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ABSTRACT 
The growth of single-particle cryo-EM into a mainstream structural biology tool has allowed for many important biological                 
discoveries. Continued developments in data collection strategies alongside new sample preparation devices heralds a              
future where users will collect multiple datasets per microscope session. To make cryo-EM data processing more                
automatic and user-friendly, we have developed an automatic pipeline for cryo-EM data preprocessing and assessment               
using a combination of deep learning and image analysis tools. We have verified the performance of this pipeline on a                    
number of datasets and extended its scope to include sample screening by the user-free assessment of the qualities of a                    
series of datasets under different conditions. We propose that our workflow provides a decision-free solution for cryo-EM,                 
making data preprocessing more generalized and robust in the high-throughput era as well as more convenient for users                  
from a range of backgrounds. 
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INTRODUCTION 
Single-particle cryo-electron microscopy (cryo-EM) is     
becoming a mainstream technique for structural biology       
(Kühlbrandt 2014). In the past few years, cryo-EM has         
seen a 20-40% year-to-year growth in structures       
deposited in the Protein Data Bank. This growth is due          
to continued developments in sample preparation      
(Cheng et al. 2018; Zivanov et al. 2018; Jain et al. 2012;            
Arnold et al. 2017; Darrow et al. 2019; Ravelli et al.           
2019), data collection (Fernandez-Leiro and Scheres      
2016; Lyumkis 2019), and algorithms for data processing        
(Scheres 2012; Zivanov et al. 2018; Punjani et al. 2017;          
Tegunov and Cramer 2019). These developments have       
greatly accelerated the speed of data collection for        
cryo-EM, and have also led to widespread adoption of         
users across a range of expertise, where experts        
represent a continually shrinking fraction of cryo-EM       
users. 
 
With the fast pace of cryo-EM development, several        
challenges have emerged. First, with new imaging and        
sample preparation technologies, including the     
increased frame rate detectors, beam-image shift data       
collection (Cheng et al. 2018; Zivanov et al. 2018), and          
robotic sample preparation (Jain et al. 2012; Arnold et al.          

2017; Darrow et al. 2019; Ravelli et al. 2019), a single           
cryo-EM instrument can easily generate 5,000-8,000      
movies data per day. These technologies have enabled        
cryo-EM to become a more high-throughput technique.       
Second, although a number of improvements have been        
made in software development, cryo-EM data      
processing remains computationally expensive.    
High-performance computing (HPC) resources and     
GPUs are typically used (Michael A. Cianfrocco and        
Leschziner 2015; Baldwin et al. 2018). However, since        
each project requires multiple rounds of human trial and         
error in the preprocessing steps, these human-driven       
choices can slow down a project due to a lack of           
computing resources.  
 
Third, cryo-EM frustrates many users because of its        
complexity in data processing. The manual and       
subjective decisions involved in solving a structure, such        
as the programs, parameters, and determination of good        
micrographs and good 2D class averages, can affect the         
final result significantly (Lawson and Chiu 2018). While        
an expert can make the correct decisions after a few          
trials, new users typically find it problematic to perform         
such monitoring and evaluations. Moreover, due to the        
variety of samples in the cryo-EM field, it is nearly          
impossible to create a general guideline for the new         
users to follow.  
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Despite the increasing throughput of cryo-EM data       
collection, the cumbersome nature of cryo-EM      
preprocessing slows scientists’ ability to ask biological       
questions from their dataset. For example, during       
cryo-EM sample screening, scientists may want to       
assess sample integrity or complex formation. However,       
in order to compare and contrast multiple grids, the         
scientist will have to manually interact with the data to          
perform movie alignment, particle picking, CTF      
estimation, and 2D classification. Modern cryo-EM      
needs a tool to streamline data quality assessment and         
data preprocessing automatically and robustly.  
 
Many approaches have been proposed and developed       
to address these challenges. For example, Appion       
(Lander et al. 2009), cryoSPARC (Punjani et al. 2017),         
SPHIRE (Moriya et al. 2017), and RELION-3.0 (Zivanov        
et al. 2018; Fernandez-Leiro and Scheres, n.d.) provide        
preprocessing tools that can be stitched together into        
pipelines. Despite this ability, easy computation access       
to these remains an issue. To address the computation         
resource problem, COSMIC 2 (M. A. Cianfrocco et al.        
2017), a science gateway for cryo-EM, has been        
developed with the philosophy of bringing popular       
cryo-EM tools and resources to all scientists in the field,          
removing the practical limitations that accessing those       
resources would otherwise entail.  
 
Many algorithms have also been developed to       
accelerate cryo-EM data preprocessing and minimize      
subjective decisions and tedious human annotations.      
Notably, deep learning, especially convolutional neural      
network (CNN), has greatly changed and improved the        
step of particle picking (Wagner et al. 2019; Bepler et al.           
2019; Tegunov and Cramer 2019; Wang et al. 2016;         
Zhu, Ouyang, and Mao 2017; Zhang et al. 2019; Xiao          
and Yang 2017; Nguyen et al. 2019; Al-Azzawi et al.          
2019). Nevertheless, the field still lacks a robust tool that          
will make decisions by evaluating the output from data         
preprocessing steps, so that human intervention can be        
removed, making an automatically streamlining workflow      
possible. 
  
