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Abstract 

The Kingman coalescent and its developments are often considered among the most important 

advances in population genetics of the last decades. Demographic inference based on the coalescent 

theory has been used to reconstruct the population dynamics and evolutionary history of several 

species, including Mycobacterium tuberculosis (MTB), an important human pathogen causing 

tuberculosis. One key assumption of Kingman’s coalescent is that the number of descendants of 

different individuals does not vary strongly, and violating this assumption could lead to severe 

biases caused by model misspecification. Individual lineages of MTB are expected to vary strongly 

in reproductive success because 1) MTB is potentially under constant selection due to the pressure 

of the host immune system, 2) MTB undergoes repeated population bottlenecks when it transmits 

from one host to another, and 3) some hosts show much higher transmission rates compared to the 

average (“super-spreaders”). 

Here we used an Approximate Bayesian Computation approach to test whether multiple merger 

coalescents (MMC), a class of models that allow for large variation in offspring sizes, are more 

adequate models to study MTB populations. We considered eleven publicly available whole 

genome sequence data sets sampled from MTB local populations and outbreaks and found that 

MMC had a better fit compared to the Kingman coalescent for nine of the eleven data sets. These 

results indicate that the neutral model for analyzing MTB outbreaks, and potentially the outbreaks 

of other pathogens, should be reassessed, and that past findings based on the Kingman coalescent 

need to be revisited. 
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Introduction 

The coalescent is a stochastic mathematical model that formally describes the shapes of the 

expected genealogies in a population (Kingman 1982). The original formulation of Kingman has 

been extended to include different evolutionary processes such as fluctuations in population size 

(Griffith and Tavare 1994), population subdivision and migration (Wilkinson-Herbots 1998), 

recombination (Hudson 1983), and selection (Kaplan et al. 1988, Neuhauser and Krone 1997). 

Although the genealogy of a sample is typically unknown, mutational models can be superimposed 

onto the coalescent to describe DNA sequence polymorphisms. These are generally easy to obtain 

from natural populations, thus opening the possibility of data-based statistical inference. 

Applications of the coalescent include the study of the evolutionary histories and population 

dynamics of a variety of taxa (Kuhner 2009), including humans (Li and Durban 2001, Excoffier et 

al. 2013) and pathogens (Pybus et al. 2001, Joy et al. 2003), and the identification of genetic loci 

under selection (Biswas and Akey 2006, Hernandez et al. 2011). 

One of the assumptions of the Kingman coalescent is that the variance in the number of offspring of 

each individual is small, such as at most one pair of sampled lineages can find a common ancestor 

for any time interval corresponding to a single time point on the coalescent time scale (short 

evolutionary time interval, SETI). Therefore, under the Kingman coalescent, the genealogies are 

strictly bifurcating. While this is a realistic assumption for many species, it has been shown that 

organisms with a life cycle characterized by high fecundity and high early mortality (sweepstake 

reproduction) have a very large variance in the offspring size (Eldon and Wakeley 2006, Sargsyan 

and Wakeley 2008). Additionally, in populations under constant selective pressure, the fittest 

individuals are expected to produce many more descendants compared to the less fit, thus also 

resulting in a skewed offspring distribution (Neher and Hallatschek 2012). 

A more general class of models, of which the Kingman coalescent is a special case, has been 

developed to accommodate large offspring variation between individuals. These models are known 

as multiple merger coalescents (MMC), because unlike Kingman’s coalescent, they allow more than 

two lineages to coalesce during a SETI, thus resulting in multifurcating genealogies (Tellier and 

Lemaire 2014). MMC have been proposed to be more adequate models to investigate marine 

organisms with sweepstakes reproduction (Sargsyan an Wakeley 2008), agricultural pathogens with 

recurrent seasonal bottlenecks (Tellier and Lemaire 2014), loci under positive selection (Durrett and 

Schweinsberg 2005), and rapidly adapting pathogens (Neher and Hallatschek 2012). 

Despite a growing interest in MMC, there are few studies that used genetic polymorphisms to test 

whether MMC are indeed a better fitting model compared to the Kingman coalescent. Signatures of 

MMC have been detected at the creatin kinase muscle type A locus of the Atlantic cod (Gadus 

morhua; Árnason and Halldórsdóttir 2015), in the mitochondrial genome of Japanese sardines 
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(Sardinops melanostictus; Niwa et al. 2016), in populations of breast cancer cells (Kato et al. 2017), 

and in the B-cell repertoire response to viruses such as HIV-1 and influenza (Nourmmohammad et 

al. 2019, Horns et al. 2019). While MMC are theoretically appealing genealogy models for 

pathogen samples (Irwin et al. 2016, Rocha 2018, Neher and Walczak 2018), their fit to observed 

data in pathogens populations has not been investigated so far. Only very recently, MMC have been 

used to study the within-host genetic diversity of Mycobacterium tuberculosis (MTB), a major 

human pathogen causing tuberculosis (Morales-Arce at al. 2019). 

Here we look for evidence of MMC in between-host populations of Mycobacterium tuberculosis.  

Between-host populations of MTB are expected to have a skewed offspring distribution because of 

three reasons: 1) MTB is an obligate pathogen, and therefore potentially constantly adapting under 

the pressure of the immune system (Gagneux 2018). 2) Super-spreaders; these are patients 

responsible for a very large number of secondary infections compared to the average (Gardy et al. 

2011, Walker et al. 2013, Ypma et al. 2013, Stucki et al. 2015, Lee et al. 2019), thus causing a large 

variance of the pathogen’s offspring size. 3) MTB undergoes repeated bottlenecks when 

transmitting from one host to another, with a few bacteria, and potentially as few as one, producing 

the entire population infecting the new host (Lin et al. 2014). 

Additionally, a low genetic diversity and an excess of rare variants (singletons) have been reported 

in MTB (Hershberg et al. 2008, Pepperel et al. 2013), and both are known signatures of MMC 

genealogies (Tellier and Lemaire 2014). 

Methods based on the Kingman coalescent are often used in population genetic analyses of MTB. 

For example: 1) The Bayesian Skyline Plot (Drummond et al. 2005) has been used to infer past 

population dynamics in tuberculosis outbreaks, finding evidence for constant population size 

(Bainomugisa et al. 2018), rapid population growth (Eldholm et al. 2015, Folkvardsen et al. 2017) 

or slow population decline (Lee et al. 2015). 2) Different methods have been used to infer the 

demographic history of the global MTB population (Pepperell et al. 2013, Comas et al. 2013, Bos et 

al. 2014) and of single MTB lineages (Kay et al. 2015, Luo et al. 2015, Merker et al. 2015, Merker 

et al. 2018, Liu et al. 2018, O’Neill et al. 2019), finding evidence for population growth or for 

complex fluctuations that have been correlated with major events in human history such as the 

introduction of antibiotic treatment. 3) The strength of purifying selection was estimated with a 

simulation based approach, finding a genome-wide selection coefficient several order of magnitude 

higher compared to other prokaryotes and eukaryotes (Pepperell et al. 2013). 

While some of these results might be biased by unaccounted population structure (Heller et al. 

2013) or sampling biases (Lapierre et al. 2016), potentially they are all impacted by the violation of 

the Kingman’s assumption described above, and their conclusions could be affected by model 

misspecification (Tellier and Lemaire 2014). 
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Given the undergoing efforts in controlling and stopping the spread of tuberculosis, and the global 

impact of this pathogen that causes more than 1.4 million deaths each year (WHO 2019), it is 

important to evaluate the adequacy of the population genetic models used to study tuberculosis 

epidemics. To this end, we considered eleven MTB whole genome sequence (WGS) data sets, we 

used an approximate Bayesian computation (ABC) approach based on simulations to find the best 

fitting model among Kingman’s coalescent, with and without accounting for population sizes 

changes, and two MMC models, the Beta coalescent (Schweinsberg 2003) and the Dirac coalescent 

(Eldon and Wakeley 2006). We found that MMC were the best fitting model for nine of the eleven 

data sets (eight fitted best to the Beta, one to the Dirac coalescent). Our results indicate that the 

shape of the genealogies of MTB samples, and therefore their sequences and genetic diversity, are 

influenced by the skewed offspring distribution of MTB. Consequently, demographic inference 

based on models assuming non-skewed offspring distribution (i.e. Kingman’s coalescent) could 

lead to inaccurate results when applied to MTB epidemics, and potentially to the epidemics of other 

pathogens with similar life histories.  

