad (link to Dryad repository upon publication of the peer-reviewed paper). 

Data analysis was performed using custom written analysis codes which are bundled with the 

data package. The analysis codes are additionally available from 
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https://gitlab.com/louislab/pivr_publication (to be made accessible upon publication of the 

peer-reviewed paper).  

Latency measurements of PiVR  

To estimate the time it takes between an animal performing an action and PiVR presenting the 

appropriate light stimulus, the following elements were taken into account: (I) image 

acquisition time, (II) image processing and VR calculations latency and (III) software to 

hardware latency. To measure image acquisition time (Supplementary Figure S1b), the camera 

was allowed to set optimal exposure at each light intensity before measuring the shutter speed. 

To measure image procession and VR calculations latency (Cii) time was measured using the 

non-real-time python time.time() function which we estimate has a uncertainty in the order of 

a few microseconds. (Ciii) To confirm these measurements, we also recorded the timestamps 

given by the real-time graphical processing unit (GPU). Combined, these two plots show that 

while image processing time has a median around 8-10ms, there are a few frames where the 

image processing time takes longer than 20ms which, at high framerates, leads to frames being 

skipped (arrows in Cii and Ciii). Finally, to measure the software to hardware latency we 

measured how long it takes to turn the general purpose input output (GPIO) pins on and off 

during an experiment (Dii). The pins are connected to a transistor with rise and fall times in the 

order of µs (https://eu.mouser.com/datasheet/2/308/FQP30N06L-1306227.pdf). LEDs usually 

have a latency in order of 100s of ns. The total latency between an animal behaving and the 

appropriate stimulus being presented is therefore in the order of 10-15ms. 

Video recording performance of PiVR 

When PiVR is used as a video recorder, the resolution (px) limits the maximal framerate (fps): At 

640x480px the framerate can be set up to 90fps, at 1296x972 up to 42fps, at 1920x1080 up to 

30fps and at 2592x1944 a framerate up to 15fps can be used. PiVR is compatible with a wide 

variety of M12 lenses allowing for high quality video recordings, depending on the experimental 

needs. 
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Fruit fly larval experiments 

For the experiments using fruit fly larvae (Figure 2 and Figure 5), animals were raised on 

standard cornmeal medium at 22˚C on 12 hr-day: 12-hr-night cycle. 3rd instar larvae were 

placed in 15% sucrose for 20 to 120 min prior to the experiment. Experiments were conducted 

on 2% agarose (Genesee, 20-102). In the experiments described in Figure 2, the arena was a 

100-mm diameter Petri Dish (Fisher Scientific, FB0875712). In the experiments described in 

Figure 5, the arena was the lid of a 96-well plate without condensation rings (Sigma-Aldrich, 

L3536-100EA).  

 

For the experiments featuring a real odor gradient, isoamyl-acetate (Sigma Aldrich, 306967-

100ML) was diluted in paraffin oil (Sigma Aldrich, 18512-1L) to produce a 1M solution. A single 

source of the odor dilution was tested in larvae with the following genotype: w;Or42a-

Gal4;UAS-Orco,Orco-/-. The control consisted of solvent (paraffin oil) devoid of odor. For the 

virtual-reality experiments, the following genotype was used: w;Or42a-Gal4,UAS-

CsChrimson;UAS-Orco,Orco-/-. In Figure 2, the same genotype was used in controls but the tests 

were conducted without any light stimulations. In Figure 5, the control genotype was Orco-/- 

tested with the static odor plume. Larvae expressing CsChrimson were grown in complete 

darkness in 0.5M all-trans retinal (R2500, MilliporeSigma, MO, USA).  

Adult fruit fly experiments 

Male flies with the Gr66a-Gal4 transgene (Bloomington stock number: 57670) (65) were 

crossed to virgin females carrying 20xUAS-CsChrimson-mVenus (22) integrated into the attP40 

landing site. The flies were grown in complete darkness on standard cornmeal medium with 

0.5M all-trans retinal at 25˚C. Female flies between 1 and 7 days after eclosion were selected 

after putting the vial on ice for a few seconds. The experiment was conducted in a 100-mm 

diameter Petri Dish (Fisher Scientific, FB0875712) under white light condition.  