Here, we introduce several deep learning and image        
analysis tools for automated preprocessing and      
assessment of cryo-EM datasets. By connecting these       
tools with state-of-the-art data preprocessing algorithms,      
we make a general workflow that can achieve        
expert-level performance on a number of different       
cryo-EM datasets. Our workflow takes movies or       
motion-corrected micrographs as the input and outputs a        
particle stack that contains high-resolution particles that       

will be used in the following 3D reconstruction steps         
without any user decisions. Specifically, our workflow       
can automatically detect bad micrographs using      
MicAssess, determine the best parameters for particle       
picking and 2D classification, and identify the good class         
averages that can be used in 3D reconstruction using         
2DAssess. In the workflow, the subjective user decisions        
are replaced with statistical models based on the        
features extracted with image processing methods and       
convolutional neural networks, along with the expert       
knowledge. We believe that our automatic pipeline helps        
to establish a framework to accelerate data       
preprocessing and to perform data assessment at       
multiple levels in the high-throughput era of cryo-EM. 

RESULTS 

Overview of the Method 
The current routine of cryo-EM data preprocessing       
consists of a number of subjective user decisions (Fig.         
1). First, many users will manually go through all the          
motion-corrected micrographs to pick out the bad       
micrographs, and then select an estimated resolution       
threshold to remove the remaining bad micrographs       
based on the results of CTF estimation. Next, most         
particle pickers will require the users to manually pick a          
few particles, set the estimated particle diameter and        
determine the picking threshold before automatic particle       
picking. Then the particles will be extracted with the         
user-defined box size and pixel size used for 2D         
classification, where the users need to determine the        
class number and the diameter of the mask. Finally, the          
users need to select the good 2D class averages based          
on their own judgment, and the particles in the selected          
2D class averages will be re-extracted and used in the          
downstream 3D reconstruction steps. 
 
Our general workflow streamlines the preprocessing      
steps to take either movies or motion-corrected       
micrographs as the input and output a stack of clean          
particles that can be used as the input in the subsequent           
3D analysis (Fig. 1). During this process, we built         
statistical models in order to capture human       
decision-making during the preprocessing steps. Instead      
of developing new preprocessing tools and algorithms,       
our workflow takes advantage of these developments       
and provides evaluations so that expert-level decisions       
can be made automatically. We provide an overview of         
the method below. 
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MicAssess: Automatic micrograph assessment 

First, we developed a tool that can assess the quality of           
motion-corrected micrographs even before CTF     
estimation: MicAssess. Unlike EMPIAR datasets, which      
consist of mostly usable micrographs, many real-world       
data generated from the microscopes are dirty and        
noisy. Researchers often undertake significant effort to       
manually eliminate bad micrographs to obtain a clean        
dataset to work within the downstream preprocessing       
steps. Although the difference between good and bad        
micrographs is unambiguous, it is still difficult to find a          
universal and robust criterion. Many scientists have been        
using the resolution outputs from CTF estimation for        
micrograph cleaning, however, there lacks a publicly       
accepted resolution cutoff, and there are still a number         
of bad micrographs that will make through using this         
metric for decision making.  
  
Convolutional neural networks (CNN) are changing the       
field of computer vision as well as biology in recent years           
and have been widely applied to image classification,        
object detection, image segmentation, etc (Moen et al.        
2019). In cryo-EM, a number of CNN- based particle         
picking models have been developed and widely used,        
including Warp (Tegunov and Cramer 2019), crYOLO       
(Wagner et al. 2019), and Topaz (Bepler et al. 2019).          
With the similar idea, we developed a CNN-based        
micrograph assessor, MicAssess. The architecture of      
MicAssess is described in Fig. 2A . Similar to many CNN          
models, our model consists of a feature extraction        
convolutional network and a classification network. For       
the feature extraction network, we used a standard        
ResNet34 (He et al. 2016), which is a deep and          
light-weighted fully convolutional residual network with      
34 layers. Following the feature extraction, the       
convolutional network is the classification network, which       
consists of one fully connected (FC) layers with 512         
nodes. Dropout layers with a 0.5 dropout rate and batch          
normalization are also applied, and leaky rectified linear        
unit (LReLU) is used as the activation function. Finally,         
the last layer uses a sigmoid function as the activation          
function and performs prediction, which is the probability        
that the input micrograph is considered as “good”. 
 
Most image classification problems are considered as       
supervised learning, which means that they need to be         
trained on labeled datasets. We have collected and        
manually labeled a total of 4,644 micrographs (2,372        
good micrographs and 2,272 bad micrographs) from       
several EMPIAR datasets in addition to in-house       
datasets (Table 1). Our good micrograph dataset       

consists of proteins and complexes ranging from 50 kDa         
to 4 MDa (Fig. 2B, upper row ), while our bad          
micrograph dataset consists of a variety of unusable        
micrographs including micrographs that are either empty       
or too dense, contaminated, or with protein aggregates        
(Fig. 2B, lower row ). The dataset was randomly split         
into a training set (80 %) and a validation set (20 %).            
Data augmentation was applied before training to       
increase the amount of training data and reduce        
overfitting. The trained model was evaluated on the        
validation set, and an accuracy of about 97% was         
achieved. A detailed description can be found in the         
Methods section.  
 
To test the effectiveness of MicAssess, we analyzed a         
published dataset collected by our lab on the        
Phosphatidylinositol 3,4,5-trisphosphate  
(PIP3 )-dependent Rac exchanger 1 (P-Rex1) (Cash et al.        
2019). This dataset contains 6,736 micrographs and is a         
combination of untilted and tilted series. Importantly, the        
training data in MicAssess did not include any P-Rex1         
micrographs. As a comparison, we also classified the        
micrographs using the CTF maximum resolution outputs       
from CTFFIND4, with determination thresholds being 4 Å        
for untilted micrographs and 10 Å for tilted micrographs.         
To quantify the performance of both CTF-based       
micrograph cleaning and MicAssess, we manually      
labeled the total 6,736 micrographs and used the labels         
as the “ground truth” with which to compare.  
 