 

Results 

Models and data sets 

MTB is thought to be strictly clonal, lateral gene flow is completely absent, or very rare (Hershberg 

et al. 2008, Gagneux 2018, Chiner-Oms et al. 2019). Therefore, the MTB genome can be 

considered as a single genetic locus, and one single genealogy describes the relationships among all 

MTB strains in any data set. The shape of the genealogy of a sample is influenced by many factors, 

such as the underlying offspring distribution, sampling scheme, population subdivision, geographic 

population structure, migration and changes in population size. To avoid these confounding effects, 

we considered only populations that were unlikely to be affected by population structure, sampling 

biases, population subdivision and migration. We searched the literature for WGS data sets of MTB 

where all strains were sampled from a single phylogenetic clade that is restricted to a particular 

geographic region, and identified eleven studies. Most of these data sets represent single outbreaks 

(Methods). For each data set, we downloaded the raw Illumina sequences (Sup. Table 1) and used a 

bioinformatic pipeline described in the Methods to identify high confidence SNPs (Table 1). 

Excluding population structure, two factors that can shape the diversity of these data sets are 

changes in population size, and whether effective offspring distributions are skewed. We modeled 

changes in population size assuming exponential population growth, as has often been done in 

previous studies (Eldholm et al. 2015, Merker et al. 2015, Eldholm et al. 2016, O’Neill et al. 2019). 

We modeled skewed offspring distributions with two MMC models: 1) the Beta coalescent, in 

which the probability of each individual to coalesce in a multiple merger event is regulated by a 
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Beta distribution with parameters α (between 1 and 2) and 2- α. The Beta coalescent explicitly 

models populations with skewed offspring distributions (Schweinsberg 2003). Additionally, it was 

also proposed to capture the genealogies of populations undergoing recurrent bottlenecks and of 

epidemics characterized by super-spreaders (Tellier and Lemaire 2014, Hoscheit and Pybus 2019). 

Lower values of α (closer to one) correspond to larger multiple mergers events, and for α=1 the 

Beta coalescent corresponds to the Bolthausen-Sznitman (BSZ) coalescent. The BSZ coalescent is 

an explicit model for genealogies of populations evolving under rapid selection, which lead certain 

families of selected genotypes to have strongly increased sizes compared to the average (Bolthausen 

and Sznitman 1998, Neher and Hallatschek 2012, Desai et al. 2013). 

2) The Dirac coalescent, also known as psi coalescent, is defined by a single parameter (ψ). The 

parameter ψ represents the average proportion of sampled lineages that coalesce in a single multiple 

merger event, and was also proposed for populations with skewed offspring distributions (Eldon 

and Wakeley 2006). 

Our goal is to test whether modeling skewed offspring distributions alone explained the observed 

genetic diversity better than modeling variable population sizes (with an exponential growth model) 

and standard offspring distributions. Therefore, we considered MMC models with constant 

population sizes. It was previously shown that even for a single locus, these hypotheses can be 

distinguished for moderate sample sizes and high enough mutation rates (Eldon et al. 2015, Freund 

and Siri-Jégousse 2019) 
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Table 1. Data sets used in this study 

Data set1 Number of strains Number of 

polymorphic positions 

Locality of sampling 

Eldholm 2015 248 497 Buenos Aires (Argentina) 

Lee 2015 147 454 Nunavit (Canada) 

Stucki 2016 175 6264 Central African countries 

Shitikov 2017 176 1164 Russia and Belarus 

Roetzer 2013 61 74 Hamburg (Germany) 

Comas 2015 21 1334 Ethiopia 

Bainomugisa 2018 81 401 Daru Island (PNG) 

Bjorn-Mortensen 2016 121 128 East Greenland 

Folkvardsen 2017 702 214 Copenhagen (Denmark) 

Stucki 2014 60 128 Bern (Switzerland) 

Eldholm 2016 25 17 Oslo (Norway) 

  

1 We identified the data sets with the first author’s name and year of the original publication 

 

Model selection and parameter estimation with Approximate Bayesian Computation 

For model selection and parameter estimation, we used an ABC approach based on random forests 

(RF), as reported in detail in the Methods section and represented in Figure 1. We considered four 

models, Kingman’s coalescent with constant population size (KM), Kingman’s coalescent with 

exponential population growth (KM+exp), Beta coalescent with constant population size (BETA), 

and Dirac coalescent with constant population size (Dirac). Briefly, for each data set, we collected 

the SNPs identified with the bioinformatic analysis, reconstructed the genotype of the most recent 

ancestor (MRCA) and used it to polarize the SNPs. We then calculated a set of 20 summary 

statistics measuring genetic diversity, linkage disequilibrium and phylogenetic properties. The only 

exception was the data set Stucki 2016, where for computational reasons we omitted the statistics 

measuring linkage disequilibrium (see Methods for details). For each model, we performed 125,000 

simulations of a sample of size n, where n is the number of individuals in the data set, drawing the 

scaled population size from a prior distribution spanning one order of magnitude around the 

Watterson estimator (θobs). 

As described in Pudlo et al. (2015), we performed model selection via ABC using a random forest 

of 1,000 decision trees. For parameter estimation within a model class, we followed the approach of 

Raynal et al. (2018). To control for stochastic effects, we repeated model selection and parameter 

estimation three times for each data set. We found consistent results across replicates, and we report 
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here the consensus of the three analyses (see Methods for details), the results of all individual 

analyses are available in Sup. Table 2. 

We found that for most data sets, the ABC approach had overall good discriminatory power, with 

out-of-bag (OOB) error rates (the misclassification probabilities) ranging from 1.9% to 12.2% 

(Table 2). The only exception was the data set Eldholm 2016 (OOB error rate = 29.8%.), which was 

the data set with the lowest genetic diversity. Most importantly for our study, the probability that 

data generated under a model with standard offspring distribution (KM and KM+exp) was 

misclassified as multiple merger was low (0.7% - 5.5%), again the only exception was the data set 

Eldholm 2016 (16.6%). 

We found that BETA was the best fitting model for eight of the eleven data sets, KM+exp was the 

best model for two data sets, and Dirac was the best model for one data set (Table 2). For all data 

sets, the posterior probability of the selected model was higher than 80% and therefore more than 

four times more likely than the second best fitting model. 

One potential problem when performing model selection, is that none of the considered models 

captures the observed data. To exclude this possibility, we performed posterior predictive checks, in 

which for each data set, we simulated data under the best fitting model using the median of the 

posterior distribution of the relative parameter (averaged over the three replicates). We then 

compared the observed data with the simulated data. If the selected model fits the data well, we 

expect the simulated and observed data to be similar. Conversely, if the selected model does not fit 

the data well, we expect simulated and observed data to be different. We found that for all but one 

data set, the observed values of 20 summary statistics was within the range of values obtained from 

the simulations, indicating that the best model can reproduce the observed data (Sup. Figs. 1-11). 

The only exception was the data set Shitikov 2017, for which the mean and the standard deviation 

of the minimal observable clade size statistic were not overlapping with the simulated values (Sup. 

Fig. 11). This indicates that the best fitting model (KM+exp) cannot reproduce the observed data, 

and that none of the considered models is adequate for this data set. 
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Table 2. Results of model selection and parameter estimation 

Data set Selected 

Model 

OOB error rate 

(misclassification % as MMC)1 

Posterior 

Probability 

Median and 95% posterior 

credibility interval of 

coalescent parameters2 

Eldholm 2015 BETA 2.4% (1.5%.) 98.0% α: 1.167 (1 – 1.4) 

Lee 2015 BETA 4.3% (2.0%) 96.6% α: 1.3 (1.075 – 1.5) 

Stucki 2016 KM+exp 3.4% (1.1%) 99.9% g:  2325 (815 - 6795) 

Shitikov 2017 KM+exp 3.8% (1.6%) 99.4% g: 2953 (1198 – 4888) 

Roetzer 2013 BETA 12.2% (5.5%) 93.4% α: 1.217 (1 – 1.8) 

Comas 2015 BETA 7.3% (0.7%) 87.8% α: 1.517 (1.025 – 1.95) 

Bainomugisa 2018 BETA 7.2% (3.1%) 97.9% α: 1.175 (1 – 1.5) 

Bjorn-Mortensen 2016 BETA 7.1% (3.3%) 86.1% α: 1.042 (1 – 1.25) 

Folkvardsen 2017 BETA 1.9% (0.9%) 98.9% α:  1.142 (1.-1.325) 

Stucki 2015 BETA 10.5% (4.8%) 85.3% α: 1.05 (1 – 1.3) 

Eldholm 2016 Dirac 29.8% (16.6%) 80.8% ψ: 0.350 (0.1 – 0.675) 

 

1 The out-of-bag error rate is the probability that a simulation is misclassified as coming from any 

other model class, between parentheses we report the probability that a simulation generated with 

KM or KM+exp is miss-classified as a MMC (BETA or Dirac).    

2 The interval between the 0.025 quantile and the 0.975 quantile of the parameter of the selected 

model (g for KM+exp, ψ for Dirac and α for BETA). The growth rate g is reported as used in 

Hudson’s ms (for diploid genealogies), thus all growth estimates have to be halved to be interpreted 

for MTB. 