Zebrafish larva experiments 

In the experiments shown in Figure 4, we used AB casper (66) as parents. Only pigmented 

larvae were used for the experiments. The larvae were reared at 28.5°C and a 14:10 light cycle. 
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The experiments were run at 26°C. The arena was a 100mm Petri Dish (Fisherbrand, 08-757-

12PK). All ambient light was blocked. The maximum white light intensity provided by PiVR was 

measured to be approximately 6800Lux (Extech Instruments Light Meter 401025).  

Data analysis and statistical procedures 

All data analysis was performed using Python. The scripts used to create the plots shown in the 

figures (including all the data necessary to recreate the plots) can be found at (link to Dryad 

repository upon publication of peer-reviewed the manuscript). Generally, datasets were tested 

for normal distribution (Lilliefors test) and for homogeneity of variance (Levene’s test) (67). 

Depending on the result, the parametric T-test or the non-parametric Mann-Whitney U rank-

sum test was used. To compare multiple groups, either Bonferroni correction was applied after 

comparing multiple groups or Dunn’s test was applied (67). Below, information about the 

analysis and the applied statistical tests throughout the manuscript are separately addressed 

for each figure. To estimate peak movement speed of different animals, the median of the 90th 

percentile of maximum speed per experiment was calculated. 

 

Data analysis of Figure 2: To calculate movement speed, the X and Y coordinates were first 

filtered using a triangular rolling filter with a window size equal to the frame rate (30 fps) 

divided by the high bound on the speed of the animal (1 mm/s) times the pixel-per-mm value of 

the experiment. Depending on the exact distance between camera and the arena (pixel-per-

mm value), the window size of the filter was typically 0.3 s. Speed was calculated using 

Euclidian distance. The time series of the speed was smoothened using a triangular rolling filter 

with a window size of 1 s. To calculate the sensory experience, the stimulus intensity time 

course was filtered using a boxcar rolling filter with window size 1 s (Figure 2C). To calculate the 

distance to source for the isoamyl acetate gradient, the source location was manually defined 

using the PiVR software. In the Gaussian virtual-odor gradient, the coordinates with the 

maximum intensity value was defined as the source. In the volcano-shaped virtual gradient, the 

circle with the highest values was defined as the nearest source to the animal (Figure 2F). At 4 

minutes into the experiment the distance to source between the experimental and control 
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condition was compared.  As the data was not normally distributed (Lilliefors test), Mann–

Whitney U test was used (Supplementary Figure S7A-C).  

 

Data analysis of Figure 3: Each experiment lasted 5 minutes. The preference index for each 

animal was calculated by subtracting the time spent by an animal in the squares without light 

from the time spent in the squares with light (squares eliciting virtual bitter taste). This 

subtraction was then divided by the total experimental time (Figure 3C). Mann–Whitney U test 

was used to compare preference between genotypes as the distribution of the preference 

indices was not normally distributed (Lilliefors test). Speed was calculated as described in Figure 

2: First, the X and Y coordinates were smoothened using a triangular rolling filter with a window 

size equal to the frame rate (30) divided by the approximate walking speed of flies (~5 mm/s) 

times the pixel-per-mm ratio of the experiment, which was usually 0.06-0.09 s. Locomotion 

speed was calculated by using the Euclidian distance. The time series of the speed itself was 

filtered using a triangular rolling filter with a window size equal to the frame rate (30 fps). To 

test for statistical difference in speed between genotypes and the light on and off condition, 

Dunn's Multiple Comparison Test was implemented through the scikit-posthocs library of 

Python.  

 

Data analysis of Figure 4: Each experiment lasted 5 minutes. Each trial started with the animal 

facing the virtual-light source. To focus the analysis on animals that demonstrated significant 

movement during the experiment, the final dataset was based on trials fulfilling the following 

criteria: (1) an animal had to move at least 20 mm over the course of the experiment; (2) only 

movements above 1 mm/frame were recorded (due to camera/detection noise the centroid in 

resting animals can move); (3) the animal must have been tracked for at least 3 out of 5 

minutes. 

