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Abstract 26 

Genomic enhancers form the central nodes of gene regulatory networks by harbouring combinations of 27 
transcription factor binding sites. Deciphering the combinatorial code by which these binding sites are 28 
assembled within enhancers is indispensable to understand their regulatory involvement in establishing 29 
a cell’s phenotype, especially within biological systems with dysregulated gene regulatory networks, 30 
such as melanoma. In order to unravel the enhancer logic of the two most common melanoma cell states, 31 
namely the melanocytic and mesenchymal-like state, we combined comparative epigenomics with 32 
machine learning. By profiling chromatin accessibility using ATAC-seq on a cohort of 27 melanoma 33 
cell lines across six different species, we demonstrate the conservation of the two main melanoma states 34 
and their underlying master regulators. To perform an in-depth analysis of the enhancer architecture, 35 
we trained a deep neural network, called DeepMEL, to classify melanoma enhancers not only in the 36 
human genome, but also in other species. DeepMEL revealed the presence, organisation and positional 37 
specificity of important transcription factor binding sites. Together, this extensive analysis of the 38 
melanoma enhancer code allowed us to propose the concept of a core regulatory complex binding to 39 
melanocytic enhancers, consisting of SOX10, TFAP2A, MITF and RUNX, and to disentangle their 40 
individual roles in regulating enhancer accessibility and activity. 41 
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Introduction 42 

A cell’s phenotype arises from the expression of a unique set of genes, which is regulated through the 43 
binding of transcription factors (TFs) to cis-regulatory elements, such as promoters and enhancers. 44 
Deciphering gene regulatory programs entails understanding the network of transcription factors and 45 
cis-regulatory elements that governs the identity of a given cell type; as well as understanding how the 46 
specificity of such a network is encoded in the DNA sequence of genomic enhancers. Enhancers harbor 47 
combinations of binding sites for TFs, through which transcription of nearby target genes is regulated1,2. 48 
The chromatin around enhancers is typically enriched for acetylation of histone H3 at lysine 27 49 
(H3K27ac) and H3 monomethylation at K3 (H3K4me1), allowing enhancer identification through 50 
ChIP-seq for these specific histone marks1. In addition, profiling accessible chromatin via DNase I 51 
hypersensitive sequencing (DNase-seq) or via the Assay for Transposase-Accessible Chromatin using 52 
sequencing (ATAC-seq) represents a useful approach for identifying putative enhancers3,4. Indeed, 53 
active enhancers are typically depleted of one or more nucleosomes, due to the binding of TFs. Initial 54 
changes in DNA accessibility can be facilitated through a special class of TFs that bind with high 55 
affinity to their recognition sites and that have a long residence time at the enhancer; sometimes referred 56 
to as pioneer TFs4,5. By displacing nucleosomes or thermodynamically outcompeting nucleosome 57 
binding they allow other TFs to co-bind, thereby further stabilising the nucleosome depleted region 58 
and/or actively enhancing transcription of target genes6,7. As the presence and architecture of TF binding 59 
sites within enhancers determine which TFs can bind with high affinity, understanding this ‘enhancer 60 
logic’ can help interpreting the functional role of enhancers within a gene regulatory network. Several 61 
techniques exist to study the enhancer code, including (1) motif discovery tools, in which position-62 
weight matrices of TF binding sites are used to calculate their enrichment in sets of co-regulated regions 63 
or co-expressed genes8,9; (2) comparative genomics, by exploiting cross-species data to identify 64 
conserved and therefore possible important (parts of) enhancers10–12; (3) genetic screens to measure the 65 
effect of mutations on enhancer activity13,14; and (4) machine learning techniques, where mathematical 66 
models are trained to recognise specific patterns in enhancers and help to classify them15. Particularly 67 
the latter has seen a strong boost the last years, with the advent of large training sets derived from 68 
genome-wide profiling. Three pivotal methods based on deep learning include DeepBind16, DeepSEA17 69 
and Basset18, the first convolutional neural networks (CNNs) applied to genomics data19. Since their 70 
emergence in the genomics field, machine learning techniques, and especially CNNs, have been applied 71 
to model a range of regulatory aspects, including TF binding sites20, DNA methylation21 and 3D 72 
chromatin architecture22, by exploiting large epigenomics datasets. 73 
 74 
Deciphering gene regulation and the underlying enhancer code is not only important during dynamic 75 
processes such as development, but also in disease contexts such as cancer, where gene regulatory 76 
networks are typically dysregulated due to mutations. Melanoma is a type of skin cancer which mostly 77 
develops from a buildup of UV-induced mutations in melanocytes, the pigment-producing cells in the 78 
skin23. Particularly in this cancer type, gene expression is dysregulated and highly plastic, giving rise to 79 
two main melanoma cell states: the melanocytic (MEL) state, which still resembles the cell-of-origin, 80 
i.e. the melanocyte, expressing high levels of the melanocyte-lineage specific transcription factors 81 
MITF, SOX10 and TFAP2, as well as typical pigmentation genes such as DCT, TYR, PMEL, and 82 
MLANA; and the mesenchymal-like (MES) state, in which the cells are more invasive and therapy 83 
resistant, expressing low levels of MITF and SOX10, and high levels of genes involved in TGFbeta 84 
signaling and epithelial-to-mesenchymal transition (EMT)-related genes24–28. These transcriptomic 85 
differences have also been studied at the epigenomics level, with AP-1 and TEAD factors as master 86 
regulators of the MES state and binding sites for SOX10 and MITF significantly enriched in MEL-87 
specific regulatory regions27–29. However, it remains unclear how these regulatory states are encoded in 88 
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particular enhancer architectures, and whether such architectures are evolutionary conserved. Besides 89 
human cell lines and human patient-derived cultures, several animal models have been established in 90 
melanoma research, including mouse, pig, horse, dog and zebrafish30–34. Although these models are 91 
widely used, it is unknown whether their enhancer landscapes and regulatory programs are conserved 92 
with human. 93 
 94 
Here, we combine comparative regulatory genomics with machine learning to investigate enhancer 95 
logic in melanoma. Through epigenomic profiling of 27 melanoma cell lines across six species, we 96 
examine the conservation of the two main melanoma states and underlying master regulators. By 97 
training a deep neural network, called DeepMEL, on topic models derived from the human cell lines, 98 
we were able to classify not only human melanoma enhancers, but also regulatory regions in the other 99 
species. DeepMEL revealed high-confidence TF binding sites for the different melanoma states, how 100 
they are positioned within melanoma enhancers, and where they are placed with respect to the central 101 
enhancer nucleosome. This in-depth analysis of the melanoma enhancer code allowed us to propose a 102 
mechanistic model of TF binding in MEL melanoma enhancers. Finally, by exploiting the deep layers 103 
of our model, we are able to identify causal mutations for melanoma enhancer loss and gain through 104 
evolution, not only affecting enhancer accessibility but also activity.  105 
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Results 106 

Melanoma chromatin accessibility landscapes are conserved across species 107 

To study the conservation of melanoma cell states and underlying enhancer logic, we performed 108 
(Omni)ATAC-seq on a cohort of melanoma cell lines across six species, obtaining accessible chromatin 109 
landscapes of a total of 27 samples (Fig. 1a). These include 17 human patient-derived cultures (“MM 110 
lines”)27,35, one mouse cell line36, one cell line derived from the pig melanoma model MeLiM 111 
(“MeLiM”)30, two horse melanoma lines derived from a Grey Lipizzaner horse (“HoMel-L1”) and from 112 
an Arabian horse (“HoMel-A1”)33, two dog melanoma cell lines (“Cesar” and “Bounty”)37 and four 113 
melanoma lines established from zebrafish (“ZMEL1”, “EGFP-121-1”, “EGFP-121-5” and “EGFP-114 
121-3”)38,39. Per sample, between 65,475 and 176,695 ATAC-seq peaks were observed (Fig. S1a), 115 
including regions that are accessible across all six species in this study and thus conserved (e.g. TCF7L2 116 
promoter), peaks that are only accessible in the mammalian lines (i.e. in human, mouse, pig, horse and 117 
dog lines) (e.g. ST3GAL2 promoter) and species-specific peaks (e.g. the human-specific NMNAT1 118 
intronic enhancer) (Fig. 1a). Interestingly, unsupervised clustering of the 17 human lines grouped the 119 
samples into two distinct clusters (Fig. S1b), which correspond to the two main cell states in human 120 
melanoma, i.e. the melanocytic state (MEL) and mesenchymal-like state (MES), as was confirmed for 121 
twelve of the lines by RNA-seq data using established MEL and MES gene signatures (Fig. S1c)27. 122 
Indeed, regulatory regions near MEL-specific genes such as SOX10 were accessible in human lines in 123 
the MEL state (MM001, MM011, MM031, MM034, MM052, MM057, MM074, MM087, MM118, 124 
MM122 and MM164), whereas they were closed in MES melanoma lines (MM029, MM047, MM099, 125 
MM116, MM163, and MM165) (Fig. 1b). In addition, this classification was in agreement with previous 126 
work were respectively nine and ten of these lines were clustered based on epigenomic data (using 127 
OmniATAC-seq, and H3K27ac ChIP-seq and FAIRE-seq, respectively)27,28. Of note, similarly as in 128 
Wouters et al., we observed inter-cell line heterogeneity within the states, especially within the 129 
melanocytic state (Fig. S1b). 130 
 131 
To examine whether the two main melanoma states were conserved in the other species of our cohort, 132 
we first identified conserved regulatory regions using the liftOver tool40 to compare genomic positions. 133 
Between 1.1% and 40.9% of the ATAC-seq regions in non-human lines were conserved in human, i.e. 134 
convertible to human coordinates and accessible in human; and between 0.9% and 18.4% of the human 135 
peaks were conserved in the other species (Fig. 1c). Note that the most distant species in our cohort, i.e. 136 
zebrafish (last common ancestor ~340 million years ago41), has the smallest proportion of conserved 137 
regions (1.1%), as expected. Accordingly, we identified 10,592 regulatory regions conserved across the 138 
mammalian species, and, when including zebrafish, 116 conserved regions across all six studied species 139 
(Fig. 1d). Nearly half of the 10,592 conserved mammalian regions were promoters within 1 kb of a 140 
transcription start site (Fig. 1d). Indeed, high conservation of proximal promoters has previously been 141 
reported, which is partially due to their position near the transcription units, making them evolutionarily 142 
more stable compared to more distal regulatory elements12. In each of the mammalian species, the 143 
10,592 conserved regions were more accessible compared to all ATAC-seq regions and, in addition, 144 
these conserved regions show a higher ChIP-seq signal for H3K27ac in human, a mark for active 145 
regulatory regions42 (Fig. S1d,e).  146 
 147 
Next, to test how closely related the different melanoma lines are at the epigenomic level, we clustered 148 
the lines using the identified conserved regions. Clustering of all mammalian samples based on the 149 
accessibility of the 10,592 conserved mammalian regions (Fig. S1g,h) or of all samples using the 116 150 
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globally conserved regions (Fig. 1e, Fig. S1f), revealed again two main clusters . One cluster contained 151 
all human MEL samples together with 9 of the 10 non-human lines, indicating that most of the non-152 
human cell lines are epigenomically similar to human MEL lines. On the other hand, the second cluster 153 
consisted of all human MES samples together with the dog cell line ‘Bounty’. Based on this co-154 
clustering of melanoma lines, we can state that all non-human cell lines are in the MEL state, except 155 
for the dog line ‘Bounty’ which belongs to the MES state. Indeed, known MEL regulatory regions such 156 
as the intronic enhancer of MLANA, a MEL-specific gene involved in melanosome biogenesis43, are 157 
accessible in all mammalian lines, except for the MES human lines and the dog line Bounty; whereas 158 
the opposite is true for an enhancer upstream of MMP3, a gene which increases metastatic potential in 159 
melanoma cell lines44 (Fig. 1f). 160 
 161 
In conclusion, by using ATAC-seq on a panel of 27 melanoma lines across six species, conserved 162 
regulatory regions could be identified. These regions allowed clustering of the melanoma samples into 163 
two groups which correspond to the two main melanoma cell states, indicating conservation of the MES 164 
melanoma state in dog and the MEL melanoma state in pig, mouse, horse, dog and even zebrafish 165 
melanoma samples. 166 
 167 