 

Hidden population structure and population decline in the data set Lee 2015 

In our analysis, we focused on local data sets to control for the confounding effect of complex 

population dynamics and population structure. However, in one case (Lee 2015), it is possible that 

some degree of population structure is still present. Lee 2015 is a data set sampled from an 

epidemic in Inuit villages in Nunavik, Quebec, Canada (Lee et al. 2015). Lee et al. (2015) showed 

that transmission of MTB among patients was more frequent within a village than between villages, 

and that related strains tended to be present in the same village. This was supported by the 

reconstructed phylogenetic tree, which showed three clades separating at the root that could 

represent well separated sub-populations (Fig. 2; see also Fig. 2 in Lee et al. 2015). These data 

suggest the existence of some degree of geographic population structure, therefore we tested 

whether this might influence the results of our model selection. To do this, we ran two analyses: 1) 

we repeated the ABC-RF analysis on three subsets of Lee 2015, which represent the three main 
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clades described above (Fig. 2). Under the assumptions that the separate branches of the phylogeny 

reflect different sub-populations, and that migration does not alter the coalescent rates within the 

subpopulations, the genealogy of each sub-clade should then follow one of the coalescent models 

that we are fitting. We found that BETA was the best fitting model for two of the sub-clades, while 

Dirac was the best fitting model for the third (Table 3). The posterior predictive checks showed that 

the best model could reproduce the data of these three subsets (Sup. Figs. 12-14). However, the 

posterior probabilities were low compared to the complete data set, and the misclassification 

probabilities were larger. This was probably due to the smaller sample size of the individual subsets 

compared to the full data set (Table 3). 2) We performed an additional model selection analysis 

between three competing models, BETA, Dirac and a third scenario, in which we modeled a 

structured population with migration and with standard offspring distribution and exponential 

growth (KM+exp). Also in this case, BETA resulted to be the most likely model (Table 3, see 

Methods for details). Overall, our findings indicate that it is unlikely that the MMC signal in the 

Nunavik MTB population is an artifact caused by population structure. 

Structured populations have similar genealogies to populations that are shrinking in size, with many 

lineages coalescing close to the root. In their original publication, Lee et al. (2015) used the 

Bayesian Skyline Plot (Drummond et al. 2005) to reconstruct the fluctuations in population size of 

the Nunavik population, and found evidence for a slow population decline. Here, we are not 

interested in whether the inferred population decline is genuine or caused by unaccounted 

population structure, we only want to assess whether a decline in population size could bias our 

analysis. To do this, we repeated the ABC-RF model selection among two models: BETA and KM 

with population decline (see Methods for details). Again, we found that BETA was the best fitting 

model (Table 3), thus indicating that our results for this data set are unlikely to be an artifact caused 

by population decline. 
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Table 3. Results of model selection for the complete Lee 2015 data set, and for the three major 

sub-clades separately. The shaded row represents the results of the standard analysis on the 

full data set. 

Data set N. of 

strains 

Selected 

Model 

OOB error rate 

(misclassification % as MMC)1 

Posterior 

Probability 

Second best 

fitting model 

Lee 2015 147 BETA 4.3% (2.0%) 96.6% Dirac 

Lee 2015 Clade A 61 Dirac 18.0% (8.7%) 74.8% BETA 

Lee 2015 Clade B 36 BETA 14.3% (6.6%) 75.2% KM 

Lee 2015 Clade C 49 BETA 10.8% (4.7%) 62.5% Dirac 

Lee 2015 Pop. Structure2 147 BETA 5.8% (4.6%) 96.3% Dirac 

Lee 2015 Pop. Decline3 147 BETA 3.2 % (2.7 %) 100% Pop. decline 

 

1 The out-of-bag error rate is the probability that a simulation is misclassified as coming from any 

other model class, between parentheses we report the probability that a simulation generated with 

KM or KM+exp is missclassified as MMC (BETA or Dirac) 

2 Model selection among BETA, Dirac, and KM with structure 

3 Model selection among BETA and KM with population decline. For computational reasons we 

used a reduced set of statistics compared to the other data sets (see Methods) 

 

Serial sampling 

One limitation of our analysis is that it assumes that all samples are collected at the same time 

(synchronous sampling). Generally, MTB strains are sampled from the sputum of patients, which is 

collected when they first present for diagnosis. All data sets that resulted in a MMC as best fitting 

model included samples obtained over extended periods of time (serial sampling), corresponding to 

between ~ 8% and ~100% of the estimated tree age (Sup. Table 3). 

We investigated whether, at least in principle, the violation of the assumption of synchronous 

sampling could bias the results of the ABC analysis performed above, and whether the better fit of 

MMC could be an artifact due to such violation. To do this, we ran simulations assuming serial 

sampling, followed by model selection on the simulated data assuming synchronous sampling (see 

Methods). Since this analysis depends on assumptions about the sample size, the genetic diversity, 

and the sampling times, we used the settings (sample size, observed generalized Watterson’s 

estimator as scaled mutation rate, and the real years of isolation) of three of the observed data sets, 

which differed in these characteristics (Eldholm 2015, Lee 2015 and Roetzer 2013). 

We found that data simulated under KM+exp can be misclassified as BETA or Dirac if we do not 

account for serial sampling. Specifically, this was true for extended sampling periods compared to 
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the expected height of the genealogy (on the coalescent time scale), and for low growth rates (Fig. 

3). Similarly to model selection, not accounting for serial sampling affected the estimation of the 

growth rate parameter, and this effect was greater for large sampling periods and low growth rates 

(Sup. Fig. 15). 

It is difficult to relate these results to the observed data sets because we do not know the scaling 

factor between coalescent time and real time (and therefore cannot estimate the value of c in Fig. 3, 

see Methods). However, for seven of the nine data sets that resulted in a MMC as best fitting model, 

we estimated large growth rates (g ≥ 1,000) under the KM+exp model (Sup. Table 2), indicating 

that serial sampling is unlikely to affect the results of model selection in these cases (Fig. 3, Sup. 

Fig. 15).  

Nevertheless, we adopted a complementary approach, in which we virtually eliminated serial 

sampling by sub-sampling only strains that were isolated in a single year. Since small data sets have 

lower discriminatory power, for this analysis, we selected the four data sets with the highest genetic 

diversity (data sets with more than 200 polymorphic positions: Eldholm 2015, Lee 2015, 

Folkvardsen 2017 and Bainomugisa 2018) among the ones for which the sampling times were 

available. For each data set, we repeated the ABC analysis on the largest possible subset of strains 

that were sampled in a single year (Sup. Table 1, Table 4). We found that all subsets had lower 

posterior probabilities and higher misclassification errors compared to the full data sets, most likely 

because of the smaller sample size (Table 4). BETA was the best fitting model for two subsets, 

Dirac and KM+exp were the best fitting model for one subset each. For the data sets Eldholm 2015 

and Folkvardsen 2017 the second and third most sampled years had a similar number of strains 

compared to the most sampled year. Therefore, we extended the analysis to these additional four 

subsets, which all resulted in BETA as the best fitting model (Table 4). We performed posterior 

predictive checks for all subsets and found that in all cases but one, the best fitting model could 

reproduce the observed data (Sup. Figs. 16-23). The single exception was the subset of Lee 2015 for 

which two observed quantiles of the r2 statistic were not overlapping with the values obtained from 

the simulations. In this subset, all strains but one belonged to one of the three clades discussed 

above (clade A; Sup. Table 1). We suspected that this analysis was influenced by population 

structure and we repeated it excluding the single strain not belonging to clade A. Again we found 

that Dirac was the best fitting model (Table 4, Sup. Table 2), and this time the posterior predictive 

check could reproduce the data (Sup. Fig. 24). 

Overall, these findings indicate that not accounting for serial sampling can indeed bias the results of 

model selection in favor of MMC models. However, this was unlikely to affects data sets with large 

growth rates (seven out of nine). Additionally, eight of the nine subsets in which we minimized the 

serial sampling to one single year resulted in a MMC as best fitting model. 
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Table 4. Results of model selection for the temporal subsets. Shaded rows contain the results 

for the full data sets.   