Locomotion speed was calculated by first smoothening the X and Y centroid coordinates with a 

half-triangular rolling filter with the window size of 1 s. The speed was calculated using 

Euclidian distance and filtered again using a 0.3 s triangular rolling filter. Scoots were identified 

from the time course of the movement speed by using the “find_peaks” function of the scipy 

library (68) with the following parameters: a minimum speed of 2.5 mm/s and a minimum time 
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between two consecutive peaks (scoots) of 5 frames (0.165 s) (Figure 4C). The same filter was 

applied (half-triangular rolling filter with window size of 1 s) to calculate the distance to source. 

Distance to the maximum value of the virtual-reality landscape was calculated. To calculate the 

distance to source of the controls, the same virtual-reality was assigned relative to the animal 

starting position and the distance to this simulated landscape was calculated (Figure 4E). In 

Supplementary Figure S8A, the distance to source was compared across experimental 

conditions at 4 min into the experiment. We used Mann-Whitney U test to compare the 

distance to source as the variance between samples could not be assumed to be equal 

(Levene’s test) (Supplementary Figure S8A).  

Scoots (see above) were then used to discretize the trajectory. The reorientation angle θ was 

calculated for each pair of consecutive scoots by comparing the animal’s coordinates 0.66 s 

(approximate duration of a scoot) before and after the local peak in locomotor speed. To filter 

out occasional (<10%) misdetection of the animal’s reflection once it was located near the wall 

of the petri dish, we only considered scoots with a reorientation angle θ smaller than 135° 

(Figure 4F). The light intensity experienced by the animal was used to bin the reorientation 

angles into 4 groups shown in Figure 4G-H. To compare the control vs. experimental condition 

of the four light intensity bins, Student’s t-test was used after checking for normality (Lilliefors 

test) and for equality of variance (Levene’s test). Bonferroni correction was used to correct for 

multiple comparisons (Figure 4G).  

To compare reorientation (turn) angles θ associated with positive and negative visual sensory 

experiences, the light intensity change experienced during the previous scoot: (ΔI) was used to 

split the experimental data in two groups: ΔI>0 (upgradient) and ΔI<0 (downgradient). The data 

was binned according to stimulus intensity as in Figure 4G. To compare turn angle in the two 

groups, student’s t-test for paired samples was used after checking for normality (Lilliefors test) 

and for equality of variance (Levene’s test). Bonferroni correction was used to adjust for 

multiple comparisons (Figure 4E).  

The turn index β was calculated based on the angular difference a between the heading the 

animal at a given scoot and the bearing with respect to the white light source. This angular 

difference a indicates whether the animal approaches the source (angles near 0°) or swims 
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away from it (angles near 180°). We defined 90° as the boundary between swimming towards 

and swimming away from the source. The turn index β was then defined by counting the 

number of scoots towards the source and by subtracting to it the number of scoots away from 

the source normalized by the total number of scoots. A turn index was calculated for each trial. 

We compared each group using the Mann-Whitney U test as the data was not normally 

distributed (Lilliefors test). Bonferroni correction was used to adjust for multiple testing (Figure 

4j). 

To bin the reorientation (turn) angle θ according to distance to source, the distance was 

calculated for each scoot and binned in 4 groups according to Supplementary Figure S8C. We 

compared each group using Mann-Whitney U test as the data was not always normally 

distributed (Lilliefors test). Bonferroni correction was used to adjust for multiple comparisons. 

 

Data analysis of Figure 5: The 2D dynamic odor plume structure (movie) was adapted from 

(50). Due to the limited random-access memory (RAM) available on the Rasperry Pi the data 

was downscaled (i) by converting the data to 8 bit and (ii) by only using the first 30 seconds of 

the original movie which were played in a loop. Not all trials were used in the data analysis. The 

inclusion criteria for individual trials were as follows: (i) At the start of the experiments the 

animal had to move towards the virtual source ±45° and (ii) animals had to move a minimum of 

50% of the median distance travelled by all animals. The first criterion was used to filter out 

larvae that were not exposed to the plume at the onset of the trial. The second criterion was 

used to filter out a minority (<5%) of larvae that were abnormally inactive.  