 168 
 169 
Figure 1. Comparative epigenomics reveals conservation of two main melanoma states. a, Evolutionary 170 
relationship between the six studied species, represented by a phylogenetic tree (NCBI taxonomy tree). ATAC-171 
seq profiles of the 27 melanoma cell lines are shown for a conserved region (TCF7L2 promoter), a mammalian-172 
specific region (ST3GAL2 promoter) and a human-specific region (NMNAT1 intronic enhancer). b, ATAC-seq 173 
profiles of the human melanoma lines for the SOX10 locus. Lines are coloured by the melanocytic (MEL, in blue) 174 
or mesenchymal-like (MES, in orange) melanoma state. c, (left) Total number of ATAC-seq regions observed 175 
across all samples of a species, (middle) coloured based on their liftOver (at least 10% of bases must remap) and 176 
conservation status compared to human. (right) Similar graph for the conservation of the 339,099 human regions 177 
in each of the other species. d, Number of human regions that are conserved with 0 (i.e. human-specific) to 5 178 
different species. ChIPseeker results are shown for the 10,592 human regions that are conserved across all 179 
mammalian species. e, Melanoma cell lines cluster into two groups, linked to the MEL and MES melanoma states 180 
as shown in a PCA plot based on 116 conserved regions across all six species. f, ATAC-seq profiles of MEL and 181 
MES lines of different species for an intronic MLANA enhancer and the upstream region of MMP3. 182 
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Conserved transcription factor motifs determine state-specific enhancers  183 

Next, we wanted to investigate whether the conserved MEL and MES states are controlled by similar 184 
master regulators across different species. First, we performed an evolutionary comparison of 185 
differential transcription factor binding sites between MEL and MES cell lines in human and dog, as 186 
these were the only two species in our cohort for which cell lines of both states were available. 187 
Differential peak calling between the human MEL and MES lines revealed significant enrichment of 188 
SOX, TFAP2, MITF, RUNX and ETS TF binding motifs in the 25,164 differential MEL human peaks 189 
(log2FC > 2.5 and pAdj < 0.0005; complete Homer output in Supplementary Table 1) (Fig. 2a). Indeed, 190 
SOX10, TFAP2 and MITF are among the previously reported master regulators of the MEL state24,27–191 
29. The 12,824 human differential MES regions were significantly enriched for binding motifs for 192 
transcription factors of the AP-1 family and TEADs (Fig. 2a), known regulators in human MES 193 
melanoma lines27. To examine the conservation of these master regulators in dog melanoma, we 194 
contrasted the two dog lines. Interestingly, the 58,515 peaks specific to the MEL dog line Cesar were 195 
significantly enriched for similar TF binding motifs as the human differential MEL peaks, i.e. SOX, 196 
TFAP2, RUNX, MITF and ETS motifs, and even the order of the enriched TF families was comparable 197 
(Fig. 2b). The same was true for the motifs enriched in the MES-specific human and dog regions (Fig. 198 
2b). Note that the difference in the number of differentially accessible regions between dog and human 199 
is likely due to the variability between human samples that are used as replicates, while for dog we used 200 
two technical replicates of the same cell line. Altogether, these observations indicate that the MEL and 201 
MES melanoma cell states are conserved in dog and that they are likely governed by the same master 202 
regulators, based on the concordance of motif enrichment for SOX10, MITF, TFAP2 and ETS factors; 203 
and for AP-1 and TEAD TFs for the MEL and MES state respectively.  204 
 205 
To further verify the importance of the MEL-specific master regulators in MEL cell lines of the 206 
remaining four species, we applied a different strategy since we could not contrast MEL and MES lines 207 
for horse, pig, mouse and zebrafish. Therefore, we focused on 9,732 regions that were conserved across 208 
all mammalian MEL lines to identify conserved TF binding sites. Note that this number differs from 209 
the 10,592 conserved regions defined above as only the MEL lines were used here. We scanned the 210 
9,732 conserved regions using our library of 20,003 TF position-weight matrices (PWMs) and used a 211 
branch length score (BLS) to calculate the level of evolutionary conservation of each TF binding motif 212 
(Fig. 2c), a strategy applied before in other systems7,45. Among the 4% most conserved motifs were 213 
SP1, ETS, SOX (both monomer and dimer motifs), CTCF, MITF and TFAP2 motifs (Fig. 2d). Notably, 214 
the top conserved motifs were members of the SP/KLF TF family, which bind to GC-rich motifs in 215 
promoters46. Indeed, 47% of the 9,732 conserved regions in mammalian MEL lines were proximal 216 
promoters (<= 1 kbp from TSS). BLS scoring on the remaining 5,196 more distal conserved regions 217 
showed no longer conservation SP1/KLF TF motifs, but just conservation of the previously identified 218 
TF binding motifs for TFAP2A, MITF, SOX10, CTCF and ETS factors (Fig. S1i), indicating that distal 219 
regions, such as enhancers, mostly contain the state-specific TF binding motifs. Interestingly, when we 220 
included zebrafish ATAC-seq regions, only 113 regions were conserved in the MEL cell lines across 221 
all six species, but BLS scoring still revealed SOX, ETS, MITF and TFAP2 motifs among the most 222 
conserved motifs in MEL lines (Fig. 2e). Note that we did not perform any contrast of MEL versus 223 
MES lines prior to the BLS analyses and that these motifs were identified by just focusing on the 224 
conserved regions in MEL melanoma lines. 225 
 226 
Altogether, two independent strategies of motif analysis suggest that melanoma enhancer logic is 227 
conserved across species and that the MEL state is governed by conserved master regulators including 228 
SOX10, MITF, TFAP2A and ETS.  229 
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 230 

 231 
Figure 2. Conservation of binding motifs of master regulators of MEL and MES melanoma states. a, b, 232 
Heatmap of differential ATAC-seq regions when comparing (a) human MEL versus human MES lines and (b) 233 
the MEL dog line ‘Cesar’ versus the MES dog line ‘Bounty’ (two biological replicates each), coloured by 234 
normalised ATAC-seq signal. Enriched TF binding motifs in the differential peaks were identified via Homer47 235 
and the first logo of enriched TF families is shown. The ratio of the percentage of target sequences with the motif 236 
and the percentage of background sequences with the motif is indicated between brackets, as well as the rank of 237 
the TF class within the Homer output (#). c, Schematic overview of cross-species motif analysis using the branch 238 
length score (BLS) as a measure for the evolutionary conservation of a motif hit (for 20,003 TF position-weight 239 
matrices) across conserved regions. The BLS was summed across a set of conserved regions, i.e. the higher the 240 
BLS score, the more conserved the motif is in that specific set of regions. d, e, Histogram of the normalised 241 
summed BLS score for 20,003 motifs on (d) 9,732 conserved regions across the mammalian MEL lines and on 242 
(e) 113 conserved regions across MEL lines of all six species. The first hit of the top recurrent TF binding motifs 243 
within the top 4% conserved motifs is indicated as a cross and is accompanied by the logo of the motif. 244 

Deep neural network DeepMEL reveals nucleotide-resolution enhancer logic 245 

While motif enrichment can predict candidate regulators, we sought to build a more comprehensive 246 
model of the MEL enhancers, that would allow cross-species predictions and in-depth analysis of 247 
enhancer architecture. To this end, we trained a deep learning (DL) model on human ATAC-seq data. 248 
First, to construct an unsupervised training set, we clustered all 339,099 human ATAC-seq peaks using 249 
cisTopic48 (see Methods) into 24 topics (Fig. 3a, Fig. S2a,b). This provided a more nuanced 250 
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classification, with topic 4 representing the MEL enhancers being accessible across all MEL samples; 251 
and topic 7 representing the MES enhancers that are accessible in the MES samples (Fig. 3a, Fig. S2c). 252 
In addition, we found two topics containing regions that are generally accessible across all cell lines 253 
(topic 1 and topic 19) (Fig. 3a, S2c), and which were highly enriched for proximal promoters (Fig. S2d) 254 
and for known promoter-specific TF binding motifs linked to SP1 and NFY TF families (Fig. S2c)46,49. 255 
Other topics were more specific to one or a small group of cell lines. For instance, topic 22 contained 256 
regions that were mostly accessible in MM057, MM074 and MM087 (Fig. 3a). These particular lines 257 
have previously been reported as an ‘intermediate’ (INT) sub-state of the MEL state, governed by a 258 
mixed MEL-MES GRN28. We verified the biological relevance of these topics by investigating nearby 259 
target genes using GREAT50. Genes near topic 4 regions are significantly enriched for Gene Ontology 260 
(GO) terms such as pigmentation (FDR=1.95e-8) and neural crest cell differentiation (FDR=4.26e-7), 261 
whereas genes near topic 7 regions were more mesenchymal-like as they are enriched for GO terms 262 
involved in cell-cell adhesion (1.56e-13). Next, we performed motif discovery on the top regions 263 
assigned to each topic. SOX, ETS, TFAP2 and MITF motifs were enriched in regions of the MEL-264 
specific topic 4 and AP-1 in the MES-specific topic 7 (Fig. S2c), confirming our findings from the 265 
supervised differential peak calling discussed above (Fig. 2a). An example topic 4 region in the 266 
promoter of the SOX10 target gene MIA51 is shown in Figure 3b, as well as two topic 7 regions upstream 267 
of SERPINE1, a gene expressed in metastatic melanoma52.  268 
 269 
Using the 24 topics as classes, we trained a multi-class, multi-label classifier using a neural network, 270 
called “DeepMEL” (Fig. 3c). As input, we used the forward and reverse complement of 500 bp enhancer 271 
sequences centered on the ATAC-seq summit. As topology, we used the DanQ CNN-RNN hybrid 272 
architecture53 consisting of 4 main layers: a convolution layer to discover local patterns in sequential 273 
data, followed by a max-pooling layer to reduce the dimensionality of the data and generalise the model 274 
effectively, a bidirectional recurrent layer (LSTM) to detect long-range dependencies of the local 275 
patterns discovered in the first layer, and finally a fully-connected (dense) layer just before the output 276 
layer to help the classification after the feature extraction layers (Fig. 3c). After successful training of 277 
DeepMEL (auroc = 0.863 and aupr = 0.374 on test data for topic 4 regions) (Fig. 3d,e, Fig. S3a), we 278 
used the weights of neurons from the convolutional filters to extract local patterns learned by the model. 279 
We transformed these convolution filters into PWMs and found the importance of each filter for each 280 
topic (see Methods and Supplement). Intriguingly, filters that represent SOX, MITF, TFAP, and RUNX 281 
motifs were most relevant for the MEL-specific topic 4 and filters that represent AP-1, TEAD and 282 
RUNX binding sites were assigned to the MES-specific topic 7 (Fig. 3f). Thus, DeepMEL learned the 283 
relevant features de novo from the sequence. DeepMEL can be used to score and classify any given 284 
DNA sequence of 500 bp. For instance, when re-entering all ATAC-seq peaks of the MEL line MM001 285 
in the model, it classified 3,885 regions as MEL-specific (topic 4 scores above threshold of 0.16 (see 286 
Methods)). These regions were indeed highly accessible in MEL lines and closed in MES lines, and 287 
interestingly, were also accessible in human melanocytes (Fig. S3b,c). Importantly, this indicates that 288 
these MEL-specific regions in melanoma are not cancer-specific but already accessible in their cell-of-289 
origin, i.e. the melanocytes, and that we potentially can extrapolate the observations on this topic to 290 
melanocyte enhancers. Although in the remainder of this work we will score accessible regions to 291 
identify functional enhancers, it is also possible to score the entire genome, without filtering for ATAC-292 
seq peaks. This may be useful for species where no ATAC-seq data of melanoma or melanocytes is 293 
available. Such a scoring yields high precision and recall (69% and 86% respectively, Fig. S3d).  294 
 295 
In order to examine the TF binding site architecture within enhancers, we used a model interpretation 296 
tool, DeepExplainer54,55, which does backpropagation of the activation differences56, to visualise the 297 
importance of each nucleotide in an enhancer with respect to the predicted enhancer class. For instance, 298 
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in a MEL enhancer located on the 4th intron of IRF4, nucleotides important for classifying this enhancer 299 
as topic 4 form motifs for SOX10, MITF, TFAP and RUNX factors (Fig. 3g top two rows). Indeed, 300 
SOX10 binding has been reported on this location57. Another example is given for a region of topic 22, 301 
the topic specific to the INT MEL subpopulation, where SOX10 and AP-1 co-exist within the same 302 
enhancer, indicating that these cell lines also contain properties of a mixture between the MEL and 303 
MES state at the epigenomic level (Fig. S3e,f).  304 
 305 
Importantly, it is known that enhancer accessibility does not directly translate to enhancer activity1. To 306 
test whether the same TF binding motifs were contributing to the activity of MEL enhancers, we used 307 
the IRF4 enhancer as case study. For this enhancer, Kircher et al.14 performed saturation mutagenesis 308 
followed by an in vitro massively parallel reporter assay (MPRA), testing the effect of every possible 309 
single nucleotide mutation on enhancer activity (Fig. 3g, 3th row). The most deleterious mutations 310 
coincided with the SOX, E-box and RUNX-like motifs that were predicted by DeepMEL, indicating 311 
that the predicted motifs are also contributing to enhancer activity, as their disruption reduced enhancer 312 
activity in vitro. To further examine how well DeepMEL can predict the in vitro MPRA effect, we 313 
measured the effect on the topic 4 DL score of each single nucleotide mutation in silico (Fig. 3g, bottom 314 
row). Interestingly, mutations that have the strongest in silico effect overlapped with predicted TF 315 
binding motifs, and more intriguingly, also the magnitude of the effect highly correlated with the in 316 
vitro mutations (Spearman correlation of 0.60) (Fig. 3g,h), even though DeepMEL was trained only on 317 
binary accessibility data (i.e. binary topics of co-accessible regions). These observations indicate that, 318 
although the DeepMEL was trained to predict enhancer accessibility, it is also a good predictor of 319 
enhancer activity of this specific enhancer. Notably, our DeepMEL performed best in predicting the in 320 
vitro mutagenesis on the IRF4 enhancer activity compared to other classifiers and deep learning models 321 
that were benchmarked in Kircher et al.14 (CAGI challenge, 2018) (Fig. 3i). Interestingly, enhancer 322 
accessibility and activity were not only influenced by mutations that break a motif for an activating TF, 323 
but also by the creation of a repressor binding motif. This was the case for a C-to-T mutation that 324 
coincided with a SNP involved in freckles, brown hair and high sensitivity of the skin to sun exposure 325 
(rs12203592, SNPedia) (Fig. 3g). This SNP creates a ZEB/SNAI-like motif that negatively contributes 326 
to the MEL topic score of this enhancer (Fig. S3g). A similar motif was also found to decrease the MEL 327 
prediction in the wild-type sequence (Fig. 3g, “ZEB”, letters facing downwards) and mutating this motif 328 
increased the topic 4 prediction score, indicating that the ZEB/SNAI-like TF binding motif (CAGGT) 329 
may function as a repressor for the MEL state. Indeed, ZEB factors have been reported to act as 330 
transcriptional repressors by interaction with the corepressor CtBP58, and mutations in the binding motif 331 
of the transcriptional repressor SNAI2 have been shown to increase chromatin accessibility11. Note that 332 
the ability of DeepMEL to predict the effect of mutations on enhancer accessibility (and activity) raises 333 
the opportunity to apply DeepMEL to predict enhancer mutations that affect chromatin accessibility in, 334 
for instance, personalised cancer genomes; as we did in our companion paper for phased melanoma 335 
genomes of a total of 10 patient-derived melanoma cultures (Kalender Atak et al., 2019). 336 
 337 
In conclusion, our DL model DeepMEL, trained on topics of human co-accessible regions, is performant 338 
in classifying melanoma regulatory regions into different classes based on purely the DNA sequence. 339 
Interestingly, features learned by DeepMEL corresponded to TF binding motifs of master regulators of 340 
specific classes. These motifs could also be located and visualised within regions using a model 341 
interpretation tool, allowing examination of the motif architecture within specific enhancers and 342 
predicting the effect of mutations on enhancer accessibility. 343 
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 344 
Figure 3. DeepMEL classifies melanoma enhancers and predicts important TF binding motifs. a, Cell-topic 345 
heatmap of cisTopic applied to 339,099 ATAC-seq regions across the 17 human melanoma lines, coloured by 346 
normalised topic scores. 24 topics or sets of co-accessible regions are found, including general topics, cell state 347 
specific topics and cell line(s) specific topics. b, Example regions of a MEL-specific (topic 4) region near MIA 348 
and MES-specific (topic 7) regions upstream of SERPINE1. c, Schematic overview of DeepMEL. 24 sets of co-349 
accessible regions were used as input for training of a multi-class multi-label neural network. d, e, (d) Receiver 350 
operating characteristic curve and (e) precision-recall curve for DeepMEL on training, test and shuffled data of 351 
topic 4 and topic 7 regions. f, Top 13 enriched filters learned by DeepMEL to classify regions as MEL (topic 4) 352 
or MES (topic 7). Filters were converted to logos and accompanied by the candidate TF binding motif names, as 353 
identified by TomTom comparison59. Normalised filter importance is shown per filter. g, Example of a MEL-354 
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predicted enhancer near IRF4. (first and second row) DeepExplainer view of the forward and reverse strand are 355 
shown, with the height of the nucleotides indicating the importance for prediction of the MEL enhancer. SOX, 356 
MITF, TFAP2, ZEB-like and RUNX-like motifs within the enhancer are highlighted. (third row) In vitro effect 357 
of point mutations on enhancer activity as measured by MPRA14. Colours represent the nucleotide to which the 358 
wild type nucleotide is mutated. (bottom row) In silico effect of point mutations as predicted by DeepMEL. The 359 
location of SNP rs12203592 is highlighted by a black vertical line and the in vitro and in silico point mutations 360 
that generate the SNP are encircled. h, Correlation between the in vitro mutational effects on the IRF4 enhancer 361 
compared to the in silico mutagenesis predictions. i, Performance of variant effect prediction of several previously 362 
tested models on the IRF4 enhancer case14.  363 