Data set1 N. of 

strains 

Selected 

Model 

OOB error rate 

(misclassification % as MMC)2 

Posterior 

Probability 

Second Best 

fitting model 

Eldholm 2015 248 BETA 2.4% (1.5%) 98.0% KM+exp 

Eldholm 2015 (1998) 34 BETA 17.1% (8.3%) 78.9% KM+exp 

Eldholm 2015 (2001) 31 BETA 15.5% (7.1%) 79.5% Dirac 

Eldholm 2015 (2003) 32 BETA 15.4% (7.1%) 93.7% Dirac/KM+exp3 

Lee 2015 147 BETA 4.3% (2.0%) 96.6% Dirac 

Lee 2015 (2012) 45 Dirac 13.2% (6.1%) 66.5% BETA 

Lee 2015 (2012) Clade A 44 Dirac 21.1% (10.5%) 91.3% BETA 

Bainomugisa 2018 81 BETA 7.2% (3.1%) 97.9% KM+exp 

Bainomugisa 2018 (2014) 56 BETA 9.5% (4.1%) 94.9% KM+exp 

Folkvardsen 2017 702 BETA 1.9% (0.9%) 98.9% KM +exp 

Folkvardsen 2017 (2009) 53 BETA 10.8% (4.8%) 92.6% KM+exp 

Folkvardsen 2017 (2010) 64 KM+exp 10.2% (4.7%) 84.5% BETA 

Folkvardsen 2017 (2012) 52 BETA 11.7% (5.2%) 91.0% KM 

 

 1 Between parentheses we report the year in which the strains were sampled (only for temporal 

subsets) 

 2 The out-of-bag error rate is the probability that a simulation is misclassified as coming from any 

other model class, between parenthesis we report the probability that a simulation generated with 

KM or KM+exp is miss-classified as MMC (BETA or Dirac) 

3 Two replications resulted in Dirac as second best fitting model, one in KM+exp 

 

Discussion 

The main goal of this study was to test whether MMC models are more adequate than the Kingman 

coalescent to study MTB local populations and outbreaks, and whether assuming non-skewed 

offspring distribution (Kingman) as null model could lead to biased results.   

For nine of the eleven full data sets, we found a better fit if the genetic diversity was described by a 

MMC as genealogy model, compared to the Kingman coalescent with exponential population 

growth. Additionally, the posterior predictive checks showed that the best fitting models captured 

the genetic diversity in the data sufficiently well (Sup. Figs. 1-11).   

Our results are robust towards two possible confounders: population structure and serial sampling. 

To avoid the effect of population structure, we chose data sets from single outbreaks and local 

populations in restricted geographic regions. For one data set where a prior analysis suggested some 
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degree of population structure (Lee et al. 2015), we found that including a model with population 

subdivision and migration, or sub-sampling the potential sub-populations resulted again in a MMC 

as the best fitting model, indicating that population structure is unlikely to bias the results of this 

analysis 

Serial sampling could also affect the results of model selection. All the considered models assume a 

common sampling time for all strains, which is almost never the case for MTB data sets. Due to the 

relatively short generation time of MTB compared to the sampling period, this may likely 

correspond to serial sampling on the coalescent time scale. Under serial sampling on the coalescent 

time scale, our simulations of several scenarios mimicking three of our data sets revealed that 

Kingman’s genealogies under exponential growth can be misidentified as MMC, while inferring a 

true MMC is not affected. The misclassification probability was higher when the sampling window 

spanned a large part of the genealogical history of the sample, but dropped considerably under 

strong exponential growth (Fig. 3). 

For seven of the nine full data sets that resulted in a MMC as best model, the fitted growth 

parameter under KM+exp was 1,000 or higher, and therefore, it is unlikely that the serial sampling 

influenced the results of model selection for these data sets (Fig. 3, Sup. Fig. 15). Additionally, 

when we sub-sampled strains from a single year from four data sets, thus minimizing the effect of 

serial sampling, eight of the nine subsets resulted in a MMC model (Table 4).  

To overcome the limitation of assuming synchronous sampling, we encourage future studies to 

develop MMC models that explicitly consider the time of sampling. Such a model is proposed in 

Hoscheit and Pybus (2019), but without an explicit mechanism to convert real time units in 

coalescent time units. 

Overall, among the 23 data sets considered here (including subsets), 20 supported a MMC as the 

best fitting model, for 14 of these, the fitted model had a posterior probability higher than 80% and 

could reproduce the observed data. These results provide compelling evidence that, in most cases, 

MMC models have a better fit to data from MTB outbreaks compared to standard models based on 

the Kingman coalescent. These findings have deep implications for population genetic studies of 

MTB (also discussed in Morales-Arce et al. 2019): 1) in the last five years, at least a dozen studies 

inferred the demographic history of different MTB populations (Pepperell et al. 2013, Comas et al. 

2013, Bos et al. 2014, Lee et al. 2015 Eldholm et al. 2015, Kay et al. 2015, Luo et al. 2015, Merker 

et al. 2015, Folkvardsen et al. 2017, Merker et al. 2018, Liu et al. 2018, Bainomugisa et al. 2018, 

O’Neill et al. 2019). In the light of our results, it is not surprising that most of these studies found 

evidence for population growth, as it is known that performing demographic inference on MMC 

genealogies assuming the Kingman coalescent fits high growth rates (Eldon et al. 2015). Moreover, 

a recent study fitted an exponential growth (or shrinkage) model to 21 MTB data sets, and found 
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evidence for population growth for 14 of them, for seven data sets it was not possible to reject the 

hypothesis of constant population size, and none of them resulted in population shrinkage (Menardo 

et al. 2019). One additional factor that could bias the results of Kingman-based demographic 

inference towards population growth is sampling bias (Lapierre et al. 2016). However, the majority 

of the data sets considered in this study are composed by (nearly) all known TB cases caused by a 

certain phylogenetic clade (Roetzer et al. 2013, Lee et al. 2015, Stucki et al. 2015, Bjorn-Mortensen 

et al. 2016, Eldholm et al. 2016), or by a random subset of them (Folkvardsen et al. 2017). 

Therefore, these data sets should not be strongly affected by sampling bias, although we cannot 

exclude that some of them are.     

2) Another implication of our results regards the interpretation of private mutations (singletons). It 

is known that MTB data sets show an excess of singletons (Hershberg et al. 2008, Pepperel et al. 

2013, Gagneux 2018). While this could be the results of either skewed offspring distributions or 

population growth, in the past, the excess of singleton has been interpreted as evidence for strong 

selection. In particular Pepperell et al. (2013) fitted a model including both population growth and 

selection to the global MTB population, and found pervading strong purifying selection across 95% 

of the genome, with a genome wide selection coefficient several orders of magnitude higher than 

what estimated for other organisms. Again, this analysis assumed non-skewed offspring 

distribution, and its outcome was potentially biased by model misspecification.  

While MMC genealogies were fitting better to most data sets, for three of them, KM+exp was best 

fitting model (Sup. Table 2). In one case (Shitikov 2017), the posterior predictive check could not 

reproduce the genetic diversity of the data, indicating that other factors such as complex population 

dynamics or sampling biases are likely to influence the shape of the genealogies (Lapierre et al. 

2016). Conversely, for the remaining two data sets (Stucki 2016 and Folkvardsen 2017 sampled in 

2010), the posterior predictive checks could reproduce the observed genetic diversity. We therefore 

cannot exclude that in these populations the variance of the offspring distribution was small, and 

that the Kingman coalescent is an adequate model. However, it is difficult to reconcile this with the 

fact that BETA was the best fitting model for the complete data set and for the other two temporal 

subsets of Folkvardsen 2017 (sampled in 2009 and 2012; Table 4).   

 

Can we say more on the type and size of multiple mergers? The majority of MMC signals that we 

found were Beta genealogies, pointing to a moderate size of ancestral lineages merged in a SETI 

(short evolutionary time interval, corresponding to a single time point on the coalescent time scale). 

However, we also found four data sets fitting best to a Dirac coalescent genealogy, pointing to large 

groups of lineages merged during a SETI. This corresponds to a single strain having the potential to 

found large families over a SETI compared to other strains. The Dirac signals come from the 
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smallest data set with the highest errors of misclassification between the model classes (Eldholm 

2016), and from three subsets of data that featured high OOB error rate or decreased posterior 

probabilities for the inferred Dirac genealogy. Therefore, much caution should be taken with 

proposing the Dirac coalescent as a general model, especially since in all cases the Beta coalescent 

was the second best fitting model. These results are in contrast with the choice of the Dirac 

coalescent as underlying MMC model for within-host MTB samples, as suggested in Morales-Arce 

et al. (2019). The choice of the Dirac coalescent in Morales-Arce et al. (2019) is, as our choices of 

MMC models, not informed by an explicit MTB population model, but by convenience that these 

models are commonly used. Thus, it would be interesting to assess whether the Beta coalescent 

would be a better fit also to within-host data. The relatively low ψ estimates obtained by Morale-

Arce et al. (2019) suggest that this is quite possible (Morales-Arce et al. 2019; Figure 3). 