To score the ability of animals to stay in a virtual-odor plume, the 2D plume structure was 

decomposed into three regions: the inner filament, the outer filament and the area outside the 

filament (Figure 5D). The Inner filament was defined as the region were the light intensity was 

comprised between 10% and 100% of the maximum intensity. The outer filament was defined 

as the region where the light intensity was between 2% and 10% of the maximum intensity. The 

outside included every position with an intensity below 2%. As the odor plume moves, the 

boundary of these regions change during the experiment. As the behavioral quantification 

shown in Figure 5C aimed to characterize navigation in responses to the virtual odor, animals 
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were labeled as inside the inner filament only if they had not been outside earlier during the 

trial. In this analysis, the behavior of the animal was ignored upon first exit of the filament.  

To compare the ability of larvae to stay in the inner filament, Dunn's multiple comparison test 

was used (Supplementary Figure S9A). To quantify the turning maneuvers, the body angle was 

used according to the procedure detailed in (69). Briefly, temporal changes in body angle 

(angular speed) were used to classify turning maneuvers: If the change in body angle was 

comprised between 7 and 143 ◦/s for a minimum of 0.33s, the behavior was classified as a 

turning maneuver. Dunn’s multiple comparison test was used to compare fractions of turns in 

different regions of the filament (Figure 5D) and median changes in relative sensory experience 

observe two seconds before the turn onset (Figure 5E and Supplementary Figure S9B).  
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Figures 

Figure 1 
 

 
Figure 1: Virtual realities created by PiVR. (A) Picture of the standard PiVR setup. The animal is 

placed on the light diffuser and illuminated from below using infrared LEDs and recorded from 

above. The Raspberry Pi computer and the LED controller are attached to the touchscreen, 

which permits the user to interface with the PiVR setup. (B) Screenshot of the graphical user 

interface (GUI) while running a virtual reality experiment. The GUI has been designed to be 

intuitive and easy to use while presenting all important experimental parameters that can be 

modified. (C) Virtual realities are created by updating the intensity of a homogeneous light 
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background based on the current position of a tracked animal mapped onto predefined 

landscape shown at the center. (Center) Predefined virtual gradient with a Gaussian geometry. 

(Left) Trajectory of an unconstrained animal moving in the physical arena. (Right) The graph 

indicates the time course of the light intensity experienced by the animal during the trajectory 

displayed in the left panel. Depending on the position of the animal in the virtual-light gradient, 

the LEDs are turned off (t=1), turned on at an intermediate (t=2) or maximum intensity (t=3).  
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Figure 2 
 

 

Figure 2: Benchmarking PiVR performance by eliciting larval chemotaxis in virtual-odor 

gradients. (A) Drosophila larva with a pair of single Or42a-functional olfactory sensory neurons 

(OSNs) (red dots). Illustration of the identification of different body parts of a moving larva by 
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PiVR. (B) Illustrative trajectory of a larva in a Gaussian virtual-odor gradient elicited by light 

stimulation. Arrowheads and numbers indicate lateral head movements (casts) and the 

timepoints are congruent with the arrowheads shown in (C). Panel (D) shows the beh avior of 

Drosophila larvae directed by Or42a OSNs in a gradient of isoamyl acetate (green color). (E-F) 

Behavior of larvae expressing the light-gated ion channel CsChrimson in the Or42a olfactory 

sensory neurons evoking a virtual-odor gradient. In panel (E), the virtual-odor gradient (red) has 

a geometry similar to the real-odor gradient (green) presented in (D). The “volcano” virtual-

odor landscape presented in (F) highlights that the information conveyed by the Or42a OSN 

alone is sufficient for larvae to chemotax with high accuracy along the rim of the gradient. Thick 

lines in panels Diii, Eiii and Fiii indicate the median distances to source and the light traces 

indicate individual trials.  