Cross-species scoring identifies orthologous melanoma enhancers  364 

Next, we wanted to use the human-trained DL model DeepMEL for predicting MEL and MES 365 
enhancers in other species. We started with the dog genome as a test case, because the differential 366 
ATAC-seq peaks between the MEL (Cesar) and MES (Bounty) dog cell lines could be used as true 367 
positives. DeepMEL reached an area under the receiver operating characteristic (auroc) of 0.979 for 368 
predicting MEL regions (as topic 4) versus MES regions (as topic 7) in dog, which approximates the 369 
model’s performance for classifying human MEL and MES differential regions (auroc = 0.987), and 370 
this accuracy is significantly higher compared to using cis-regulatory module (CRM) scoring with 371 
PWMs (Fig 4a,b,c). Having confirmed that the human model can identify enhancers in the dog 372 
epigenome, we predicted MEL and MES enhancers across all six species. This yielded between 2,093 373 
and 5,400 MEL enhancers, and between 7,459 and 10,743 MES enhancers, in samples of the MEL and 374 
MES state respectively (Fig. 4d, S4c). Interestingly, although the total number of accessible regions in 375 
the genome varies between cell lines and species (Fig. 4d, numbers between brackets), for all MEL cell 376 
lines around 2.5% of the accessible regions were predicted MEL enhancers. Note that the majority of 377 
these enhancers could not have been detected using whole genome alignments (liftOver) (Fig. 4b,c, Fig 378 
S4a-d). 379 
 380 
Having identified high-confidence MEL enhancers genome-wide across 6 species, as a combination of 381 
ATAC-seq peaks and high topic 4 prediction scores, we analysed their distribution with respect to 382 
orthologous genes, and their evolutionary divergence. Particularly, we looked at enhancers located near 383 
a set of 379 human genes that are specifically expressed in the MEL state (derived from RNA-seq data 384 
across a cohort of twelve MM lines (see Methods)). Of these 379 genes, 217 (67%) had at least one 385 
MEL-predicted enhancer within a locus of 200kb up- and downstream of the gene (the MEL cell line 386 
MM001 was used for this analysis). Between 70-85% of the orthologous MEL genes in other species 387 
had at least one MEL enhancer nearby (Fig. S4e). Note that only a small subset of these enhancers could 388 
have been found using liftOver (2-43% depending on the species). Of these genes, 32 form a core set 389 
of conserved genes throughout all species, each having a MEL enhancer, including zebrafish. Examples 390 
of genes in the core set are MITF, PMEL and TYRP1, genes known to be involved in melanocyte 391 
development, melanosome formation and melanin production60.  392 
 393 
A long-standing question in enhancer studies is how to compare enhancers with each other, if their 394 
sequences do not align61,62. Here we tackle this question by using the dense layer of DeepMEL as a 395 
reduced dimensional space to calculate the correlation between enhancers. Using this measure we found 396 
that MEL-predicted enhancers in proximity of homologous MEL genes are significantly more similar 397 
to each other compared to MEL-predicted enhancers in proximity of different MEL genes within the 398 
same species (Fig. 4e), indicating that MEL enhancers near orthologous genes are indeed orthologous 399 
enhancers. Note that the correlation of orthologous MEL enhancers approximated or even surpassed the 400 
correlation of redundant (or shadow enhancers63) linked to the same MEL gene in a species (Fig. S4f).  401 
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Lastly, we studied an example of a MEL enhancer in more detail, namely the enhancer near ERBB3. 402 
DeepMEL predicts a MEL enhancer upstream or intronic of ERBB3 in each of the mammalian species, 403 
which were also found by liftOver of the human ERBB3 enhancer (Fig. 4f II). However, in the zebrafish 404 
genome, liftOver was unable to identify the homologous region, whereas DeepMEL predicted two MEL 405 
enhancers, one upstream of the TSS of erbb3b and another in the first intron. Both zebrafish enhancers 406 
were highly correlated with the human ERBB3 enhancer (deep layer pearson correlation of 0.812 and 407 
0.797 for the upstream and intronic zebrafish enhancer, respectively), suggesting that both enhancers 408 
are orthologous to the human ERBB3 enhancer. Applying DeepExplainer to the multiple-aligned 409 
sequences revealed a conserved motif architecture in the orthologous mammalian ERBB3 enhancers 410 
containing each three SOX motifs and one TFAP2 motif (Fig. 4f III). Note that in mouse, one SOX 411 
binding site was lost, mouse is also the mammalian species that is most distant from human, among the 412 
included species in this study (Fig. 4f I). The two zebrafish enhancers contain several SOX motifs, 413 
however with different inter-motif distances. The two zebrafish enhancers have a highly similar motif 414 
architecture, suggesting that they arose by duplication from a common ancestor enhancer. 415 
 416 
In conclusion, we showed that DeepMEL is able to identify MEL- and MES-specific enhancers in 417 
different species, which allows studying evolutionary events and enhancer logic within orthologous 418 
enhancers, even in distant species such as zebrafish. 419 
 420 

 421 
Figure 4. Human-trained deep learning model on cross-species ATAC-seq data. a, DeepMEL performs well 422 
in classifying MEL and MES differential peaks in human and dog, and outcompetes Cluster-Buster (cbust). b, 423 
Venn diagram of the number of topic 4 (MEL-specific) regions predicted by DeepMEL in the dog line ‘Cesar’ 424 
and of dog regions found by liftOver of the human MEL regions. c, Heatmaps of ATAC-seq signal of the dog 425 
lines ‘Cesar’ and ‘Bounty’ on MEL-predicted regions found via liftOver (blue), MEL regions predicted by 426 
DeepMEL (red) and MEL regions identified by both methods (purple). Heatmaps are coloured by normalised read 427 
counts and ordered according to the ATAC-seq signal in ‘Cesar’. Aggregation plots are shown on top. d, 428 
Percentage of MEL and MES predicted ATAC-seq regions across all samples in our cohort and in human 429 
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melanocytes. Samples are ordered according to the MEL-MES axis by using the ratio of the number of MES / 430 
MEL predicted regions. e, Pearson correlation of deep layer scores between MEL-predicted regions of orthologous 431 
MEL genes between human and another species (‘Human-Species’) or between MEL-predicted regions near 432 
different MEL genes within one species (‘Species-Species’). f, (I) Evolutionary distance between human and other 433 
species in branch length units. (II) ATAC-seq profiles of the ERBB3 locus in the six different species. MEL-434 
specific enhancers that were predicted by DeepMEL and that were also found via liftOver of the human MEL 435 
enhancer are highlighted in grey, whereas MEL-predicted regions only found by DeepMEL are highlighted in 436 
green. (III) DeepExplainer plots are shown for the multiple-aligned MEL-predicted ERBB3 enhancers, for 437 
zebrafish the first and second row represent the DeepExplainer plots of the upstream and intronic enhancer, 438 
respectively. SOX and TFAP2 motifs formed by important nucleotides are highlighted. Red and blue dots 439 
represent point and indels mutations, respectively. 440 