A comparison of CTF maximum resolution cutoff to the         
ground truth highlighted a number of discrepancies. As        
is typical, the distribution of CTF maximum resolution        
values for tilted or untilted micrographs does not show a          
bimodal distribution. (Fig. 3A). Therefore, even though 4        
Å and 10 Å resolution cutoff thresholds are considered         
reasonable, such numbers are not obvious from the        
distribution of the data, but rather arbitrary. Compared to         
human-labeled “ground truth”, CTF-based micrograph     
cleaning reached an overall accuracy of 77.5% (Fig.        
3B). This indicates that while CTF maximum resolution        
is a convenient method to remove bad micrographs,        
there is room for improvement in order to obtain more          
accurate micrograph assessment. 
 
Compared to CTF maximum resolution, MicAssess      
showed higher accuracy for identifying both good and        
bad micrographs. To highlight the power of MicAssess,        
MicAssess was also able to correctly classify many bad         
micrographs with < 4 Å CTF maximum resolutions (Fig.         
3C). Such micrographs will not be captured by the         
CTF-based micrograph cleaning approach. Overall,     
MicAssess found 1,388 bad micrographs (Fig. S2) and        
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had an accuracy of 93.0%, with a notably very low          
false-negative rate (0.12%) (Fig. 3D). In other words,        
only 8 good micrographs were misclassified to the bad         
category.  
 
This analysis indicates the MicAssess performs nearly       
as well as human assessment for the P-Rex1 test         
dataset. More importantly, MicAssess does not need any        
arbitrary threshold, and both tilted and untilted       
micrographs were predicted with the exact same       
procedure, providing a completely “hands-off” tool for       
micrograph assessment, which enables the automatic      
cryo-EM data preprocessing and assessment at the very        
beginning. 

Automatic particle diameter estimation 

Since our workflow aims for decision-free preprocessing,       
the suitable particle picker should not need any human         
picking beforehand. Therefore, any template-based     
particle picker or CNN-based particle picker that needs        
to be trained on manually prelabeled particles cannot be         
used in the workflow. Fortunately, we are able to use the           
general model of crYOLO (Wagner et al. 2019), which is          
a CNN-based particle picker pretrained on a number of         
EMPIAR and in-house datasets. The two parameters       
needed for particle picking in crYOLO are box size and          
threshold.  
 
Optimally, the box size should be the size of the particle.           
Since this information is usually unclear for a new         
protein, our workflow will first perform particle picking on         
a subset of the micrographs with different box sizes. The          
picked particles will be extracted, low pass filtered and         
averaged without any alignment. We then find the edge         
of this averaged image using a Canny edge detector,         
and the size of the particle is determined based on the           
edge detected and is dilated by an empirical factor of 1.5           
(Fig. S3 ). After that, the workflow uses crYOLO to pick          
the particles from all micrographs. The threshold       
parameter controls the strictness of the decision of a         
particle. The workflow uses a very low threshold of 0.1          
since many false positives can be removed in the         
following 2D classification step. 

2DAssess: Automatic selection of good 2D class       
averages  

After particles are picked and extracted from       
micrographs with CTF information, particles are      
subjected to 2D classification, whereby good 2D       
averages are identified using 2DAssess. Similar to the        
micrograph classifier, our CNN-based classifier model      
(Fig. 2C ) also requires a labeled dataset for training. We          

have obtained the 2D class averages from ten different         
datasets from a range of diameters use in 2D         
classification, providing 2D averages for optimal masks,       
masks that are too tight, and masks that are too large           
(Table 2 ).  
 
The 2D class averages are preprocessed and labeled in         
four different classes (Fig. 2D): good, clip, edge, and         
noise. The good class includes all the good class         
averages that will be selected and used in the         
downstream processing steps. The clip class includes       
the class averages that are clipping the neighboring        
particles, usually a sign that the diameter is too large.          
The edge class includes the class averages with        
“barcode” like patterns, which means that some particles        
are on the edge of the micrograph or the carbon. The           
noise class includes all the other bad class averages         
that are not covered by the clip and edge classes, which           
contains pure noise, over-aligned, and low-resolution      
class averages. The dataset was downsampled to       
account for the class imbalance and then randomly split         
into a training set (80 %) and a validation set (20 %). We             
noticed that when the diameter of the mask becomes         
large, one class average might contain two particles.        
The CNN-based classifier failed to detect this and would         
misclassify such 2D class averages to the “good” class.         
To prevent this, we checked the saliency map (Hou and          
Zhang 2007) of the 2D class averages in the predicted          
“good” class, and re-classify the class averages with two         
or more objects to the correct “clip” class. The         
combination of the CNN-based classifier and the       
saliency map check made up the complete 2D class         
average assessor, which we named it as 2DAssess. 
 
To further enrich the number of good class averages, we          
used deep convolutional generative adversarial networks      
(DCGAN) (Radford, Metz, and Chintala 2015) to       
generate artificial good class averages using the true        
good class averages in the training set. We then         
carefully selected 66 artificial good class averages       
generated by DCGAN (Fig. S4) and added them to the          
training set. Although the selected images are not from         
2D class averages of real proteins, they will most likely          
be labeled as good class averages without any prior         
knowledge of the protein. Adding these DCGAN       
generated images as a data augmentation approach       
improves the generalizability of the classifier when the        
good 2D class average samples are limited. Some        
simple data augmentation (elaborated in the methods       
section of the paper) was applied in training and         
validation. The precision and recall of each class for the          
validation set are reported in Table 3 . Notably, the good          
class reached a precision of 94% and a recall of 97%.  
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Testing on EMPIAR Datasets 

T20S proteasome (EMPIAR-10025) 

First, we tested our workflow on a subset of the          
published T20S proteasome cryo-EM dataset     
(EMPIAR-10025) (Campbell et al. 2015) (Fig. 4). This        
subset contains 87 micrographs, all of which were all         
being classified as good by MicAssess. Subsequently,       
the diameter was estimated to be 195 Å. Using this          
diameter, crYOLO picked 52,153 particles that were       
used to search a range of diameters during 2D         
classification (Fig. 4A & B). For each diameter used in          
RELION 2D classification, 2DAssess was used to       
estimate the number of good particles. Finally,       
comparison across all diameters used in 2D       
classification indicated that the best diameter for T20S        
was 195 Å (Fig. 4B). For the 195 Å diameter, the good            
2D class averages selected by 2DAssess had a 100%         
prediction accuracy (Fig. 4C), correctly identifying all       
good and bad 2D averages. 
 