If the Beta coalescent is the inferred genealogy, one question is whether rapid selection might be the 

reason for the inference of a MMC genealogy (i.e. the parameter α is equal to 1, corresponding to 

the Bolthausen-Sznitman coalescent; Bolthausen and Sznitman 1998). For eight of the 16 data (sub) 

sets with inferred Beta genealogy, the 95% posterior credible interval of the parameter α included 1 

in all replicates (Sup. Table 2). However, due to the effect of serial sampling, the true variability of 

the estimates is likely bigger (Sup. Fig. 15). Thus, rapid selection may be a possible explanation for 

multiple merger. Other possible explanations are transmission bottlenecks, super-spreaders or 

further unknown processes. 

Our study shows that genetic diversity in MTB outbreaks is modeled well by assuming MMC 

genealogies across many data sets. However, we stress that we did not use an explicit model for 

MTB, but two classes of MMC models that were employed in previous work, and span the strength 

of multiple mergers between strictly bifurcating (Kingman’s coalescent) and star-shaped 

genealogies, where all sampled lineages merge at a single time point. Moreover, more elaborate 

multiple merger models including population size changes and/or serial sampling may improve the 

fit to the data. Both extensions are easily achieved (e.g. Spence et al. 2016, Hoscheit and Pybus 

2019, Morales-Arce et al. 2019), and some tools for simulating multiple merger genealogies with 

changes in population sizes are available (Matuszewski et al. 2018, Hoscheit and Pybus 2019). 

However, we refrained from adding multiple merger models with varying population size to our 

model comparison. The main reason is that with this work, we wanted to investigate multiple 

merger models as possible alternative to bifurcating genealogies to study between-host populations 

of MTB. We found that, even when assuming a constant population size, MMC models fitted better 

compared to Kingman with changes in population size (modeled as exponential growth), and that 

the fitted MMC models could reproduce the observed data. Therefore, adding MMC models with 

varying population size to our model comparison would not alter our main results: that skewed 
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offspring distribution (over several generations) shapes the genealogies and the genetic diversity of 

MTB populations, and that ignoring this can bias the results of demographic inference. Moreover, it 

was reported before that at least for one MMC model, i.e. the Dirac coalescent, it is hard to 

distinguish between genealogies with and without population expansion (see the discussions of 

Figure 3 in Morales-Arce et al. 2019 and Table A4 in Freund and Siri-Jégousse 2019).      

No discrete-generation population model for MTB is currently available that would allow to 

identify the corresponding coalescent model. Such population model should include host-to-host 

transmission, intra-host evolution, super-spreaders, serial sampling, latency, population size 

changes and the potential selective pressure caused by the host immune system. This might very 

well result in a different multiple merger model compared to the ones that we employed. For 

instance, while the Beta coalescent has been proposed as genealogy model for populations with 

recurrent strong bottlenecks (Tellier and Lemaire 2014), rigorous mathematical modeling predicted 

different coalescent processes for extreme bottlenecks (Tams et al. 2009, Casanova et al. 2019). 

Such a model could also close the following implicit modeling gap in applying MMC to MTB and 

to bacteria in general. Mathematically, MMC processes have been introduced as approximations 

(with changed time scale) of the genealogy in underlying discrete population reproduction models, 

so called Cannings models (e.g. Möhle and Sagitov 2001). The underlying population models 

feature many offspring of a single individual per generation (e.g. Schweinsberg 2003, Eldon and 

Wakeley 2006, Desai et al. 2013), however, bacteria replicate through binary fission. While such 

population models are not applicable directly to bacteria, the underlying mathematical theory only 

needs to guarantee that the mergers within a SETI follow a certain probability distribution, so one 

can define similar models where the large offspring number of one individual per generation is 

spread over multiple generations (Möhle and Sagitov 2001). However, the exact distribution and 

model for MTB multiple mergers is unclear, and our results only show evidence that moderate 

multiple merger events are likely to play a role in shaping the diversity. As mentioned above, to 

infer the exact nature of MTB multiple mergers, we encourage future studies to formulate an 

explicit population model for MTB. 

 

In conclusion, our results show that, when studying MTB local population and outbreaks, models 

that do not allow for skewed offspring distribution on the coalescent timescale (Kingman), have 

consistently worse fit compared to MMC, and can lead to biased results. Further research is needed 

to extend MMC models to more realistic scenarios with complex population dynamics and serial 

sampling. These developments will be useful to study MTB and potentially other pathogens. 

Additionally, the formulation of an explicit population model for MTB, would help to identify the 

most appropriate genealogy model for demographic inference of MTB populations.       
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Methods 

Data set selection 

We searched the literature for WGS studies of outbreaks or local populations of Mycobacterium 

tuberculosis. We selected local data sets to avoid as much as possible geographic population 

structure and sampling biases that could influence the analysis. We identified 11 data sets: eight 

outbreaks and three clades with a restricted geographical range. 

- Roetzer et al. 2013: lineage 4 outbreak in Hamburg, Germany (61 strains, 74 polymorphic 

positions). 

- Comas et al. 2015: lineage 7 strains sampled Ethiopia. Lineage 7 is a rare human adapted lineage 

endemic to Ethiopia and perhaps also to neighboring countries, only few genomes are available and 

most of them are included in this data set (21 strains, 1334 polymorphic positions). 

- Eldholm et al. 2015: lineage 4 multi-drug resistant outbreak in Buenos Aires, Argentina (248 

strains, 497 polymorphic positions). 

- Lee et al. 2015: lineage 4 outbreak in 11 Inuit villages in Nunavik, Québeq, Canada. We 

considered only the major sub-lineage Mj, a second smaller outbreaks of an unrelated sub-lineage 

(Mn) was excluded (147 strains, 454 polymorphic positions). 

- Stucki et al. 2015: lineage 4 outbreak in Bern, Switzerland (60 strains, 128 polymorphic 

positions). 

- Bjorn-Mortensen et al. 2016: lineage 4 outbreak in Greenland. To minimize the potential effect of 

population structure we considered only the major cluster GC4, because the other clusters represent 

independent outbreaks belonging to other sub-lineages (121 strains 128 polymorphic positions). 

- Stucki et al. 2016: sub-lineage L4.6.1/Uganda, belonging to lineage 4. This sub-lineage is endemic 

to central African countries (175 strains, 6264 polymorphic positions). 

Eldholm et al. 2016: lineage 2 outbreak in Oslo, Norway. From the data set of the original 

publication we excluded all strains that did not belong to the Oslo outbreak (25 strains, 17 

polymorphic positions). 

- Folkvardsen et al. 2017: large lineage 4 outbreak in Copenhagen, Denmark (702 strains 514 

polymorphic positions). 

- Shitikov et al. 2017: W148 outbreak belonging to lineage 2, this clade has also been named B, B0, 

CC2, East European 2 and ECDC0002 (176 strains, 1164 polymorphic positions). 

- Bainomugisa et al. 2018: lineage 2 multi-drug resistant outbreak on a small island (Daru) in Papua 

New Guinea. From the data set of the original publication we excluded all the strains that did not 

belong to the Daru outbreak (81 strains, 401 polymorphic positions). 
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Bioinformatic pipeline 

For all samples Illumina reads were trimmed with Trimmomatic v0.33 (SLIDINGWINDOW: 

5:20,ILLUMINACLIP:{adapter}:2:30:10) (Bolger 2014). Reads shorter than 20 bp were excluded 

for the downstream analysis. Overlapping paired-end reads were then merged with SeqPrep 

(overlap size = 15; https://github.com/jstjohn/SeqPrep). The resulting reads were mapped to the 

reconstructed MTB complex ancestral sequence (Comas 2013) with BWA v0.7.12 (mem algorithm; 

Li and Durbin 2009). Duplicates reads were marked by the MarkDuplicates module of Picard v 

2.1.1 (https://github.com/broadinstitute/picard). The RealignerTargetCreator and IndelRealigner 

modules of GATK v.3.4.0 (McKenna et al. 2010) were used to perform local realignment of reads 

around Indels. Reads with alignment score lower than (0.93*read_length)-(read_length*4*0.07)) 

were excluded: this corresponds to more than seven miss-matches per 100 bp. 

SNPs were called with Samtools v1.2  mpileup (Li 2011) and VarScan v2.4.1 (Koboldt et al. 2012) 

using the following thresholds: minimum mapping quality of 20, minimum base quality at a 

position of 20, minimum read depth at a position of 7X, minimum percentage of reads supporting 

the call 90%. 

Genomes were excluded if they had 1) an average coverage < 20x, 2) more than 50% of their SNPs 

excluded due to the strand bias filter, 3) more than 50% of their SNPs having a percentage of reads 

supporting the call between 10% and 90%, or 4) contained single nucleotide polymorphisms that 

belonged to different MTB lineages, as this indicates that a mix of genomes was sequenced. 

Because missing data can significantly impact population genetic inference we further excluded all 

strains that had less SNP calls than (average - (2 * standard deviation)) of the respective data set 

(calculated after all previous filtering steps). 

The filters described above were applied to all data sets with one exception: in the Comas 2015 data 

set most strains failed the strand bias filter, therefore this filter was not applied. 