Motif architecture of the MEL enhancer  441 

To study the architecture of MEL enhancers in more detail, including motif composition, motif order 442 
and distance, and relationships to the nucleosome position, we set out to obtain high-confidence motif 443 
annotations in each of the 3,885 MEL enhancers in human (MM001, the most MEL-like human cell 444 
line), for each of the predicted core regulatory factors (SOX10, MITF, TFAP2A, RUNX). To achieve 445 
this, we devised an improved motif scoring method that obtains precise positions of TF binding motifs 446 
by multiplying DeepMEL activation scores of convolutional filters (i.e. motifs) with the DeepExplainer 447 
profile on each enhancer (Fig. 5a)64. A motif hit is predicted as significant when its importance is above 448 
a motif-specific threshold which was determined by using all regions as background (see Methods).  449 
 450 
The first remarkable observation was that each MEL enhancer contains at least one SOX10 motif hit, 451 
and often two or more (Fig 5b). This suggests that SOX10 plays a central role in MEL enhancer 452 
accessibility. Indeed, knock-down of SOX10 in MM001 significantly decreases the accessibility of 453 
MEL enhancers (Fig. S5a), and the regions that close after SOX10-KD are highly enriched for SOX 454 
motifs (NES = 28.5), possibly revealing a pioneering-role of SOX10 in MEL enhancers. Pioneer factors 455 
can access their binding sites on nucleosomal DNA, thereby directly or indirectly displacing the 456 
nucleosome, which results in the accessibility of the region5. Next to SOX, a combination of one or 457 
multiple TFAP2, MITF or RUNX-like motifs was present in 84% of the MEL-predicted enhancers. To 458 
facilitate a systematic study of the MEL enhancer logic, we binarised the motif-region matrix to simplify 459 
the region clustering (Fig 5c). We obtained 8 different enhancer classes, each with a different motif 460 
composition (Fig. 5c). As validation of the clusters and the predicted TF binding sites, we used human 461 
ChIP-seq data of SOX10, MITF and TFAP2A in melanoma or melanocytes65,66 (Fig. 5d). All clusters 462 
were indeed highly bound by SOX10, validating the prevalent SOX10 motif in all MEL enhancers. In 463 
contrast, MITF ChIP-seq data revealed that MITF binds more to enhancer classes with MITF motifs 464 
compared to regions lacking a significant MITF motif. Similarly, only enhancers containing at least one 465 
TFAP2 motif were bound by TFAP2A. Interestingly, regions containing a TFAP2A motif, next to the 466 
SOX10 motif(s) and possible others, showed a modest increase in accessibility (Fig. 5e), which could 467 
be in line with the previously described role of TFAP2A as a stabiliser of nucleosome-depleted regions6. 468 
The opposite was true for regions containing RUNX-like TF binding sites, as these were found to be 469 
less accessible compared to regions containing only SOX10 motifs, suggesting a repressive role of 470 
RUNX factors. The presence of a MITF site did not seem to alter the accessibility of enhancers 471 
compared SOX-only enhancers, but did increase H3K27ac signal (Fig. S5b), possibly indicating that 472 
MEL enhancers bound by MITF are more active. 473 
 474 
To validate these MEL enhancer classes in other species, we applied the same motif scoring and 475 
binarisation to DeepMEL-predicted MEL regions in the other species in our cohort. Interestingly, MEL 476 
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enhancers in other species also clustered into the same 8 clusters, with a similar distribution of regions 477 
per cluster (Fig. 5f,g, Fig. S5c). To test the conservation of the clusters, we used liftOver to compare 478 
the classification of enhancers across species. Although identifying orthologous sequences via whole 479 
genome alignment is not always correct, as shown above, a general trend was observed where the 480 
regions of a human cluster correspond to the same cluster in the other species (Fig. S5d), indicating 481 
conservation of the MEL enhancer clusters across species. For instance, the dog-orthologs of two human 482 
MEL enhancers belonging to either the cluster containing SOX10 and MITF binding sites (intronic 483 
enhancer of CD9) or to the cluster containing SOX10, TFAP2A and RUNX-like motifs (intronic 484 
enhancer of STIM1) (Fig. 5f) were part of the corresponding clusters in dog (Fig. 5g). In these examples 485 
we observed preserved spacing of around 80 bp between the two SOX10 binding sites within the 486 
enhancers, to which we will come back further below. 487 
 488 
Altogether, these data suggest a COre Regulatory Complex (CoRC)67 of SOX10, TFAP2A, MITF and 489 
RUNX factors in regulating melanoma MEL enhancers, encoded by a mixed enhancer model68, with 490 
high flexibility in the combination of binding sites for these four TFs, but with some rigidity (or 491 
hierarchy) in the code as at least one SOX10 binding site is required. 492 
 493 

 494 
Figure 5. COre Regulatory Complex of MEL melanoma enhancers. a, Schematic overview of motif scoring 495 
method in which extended convolutional filter hits from DeepMEL are multiplied by DeepExplainer profiles to 496 
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yield significant motif hits. b, Heatmap of the number of significant SOX, TFAP2, MITF and RUNX-like motif 497 
hits on the 3,885 MEL predicted regions in the human cell line MM001. c, Binarised heatmap of significant SOX, 498 
TFAP2, MITF and RUNX-like motif hit(s) on the 3,885 MEL predicted regions in the human cell line MM001. 499 
Eight region clusters can be distinguished, representing different combinations of significant motifs present in the 500 
enhancers. d, Aggregation plot of normalised ChIP-seq signal of SOX10 (left), MITF (middle) and TFAP2A 501 
(right) on the human enhancer clusters. e, Aggregation plot of normalised ATAC-seq signal of MM001 on the 502 
human enhancer clusters. f, g, Venn diagram representation of regions clusters on (f) the 3,885 regions predicted 503 
as MEL in human (in MM001) and (g) the 4,194 MEL-predicted regions in dog (in Cesar). In addition, example 504 
MEL-predicted regions in human and dog are shown for two of the region clusters: an intronic CD9 enhancer as 505 
representative for the SOX10 + MITF cluster and an intronic STIM1 enhancer containing SOX10, TFAP2 and 506 
RUNX motif hits. 507 
 508 

SOX10 functions as pioneer and TFAP2A as stabiliser in melanoma MEL 509 
enhancers 510 

As previous results suggested a pioneering and stabiliser function for SOX10 and TFAP2A respectively, 511 
we wanted to further investigate these putative roles and how they are mechanistically affecting 512 
chromatin accessibility. First, we analysed the location of binding sites relative to the position of the 513 
nucleosome, focusing on MEL enhancers that contain a combination of SOX10 and TFAP2A sites (Fig. 514 
6a,b). We predicted the nucleosome start and middle point using a previously published model69. 515 
Interestingly, we observed that SOX10 binding sites are situated within the borders of the nucleosome, 516 
near the former nucleosome start point, whereas TFAP2A binding occurs preferentially near the center 517 
of the nucleosome (Fig. 6a,b). Note that KD of TFAP2A halved the accessibility of this specific human 518 
region, whereas SOX10-KD completely abolished the ATAC-seq peak (Fig. 6a), indicating that SOX10 519 
is necessary for accessibility, and that TFAP2A further increases the accessibility, which is in line with 520 
our previous observations (Fig. 5e, S5a). 521 
 522 
These example enhancers raised an interesting positional preference of SOX10 and TFAP2A. To assess 523 
whether this occurs globally we centered human MEL enhancers on the SOX10 and TFAP2A motif hits 524 
and calculated the aggregated location of the nucleosome start and middle point (Fig. 6c,d,e). 525 
Interestingly, SOX10 had a consistent preference for binding within the nucleosome borders, around 40 526 
bp away from the nucleosome start point (Fig. 6c,d). Since in chromatinised DNA, 146 bp of DNA 527 
sequence is wrapped around the nucleosome, we anticipated the nucleosome middle point to be situated 528 
~35 bp (= 146 bp / 2 - 40 bp) away from the SOX10 motif, which was indeed the case (Fig. 6e). Other 529 
pioneering factors have also been shown to bind near the borders of the nucleosome, such as FOX 530 
factors which bind around 60 bp from the center of the nucleosome, displacing linker histones and 531 
destabilising the central nucleosome6,70. On the other hand, when centering the MEL regions based on 532 
the TFAP2A motif, we did not observe a strong preference in the location of the nucleosome start point 533 
relative to the TFAP2A binding site (Fig. 6d), but in fact TFAP2A was consistently binding in a wide 534 
range on and around the nucleosome middle point (Fig. 6e). Stabilisators, such as NFIb, are known to 535 
directly compete with the central nucleosomes to stabilise the accessible chromatin configuration6,71. 536 
Centering based on the SOX10 motif hit revealed protection of Tn5 cutting on the conserved nucleotides 537 
of the dimer (Fig 6f,g). Similarly, protection and conservation was observed on important nucleotides 538 
in the TFAP2A dimer. We did not observe strong positional preferences of MITF and RUNX motifs 539 
relative to the nucleosome start or middle point (Fig. S6). 540 
 541 
Altogether these data highly suggest that SOX10 functions as a pioneer in the CoRC of MEL enhancers, 542 
leading to their accessibility by binding to the central nucleosome, near the nucleosome start point. On 543 
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the other hand, TFAP2A appears to act as stabiliser of SOX-dependent nucleosome depleted regions by 544 
binding around the nucleosome middle point, possibly going in competition with the central 545 
nucleosome. 546 
 547 

 548 
 549 
Figure 6. Positional specificity of SOX10 and TFAP2A in MEL melanoma enhancers. a. (top) Example 550 
human MEL-predicted enhancer containing significant SOX10 and TFAP2 motifs. The ATAC-seq signal is 551 
shown in grey. (middle) Imputed nucleosome start and middle point profiles. (bottom) ATAC-seq profiles of 552 
MM001 in control condition, after 72 h of SOX10 knock-down or TFAP2A knock-down. b. (top) Example dog 553 
MEL-predicted enhancer containing significant SOX and TFAP2 motifs. The ATAC-seq peak is shown in grey. 554 
(bottom) Imputed nucleosome start and middle point profiles. c. Schematic overview of nucleosome structure 555 
explaining the colours used in (d,e,f,g). d,e,f,g. Nucleosome start point (d), nucleosome middle point (e), Tn5 cut 556 
site (f), phyloP conservation score profiles (g) on MEL-predicted regions containing one SOX10 (left) or one 557 
TFAP2 motif (right) next to possible other motifs, where the regions are either centered on the ATAC-seq summit 558 
(grey) or on the SOX10 or TFAP2 motif (blue). SOX10 binding is enriched around 40 bp away the nucleosome 559 
start point, as is clear by the two peaks in the nucleosome start profile (d) that are situated respectively ~40 and 560 
~110 bp away from the beginning of the SOX10 motif (which is 20 bp long), reflecting SOX binding at either 561 
side of the nucleosome as shown by the illustration. 562 
  563 
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DeepMEL predicts evolutionary changes in MEL enhancer accessibility 564 
and activity 565 