Using the stack of particles associated with good        
averages, we then performed 3D refinement to obtain a         
3.1 Å structure of the T20S proteasome (Fig. 4D & E).           
This structure demonstrates that the automatic      
preprocessing pipeline provided a high-resolution stack      
of particles of T20S without user intervention.  

Hemagglutinin (HA) trimer (EMPIAR-10175) 

After successfully analyzing T20S, we next wanted to try         
a more challenging sample. To this end, we selected the          
influenza hemagglutinin trimer (HA trimer) dataset      
(EMPIAR-10175) (Noble et al. 2018) due to its extreme         
orientation differences: end-on views have a diameter of        
55Å whereas the side-on views have a diameter of         
140Å. After running MicAssess on 1,099 micrographs,       
MicAssess identified 205 micrographs as bad (examples       
are shown in Fig. S5 ), and the rest of 894 micrographs           
were preprocessed by the downstream pipeline. After 2D        
classification, the best diameter to be used in 2D         
classification was selected to be 150 Å (Fig. 5A & B).           
The good and bad class averages were all correctly         
classified by 2DAssess (Fig. 5C ).  
 
Using the output stack of good particles, we performed a          
3D refinement with the selected 150,684 particles. This        
allowed us to determine a structure at 3.2 Å resolution          
(Fig. 5D & E ), comparable to what was published         
previously for HA trimer (Noble et al. 2018). This         
structure confirmed that the automatic pipeline is       

capable of handling datasets of varying size and shape,         
setting the stage for real-world data analysis. 

Analysis of real-world data  

Aldolase 

To extend our preprocessing pipeline, we analyzed an        
in-house collected aldolase dataset. This dataset      
contains 1,118 micrographs, in which 1,075 micrographs       
were predicted as good by MicAssess. The examples of         
bad micrographs being selected by MicAssess are       
shown in Fig. S6 . After estimating the particle diameter,         
the 2D classification showed an optimal mask diameter        
of 108 Å (Fig. 6A & B). 2DAssess correctly predicted all           
the good class averages. In this dataset, there were two          
falsely identified good averages that were actually bad,        
which only accounted for 1.53% of the total particles         
(Fig. 6C ).  
 
Using the particle stack generated by the pipeline        
(including all of the false positives), we performed a 3D          
refinement to obtain a final structure of aldolase at 3.2 Å           
(Fig. 6D & E ). This demonstrates that the preprocessing         
pipeline successfully handles more realistic data, as       
expert users also determine a structure to the same         
resolution.  

P-Rex1 - a sample screening case study for        
high-throughput cryo-EM 

Finally, in order to demonstrate the effectiveness of the         
pipeline, we automatically analyzed multiple datasets to       
simulate a sample screening experiment. The datasets       
we used were collected from six cryo-EM sessions of         
P-Rex1 under different conditions (Fig. 7A), including       
apo P-Rex1 on different types of grids (18sep06b and         
18sep28b), with different additives (18jan09b and      
18jan09d), and with a binding partner Gβγ at different         
concentrations (18jul14a and 18jan18c). The goal of this        
sample screening case study is to verify that our pipeline          
provides a robust and user-free approach for automatic        
data quality assessment at different levels considering       
that only one dataset (18jan18c) is amenable for        
high-resolution cryo-EM (Cash et al. 2019). 
 
All six datasets were analyzed with the pre-defined        
automatic pipeline, where no user input was required        
other than microscope settings. The outputs of the        
automatic pipeline were the 2D class averages selected        
by 2DAssess for each dataset (Fig. 7A & Fig. S7 ). The           
datasets were assessed at different levels, from the        
micrographs to the 2D class averages, throughout the        
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pipeline. At the first step, MicAssess quickly captured        
that one of the datasets, 18sep28b, contained mostly        
bad micrographs (70%) (Fig. 7B). All the other five         
datasets contained mostly good (above 50%)      
micrographs (Fig. 7B). The particle picker picked       
170-350 particles per micrograph for all five datasets,        
except 18sep28b, which only had an average of 85         
picked particles per micrograph, confirming the bad       
quality of this dataset (Fig. 7C). After 2D classification,         
the class averages were classified by 2DAssess, where        
we found that four datasets have over 50% of the picked           
particles to be good particles outputted by the automatic         
pipeline (Fig. 7B), and there were 100~200 good        
particles per micrograph (Fig. 7C). 
 
Although many of the datasets showed a promising        
statistics of good micrograph and good particle fractions,        
the good 2D class averages selected by 2DAssess        
revealed that apo P-Rex1 alone and with additives had a          
very strong preferred orientation on the cryo-EM grids        
(Fig. 7A ). On the other hand, one of the datasets of           
P-Rex1 with Gβγ (18jul14a) exhibited a sample       
heterogeneity, where we found Gβγ oligomers in the        
good 2D class averages (Fig. 7A), indicating that the         
concentration of Gβγ added was too high. Finally, the 2D          
class averages output by the automatic pipeline from the         
last dataset (18jan18c) showed the P-Rex1 and Gβγ        
interactions, and new orientations were also seen as a         
result (Fig. 7A ). This case study demonstrated that our         
automatic preprocessing pipeline is an objective, fully       
automatic approach for sample screening for      
high-throughput cryo-EM.  