The single vcf were merged with the CombineVariant module of GATK v.3.4.0 (McKenna et al. 

2010), the genotype field was edited to make it haploid (0/0 => 0; 1/1 => 1; 0/1 and 1/0  => .).  

Vcftools 0.1.14 (Danecek et al. 2011) was used to extract variable positions excluding predefined 

repetitive regions (Comas et al. 2013) and excluding position with missing data. 

The variable positions were converted in a multi fasta file including the reconstructed ancestral 

sequence on which the mapping was performed. 

A phylogenetic tree based on the resulting variable positions was built with RaxML 8.2.11 

(Stamatakis 2014) using a GTRCAT model and the -V option. 

PAML (baseml) (Yang 2017) was used to reconstruct the ancestral sequence of each data set. To 

identify the MRCA of each data set the tree was rooted using the reconstructed ancestral sequence 
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of the MTB complex as published in Comas et al. (2013), which is also the genome reference 

sequence used for the mapping. 

For each data set all polymorphic positions for all strains and their reconstructed ancestor were then 

collected in fasta files (the data is available together with the ABC pipeline at 

https://github.com/fabianHOH/mmc_R_gendiv/tree/master/MTB_MMC_repo).   

 

Model selection and parameter estimation 

For model selection and parameter estimation, we used a random forest based Approximate 

Bayesian Computation approach (Pudlo et al. 2015, Raynal et al. 2018). 

We selected between Kingman’s n-coalescent (KM), Kingman’s n-coalescent with exponential 

growth (KM+exp), Beta coalescent (BETA) and Dirac coalescent (Dirac). For each data set we 

collected the genetic polymorphisms identified with the bioinformatic analysis and calculated a set 

of 20 summary statistics following the recommendations from Freund and Siri-Jégousse (2019), 

Scenario 3: the (.1,.3,.5,.7,.9) quantiles of the mutant allele frequency spectrum, the (.1,.3,.5,.7,.9) 

quantiles of the LD measure r2  between pairs of segregating sites, the (.1,.3,.5,.7,.9) quantiles of the 

minimal observable clade sizes of each sequence, the number of segregating site, the nucleotide 

diversity and the mean, standard deviation and harmonic mean of the minimal observable clade 

sizes. For computational reasons, when we analyzed the data set Stucki 2016, we omitted the 

quantiles of r2, but used more quantiles (.1,.2,.3,.4,.5,.6,.7,.8,.9) of the mutant allele frequencies. For 

each model we performed 125,000 simulations of a sample of size n where n is the number of 

individuals in the data set, drawing the scaled population size from a binomial distribution on log-

equally spaced discrete θ spanning one order of magnitude around the Watterson estimator (θobs), as 

in Freund and Siri-Jégousse (2019). For KM+exp we drew the value of the exponential growth rate 

(g) from a uniform distribution [0,2,4,…,5000] except for the data sets Eldholm 2015, Stucki 2016 

and Folkvardsen 2017, where we used a uniform distribution [0,5,10,…,20000]. Note that this is a 

growth rate for a coalescent within a diploid population, values should be halved for interpretation 

in a haploid setting. The choice of wider ranges were based on preliminary analyses of the data with 

narrower prior distributions that showed a posterior distribution of g skewed at the upper end. For 

BETA and Dirac we drew the value of the free parameters α and ψ from a uniform distribution, 

[1,1.975] and  [0.025,0.975] respectively (discretized with equidistant steps of 0.025). Note that 

BSZ is included in BETA for α =1, while KM is additionally included in KM+exp for g = 0. 

Simulations were performed in R as described in Freund and Siri-Jégousse (2019), the code is 

available at https://github.com/fabianHOH/mmc_R_gendiv. 

 As described in Pudlo et al. (2015), we performed model selection via Approximate Bayesian 

Computation using a random forest of decision trees, using the R package abcrf (Pudlo et al. 2015). 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 11, 2020. ; https://doi.org/10.1101/2019.12.21.885723doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.21.885723
http://creativecommons.org/licenses/by-nc/4.0/


We drew 1,000 bootstrap samples of size 100,000 from the simulations and then constructed 

decision trees based on decision nodes of the form S>t, where S is one of the summary statistics 

used. For each node, S and t are chosen so that the bootstrap sample is divided as well as possible in 

sets coming from the same of the four model classes (minimal Gini impurity). Nodes are added to 

the tree until all simulations of the bootstrap samples are sorted into sets from the same model class. 

Misclassification is measured by the out-of-bag (OOB) error, i.e. the proportion of decision trees for 

each simulation that sorts it into a wrong model class, averaged over simulations and, for the overall 

OOB error, model classes. 

For parameter estimation within a model class, we followed Raynal et al. (2018). Here, the decision 

(regression) trees are constructed analogously, only S and t are chosen so that the parameters of the 

simulations have similar values in both sets divided by the node. This is achieved by minimizing the 

L2 loss, i.e. minimizing, for the two sets divided by the node, the L2 distances of the simulation 

parameter to the mean parameter in the set. Nodes are added until all simulations sorted into one 

leaf have the same parameter or there are less than 5 simulations allocated to the leaf.   

The observed data is then assigned to the model class where the majority of decision trees for model 

selection assign it, and its posterior parameter distribution is given by the distribution of the 

weighted average parameter of the allocated leaf across all trees in the (regression) random forest 

(see Raynal et al. 2018, sections 2.3.2 and 2.3.3 ). The posterior probability for model selection is 

computed as a machine learning estimate of classifying the model class correctly, which includes 

another regression tree. See Pudlo et al. (2015) for details, a summary can be found in Appendix 

A.2 in Freund and Siri-Jégousse (2019). 

All ABC analyses were repeated in triplicates to control for stochastic effects, the best fitting model 

did not change between replicates. For the OOB errors, posterior probabilities and median estimates 

of the parameters we report the mean among the three replicates, for the 95% credibility intervals of 

the parameter estimates we report the lowest and the highest values (resulting in the largest possible 

interval) among the three replicates. The individual results for each replicate are reported in Sup. 

Table 2. 

 

Posterior predictive checks 

To assess whether the best fitting model could reproduce the observed data, we performed posterior 

predictive checks. We simulated 10,000 sets of summary statistics under the best fitting model 

(using the median of the posterior growth rate or of the multiple merger coalescent parameter, 

averaged over the three replicates) and compared them graphically with the value of the statistics 

observed in each data set. As scaled mutation rate, we used the generalized Watterson estimate 
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2s/E(L), where s is the number of mutations observed in the data set and E(L) the expected length 

of all branches for the best fitting coalescent model. 

 

Population structure and declining population size for the data set Lee 2015 

To assess the effect of population structure in the data set Lee 2015, we simulated samples under 

Kingman’s n-coalescent with population structure. From the phylogenetic tree (Fig. 2), we 

identified four different clades with sizes 61, 36, 49 and 1. We then assumed these to be sampled 

from different sub-populations of equal size in an island model with scaled symmetric migration. 

We performed coalescent simulations under a structured (Kingman) coalescent with exponential 

growth. We used the same prior for growth rate as in the approach not accounting for population 

structure and additionally drew the scaled migration rate m (in units of 4Nm*, where m* is the 

migration rate in the discrete island model) from the uniform discrete distribution {.25,.5,1,2,3}. 

We approximated Watterson’s estimator for a specific choice of parameters by replacing the 

expected total length of the coalescent by the mean total length from 10,000 coalescent simulations 

with these parameters. 

For generating samples under Kingman’s n-coalescent with exponential decline, we had to slightly 

change the simulation procedure using ms. Since population decline may lead to coalescent times to 

large too simulate, we fixed the maximal population size in the past  to 1,000 times the present 

population size. Then, given an exponential growth rate g<0, the decline starts at time log(1000)/(-

g) (in coalescent time units backwards in time from time of sampling) and continues until the 

sampling time. 

To compute Watterson’s estimator in this scenario for any g, we need the expected total length of 

the coalescent tree. Instead of computing it analytically, we recorded the total coalescent tree length 

of 10,000 simulations under the model and used their mean as an approximation of the expected 

total branch length. 

As parameters for exponential decline, we use exponential growth rates drawn uniformly from {-

250,-200,-150,-100,-50,-25,-10}. As for Stucki 2016, we omitted the r2 statistics (and added further 

quantiles of other statistics, see above) due to computational reasons (occasionally, trees with very 

long tree branches and thus many mutations are produced, which inflates computation time for r2). 

For both exponential decline and population structure, we ran the ABC-RF analysis as for all other 

data sets. Simulations were produced with Hudson’s ms as implemented in the R package phyclust. 