 566 
Next, we wanted to further validate our findings on the MEL enhancer logic using comparative 567 
genomics. This allowed us, in addition, to test how turnover of TF binding sites affects enhancer 568 
accessibility and function. To this end, we compared pairs of MEL enhancers that are homologous but 569 
only accessible in one of the species, to investigate which mutations cause the collapse of a MEL 570 
enhancer during evolution (Fig. 7a). We focused only on pairs of highly probable orthologous enhancers 571 
by requesting a stringent liftOver score (minimum of 99% of the bases must remap) and high sequence 572 
identity (at least 80% of the bases must be identical). We calculated the loss in ATAC-seq signal and 573 
in DeepMEL score, and aligned the sequence pairs to determine point mutations and indels between the 574 
homologous sequences (Fig. 7a). For example, an enhancer upstream of APPL2 is predicted as MEL 575 
enhancer in the MEL dog line Cesar (topic 4 DL score of 0.35), whereas the orthologous enhancer in 576 
human was completely closed (Fig. 7b). Interestingly, not only the accessibility of the human homolog 577 
was lost, but also the activity, as we confirmed by a luciferase assay (Fig. 7c). Importantly, the 578 
DeepMEL score for this enhancer was seven times lower in human than in dog, falling below the topic 579 
4 significance threshold of 0.16, indicating that the model detected critical changes in the human 580 
enhancer sequence that could explain the loss of this MEL enhancer. To determine which mutations 581 
were causal for the loss in accessibility (and activity), we calculated the effect on the MEL prediction 582 
score of each detected point mutation between the dog and human sequence, via in silico mutating the 583 
dog sequence (see Methods, similar as in the IRF4 enhancer above). Several mutations seemed to alter 584 
the DL score (Fig. 7e,f). To pinpoint the functional effect of each mutation, we plotted DeepExplainer 585 
profiles and significant motif hits for CoRC factors on the original dog and human sequence (Fig. 7f). 586 
The functional dog enhancer contained a SOX10, MITF and TFAP2A binding site, which (almost) 587 
disappeared in the non-functional human homologous sequence. The losses could be explained by one 588 
T-to-A mutation in the SOX10 motif, one A-to-G mutation in the MITF motif and two mutations in the 589 
TFAP2A motif (Fig. 7f, encircled mutations). The SOX10 motif mutation had the strongest effect, as it 590 
caused a 45% drop in the MEL-prediction score (Fig. 7e).  591 
 592 
Next, we performed this analysis on a larger scale, to globally study evolutionary changes in 593 
accessibility of orthologous MEL enhancers between human and each of the other mammalian species 594 
in our cohort. Firstly, we compared the topic 4 DeepMEL score for each pair of orthologous MEL 595 
enhancers and observed that regions predicted as MEL in human but not in the other species were indeed 596 
more accessible in human (Fig. 7g, I); in contrast, regions that were only predicted as MEL enhancers 597 
in a non-human species were lowly accessible in human (Fig. 7g, II). Orthologous regions that were 598 
predicted as MEL enhancer in both human and another mammalian species were similarly accessible 599 
in both species (Fig. 7g, III). In fact, DeepMEL proved to be a good predictor for evolutionary changes 600 
in accessibility, displaying a high correlation between the delta accessibility and the delta MEL 601 
DeepMEL score between orthologous regions (Spearman’s correlation of 0.429) (Fig. 7h). 602 
Interestingly, we noticed that among the four CoRC factors, mostly the disruption or gain of one or 603 
more SOX10 binding sites between orthologous enhancers quantitatively altered the ATAC-seq signal 604 
in a negative and positive way, respectively (Fig. 7i, Fig. S7a), indicating that SOX10 mutations are 605 
most causal for changes in MEL enhancer accessibility. Indeed, in the example APPL2 enhancer 606 
presented above, a detrimental mutation in the SOX10 binding site had the strongest effect on the MEL 607 
DeepMEL score (Fig. 7e,f), and thus likely, the most impact on not only the loss of enhancer 608 
accessibility in human (Fig. 7b), but also on the loss of enhancer activity (Fig. 7c). However, this was 609 
not the case for all MEL enhancers. For instance, an intronic enhancer of KIF1B was accessible and 610 
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predicted as MEL in human, but not in dog (Fig. S7b,d). Although the human region was accessible 611 
and predicted as MEL, both the dog and the human enhancer showed no strong activity in a luciferase 612 
assay (Fig. S7c). A deeper look at the enhancer code revealed that this human enhancer only contained 613 
two significant SOX10 binding sites, but none of the other three CoRC players (Fig. S7e,f). 614 
Interestingly, by testing the activity of a total of six human or dog MEL-predicted enhancers, we could 615 
distinguish two groups: enhancers that were only accessible and showed little activity (n = 3), or 616 
enhancers that were both accessible and significantly more active (n = 3) (Fig. 7j). Profiling 617 
DeepExplainer and significant motif hits revealed that the enhancers in the latter group all contained at 618 
least one significant MITF binding site, while none of the enhancer in the former group did. Although 619 
the number of tested enhancers is small, this trend, together with the fact that MEL enhancers containing 620 
a MITF binding site showed increased H3K27ac signal (Fig. S5b), indicates that MITF could function 621 
as activator in MEL enhancers. Indeed, MITF has been shown to activate genes involved in 622 
pigmentation by recruitment of co-factors and chromatin remodelling complexes72 and was previously 623 
classified as a TF involved in co-factor recruitment and activation based on its motif distribution in 624 
nucleosome depleted regions6. Importantly, note that SOX10 binding is insufficient but appears 625 
necessary for enhancer activity, as mutations in SOX10 binding sites disrupted enhancer activity in the 626 
IRF4 (Fig. 3g). 627 
 628 
In conclusion, DeepMEL provides a suitable platform to study the effect of evolutionary mutations on 629 
MEL enhancer accessibility and, in some cases, activity across species. Together, these results validate 630 
that SOX10 is crucial for enhancer accessibility in MEL enhancers, and necessary but insufficient for 631 
MEL enhancer activity, as activity appeared to be mainly dependent on MITF binding.  632 
 633 

 634 
 635 
Figure 7. Predicting causal mutations of evolutionary changes in MEL enhancers. a, Homologous (identified 636 
by stringent liftOver and high sequence identity) MEL enhancers that are accessible and predicted as MEL in one 637 
species and that lose accessibility in another are used to identify deleterious cis-regulatory mutations by 638 
calculating the delta ATAC-seq signal and delta DeepMEL score for the MEL-specific topic (topic 4). b, c, 639 
Example region upstream of APPL2 that is (b) accessible and active (c) in the MEL dog line Cesar but not in 640 
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human MEL lines (ATAC-seq profiles of Cesar and MM001 shown here). Luciferase activity in MM001 is shown 641 
relative to renilla signal and is log10 transformed. P-value was determined using Student’s t-test and the error bars 642 
represent the standard deviation. d, DeepMEL prediction score of each of the 24 topics for the dog and human 643 
sequence. The dog sequence is predicted as MEL enhancer (topic 4 score > 0.16), whereas this is not the case for 644 
the human sequence. e, The effect on topic 4 DeepMEL score on the dog sequence when in silico simulating each 645 
of the single detected point mutations between the dog and human sequence. f, DeepExplainer plots and motif 646 
hits for SOX10, MITF and TFAP2A are shown for part of the 500 bp dog and human sequence. In the middle, the 647 
effect of each possible point mutation between the dog and human sequence on the MEL DeepMEL was in silico 648 
calculated and is represented by coloured dots depending on the nucleotide the original dog nucleotide was in 649 
silico mutated to. Truly existing point mutations between the dog and human sequence (as observed by alignment 650 
of the sequence via Needle) are highlighted by vertical dashed lines (the colour indicates the original dog base 651 
(top dashed line) and the human base (bottom dashed line)). Four mutations that decrease the motif score of the 652 
SOX10, MITF and TFAP2A motifs are highlighted by a grey box and are encircled. g, Scatter plot of the 653 
DeepMEL prediction score for topic 4 in human and in another non-human mammalian species of pairs of 654 
homologous sequences. Only enhancers predicted as MEL-specific by DeepMEL (topic 4 score > 0.16) in at least 655 
one of the species are used here. Enhancers are represented by a dot and are coloured by the log2 fold change in 656 
ATAC-seq signal between human and the other species. In the first quadrant (I) enhancers that are predicted as 657 
MEL in human but not in the other species are shown; in quadrant (II) MEL enhancers of non-human species that 658 
are not predicted as MEL in human; and the third quadrant (III) contains enhancers that are MEL-predicted in 659 
both species. h, Scatter plot of the delta ATAC-seq signal and delta DeepMEL prediction score for topic 4 of pairs 660 
of homologous enhancers between human and another mammalian species. Dots are colored depending on the 661 
species the human homolog was compared to. i, Barplot showing the mean effect on the log2 delta ATAC-seq 662 
signal of a non-human region compared to the human homolog depending on the number of SOX10 motif hits 663 
lost or gained. Only regions having no change in the number of significant TFAP, MITF and RUNX motifs hits 664 
were used. The y-axis is normalised to the category with no changes in the number of significant SOX10 motif 665 
hits. The number of regions in each of the categories is mentioned (#). j. Luciferase assay on six human or dog 666 
enhancers. Significant motif hits per enhancer are shown with coloured crosses. Luciferase activity in MM001 is 667 
shown relative to renilla signal and is log10 transformed. P-values were determined using Student’s t-test and the 668 
error bars represent the standard deviation over three biological replicates. 669 