DISCUSSION 
Cryo-EM is on the verge of becoming a high-throughput         
technique. This new era requires consistent and       
reproducible methods to assess and preprocess the       
micrographs directly from the microscopes in a timely        
manner. Our workflow provides a robust way to assess         
and preprocess cryo-EM data automatically without any       
user intervention, and it takes advantage of pre-existing        
software and preprocessing algorithms. We maintained      
the flexibility to incorporate any preprocessing      
algorithms, as long as no subjective user decisions are         
required. Therefore, instead of competing with the       
state-of-the-art software packages, our workflow uses      
the deep-learning-based assessment tools we     
developed and provides a platform to streamline all the         
preprocessing steps. To our knowledge, this is the first         
fully automatic and generic workflow for cryo-EM data        
preprocessing. 

 
As the initial step in our workflow, it is important that           
MicAssess can efficiently identify most bad micrographs,       
but keeping ideally all the good micrographs. Therefore,        
MicAssess was tuned to tolerate more false positives,        
reducing the risk of a good micrograph being        
misclassified. The P-Rex1 benchmark result showed that       
it can effectively identify most of the bad micrographs         
from a big real-world dataset. Furthermore, MicAssess       
also has the potential to be incorporated into the data          
acquisition step. With the new K3 camera, which can         
collect as fast as 8,000 movies per day, it is impossible           
to manually assess the quality of the newly collected         
micrographs. MicAssess provides a way to assess these        
micrographs on the fly even before CTF estimation so         
that the user can get real-time feedback on the qualities          
of the micrographs. 
 
In our workflow, we only used 2DAssess to predict         
whether a class average is good or bad, but it can           
predict four different classes (clip, edge, good, and        
noise), which contains a lot more information. For        
example, a large percentage of particles being classified        
as “clip” usually indicates the mask diameter is too large          
because neighboring particles are being included in       
some 2D class averages. This gives the 2DAssess the         
potential to improve 2D classification by performing       
automatic diameter searching. Specifically, since most      
2D classification algorithms are iterative, intermediate      
2D class averages are generated after each iteration. It         
is possible to apply 2DAssess on the 2D class averages          
in the early iterations and use the outputted predictions         
to guide the automatic diameter searching. 
 
Given that MicAssess and 2DAssess are deep-learning       
based models, both models will continue to improve with         
more representative training data. Moreover, as deep       
learning models, these tools can be tuned for specific         
samples, users, or facilities to aid in sample assessment.         
Sample tuning could be extended into other parts of the          
pipeline, including particle picking and, likely, 3D       
analysis. Further work in this area stands to help         
streamline initial phases of cryo-EM data processing. 
  
An important aspect of our pipeline centers on creating a          
workflow that does not depend on user-defined       
thresholds. These thresholds are typically CTF      
maximum resolution and particle picking thresholds, but       
could also apply to how 2D class averages are selected.          
By developing statistical tools to assess the data, we         
developed tools that more closely mirror user-based       
decisions, instead of fixed-value thresholds. 
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While this pipeline provides an important first step for         
automated pre-processing, there remains room for      
improvement. Namely, we continued to use 2D       
classification as a tool in order to measure particle         
quality, where belonging to ‘good’ class averages was a         
criteria for subsequent 3D analysis. Future work into        
particle sorting stands to provide a quick readout of         
particle quality to enable faster preprocessing routines. 
 
Overall, this work demonstrates that user-free      
preprocessing is capable to perform in a manner        
comparable to that of an expert. Future work may extend          
into automated 3D analysis to enable cryo-EM users to         
quickly analyze multiple datasets in parallel.  
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METHODS 

Automatic pipeline 

MicAssess 

Motion corrected micrographs were low-pass filtered and       
cropped to downscale to the network input image size of          
494x494. Micrographs were then normalized to a mean        
of zero. A circular mask with diameter 494 pixels was          
applied to each micrograph, and then rotations and        
flipping were applied randomly in the training and        
validation dataset. The model was a 34-layer ResNet        
connected to two fully connected layers with leaky ReLU         
as the activation function and 0.5 dropout rate. The final          
predicting layer used a sigmoid function as the activation         
function. The loss function used was the binary        
cross-entropy loss. We used the ADAM optimizer with        
0.0001 learning rate in training for optimization. In the         
real prediction, in order to tolerate more false positives         
than false negatives, we set the threshold as 0.1 (i.e.          
only micrographs with probabilities of being good lower        
than 0.1 will be classified as bad).  

CTF estimation 

CTF estimation is performed using CTFFIND4 (Rohou       
and Grigorieff 2015), with all the parameters, including        
pixel size, spherical aberration, magnification, and      
voltage, are related to the experiment given earlier. 

2D classification 

Picked particles were scaled to about 3 Ångstrom/pixel        
and extracted using RELION3 (Zivanov et al. 2018).        
After that, all the particles will be processing with 2D          
classification in RELION3. The workflow uses the       
maximum class number, 200, for the best performance        
in the sacrifice of speed. Multiple 2D classification jobs         
for one dataset will be submitted, with different        
diameters of the mask, ranging from 0.5 to 2 times the           
particle size estimated earlier. 

2DAssess 

Training and validation data consist of the RELION        
(Zivanov et al. 2018) outputs of 2D classification from 12          
different datasets (Table 3). The EMPIAR datasets were        
preprocessed by the pipeline, and the outputted 2D        
class averages were manually labeled to the correct        
classes. Classes with significantly more samples were       
downsampled to eliminate the possible problems caused       
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by class imbalance. The final dataset has 527, 550,         
898, 1002 images for good, clip, edge, and noise         
classes respectively, and was randomly split into a        
training set (80 %) and a validation set (20 %). 
 