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2019. ; https://doi.org/10.1101/2019.12.20.885442doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.20.885442
http://creativecommons.org/licenses/by/4.0/


 37 

Figure 3 
 

 
Figure 3: Adult fruit flies avoid activation of bitter-sensing neurons by modulating their 

locomotion speed. (A) Adult Drosophila expressing CsChrimson in Gr66a bitter sensing neurons 

(red circles). Illustration of the identification of different body parts of a moving fly by PiVR. (B) 

Illustrative trajectories of flies in a virtual checkerboard pattern and the corresponding 

ethogram. Flies were behaving in a petri dish. (D). The ethogram reports the time spent by 

individual animals (rows) in the dark (white) and lit (red) squares. Panel (C) displays a 

quantification of the avoidance of virtual bitter taste through a preference index: PI = /012/033
/014/033

 

where T is the time spent on the ON or OFF quadrants (Mann-Whitney U Test, p < 0.001). (E) 

Median locomotion speeds of individual animals as a function of the exposure to light. (F) 

Quantification of locomotion speeds across experimental conditions (Dunn's multiple 

comparisons test, different letters indicate at least p < 0.01). Statistical procedures are detailed 

in the Methodology section. Statistical significances are indicated with lowercase letters. 
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Figure 4 
 

 

Figure 4: Zebrafish larvae adapt their turn dynamics to stay close to a virtual-light source.  

(A) Illustration of the identification of a moving zebrafish larva by PiVR. (B) Illustrative trajectory 

of a zebrafish larva in a virtual-light gradient having a Gaussian geometry. Panel (C) displays the 

time course of the speed and the white-light intensity during that trajectory shown in panel (B). 

Yellow vertical lines indicate automatically detected scoots. (D) Trajectories of 13 fish tested in 

virtual-light gradient (left) and 11 fish in control (right). Red circles indicate 10, 20, 30 and 40 
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mm distance to the center to the virtual-light source (see Methodology). (E) Thick lines indicate 

the time courses of the median distances to the virtual-light source. The light lines indicate 

individual trials. (F) Illustration of the discretization of a trajectory segment into scoots: yellow 

vertical lines indicate the position where the animal stops, reorients and starts the next scoot. 

Black dashed lines indicate movement of the fish. The turn angle (θ) and change in light 

intensity (ΔI) are calculated for every pair of consecutive scoots (see Methodology). (G) 

Relationship between θ and ΔI during the previous scoot (Independent two-sample t-test, 

different letters indicate p < 0.001). (H) Turn angles θ of the virtual reality condition are 

grouped according to negative (green) and positive (magenta) intensity experienced in the 

previous scoot (t-test for paired samples, different letters indicate at least p < 0.05). (I) The turn 

index (β) is calculated from the orientation of the animal relative to the virtual-light source. (J) 

Turn index (β) as a function of stimulus intensity (Mann-Whitney U Test, all groups p > 0.05). All 

reported statistical significances are Bonferroni corrected and indicated with lowercase letters. 

Statistical procedures are detailed in the Methodology section. 
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Figure 5 
 

 

Figure 5: Probing the limits of orientation behavior with dynamic virtual realities. (A) 

Drosophila larvae expressing CsChrimson in the Or42a olfactory sensory neuron (top) were 

presented with a dynamic virtual-odor plume (bottom). (B) Ethograms of experienced light 

intensities for animals presented with a Static, a Slow (1/15th of real speed) or Fast (real speed) 

virtual-odor plumes. Each row of the diagram represents a different trial. (C) Number of animals 

per condition in the inner filament (see below) over time. The Control genotype was presented 

with the Static virtual-odor plume. (D) (Top) Illustration of the inner filament, the outer filament 
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and outside. The filament regions correspond to 10-100%, 2-10% and 0-2% of the maximum 

intensity, respectively. (Bottom) Fraction of turns performed in the different areas of the 

virtual-odor plume (Dunn's multiple comparisons test, different letters indicate at least p < 

0.05). (E) The relative sensory experience (&
6
. 86
89

) is calculated for each turn. The median of the 

relative sensory experience is shown for each experimental condition. (F) Sensory experience at 

2 seconds before the turn (Dunn's multiple comparisons test, different letters indicate cases 

where p < 0.01). Statistical procedures are detailed in the Methodology section. Statistical 

significances are indicated with lowercase letters. 
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