  670 
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Discussion  671 

Here, we present an in-depth study of melanoma enhancer logic, especially in enhancers specific to the 672 
MEL state, by exploiting both cross-species data and machine learning. Although the MEL and MES 673 
melanoma cell state have been studied extensively on a transcriptomic and epigenomic level, the 674 
combinatorial code of binding sites of their regulatory factors in state-specific enhancers has not yet 675 
been explored. Understanding the enhancer logic and the mechanism by which TFs bind and direct 676 
active enhancers will become increasingly important, as it will be essential for the development of new 677 
therapies that either influence cell state-specific enhancer functions; for the use of (synthetic) enhancers 678 
in a targeted way, i.e. enhancer therapy73,74; or to prioritise non-coding variants in whole genome 679 
sequencing studies of personal or cancer genomes (see our companion paper). 680 
  681 
Predicting enhancers and determining their functional role within gene regulatory networks has been an 682 
active field for years. Classically, ChIP-seq1, motif discovery tools1,8, genetic screens13,14 and 683 
comparative genomic studies10–12 have proven useful to reach this goal. For instance Villar et al. 684 
uncovered enrichment of CEBPA motifs in highly conserved liver enhancers by performing a 685 
comparative genomic analysis in 20 mammalian species; and Prescott et al. identified a novel 686 
‘coordinator’ motif predictive of species-biased cranial neural crest enhancers between human and 687 
chimp. Despite the well-established power of cross-species approaches, to our knowledge, a large 688 
comparative epigenomics study in melanoma has not yet been conducted, although several non-human 689 
models are commonly used in melanoma research34. These have either been studied on an intra-species 690 
level33,75–80; in relation to human melanoma at the level of marker genes30, morphology and 691 
pharmacological sensitivity32, transcriptome81; or across three species in the context of genomic 692 
landscapes82. Here, we conducted a comparative epigenomics study in melanoma across six species, 693 
allowing us to demonstrate, for the first time, the conservation of not only the MEL cell state (and the 694 
MES cell state in dog), but also the conservation of the underlying master regulators, based on 695 
enrichment of TF binding sites within differential MEL and MES peaks and within conserved MEL 696 
enhancers.  697 
  698 
Although their proven advantages, sequence-based comparative approaches have limited power to 699 
identify orthologous regulatory regions in distant species, in part because of the rapid evolution of distal 700 
enhancers83,84. Methods, such as enhancer element locator (EEL), try to tackle this question by aligning 701 
TF binding sites to identify conserved enhancer elements85, or by calculating the co-occurrence of 702 
sequence patterns61. However, these methods are either supervised as they require user-provided PWMs 703 
85 or are difficult to extract the important biologically-relevant features from61. In addition, the 704 
identification and exact localisation of important (de novo) TF binding sites within enhancers is 705 
complex as motif discovery tools are often dependent on user-provided databases and motif-specific 706 
thresholds. Recently, deep learning approaches, which are commonly used in disciplines such as speech 707 
recognition and image analysis, found their way into the regulatory genomics field to overcome these 708 
concerns15, but have, to our knowledge, not yet been applied to evolutionary enhancer studies. As deep 709 
learning models, such as DeepBind, are particularly powerful in learning complex patterns by 710 
leveraging large epigenomics datasets, they are well suited to function as de novo motif detectors, as 711 
well as to uncover more complex sequence features at higher-level layers that capture the internal 712 
structure15,16. By designing DeepMEL, a multi-class multi-label neural network trained on melanoma-713 
specific human regulatory topics of co-accessible regions, and by using the model interpretation tool 714 
DeepExplainer54,55, we were able to perform a thorough and unsupervised analysis of important TF 715 
binding sites in melanoma enhancers. Specifically, in MEL enhancers, our data suggests conserved co-716 
binding of a Core Regulatory Complex of four main transcription factors, consisting of SOX10, 717 
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TFAP2A and MITF. DeepMEL also finds motifs for RUNX factors, but their role in the melocyte or 718 
melanoma is less clear. Evidence for co-binding of SOX10, MITF, and TFAP2A was previously 719 
observed by enrichment of both MITF and TFAP2A motifs in SOX10 ChIP-seq data in melanoma 720 
cells65. To predict the precise location and the significance of these TF binding motifs, we designed a 721 
new motif scoring scheme by multiplying DeepMEL convolution filters with DeepExplainer 722 
profiles54,55. We observed high flexibility in the organisation of TF binding sites of the CoRC since 723 
eight different modalities were found, formed by all permutations of the CoRC factors, with the 724 
exception that all MEL enhancers contained at least one SOX10 binding site. MEL enhancers adhere to 725 
a ‘mixed modes enhancer’ model, a billboard-like model with mostly high flexibility in the TF motif 726 
organisation, except for the ever-present SOX10 binding sites68. Other cross-species studies of 727 
enhancers have used ChIP-seq against TFs to examine conserved and divergent enhancers10,86,87. Here 728 
we avoid the necessity of cross-species ChIP-seq data, as we approximate this by combining ATAC-729 
seq and DeepMEL to characterise, in an unsupervised way, the conservation and divergence of 730 
enhancers linked to several melanoma master regulators 731 
  732 
It is well recognised that distinct functional classes of TFs exit, with respect to enhancer binding. 733 
Pioneer TFs, such as OCT4, SOX2, GRHL, and FOXA1, are able to bind nucleosomal DNA, leading 734 
to displacement of the nucleosome and facilitating the binding of other TFs to the accessible 735 
enhancer5,7,68. SOX2, for example, was shown to bind nucleosomal DNA in vitro and associate with 736 
closed chromatin88–90. SOX2 and other SOX factors have a HMG domain that interacts with the minor 737 
groove of the DNA, causing the DNA to bend in a 60-70° angle, a property that has been suggested to 738 
contribute to the pioneering activity of SOX2, and possibly of other SOXs91. There is still some dispute 739 
on the pioneering properties of SOX TFs, as another study classified SOXs as ‘migrant TFs’, i.e. non-740 
pioneering TFs that only bind sporadically to (non)-chromatinised DNA92. Nonetheless, we find strong 741 
evidence for a pioneering function of SOX10 in MEL melanoma cells. Our current and previous study29 742 
have shown that knock-down of SOX10 induces closure of SOX10-bound ATAC-seq peaks containing 743 
a SOX10 motif. In fact, DeepMEL predicts SOX10 binding sites as essential for MEL enhancer 744 
accessibility. SOX10 is known to engage with open chromatin, as 98% of SOX10 ChIP-seq peaks 745 
overlap with DNase-seq sites57 and, in addition, SOX10 has been shown to physically interact with 746 
BRG1, a subunit of the SWI/SNF chromatin remodeling complex, in differentiating melanocytes93. 747 
Altogether, this supports the pioneering role of SOX10 in melanocytic melanomas. Notably, especially 748 
the binding of SOX10 dimers appeared important for MEL enhancer accessibility as eight of the ten 749 
enriched SOX10 DL filters in topic 4 represent a SOX10 dimer motif rather than a monomeric motif. 750 
This is further supported by the fact SOXE proteins, such as SOX10, are known to form homo- and 751 
heterodimers with other SOXE factors94. In addition, a study on SOX9, another member of the SOXE 752 
TF family, showed that dimerisation of SOX9 was necessary to remodel the chromatin of a Col2a1 753 
enhancer and to, eventually, allow its activation95. Interestingly, we also detected a positional specificity 754 
for the SOX10 dimer binding sites as they are mainly localised within the nucleosomal DNA, around 755 
40 bp inwards from the nucleosome start point. Although the findings from Zhu et al. support the 756 
binding of SOX(10) proteins inside the nucleosome borders, they observe an enrichment of SOX10 757 
binding towards the dyad of the nucleosome, more towards the center compared to our results reveal. 758 
Therefore, further investigations of SOX10 binding to chromatinised DNA might improve the 759 
resolution of the exact location of this TF with relation to the nucleosome start and middle point. 760 
 761 
Next to pioneer factors, other functional classes of TFs exist, including factors that stabilise the 762 
accessibility of the nucleosome depleted regions. TFAP2A was previously classified as such a 763 
chromatin stabiliser6. Indeed, evolutionary divergence from the TFAP2A consensus motif correlates 764 
with loss of chromatin accessibility and H3K27ac ChIP-seq signal11. These reports support our 765 
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observations of TFAP2A as a stabiliser of SOX10-dependent accessible MEL enhancers, likely due to 766 
direct competition of TFAP2A with the nucleosome, as TFAP2A binding sites were highly enriched at 767 
the predicted center of the central nucleosome. The dependence of SOX10 for opening MEL enhancers 768 
prior to TFAP2A binding is in line with the reported classification of TFAP2A as a ‘settler’, a TF whose 769 
binding depends predominantly on the accessibility of the chromatin at their binding sites92. 770 
  771 
Besides classifying accessible (orthologous) regions and predicting important TF motifs within them, 772 
DeepMEL is an accurate predictor of the effect of mutations on enhancer accessibility and, for some 773 
enhancers, also the activity. This was for instance the case for the IRF4 MEL enhancer, where 774 
DeepMEL performed best among the computational methods tested in Kircher et al.. Note however, 775 
that the other models in the benchmark were trained to predict the activity of a total of 20 regulatory 776 
regions ranging across different cell types; whereas our DL model is specialised for melanoma 777 
regulatory regions. This demonstrates the value of using case-specific training data, such as the data set 778 
generated in this study for melanoma. Interestingly, not all predicted MEL enhancers were in fact active. 779 
Luciferase assays on a total of six MEL enhancers suggest that SOX10 alone is sufficient for enhancer 780 
accessibility, but not for enhancer activity, as MITF binding seems to be needed to activate SOX10-781 
dependent melanoma enhancers. The study of Fufa et al. supports this hypothesis, as activating SOX10-782 
regions in mouse melanocytes showed significant enrichment of E-box motifs (bound by the bHLH 783 
protein family, which includes MITF), indicating that it might cooperate with SOX10 to execute 784 
melanocyte-specific gene activation. In addition, MITF was previously classified as a TF involved in 785 
co-factor recruitment and activation6,72. Although SOX10 binding is not sufficient for enhancer activity, 786 
it is necessary, as disruption of the SOX10 binding site in the IRF4 enhancer had a strong effect on 787 
activity, probably due to the reappearance of the central nucleosome. Also in an enhancer located about 788 
15 kb upstream of the MEL-specific gene tyrosinase in mouse, both Sox10 and Mitf binding sites were 789 
required for activity96. This mode of action is also present in other cell types, such as epithelial cells in 790 
Drosophila, where Grainyhead acts as pioneer TF and is necessary for both accessibility and activity of 791 
epithelial enhancers, but not sufficient for their activity; where it was suggested that the TF Atonal, also 792 
a bHLH factor like as MITF, could function as activator of Grh-dependent enhancers7. Note that the 793 
human and pig predicted MEL enhancers were also accessible in human and pig melanocytes, 794 
respectively, indicating that we possibly could extend these observations on the MEL enhancer logic to 795 
enhancers in melanocytes. 796 
 797 
In conclusion, the combination of comparative epigenomics with deep learning allowed us to perform 798 
an in-depth analysis of the melanoma enhancer logic. This work presents an overall framework which 799 
can be applied to decipher the enhancer logic in a cell type or cell state of interest, starting from the 800 
generation of an extensive cell type-specific (cross-species) epigenomics dataset, all the way through 801 
the training and exploitation of a deep neural network to decode enhancer features across species, and 802 
to utilise it to assess the impact of cis-regulatory variation.  803 
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Methods 804 

Cell culture 805 
 806 
Human melanoma cell lines 807 

Human melanoma cultures (“MM lines”) are short-term cultures derived from patient biopsies27,35 808 
(Gembarska et al., 2012; Verfaillie et al., 2015). Cells were cultured at 37°C with 5% CO2 and were 809 
maintained in Ham's F10 nutrient mix (Thermo Fisher Scientific) supplemented with 10% fetal bovine 810 
serum (FBS; Invitrogen) and 100 µg ml-1 penicillin/streptomycin (Thermo Fisher Scientific).  811 

Zebrafish melanoma cell lines 812 

Experiments were performed as outlined by Ceol et al.97. Briefly, 25 pg of MCR:EGFP were 813 
microinjected together with 25 pg of Tol2 transposase mRNA into one-cell Tg(BRAFV600E);p53-/-; 814 
mitf-/- zebrafish embryos. Embryos were scored for melanocyte rescue at 48-72 hours post-fertilisation, 815 
and equal numbers were raised to adulthood (15-20 zebrafish per tank), and scored weekly (from 8-12 816 
weeks post-fertilization) or bi-weekly (> 12 weeks post-fertilization) for the emergence of raised 817 
melanoma lesions31. For in vitro culture, large tumors were isolated from MCR/MCR:EGFP (14-28 818 
weeks post-fertilization). Zebrafish were maintained under IACUC-approved conditions. Zebrafish 819 
primary melanoma ZMEL1 cell line was previously described38,39 and EGFP 121-1, EGFP 121-2, EGFP 820 
121-3, EGFP 121-5, were generated as described98,99. All cell lines were cultured in DMEM medium 821 
(Life Technologies) supplemented with 10% heat-inactivated FBS (Atlanta Biologicals), 1X 822 
GlutaMAX (Life Technologies) and 1% Penicillin-Streptomycin (Life Technologies), at 28°C, 5% CO2. 823 
Zebrafish melanoma lines were authenticated by qPCR and Western for EGFP transgene expression, 824 
and periodically checked for mycoplasma using the Universal Mycoplasma Detection Kit (ATCC). 825 
 826 
Horse melanoma cell lines 827 

The horse cell lines HoMel-L1 and HoMel-A1 are melanoma cell lines derived from a Lipizzaner 828 
stallion and Shagya-Arabian mare respectively and were established in Seltenhammer et al.. Cells were 829 
cultured at 37°C with 5% CO2 in Roswell Park Memorial Institute (RPMI) medium (Thermo Fisher 830 
Scientific) supplemented with 10% fetal bovine serum (FBS; Invitrogen) and 1% 831 
penicillin/streptomycin (Thermo Fisher Scientific). 832 

Pig melanoma and melanocyte cell lines 833 

Both the immortal line of pigmented melanocytes (PigMel) and the primary melanoma cell line 834 
(MeLiM) were previously derived30,100. PigMel cells were cultured at 37°C with 10% CO2 in MEM 835 
medium supplemented with 1X MEM non essential amino acids (Thermo Fisher Scientific), 10mM Na 836 
pyruvate, 2mM glutamine, 100U/ml penicilin/streptomycin (Thermo Fisher Scientific), 10% FCS and 837 
3,7g/ml Na bicarbonate. MeLiM cells were cultured in DMEM high glucose (Thermo Fisher Scientific), 838 
10% FCS, Pen/Strep, 5% CO2. 839 

Dog melanoma cell lines 840 

The dog cell lines Bounty and Cesar were established by Aline Primot37, and were derived from an 841 
uveal melanoma from a Beagle crossed dog and an oral melanoma from the palate from a Shih-tzu, 842 
respectively. Cells were cultured at 37°C with 5% CO2 in Ham's F-12 Nutrient Mixture medium 843 
(Thermo Fisher Scientific) supplemented with 10% fetal bovine serum (FBS; Invitrogen) and 1% 844 
penicillin/streptomycin (Thermo Fisher Scientific). 845 
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Mouse melanoma cell lines 846 

The mouse melanoma cell line was generated as described in36. Cells were cultured at 37°C with 5% 847 
CO2 in Dulbecco's Modified Eagle Medium (DMEM) (Thermo Fisher Scientific) supplemented with 848 
10% fetal bovine serum (FBS; Invitrogen) and 1% penicillin/streptomycin (Thermo Fisher Scientific). 849 

Knock-down experiments 850 

SOX10, TFAP2A and the control knockdown were performed in MM001 using a SMARTpool of four 851 
siRNAs against, respectively, SOX10 (SMARTpool: ON-TARGETplus SOX10 siRNA, number 852 
L017192-00-0005, Dharmacon), TFAP2A (SMARTpool: ON-TARGETplus TFAP2A siRNA, number 853 
L-006348-02-0005, Dharmacon) and a negative control pool (ON-TARGETplus non-targeting pool, 854 
number D-001810-10-05, Dharmacon) at a concentration of 20 nM for SOX10-KD, and 40 nM for 855 
TFAP2A-KD and the control using as medium Opti-MEM (Thermo Fisher Scientific) and omitting 856 
antibiotics. The cells were incubated for 72 h before processing. 857 