Given that the output averaged images from RELION        
(Zivanov et al. 2018) already contained a mask with         
diameter d, we cropped all average images to remove         
mask edges. To do this, we first cropped the images to           
size dxd which only keep the centers of the images.          
Images were then normalized to a mean of zero, and          
resized to 256x256 using Lanczos resampling. Random       
rotations and flipping were applied in the training and         
validation dataset.  
 
We used a simple DCGAN (Radford, Metz, and Chintala         
2015) model to artificially generate images that belong to         
the good class as a data augmentation approach. The         
training data used for DCGAN is the 527 images in the           
good class. The generator of DCGAN was a        
convolutional neural network implementing upsampling     
convolutions, organized as input (100-d) -> transpose       
conv3x3 1024-d, stride 2, batch normalization, ReLU       
activation -> transpose conv1x1 1024-d, stride 1, batch        
normalization, ReLU activation -> transpose conv3x3      
512-d, stride 2, batch normalization, ReLU activation ->        
transpose conv1x1 512-d, stride 1, batch normalization,       
ReLU activation -> transpose conv3x3 256-d, stride 2,        
batch normalization, ReLU activation -> transpose      
conv3x3 256-d, stride 2, batch normalization, ReLU       
activation -> transpose conv3x3 1-d, stride 1, tanh        
activation -> generated image. The discriminator of       
DCGAN was a simple convolutional neural network,       
organized as input -> conv3x3 32-d, stride 2, batch         
normalization, leaky ReLU activation, dropout rate 0.25       
-> conv3x3 64-d, stride 2, batch normalization, leaky        
ReLU activation, dropout rate 0.25 -> conv3x3 128-d,        
stride 2, batch normalization, leaky ReLU activation,       
dropout rate 0.5 -> conv3x3 128-d, stride 2, batch         
normalization, leaky ReLU activation, dropout rate 0.5 ->        
fully connected layer with a single output with sigmoid         
activation. 10,000 epochs were used in training and only         
the images generated from the last 2,000 were saved.         
We then carefully selected 66 images and added them         
to the training set. All the selected images generated by          
DCGAN are shown in Fig. S4.  
 
The CNN-based classifier failed to correctly classify       
class averages containing two particles, which is a        
situation that occurs when the 2D classification mask is         
too large. Therefore, we confirmed that all images        
predicted to be in the good class did not have two           
particles by calculating a saliency map of the 2D class          

averages. A saliency map is a representation of an         
image that can highlight the unique features of the         
image. In our application, we calculated the saliency        
map with the spectral residual approach and based on         
the object detected by the saliency map, we checked 1)          
the number of the object, and 2) whether the center of           
mass of the detected object is around the center of the           
image. Only the 2D class averages with one centered         
object detected will pass this saliency map check. The         
other class averages, with either more than one object or          
the object, are typically not well centered (usually due to          
the case that there are more than one particle but the           
particles are too close to be differentiated by the saliency          
map), will be moved to the correct clip class. 
 
The number of the good particles that belong to the good           
2D class average groups are calculated across all the         
diameters used in the 2D classification jobs, and the         
diameter with the best particles is being selected as the          
best diameter. 

Single-particle analysis  

T20S 

3D refinement. After the preprocessing pipeline, 45,066       
particles were re-extracted to a pixel size of 0.88 Å/pixel          
with a box size of 390 Å. Using EMD-6287 as an initial            
model, we performed a 3D refinement in RELION-v3.0        
(Zivanov et al. 2018) using D7 symmetry to obtain a          
structure at 3.1 Å resolution and B-factor of -103 Å2 . 

HA Trimer 

3D refinement. After the preprocessing pipeline, 150,684       
particles were re-extracted to a pixel size of 1.275Å/pixel         
with a box size of 250Å. Using EMD-7792 as an initial           
model, we performed homogenous 3D refinement in       
cryoSPARC v2.11.2-live_privatebeta using C3 symmetry     
to obtain a structure at 3.2 Å resolution and a B-factor of            
-151 Å2 .  

Aldolase 

Sample preparation. Pure aldolase isolated from rabbit       
muscle was purchased as a lyophilized powder (Sigma        
Aldrich) and solubilized in 20 mM HEPES (pH 7.5), 50          
mM NaCl at 1.6 mg/ml. Sample as dispensed on freshly          
plasma cleaned UltrAuFoil R1.2/1.3 300-mesh grids      
(Electron Microscopy Services) and applied to grid in the         
chamber of a Vitrobot (Thermo Fisher) at ~95% relative         
humidity, 4°C. The Sample was blotted for 4 seconds         
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with Whatman No. #1 filter paper immediately prior to         
plunge freezing in liquid ethane cooled by liquid nitrogen.  

Cryo-EM data acquisition. Data were acquired using the        
Leginon automated data-acquisition program (Suloway     
et al. 2005). Image preprocessing (frame alignment and        
CTF estimation) were done using the Appion processing        
environment (Lander et al. 2009) for real-time feedback        
during data collection. Images were collected on a Talos         
Arctica transmission electron microscope (Thermo     
Fisher) operating at 200 keV with a gun lens of 6, a spot             
size of 6, 70 μm C2 aperture and 100 μm objective           
aperture. Movies were collected using a K2 direct        
electron detector (Gatan Inc.) operating in counting       
mode at 45,000x corresponding to a physical pixel size         
of 0.91 Å/pixel. The dose rate was 4.413 e/pix/sec for a           
10 second exposure, which makes for a total dose of          
44.13 e/Å2 for the 1118 images collected at a defocus          
range of 0.8-2 μm. 
 