 

Accounting for serial sampling 

Following Hoscheit and Pybus (2019), we add serial sampling to the MMC and to Kingman’s 

coalescent with exponential growth simply by stopping the coalescent at times (on the coalescent 
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time scale) where further individuals are sampled. Then, we start a new (independent) coalescent 

tree that has rates and waiting times as the non-serial coalescent (multiple merger or with growth) 

started in the last state of the stopped coalescent plus adding one block with a single individual for 

each individual sampled at this time. A R implementation is available at 

https://github.com/fabianHOH/mmc_R_gendiv/tree/master/MTB_MMC_repo. 

A problem with this approach is that one needs the scaling factor between coalescent time and real 

time. While estimation procedures coming from phylogenetics are available in the case of 

Kingman’s coalescent (e.g. Drummond and Rodrigo 2000), they cannot be applied directly to the 

case of multiple merger coalescents. Additionally, a brute force search for appropriate scaling on 

top of our models is computationally unfeasible with the ABC approach that we adopted in this 

study. 

Hence, we assessed, for different fixed scaling factors, how strong the effect of ignoring serial 

sampling in the models is. We considered the setting of Eldholm 2015 (n=248, s=497), Lee 2013 

(n=147, s=454) and Roetzer 2013 (n=61, s=74). We used the real dates of the serial sampling for 

these data sets and we performed serial coalescent simulations as described above. We used 

different time (re)scaling factors c, such as c determines the time ct at which an individual sampled 

at real time -t (0 corresponds to the latest sampling time) is added  as a new lineage to the 

coalescent tree (so ct is in coalescent time units). Here, we assessed c by setting the earliest 

sampling time (highest t) to a fraction c'≥0 of the expected height of the coalescent tree if there was 

no serial sampling (so keeping all other parameters, but assuming c=0). For each c’ in 

{0,0.1,0.2,0.3,0.4,0.5,0.75,1,1.5}, we simulated 1,000 simulations under each parameter set (g in 

{1,10,50,100,250,500,1000,2000}, α in {1,1.2,1.4,1.6,1.8,2}, ψ in {0.1,0.3,0.5,0.7,0.9]) and then 

performed ABC model selection for each simulation, recording how often the serial coalescent 

simulations were sorted to which non-serial model class. We also reported the quality of parameter 

estimation for the growth rate or coalescent parameter by measuring the (absolute) distances of the 

estimated parameter to the parameter used for the simulation (Sup. Fig. 15) 
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Figure 1. Workflow of the ABC-RF analysis (model selection), see text and Methods for details. 
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Figure 2. Phylogenetic tree of the data set Lee 2015 with the three sub-clades highlighted. 
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Figure 3: Proportion of model misidentification for serial simulations when model selection was 

performed via ABC using ultrametric tree models. Misclassification probabilities are shown as a 

function of c’ (the proportion of the genealogy corresponding to the time period in which samples 

are collected. i,e the period of sampling spans a time period c’∙h, where h is the expected height of 

the genealogy without serial sampling), and of the parameter of the coalescent models. 

Misclassification was measured as follow: i) for simulations from serially sampled Kingman's 

coalescent with exponential growth as being misidentified as either Beta or Dirac (first column) ii) 

for simulations from serially sampled Beta or Dirac coalescents as being misidentified as Kingman's 

coalescent with or without exponential growth (second and third columns). 
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Supplementary Figures  

Supplementary Figure 1. Posterior predictive check for the data set Bainomugisa 2018. The red 

line represents the observed data, the histograms represent the results of 10,000 simulations under 

the best fitting model (BETA) using the median of the posterior distribution of the parameter α, 

averaged over the three replications. O: quantiles of the minimal observable clade size; r2: quantiles 

of the r-squared measure of linkage disequilibrium; Nucl. Div.:  nucleotide diversity (π); S: number 

of polymorphic positions; Taj’s D: Tajima’s D; AF: quantiles of the mutant allele frequency 

spectrum. 
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Supplementary Figure 2. Posterior predictive check for the data set Bjorn-Mortensen 2016. The 

red line represents the observed data, the histograms represent the results of 10,000 simulations 

under the best fitting model (BETA) using the median of the posterior distribution of the parameter 

α, averaged over the three replications. O: quantiles of the minimal observable clade size; r2: 

quantiles of the r-squared measure of linkage disequilibrium; Nucl. Div.:  nucleotide diversity (π); 

S: number of polymorphic positions; Taj’s D: Tajima’s D; AF: quantiles of the mutant allele 

frequency spectrum. 
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Supplementary Figure 3. Posterior predictive check for the data set Comas 2015. The red line 

represents the observed data, the histograms represent the results of 10,000 simulations under the 

best fitting model (BETA) using the median of the posterior distribution of the parameter α, 

averaged over the three replications. O: quantiles of the minimal observable clade size; r2: quantiles 

of the r-squared measure of linkage disequilibrium; Nucl. Div.:  nucleotide diversity (π); S: number 

of polymorphic positions; Taj’s D: Tajima’s D; AF: quantiles of the mutant allele frequency 

spectrum. 
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Supplementary Figure 4. Posterior predictive check for the data set Eldholm 2016. The red line 

represents the observed data, the histograms represent the results of 10,000 simulations under the 

best fitting model (Dirac) using the median of the posterior distribution of the parameter ψ, 

averaged over the three replications. O: quantiles of the minimal observable clade size; r2: quantiles 

of the r-squared measure of linkage disequilibrium; Nucl. Div.:  nucleotide diversity (π); S: number 

of polymorphic positions; Taj’s D: Tajima’s D; AF: quantiles of the mutant allele frequency 

spectrum. 
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Supplementary Figure 5. Posterior predictive check for the data set Eldholm 2015. The red line 

represents the observed data, the histograms represent the results of 10,000 simulations under the 

best fitting model (BETA) using the median of the posterior distribution of the parameter α, 

averaged over the three replications. O: quantiles of the minimal observable clade size; r2: quantiles 

of the r-squared measure of linkage disequilibrium; Nucl. Div.:  nucleotide diversity (π); S: number 

of polymorphic positions; Taj’s D: Tajima’s D; AF: quantiles of the mutant allele frequency 

spectrum. 
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Supplementary Figure 6. Posterior predictive check for the data set Folkvardsen 2017. The red 

line represents the observed data, the histograms represent the results of 10,000 simulations under 

the best fitting model (BETA) using the median of the posterior distribution of the parameter α, 

averaged over the three replications. O: quantiles of the minimal observable clade size; r2: quantiles 

of the r-squared measure of linkage disequilibrium; Nucl. Div.:  nucleotide diversity (π); S: number 

of polymorphic positions; Taj’s D: Tajima’s D; AF: quantiles of the mutant allele frequency 

spectrum. 
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Supplementary Figure 7. Posterior predictive check for the data set Lee 2015. The red line 

represents the observed data, the histograms represent the results of 10,000 simulations under the 

best fitting model (BETA) using the median of the posterior distribution of the parameter α, 

averaged over the three replications. O: quantiles of the minimal observable clade size; r2: quantiles 

of the r-squared measure of linkage disequilibrium; Nucl. Div.:  nucleotide diversity (π); S: number 

of polymorphic positions; Taj’s D: Tajima’s D; AF: quantiles of the mutant allele frequency 

spectrum. 
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Supplementary Figure 8. Posterior predictive check for the data set Roetzer 2013. The red line 

represents the observed data, the histograms represent the results of 10,000 simulations under the 

best fitting model (BETA) using the median of the posterior distribution of the parameter α, 

averaged over the three replications. O: quantiles of the minimal observable clade size; r2: quantiles 

of the r-squared measure of linkage disequilibrium; Nucl. Div.:  nucleotide diversity (π); S: number 

of polymorphic positions; Taj’s D: Tajima’s D; AF: quantiles of the mutant allele frequency 

spectrum. 
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Supplementary Figure 9. Posterior predictive check for the data set Stucki 2015. The red line 

represents the observed data, the histograms represent the results of 10,000 simulations under the 

best fitting model (BETA) using the median of the posterior distribution of the parameter α, 

averaged over the three replications. O: quantiles of the minimal observable clade size; r2: quantiles 

of the r-squared measure of linkage disequilibrium; Nucl. Div.:  nucleotide diversity (π); S: number 

of polymorphic positions; Taj’s D: Tajima’s D; AF: quantiles of the mutant allele frequency 

spectrum. 
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Supplementary Figure 10. Posterior predictive check for the data set Stucki 2016. The red line 

represents the observed data, the histograms represent the results of 10,000 simulations under the 

best fitting model (KM+exp) using the median of the posterior distribution of the parameter g, 

averaged over the three replications. O: quantiles of the minimal observable clade size; r2: quantiles 

of the r-squared measure of linkage disequilibrium; Nucl. Div.:  nucleotide diversity (π); S: number 

of polymorphic positions; Taj’s D: Tajima’s D; AF: quantiles of the mutant allele frequency spectru 
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Supplementary Figure 11. Posterior predictive check for the data set Shitikov 2017. The red line 