OmniATAC-seq data generation, data processing and follow-up analyses 858 
 859 
OmniATAC-seq on mammalian lines 860 
 861 
OmniATAC-seq was performed as described previously101. Cells were washed, trypsinised, spun down 862 
at 1000 RPM for 5 min, medium was removed and the cells were resuspended in 1 mL medium. Cells 863 
were counted and experiments were only continued when a viability of above 90% was observed. 864 
50,000 cells were pelleted at 500 RCF at 4°C for 5 min, medium was carefully aspirated and the cells 865 
were washed and lysed using 50 uL of cold ATAC-Resupension Buffer (RSB) (see Corces et al. for 866 
composition) containing 0.1% NP40, 0.1% Tween-20 and 0.01% digitonin by pipetting up and down 867 
three times and incubating the cells on ice for 3 min. 1 mL of cold ATAC-RSB containing 0.1% Tween-868 
20 was added and the eppendorf was inverted three times. Nuclei were pelleted at 500 RCF for 10 min 869 
at 4°C, the supernatant was carefully removed and nuclei were resuspended in 50 uL of transposition 870 
mixture (25 uL 2x TD buffer (see Corces et al. for composition), 2.5 uL transposase (100 nM), 16.5 uL 871 
DPBS, 0.5 uL 1% digitonin, 0.5 uL 10% Tween-20, 5 uL H2O) by pipetting six times up and down, 872 
followed by 30 minutes incubation at 37°C at 1000 RPM mixing rate. After MinElute clean-up and 873 
elution in 21 uL elution buffer, the transposed fragments were pre-amplified with Nextera primers by 874 
mixing 20 uL of transposed sample, 2.5 uL of both forward and reverse primers (25 uM) and 25 uL of 875 
2x NEBNext Master Mix (program: 72°C for 5 min, 98°C for 30 sec and 5 cycles of [98°C for 10 sec, 876 
63 °C for 30 sec, 72°C for 1 min] and hold at 4°C). To determine the required number of additional 877 
PCR cycles, a qPCR was performed (see Buenrostro et al.3 for the determination of the number of extra 878 
cycles). The final amplification was done with the additional number of cycles, samples were cleaned-879 
up by MinElute and libraries were prepped using the KAPA Library Quantification Kit as previously 880 
described101. Samples were sequenced on a HiSeq4000 or NextSeq500 High Output chip. 881 

ATAC-seq on zebrafish lines 882 

50,000 cells per line were lysed and subjected to a tagmentation reaction and library construction as 883 
described in Buenrostro et al.3. Libraries were run on an Illumina HiSeq 2000. 884 
 885 
Data processing of human melanoma baseline OmniATAC-seq samples 886 

Paired-end reads were mapped to the human genome (hg19-Gencode v18) using bowtie2 (v2.2.6). 887 
Mapped reads were sorted using SAMtools (v1.8) and duplicates were removed using Picard 888 
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MarkDuplicates (v1.134). Reads were filtered by removing mitochondrial reads and filtering for Q>30 889 
using SAMtools. Bam files of technical replicates of the same cell line were merged at this point using 890 
samtools merge. Peaks were called using MACS2 (v2.1.2) callpeak using the parameters -q 0.05, --891 
nomodel, --call-summits, --shift -75 --keep-dup all and --extsize 150 per sample. Blacklisted regions 892 
(ENCODE) and peaks overlapping with alternative chromosomes and chrM were removed. Summits 893 
were extended by 250bp up- and downstream using slopBed (bedtools; v2.28.0), providing human 894 
chromosome sizes. Peaks were normalised for the library size using a custom script and overlapping 895 
peaks were filtered using the peak score by keeping the peak with the highest score. For visualisation 896 
in IGV, normalised bigWigs were made by bamCoverage (Deeptools, v3.3.1), using as parameters --897 
normalizeUsing None, -bl EncodeBlackListedRegions --effectiveGenomeSize 2913022398 and as 898 
scaling parameter (-scaleFactor) 1/(RIP/1E6), where the RIP stands for the number of reads in peaks. 899 

Data processing of non-human (Omni)ATAC-seq samples, and of human SOX10 and TFAP2A knock-900 
down OmniATAC-seq data  901 

Adapter sequences were trimmed from the fastq files using fastq-mcf (as part of eautils; v1.05) and the 902 
read quality was checked using FastQC (v0.11.8). Reads were mapped using STAR (v2.5.1b) (for the 903 
zebrafish samples paired-end reads were mapped) to the genome which were downloaded from UCSC 904 
(http://hgdownload.cse.ucsc.edu/goldenPath/) (for human: hg19-Gencode v18; for dog: canFam3; for 905 
horse: equCab2; for pig: susScr11; for mouse: mm10; for zebrafish: danRer10) and by applying the 906 
parameters --alignIntronMax 1 and --aslignIntronMin 2. Mapped reads were filtered for quality using 907 
SAMtools (v1.2) view with parameter –q4, sorted with SAMtools sort and indexed using SAMtools 908 
index. Peaks were called using MACS2 (v2.1.2) callpeak using the parameters -q 0.05, --nomodel, --909 
call-summits, --shift -75 --keep-dup all and with the genome size for the correct species in --g, and this 910 
for each sample per species separately. Summits were extended by 250bp up- and downstream using 911 
slopBed (bedtools; v2.28.0), providing the chromosome sizes for the specific species. Per sample, peaks 912 
were normalised for the library size using a custom script and overlapping peaks were filtered using the 913 
peak score (keeping the highest scoring peak). Normalised bedGraphs were produced by 914 
genomeCoverageBed (as part of bedtools; v2.28.0) using as scaling parameter (-scale) 1E6/(number of 915 
non-mitochondrial mapping reads). BedGraphs were converted to bigWigs by the bedtools suit 916 
functions bedSort to sort the bedGraphs, followed by bedGraphToBigWig to create the bigWigs, which 917 
were used in IGV for visualisation.  918 

Homer on human and dog differential accessible peaks  919 

First, merged bed files of human and dog ATAC-seq regions were converted to gff format. Count 920 
matrices were produced by featureCounts (v1.6.5) using these gff files and bam files of 5 MEL and 5 921 
MES lines for human, and gff and bam files of Cesar and Bounty for dog. Differential peaks were 922 
identified using DESeq2 (v1.22.2, R v3.5.2) with a log2FC higher than 2 and a pAdj lower than 0.0005. 923 
Homer47 was performed on the differential regions using findMotifsGenome.pl, providing the 924 
differential regions as a bed file and a fasta file of the human or dog genome, with parameters -mask, -925 
size give and -len 6,8,10,11,12,17,18. 926 

Defining sets of conserved ATAC-seq regions 927 

Accessible regions of non-human species were converted to hg19 coordinates using liftOver (Kent-928 
tools) by providing the appropriate liftOver chain (UCSC) and allowing a -minMatch=0.1. LiftOvered 929 
regions were intersected with accessible peaks in human (accessible peaks of 5 MEL MM lines) using 930 
intersectBed (bedtools, v2.28.0) with -f 0.6 and to define set of conserved regions across species, e.g. 931 
conserved regions in across the six species were identified by the intersection of all liftOver bedfiles of 932 
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non-human species with the human accessible regions, maintaining only the coordinates with which all 933 
six species overlapped. 934 

Clustering of species based on conserved ATAC-seq regions  935 

Per species, a count matrix was made on the conserved ATAC-seq regions (conserved in all mammalian 936 
species or in all six species, as described above) by featureCounts (v1.6.5) using a gff file of the 937 
conserved regions in the coordinates of the specific species and bam files for the specific species. Count 938 
matrix of different species were merged and the final count matrix was CPM normalised (edgeR 939 
v3.22.5, R v3.5.2), followed by quantile normalisation. A principal component analysis (PCA) on the 940 
normalised count matrix was performed using irlba (v2.3.3, R v3.5.2) and the first two principal 941 
components were used for visualisation. 942 

Branch length scoring across species 943 
Conserved ATAC-seq regions were identified as described above, and for each of the species, the set 944 
of conserved regions was converted to the coordinate system per species and fasta sequences were 945 
retrieved. All sequences were scored with our collection of 20,003 motifs using Cluster-Buster102 with 946 
parameters -m 0, -c 0 and -r 10000. For each motif, the highest CRM score per conserved sequence was 947 
used to calculate the BLS across species according to (ref). The branch length was taken from the 948 
phylogenetic data from http://hgdownload.cse.ucsc.edu/goldenpath/hg19/phyloP100way/ (UCSC). The 949 
sum of the BLSs for all the conserved sequences across the mammalian or all six species was used as a 950 
total score for each motif. We normalised these scores by performing BLS on a shuffled variant of all 951 
sequences by shuffleseq (EMBOSS, v6.6.0.0), keeping the same base-pair compositions and sequence 952 
lengths, and subtracting the shuffled BLS from the true BLS pre motif. This corrected BLS per motif 953 
represents the conservation of the motif across a set of conserved regions across a set of species. 954 
 955 
cisTopic analysis to obtain sets of co-accessible regions in human OmniATAC-seq data 956 
To apply cisTopic29, a tool for single-cell ATAC-seq analysis, we first simulated single cells form our 957 
bulk OmniATAC-seq data on the 17 human melanoma lines via bootstrapping. Per cell line, 50 958 
simulated single cell bam files were generated containing each 50,000 random reads that were 959 
bootstrapped from the bulk bam files. These simulated single cell bam files were provided as input for 960 
cisTopic (v0.2.0, R v3.4.1), together with the merged regions across all 17 samples, after removing 961 
blacklisted regions (ENCODE). We ran cisTopic (parameters: α = 50/T, β = 0.1, burn-in 962 
iterations = 500, recording iterations = 1,000) for models with a number of topics between 2 and 30 (2 963 
by 2). The best model, containing 24 topics, was selected on the basis of the highest log-likelihood. 964 
Topics were binarised using a probability threshold of 0.995, and performed motif enrichment analysis 965 
with cisTarget8. 966 
 967 
Deep Learning 968 

Data preparation 969 

Regions, which were obtained after peak calling for each baseline (as explained in Data processing of 970 
human melanoma baseline OmniATAC-seq samples), were merged into one bed file and overlapping 971 
regions were removed via custom script. Before intersecting this merged peak file with topics to label 972 
each region, regions were augmented in order to have more training data for DeepMEL by extending 973 
them to 700 bp and sliding a 500 bp window over them with a 10 bp stride, which meant that each 500 974 
bp augmented region still contained the ATAC-seq summit. Each augmented region had at least 400 bp 975 
overlap with its origin. This augmented master region file was intersected with each topic file separately 976 
via bedtools and each region was labelled with the topic number if there was an at least 60% overlap. 977 
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If regions overlapped with multiple topics, we assigned multiple labels to them, allowing for a multi-978 
label and multi-class DL model. The average number of regions in each topic was 1,498 (35,940 in 979 
total). After the augmentation and intersection, there were 696,654 regions for training in total, 980 
excluding 58,086 chr2 regions for testing. 981 

The DeepMEL model architecture and training parameters 982 
 983 
The DeepMEL architecture was built by using mainly 4 layers between input and output layer; Conv1D 984 
layer (with 128 filters, kernel_size as 20, strides as 1, and activation as relu), MaxPooling1D layer (with 985 
pool_size as 10 and strides as 10), TimeDistributed Dense layer together with Bidirectional LSTM layer 986 
(with 128 units, dropout as 0.1, recurrent_dropout as 0.1), and Dense layer (with 256 units and activation 987 
as relu). After MaxPooling1D, Bidirectional LSTM, and Dense layer Dropout was used as 0.2, 0.2, and 988 
0.4 respectively. The DeepMEL takes one-hot encoded (500bp x 4 nucleotide) forward and reverse 989 
strand of the region, passes them separately through the model and takes the average of the activations 990 
of the neurons in the final Dense layer (24 units corresponding to 24 topics with sigmoid activation) 991 
with the average function in order to make the final prediction. The model was compiled using Adam 992 
optimizer with 0.001 learning rate. In order to make the model multi-label classifier, sigmoid activation 993 
function was used at the end of the final layer of the model and binary cross entropy loss function was 994 
used. The model was trained for 2 epochs with 128 batch size, which took 67 minutes. Keras 2.2.4103 995 
with tensorflow 1.14.0104 was used. A Tesla P100-SXM2-16GB GPU was used for training on VSC 996 
servers (Flemish Supercomputer Center). 997 
 998 
Performance evaluation 999 

The performance of the model was evaluated for each topic separately since it was a multi-label 1000 
classifier. The area under the Receiver Operator Characteristic curve (auROC) and the Precision Recall 1001 
curve (auPR) were calculated for training (regions on all chromosomes except chr2), test (regions on 1002 
chr2), and label-shuffled regions.  1003 

Converting convolution filters to PWMs, filter-topic assignment, and filter-annotation 1004 

After the model was trained, the filters of the convolution layer were converted into PWMs by the 1005 
following strategy: (i) 4,000,000 unique 20bp-long (size of the filters) sequences were randomly 1006 
generated. (ii) The activation score of each filter for each sequence was calculated and the top 100 1007 
sequence were selected. (iii) A count matrix was generated from these 100 sequences obtained for each 1008 
filter. (iv) Finally, the count matrices were converted into PWMs. In order to assign the filters to topics, 1009 
a similar strategy that is mentioned in Basset18 was used. The activation score of the filter was separately 1010 
set to its mean activation score over all sequences, then the loss/accuracy score on the prediction was 1011 
calculated for each class. Filters were ordered based on their effect on a certain topic. After the filters 1012 
were converted into PWMs, Tomtom59 motif annotation tool was used together with using a curated 1013 
collection of more than 22,000 PWMs in order to annotate the DL features to known motifs. The cutoff 1014 
for the q-value was set to 0.3. 1015 