3D refinement. After the preprocessing pipeline,      
425,087 particles were re-extracted to a pixel size of         
1.22 Å/pixel with a box size of 271 Å. Using EMD-8743           
as an initial model, we performed a 3D refinement in          
RELION-v3.0 (Zivanov et al. 2018) using D2 symmetry        
to obtain a structure at 3.2 Å resolution and B-factor of           
-110 Å2 . 

P-Rex1 screening 

P-Rex1 samples were prepared as described (Cash et        
al. 2019) with the exception of details described in Table          
4. 
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Figure 1. Conventional cryo-EM preprocessing vs. automatic preprocessing pipeline. Left panel: current workflow             
describing the preprocessing of cryo-EM datasets, with all the user decisions needed in red. Right panel: the automatic                  
pipeline introduced in this paper. All user decisions are replaced by the new tools developed in blue. 
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Figure 2. Deep learning-based tools for cryo-EM micrograph and 2D class average assessment. (A) The               
architecture of MicAssess. The motion corrected micrograph will be inputted to a feature extraction convolutional network                
(a standard ResNet34 in the paper), and after one dropout layer, one fully connected layer and another dropout layer,                   
output the prediction of the micrograph. (B) Examples of the labeled good and bad micrographs in the training set. The                    
good class contains partially good images, images with small or very large proteins, etc.. The bad class contains all                   
different kinds of unusable micrographs, including micrographs that are empty or too dense, contaminated, or with protein                 
aggregates. (C) The architecture of CNN-based model in 2DAssess. The input class average image will be inputted to a                   
feature extraction convolutional network (a standard ResNet50 in the paper), and after one dropout layer, output the                 
prediction of the 2D class average to be one of the four classes. (D) Examples of the labeled 2D class averages in the                       
good, clip, edge, and noise classes in the training set.  
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Figure 3. MicAssess performs equivalently to CTF resolution cutoff on micrograph assessment. (A) Histograms of               
the CTF maximum resolutions outputted by CTFFIND4 of the test set. Vertical lines indicate the selected hard thresholds                  
for tilted and untilted micrographs (4 Å and 10 Å respectively). Micrographs higher than the thresholds are considered as                   
bad. (B) Confusion matrix and evaluation metrics for CTF resolution threshold vs. human assessment on P-Rex1:Gβγ                
dataset. (C) Histograms of the CTF maximum resolutions outputted by CTFFIND4 of the test set, color labeled according                  
to the predictions by MicAssess. Vertical lines indicate 4 Å and 10 Å respectively. (D) and evaluation metrics of MicAssess                    
on the P-Rex1 test set. 
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Figure 4. High-resolution cryo-EM structure of T20S proteasome from automatic preprocessing pipeline. (A)             
Overview of the intermediate results of automatic pipeline on EMPIAR-10025 dataset. (B) Histogram showing the fractions                
of the good particles identified by the pipeline with different diameter used in 2D classification. The diameter with the most                    
good particles (195 Å) is selected (darker blue) to be the best diameter, and the corresponding 2D classification result is                    
used to output the final particle stack. (C) 2DAssess achieves 100% prediction accuracy on the EMPIAR-10025 dataset.                 
All the good 2D averages (86.4% of the picked particles) and a subset of the bad 2D averages predicted by 2DAssess are                      
shown. (D) 3D electron density volume using the particle stack outputted by the pipeline as the input for 3D reconstruction                    
steps. (E) FSC curve of the electron density map in panel C, showing a resolution of 3.1 Å. 
 
 
 
 
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 21, 2019. ; https://doi.org/10.1101/2019.12.20.885541doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.20.885541


 
 

 
 
Figure 5. High-resolution cryo-EM structure of HA trimer from automatic preprocessing pipeline. (A) Overview of               
the intermediate results of automatic pipeline on EMPIAR-10175 dataset. (B) Histogram showing the fractions of the good                 
particles identified by the pipeline with different diameter used in 2D classification. The diameter with the most good                  
particles (150 Å) is selected (darker blue) to be the best diameter, and the corresponding 2D classification result is used                    
to output the final particle stack. (C) 2DAssess achieves 100% prediction accuracy on the EMPIAR-10175 dataset. All the                  
good 2D averages (89.8% of the picked particles) and a subset of the bad 2D averages predicted by 2DAssess are                    
shown. (D) 3D electron density volume using the particle stack outputted by the pipeline as the input for 3D reconstruction                    
steps. (E) FSC curve of the electron density map in panel C, showing a resolution of 3.2 Å. 
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Figure 6. High-resolution cryo-EM structure of aldolase from automatic preprocessing pipeline. (A) Overview of the               
intermediate results of automatic pipeline on the aldolase dataset. (B) Histogram showing the fractions of the good                 
particles identified by the pipeline with different diameter used in 2D classification. The diameter with the most good                  
particles (108 Å) is selected (darker blue) to be the best diameter, and the corresponding 2D classification result is used                    
to output the final particle stack. (C) 2DAssess achieves very high prediction accuracy on the aldolase dataset. All the                   
good 2D averages (79.2% of the picked particles) and a subset of the bad 2D averages predicted by 2DAssess are                    
shown. The two false positives (blue shaded) only account for 1.53% of the total picked particles. (D) 3D electron density                    
volume using the particle stack outputted by the pipeline (including the false positives) as the input for 3D reconstruction                   
steps. (E) FSC curve of the electron density map in panel C, showing a resolution of 3.2 Å. 
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Figure 7 . Automatic analysis of multiple P-Rex1 cryo-EM data sets to assess sample quality. (A) The six datasets                  
analyzed by the automatic pipeline in this case study, including different sample preparations, different additives and                
whether a binding partner was added. 2D class averages were predicted by 2DAssess and the five good and                  
representative 2D class averages for each dataset are shown for assessment. (B) Fractions of the good micrographs in all                   
the micrographs (orange) and fractions of the good particles outputted by the automatic pipeline in all the picked particles                   
(purple) for each dataset. (C) The numbers of picked particles (brown) and the numbers of good particles outputted by the                    
automatic pipeline (blue) for each dataset. 
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Particle Name EMPIAR ID 
26S Proteasome EMPIAR-10072 

AAV EMPIAR-10202 

Ribosome EMPIAR-10077 

Rag complex EMPIAR-10049 

NOMPC EMPIAR-10093 

GluDH EMPIAR-10217 

RNA PolIII EMPIAR-10190 

Spliceosome EMPIAR-10160 

In-house dataset - 160 kDa N/A 

In-house dataset - 480 kDa  N/A 

In-house dataset - 180 kDa  N/A 

In-house dataset - 168 kDa  N/A 

In-house dataset - 80 kDa  N/A 
 
Table 1. Sources of the micrographs in the training and validation dataset used for MicAssess. 
 