represents the observed data, the histograms represent the results of 10,000 simulations under the 

best fitting model (KM+exp) using the median of the posterior distribution of the parameter g, 

averaged over the three replications. O: quantiles of the minimal observable clade size; r2: quantiles 

of the r-squared measure of linkage disequilibrium; Nucl. Div.:  nucleotide diversity (π); S: number 

of polymorphic positions; Taj’s D: Tajima’s D; AF: quantiles of the mutant allele frequency 

spectrum. 
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Supplementary Figure 12. Posterior predictive check for the data set Lee 2015 clade A. The red 

line represents the observed data, the histograms represent the results of 10,000 simulations under 

the best fitting model (Dirac) using the median of the posterior distribution of the parameter ψ, 

averaged over the three replications. O: quantiles of the minimal observable clade size; r2: quantiles 

of the r-squared measure of linkage disequilibrium; Nucl. Div.:  nucleotide diversity (π); S: number 

of polymorphic positions; Taj’s D: Tajima’s D; AF: quantiles of the mutant allele frequency 

spectrum. 
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Supplementary Figure 13. Posterior predictive check for the data set Lee 2015 clade B. The red 

line represents the observed data, the histograms represent the results of 10,000 simulations under 

the best fitting model (BETA) using the median of the posterior distribution of the parameter α, 

averaged over the three replications. O: quantiles of the minimal observable clade size; r2: quantiles 

of the r-squared measure of linkage disequilibrium; Nucl. Div.:  nucleotide diversity (π); S: number 

of polymorphic positions; Taj’s D: Tajima’s D; AF: quantiles of the mutant allele frequency 

spectrum. 
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Supplementary Figure 14. Posterior predictive check for the data set Lee 2015 clade C. The red 

line represents the observed data, the histograms represent the results of 10,000 simulations under 

the best fitting model (BETA) using the median of the posterior distribution of the parameter α, 

averaged over the three replications. O: quantiles of the minimal observable clade size; r2: quantiles 

of the r-squared measure of linkage disequilibrium; Nucl. Div.:  nucleotide diversity (π); S: number 

of polymorphic positions; Taj’s D: Tajima’s D; AF: quantiles of the mutant allele frequency 

spectrum. 
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Supplementary Figure 15. Mean error of parameter estimation for serial simulations when model 

selection was performed via ABC using ultrametric tree models. First column (simulations under 

serially sampled Kingman’s coalescent with exponential growth): colors show the absolute error in 

units of the true parameter, i.e. an error value of 10 corresponds to an average error of 10x the true 

parameter. Second and third column (serially sampled MMCs): colors show absolute error. 
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Supplementary Figure 16. Posterior predictive check for the data set Bainomugisa 2018 (2014). 

The red line represents the observed data, the histograms represent the results of 10,000 simulations 

under the best fitting model (BETA) using the median of the posterior distribution of the parameter 

α, averaged over the three replications. O: quantiles of the minimal observable clade size; r2: 

quantiles of the r-squared measure of linkage disequilibrium; Nucl. Div.:  nucleotide diversity (π); 

S: number of polymorphic positions; Taj’s D: Tajima’s D; AF: quantiles of the mutant allele 

frequency spectrum. 
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Supplementary Figure 17. Posterior predictive check for the data set Eldholm 2015 (1998). The 

red line represents the observed data, the histograms represent the results of 10,000 simulations 

under the best fitting model (BETA) using the median of the posterior distribution of the parameter 

α, averaged over the three replications. O: quantiles of the minimal observable clade size; r2: 

quantiles of the r-squared measure of linkage disequilibrium; Nucl. Div.:  nucleotide diversity (π); 

S: number of polymorphic positions; Taj’s D: Tajima’s D; AF: quantiles of the mutant allele 

frequency spectrum. 
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Supplementary Figure 18. Posterior predictive check for the data set Eldholm 2015 (2001). The 

red line represents the observed data, the histograms represent the results of 10,000 simulations 

under the best fitting model (BETA) using the median of the posterior distribution of the parameter 

α, averaged over the three replications. O: quantiles of the minimal observable clade size; r2: 

quantiles of the r-squared measure of linkage disequilibrium; Nucl. Div.:  nucleotide diversity (π); 

S: number of polymorphic positions; Taj’s D: Tajima’s D; AF: quantiles of the mutant allele 

frequency spectrum. 
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Supplementary Figure 19. Posterior predictive check for the data set Eldholm 2015 (2003). The 

red line represents the observed data, the histograms represent the results of 10,000 simulations 

under the best fitting model (BETA) using the median of the posterior distribution of the parameter 

α, averaged over the three replications. O: quantiles of the minimal observable clade size; r2: 

quantiles of the r-squared measure of linkage disequilibrium; Nucl. Div.:  nucleotide diversity (π); 

S: number of polymorphic positions; Taj’s D: Tajima’s D; AF: quantiles of the mutant allele 

frequency spectrum. 
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Supplementary Figure 20. Posterior predictive check for the data set Folkvardsen 2017 (2009). 

The red line represents the observed data, the histograms represent the results of 10,000 simulations 

under the best fitting model (BETA) using the median of the posterior distribution of the parameter 

α, averaged over the three replications. O: quantiles of the minimal observable clade size; r2: 

quantiles of the r-squared measure of linkage disequilibrium; Nucl. Div.:  nucleotide diversity (π); 

S: number of polymorphic positions; Taj’s D: Tajima’s D; AF: quantiles of the mutant allele 

frequency spectrum. 
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Supplementary Figure 21. Posterior predictive check for the data set Folvardsen 2017 (2010). The 

red line represents the observed data, the histograms represent the results of 10,000 simulations 

under the best fitting model (KM+exp) using the median of the posterior distribution of the 

parameter g, averaged over the three replications. O: quantiles of the minimal observable clade size; 

r2: quantiles of the r-squared measure of linkage disequilibrium; Nucl. Div.:  nucleotide diversity 

(π); S: number of polymorphic positions; Taj’s D: Tajima’s D; AF: quantiles of the mutant allele 

frequency spectrum. 
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Supplementary Figure 22. Posterior predictive check for the data set Folkvardsen 2017 (2012). 

The red line represents the observed data, the histograms represent the results of 10,000 simulations 

under the best fitting model (BETA) using the median of the posterior distribution of the parameter 

α, averaged over the three replications. O: quantiles of the minimal observable clade size; r2: 

quantiles of the r-squared measure of linkage disequilibrium; Nucl. Div.:  nucleotide diversity (π); 

S: number of polymorphic positions; Taj’s D: Tajima’s D; AF: quantiles of the mutant allele 

frequency spectrum. 
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Supplementary Figure 23. Posterior predictive check for the data set Lee 2015 (2012). The red 

line represents the observed data, the histograms represent the results of 10,000 simulations under 

the best fitting model (Dirac) using the median of the posterior distribution of the parameter ψ, 

averaged over the three replications. O: quantiles of the minimal observable clade size; r2: quantiles 

of the r-squared measure of linkage disequilibrium; Nucl. Div.:  nucleotide diversity (π); S: number 

of polymorphic positions; Taj’s D: Tajima’s D; AF: quantiles of the mutant allele frequency 

spectrum. 
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Supplementary Figure 24. Posterior predictive check for the data set Lee 2015 (2012) Clade A. 

The red line represents the observed data, the histograms represent the results of 10,000 simulations 

under the best fitting model (Dirac) using the median of the posterior distribution of the parameter 

ψ, averaged over the three replications. O: quantiles of the minimal observable clade size; r2: 

quantiles of the r-squared measure of linkage disequilibrium; Nucl. Div.:  nucleotide diversity (π); 

S: number of polymorphic positions; Taj’s D: Tajima’s D; AF: quantiles of the mutant allele 

frequency spectrum. 
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Supplementary Tables  

 

Supplementary Table 1: 

List of accession numbers used in this study 

File: Supplementary_table1.xslx 

  

Supplementary Table 2: 

Results of all analyses 

File: Supplementary_table2.xslx 

 

Supplementary Table 3. 

Sampling period and estimated age of the most recent common ancestor for the data sets that 

resulted in BETA or Dirac as best fitting model. For Comas 2015 this data was not available. 

Data set Sampling window in years Age of the tree, in years before 

most recent sample1 

Eldholm 2015 14 ~ 40 

Lee 2015 22 ~ 100 

Roetzer 2013 14 ~ 15 

Bainomugisa 2018 4 ~ 50 

Bjorn-Mortensen 2016 21 ~ 25 

Folkvardsen 2017 23 ~ 55 

Stucki 2015 21 NA 

Eldholm 2016 6 ~ 10 

 

1 The estimated age of the most recent common ancestors were obtained from the original publications 
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