DeepExplainer 1016 

Among 35,940 topic regions, 500 of them were randomly selected to initialise DeepExplainer54. 1017 
Importance score for each position of the sequence of interest was calculated with respect to any of the 1018 
24 classes. The hypothetical importance score, which is obtained from the DeepExplainer output, was 1019 
multiplied by the one-hot encoded matrix of the sequence. Finally, the 500 bp sequences were visualised 1020 
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by adjusting the nucleotide heights based on their importance score by using modified viz_sequence 1021 
function from the DeepLift105 repository. 1022 

In silico saturation mutagenesis on IRF4 1023 

By changing each nucleotide on a 500 bp sequence into three other nucleotides, 1,500 sequences that 1024 
contain only one mutation compared to initial sequence were generated and scored by the model.  The 1025 
delta prediction score for each mutation was calculated for each class by comparing the final prediction 1026 
score relative to the prediction score for the initial sequence. The IRF4 enhancer (chr6:396,143-1027 
396,593) used in in vitro saturation mutagenesis assay is also covered by one of our MEL enhancers 1028 
predicted as topic 4 (chr6:396,135-396,636). In silico saturation mutagenesis assay on this region was 1029 
done using the delta prediction score of topic 4 and a Pearson correlation was calculated on overlapping 1030 
nucleotides between the in silico and in vitro assays (451 bp).  1031 

Motif scoring method and centering regions 1032 

Using only the filters identified from the convolutional layer is not sufficient to localise significant 1033 
motif hits on MEL enhancers since it does not necessarily mean that when the activation of a filter 1034 
passes the activation threshold, that the filter has an effect on the final classification for a position in 1035 
the sequence. Also using only the DeepExplainer importance scores is not sufficient either since it is 1036 
not able to precisely detect the exact location, size, and the name of the motif hit. In order to overcome 1037 
this problem, activation scores of the filters on each sequence were multiplied by the DeepExplainer 1038 
importance scores. Then, a threshold was calculated for each motif by comparing MEL and MES 1039 
enhancers after the output of the multiplication was normalised. This approach yielded significant motif 1040 
hits with their precise location.  1041 

Nucleosome positioning 1042 

Nucleosome start and middle point predictions were calculated by using an executable nucleosome 1043 
prediction tool called Kaplan_v369 that takes only the DNA sequence and calculates the nucleosome 1044 
positioning for each nucleotide. In order to get more precise results, as the authors of Kaplan_v3 1045 
suggest, enhancers were extended 3 kb from both ends. After obtaining the predictions, the middle 500 1046 
bp part of the 6.5kb nucleosome prediction score was used.  1047 

Tn5 footprinting 1048 

Footprint of the Tn5 was determined by inferring Tn5 cut sites with a custom script that takes bam file 1049 
sand locates the Tn5 cut site deduced from the start point of each read resulted from the ATAC 1050 
sequencing. 1051 

 1052 
AUROC on human and dog of DL and Cluster-Buster 1053 
To the performance of the model to discriminate between MEL and MES regions in human and dog 1054 
was performed by scoring the top 5,000 differential MEL and MES regions in human and dog (described 1055 
above) by DeepMEL and calculating precision of correct assignment (i.e. topic 4 score for the MEL 1056 
regions and topic 7 scores for the MES regions). The performance of DeepMEL was compared with the 1057 
motif scoring tool Cluster-Buster102 by scoring the same sets of regions with Cluster-Buster by using a 1058 
merged motif file of (some of) the top filters identified by the model in either topic 4 or topic 7, and by 1059 
using the obtained CRM score to estimate the performance of Cluster-Buster. 1060 
 1061 
  1062 
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Identification of homologous MEL genes and enhancers 1063 
To identify genes differentially expressed in human MEL cell lines, we performed DEseq2 (v1.22.2, R 1064 
v3.5.2) on 7 MEL (MM031, MM034, MM057, MM074, MM087, MM118, MM164) and 5 MES 1065 
(MM029, MM099, MM116, MM163, MM165) human lines. 379 genes were found differentially 1066 
expressed in MEL lines (log2FC > 2.5 and adjP < 0.005). We converted the gene symbols to Ensemble 1067 
gene IDs using biomaRt (v2.38.0, R v3.5.2) and found back the genomic locations of the genes using 1068 
GenomicFeatures (v1.34.8, R v3.5.2). We searched for MEL enhancers in the extended gene loci, by 1069 
extending the genomic locations 200 kbp upstream and downstream of the start and the end of the gene 1070 
and using bedtools intersect (v2.28.0) to intersect the extended loci with the MEL-predicted regions in 1071 
MM001. For the human differential MEL genes with at least one MEL-predicted peak in their extended 1072 
gene locus, the homologous genes in the other six species was identified by using biomaRt to convert 1073 
the human Ensemble gene IDs to Ensemble gene IDs of the other species. Again GenomicFeatures was 1074 
used to get the genomic locations of the genes in the different species. Next, we identified the MEL 1075 
enhancers per species that were intersection with the extended gene loci of each of the homologous 1076 
genes in that specific species using bedtools intersect. liftOver -minMatch=0.1 was used to calculate 1077 
the number of these regions that could be identified by performing coordinate conversion. 1078 
 1079 
Correlation of MEL enhancers using deep layers of DeepMEL 1080 
Conserved MEL enhancers in the extended loci of conserved MEL genes across the six species were 1081 
scored by the DeepMEL. By taking the activation scores of the neurons on the Dense layer, which 1082 
comes before the final output layer and harbours the characteristics and the contents of the enhancers 1083 
coming from previous feature extraction layers, a matrix was generated consisting of a score for 256 1084 
nodes for each of the regions. A pearson correlation was generated to calculate the pairwise similarity 1085 
between each of the regions.  1086 
 1087 
Genome-wide prediction of MEL enhancers 1088 
(Soft)-masked genomes where downloaded from UCSC for Homo sapiens (human, hg19), Equus 1089 
caballus (horse, equCab2), Sus scrofa (pig, susScr11), Canis lupus familiaris (dog, canFam3), Mus 1090 
musculus (mouse, mm10), Danio rerio (zebrafish, danRer10), Ciona intestinalis (ci3), Caenorhabditis 1091 
elegans (ce11) and Saccharomyces cerevisiae (sacCer3). The first chromosome of each species was 1092 
tiled with a sliding window of 500 bp and a 100 bp shift using bedtools makewindows (v2.28.0). Tiles 1093 
containing ‘N’ were deleted and the remaining tiles were scored by DeepMEL. The number of MEL-1094 
predicted tiles (topic 4 score > 0.16) was divided by the number of genes per species to yield an estimate 1095 
of the content of the MEL-enhancer code in each genome. 1096 
 1097 
Mutations in orthologous enhancers across species 1098 
We defined highly-probable orthologous MEL enhancers between human and another species as 1099 
regions that were predicted as MEL in one species and for which there was a stringent liftOver (liftOver 1100 
-minMatch=0.995) and high sequence identity (more than 80% after pairwise alignment via needle 1101 
(EMBOSS, v6.6.0.0), using parameters -gapopen 10.0 -gapextend 0.5) in the other species. Note that 1102 
also the reverse complement of the regions was checked here. Delta ATAC-seq scores were calculated 1103 
for the pairs of orthologous regions by making a count matrix using featureCounts (v1.6.5) on the 1104 
regions and the bam file of a sample of the species, and by normalising this count matrix using the 1105 
library size according to the bam file used, followed by dividing the counts of the two species (human 1106 
counts / non-human counts) after adding a pseudocount. Mutations were identified by alignment via 1107 
needle, using parameters -gapopen 10.0 -gapextend 0.5. 1108 
 1109 
  1110 
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Luciferase assay  1111 
 1112 
Six MEL-predicted enhancers (3 in the dog line Cesar and 3 in the human line MM001) were 1113 
synthetically generated and cloned into a pTwist ENTR plasmid (Twist Bioscience) via Twist 1114 
Bioscience. Regions were transferred from the Gateway entry clone into the destination vector 1115 
(pGL4.23-GW, Addgene) via an LR reaction by mixing 2 ul of the entry clones (100 ng/ul) with 1ul of 1116 
the destination plasmid (150 ng/ul), 1 ul TE buffer and 1 ul LR enzyme (LR Clonase II Plus enzyme 1117 
mix, Thermo Fisher Scientific), and incubation at 25°C for 1 hour. Afterwards, 1ul of proteinase K 1118 
(Thermo Fisher Scientific) was added and reactions were incubated at 25°C for 10 min. 3ul of each LR 1119 
reaction was transformed into 50 ul of Stellar competent cells (Takara Bio) via heatshock, 200ul of SOC 1120 
medium was added and incubated for 1 hour in a shake incubator at 37°C, before plating the transformed 1121 
cells on LB agar plates with 1/1000 carbenicillin and incubation overnight at 37°C. One colony per 1122 
construct was grown overnight in a shake incubator at 37°C before plasmid extraction using the 1123 
NucleoSpin Plasmid Transfection-grade kit (Macherey-Nagel). For each construct three biological 1124 
replicates were performed by transfecting the plasmids into 80% confluent cells of MM001 in a 24 well 1125 
plate. Per transfection, 400ng of the construct was transfected together with 40ng of Renilla plasmid 1126 
(Promega) using lipofectamine 2000 (Thermo Fisher Scientific). Luciferase activity of each construct 1127 
was measured using the Dual-Luciferase Reporter Assay (Promega) according to the manufacturer's 1128 
instructions. Luciferase activity was normalised against the Renilla luciferase activity. 1129 

Publicly available data used in this work 1130 

SOX10 ChIP-seq and MITF ChIP-seq data on the 501Mel melanoma cell lines were downloaded as 1131 
raw fastq files from NCBI's Gene Expression Omnibus through GEO accession number GSE61965 65 1132 
and were mapped to the human genome using Bowtie2 (v2.1.0) and peaks were called by MACS2 1133 
(v2.1.1). TFAP2A ChIP-seq data on human primary melanocytes from neonatal foreskin was retrieved 1134 
from Seberg et al. (GSE67555) as a bed file, which was converted to a bedGraph and BigWig using the 1135 
peak height from the bed file. H3K27ac-seq and H3K27me3 ChIP-seq data for MM001 (GSE60666); 1136 
and RNA-seq data (data for MM031, MM034, MM057, MM074, MM087, MM099 and MM118 was 1137 
downloaded from GSE60666; data for MM029, MM116, MM0163, MM164, adn MM165 from 1138 
GSE134432) were processed as mentioned in Verfaillie et al.. OmniATAC-seq data for the human lines 1139 
MM001, MM011, MM029, MM031, MM047, MM074, MM057, MM087 and MM099 were obtained 1140 
through GSE13443228 and were processed as described above in ‘Data processing human melanoma 1141 
baseline OmniATAC-seq samples’; which was also the case for ATAC-seq data from normal human 1142 
melanocytes on foreskin (NHM1), which were downloaded as raw fastq files from GSE94488 1143 
(GSM2476338)106. ATAC-seq data from C. elegans and S. cerevisiae were downloaded as raw fastq 1144 
files from GSE114439 (SRR7164221)107 and GSE66386 (SRR1822137)108, respectively, and were 1145 
mapped paired-end using STAR (v2.5.1b) to ce11 and sacCer3, respectively, before calling peaks using 1146 
MACS2 (v2.1.2) with -q 0.05, extending the peaks 250bp up- and downstream of the summit and 1147 
filtering out overlapping peaks based peak height. The MPRA data on the IRF4 enhancer was 1148 
downloaded from https://mpra.gs.washington.edu/satMutMPRA/ and was processed as described 1149 
above. 1150 

Data availability 1151 

The data generated for this study have been deposited in NCBI’s Gene Expression Omnibus and are 1152 
accessible through GEO Series accession number GSE142238. This includes OmniATAC-seq data of 1153 
eight human melanoma cell lines, two dog melanoma cell lines, two horse melanoma cell lines, one pig 1154 
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melanoma cell line, one pig melanocyte cell lines and one mouse melanoma cell line; ATAC-seq data 1155 
of four zebrafish cell lines and OmniATAC-seq data of SOX10 and TFAP2A knock-down in the human 1156 
melanoma cell line MM001. 1157 
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