 
 
  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 21, 2019. ; https://doi.org/10.1101/2019.12.20.885541doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.20.885541


 
 
 
 
 
 

Particle Name EMPIAR ID 
RNA-Pol III EMPIAR-10190 

Rag complex EMPIAR-10049 

E. Coli 70S-SelB ribosome EMPIAR-10077 

26S Proteasome EMPIAR-10072 

NOMPC EMPIAR-10093 

Spliceosome EMPIAR-10160 

TMEM16 EMPIAR-10241 

AAV EMPIAR-10202 

Betagal EMPIAR-10061 

GluDH EMPIAR-10217 

In house sample (180 kDa) N/A 

Apoferritin (in-house) N/A 
 
Table 2. A full list of the 2D class averages in the training and validation dataset used for 2DAssess. 
 
 
 
 
 
 

 Precision Recall Support 
Clip 0.89 0.92 110 

Edge 0.91 0.84 180 
Good 0.94 0.97 120 
Noise 0.82 0.85 201 

 
Table 3. Precisions, recalls and the number of supports of each class in the validation set of 2DAssess. 
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 18sep06b 18sep28b 18jan09b 18jan10d 18jul14a 18jan18c 

P-Rex1 concentration 
(μM) 

3.0 3.0 3.0 3.0 3.0 3.0 

Additive (μM) - - DDM (80) Lubrol (40) DDM (80) DDM (80) 

Gβγ concentration 
(μM) 

- - - - 60 6.0 

Grid type Quantifoil 
1.2/1.3 

Lacey 
carbon 

Quantifoil 
1.2/1.3 

Quantifoil 
1.2/1.3 

Quantifoil 
1.2/1.3 

Quantifoil 
1.2/1.3 

Microscope Titan Krios Talos 
Arctica 

Talos Arctica Talos Arctica Titan Krios Titan Krios 

Original Pixel Size (Å) 1 0.91 0.91 0.91 1 1 

Number of total 
micrographs  

1,716 1,491 1,206 1,110 1,352 5,011 

Number of good 
micrographs # 

986 445 841 790 1,217 4,157 

Estimated diameter (Å) 144 144 135 132 138 151 

Number of total picked 
particles 

178,483 37,946 177,086 205,682 424,213 921,403 

Number of good 
particles 

94,514 9,535 114,630 141,982 145,941 492,883 

Pixel size for 2D 
classification (Å) 

4 3.59 3.64 3.67 3.94 3.97 

Best diameter for 2D 
classification (Å) 

129 216 108 105 110 120 

 
Table 4. Details of the automatic assessment of multiple P-Rex1 cryo-EM data sets. 
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 T20S Proteosome 
(EMPIAR-10025) 

HA Trimer 
(EMPIAR-10175) 

Aldolase 

Microscope Titan Krios Titan Krios Talos Arctica 

Detector Gatan K2 Gatan K2 Gatan K2 

Voltage (kV) 300 300 200 

Electron exposure (e-/Å 2) 53 73.24  44.13 

Defocus range (μm) 0.9 - 2.4 1.0-2.1 0.8 - 2.0 

Original pixel size (Å) 0.66 0.85 0.91 

Symmetry imposed D7 C3 D2 

Initial particle images 
(no.) 

52,153 167,788 536,520 

Final pixel size 0.88 1.275 1.22 

Final particle images (no.) 45,066 150,684 425,087 

FSC threshold 0.143 0.143 0.143 

Map resolution (Å) 3.1 3.2 3.2 

B-factor (Å2) -103 -151 -110 

 
 
Table 5. Overview of cryo-EM structures.  
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Figure S1. Comparison of CTF maximum resolution vs. ground truth (human assessment). Histograms of the CTF                
maximum resolutions outputted by CTFFIND4 of the P-Rex1 test set, color labeled according to the manually labeled                 
ground truth. Vertical lines indicate 4 Å and 10 Å respectively. 
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Figure S2. Examples of bad micrographs identified by MicAssess in the P-Rex1 test dataset. 
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Figure S3. Particle size estimation. (A) Particles picked from 10 micrographs (EMPIAR-10025) were low pass filtered                
and averaged without any alignment. (B) Canny edge detector was applied to (A) and the edges found (inner circle) were                    
dilated by a factor of 1.5 to estimate the diameter of the particle (outer circle). 
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Figure S4. Artificial 2D class averages generated by DCGAN that were included in the training set of 2DAssess. 
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Figure S5. Examples of bad micrographs identified by MicAssess in the EMPIAR-10175 dataset. Scale bar = 100                 
nm. 
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Figure S6. Examples of bad micrographs identified by MicAssess in the aldolase dataset.  Scale bar = 100 nm. 
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Figure S7. Example micrographs and 2D class averages from the automated analysis of P-Rex1 datasets.               
Showing all the good 2D class averages and a subset of the bad 2D class averages predicted by 2DAssess. Scale bar in                      
the micrographs = 100 nm.  
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