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Towards a Digital Diatom: image processing and deep learning analysis of Bacillaria
paradoxa dynamic morphology

Bradly Alicea1,2, Richard Gordon3,4, Thomas Harbich5, Ujjwal Singh6, Asmit Singh6, Vinay
Varma7

Abstract
Recent years have witnessed a convergence of data and methods that allow us to

approximate the shape, size, and functional attributes of biological organisms. This is not only
limited to traditional model species: given the ability to culture and visualize a specific organism,
we can capture both its structural and functional attributes. We present a quantitative model for
the colonial diatom Bacillaria paradoxa, an organism that presents a number of unique attributes
in terms of form and function. To acquire a digital model of B. paradoxa, we extract a series of
quantitative parameters from microscopy videos from both primary and secondary sources.
These data are then analyzed using a variety of techniques, including two rival deep learning
approaches. We provide an overview of neural networks for non-specialists as well as present a
series of analysis on Bacillaria phenotype data. The application of deep learning networks allow
for two analytical purposes. Application of the DeepLabv3 pre-trained model extracts phenotypic
parameters describing the shape of cells constituting Bacillaria colonies. Application of a
semantic model trained on nematode embryogenesis data (OpenDevoCell) provides a means to
analyze masked images of potential intracellular features. We also advance the analysis of
Bacillaria colony movement dynamics by using templating techniques and biomechanical
analysis to better understand the movement of individual cells relative to an entire colony. The
broader implications of these results are presented, with an eye towards future applications to
both hypothesis-driven studies and theoretical advancements in understanding the dynamic
morphology of Bacillaria.

Introduction

“I still remember, as many years ago, when I found the Bacillaria paradoxa near Greifswald many
years ago, that I stood as if clinging to the microscope and could not turn my back on the strange
spectacle that presented itself to me…. they are glued together as if they were an organism, and yet
each moves for itself next to theother!”, translated from Max Schultze (1865)[1].

Creating digital instantiations of a model organism is of great potential to well-
established communities centered around model organisms such as Caenorhabditis elegans [2].
The opportunity for creating a digital model of a non-model organism is potentially greater. In
this paper, we will introduce a data-intensive approach to modeling the behaviors and dynamic
phenotypes associated with the colonial diatom Bacillaria paradoxa (Figure 1). Using image
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processing techniques, we can construct a computational model of Bacillaria colonies. This
simple phenotypic model provides a means to capture the dynamics of movement across
different moments in time. Inferring the movement of these colonies reveals the diversity and
complexity of behavior exhibited in a simple organismal colony.

The value of this approach is enhanced by the nature of the Bacillaria literature. While
the literature is quite old (Bacillaria was first observed by Otto Friedric Müller in 1783 [3, 4]),
work to date has focused mostly on taxonomy and cellular/structural biology. The partial
synchrony of Bacillaria colonies [5] indicates that the behavior of a colony may be greater than
the sum of its individual cells (i.e. that each colony is a multicellular organism). Cellular biology
work that has been done on the movement of Bacillaria [6-8], is neither computational in nature
nor at the whole-organism level.

There has been some computational work conducted on diatom morphogenesis [9-19]
which is expanding due to their usefulness in nanomaterials [20-24], medical applications [25],
and many other fields [26]. Yet despite these studies, there is little computational work
integrating structural morphology with diatom motility.

Figure 1. Drawing adapted from O.F. Müller (1783, translated in [4]), who was the first to
characterize Bacillaria colonies. Examples 1 through 8 show the various states of expansion and
contraction (dynamic phenotypes) of colonies.

Organism Description
Bacillaria paradoxa, synonymous with Bacillaria paxillifera [27], is a diatom in the

Bacillariaceae family which has been subdivided into three species: B. paxillifera, B.
kuseliaeand and B. urve-millerae, with B. paxillifera further divided into four varieties: var.
czarneckii, var. pacifica, var. tropica and var. tumidula [27]. As the distinctions are mostly
made at the SEM level of resolution, we will adopt the blanket designation B. paradoxa in this
paper (Figure 2). Diatoms are a group of eukaryotic microalgae whose ornate cell walls are
composed primarily of amorphous silica. They exhibit a unique life-history [28]. Cells of
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Bacillaria (sometimes called filaments) are elongated and motile, sliding along each other, in
stacked colonies that curve slightly out of the plane. Cells are rectangular in girdle view (as seen
in colonies, as their valves face each other), and lanceolate in valve view (Figure 2). The raphe
system is slightly keeled and runs from pole to pole with no central nodule [29]. Two large plate-
like chloroplasts are present, one near each end of the cell. The nucleus is located centrally. Cells
are yellow-brown in color. Fibulae are strong, and the valve surface is covered in transverse
parallel structures called striae [27].

Bacillaria cells are arranged in parallel stacks, and these parallel stacks form a colony.
These stacks form early in the life-history of a colony by cell divisions perpendicular to the
valves. The stacked colony moves by consecutive pairs of individual cells sliding against each
other [4]. When these sliding movements occur in temporal order across the colony [5], the
synchronized movement is like the sliding of a deck of cards [30] and results in a large extension
of the whole colony.

The continual folding and unfolding of a colony of cells stacked in parallel results in
cyclic gliding movements. Each cell is an intrinsic oscillator [31], so the partial synchronization
may be due to entrainment of these oscillators by an unknown mechanism, perhaps light piping
within each colony[32, 33]. The mechanism of gliding movement is still being worked out [34].
Observations of high accelerations of single diatoms [35] suggest a motor that moves with
explosive force at a molecular scale [36]. This may be the basis of the often observed jerky
motion of diatoms, hints of which have been seen in Bacillaria [37].
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Figure 2. Bacillaria close-up images of single cells using Scanning Electron Microscopy (SEM).
A: a whole valve sees from the inside. B: close up of same, middle section. The horizontal slit is
the raphe. It lacks a central node. C: Tip of the inside of a valve. D: Middle section of a valve,
exterior view. Note the raphe is a slit through the whole valve. E: External view of the tip of a
valve [38], with kind permission of Ingrid Jüttner, copyright: the Natural History Museum,
London, Imaging and Analysis Centre.

Research Motivation
Diatoms (and Bacillaria in general) are an excellent model system for understanding

phenotypic growth and dynamics [39]. Unfortunately, there is no model for its behavioral and
dynamic phenotypic properties. It is our contention that digital technologies such as image
processing techniques, machine learning techniques, and open data repositories allow us to
construct a digital model that can be used to uncover previously unexplored relationships.

Our data rely on the ability to generate microscopy movies from cultured specimens.
Some of these movies are publicly available in places such as YouTube or in the Supplemental
Materials of academic papers. Fortunately, Bacillaria is relatively easy to isolate and culture, and
we have collected primary microscopy data as well. Coupled with the deep learning-based
techniques introduced here, we postulate that a digital Bacillaria is not only possible but highly
useful to the scientific community.

Our purpose here is twofold: to review key concepts related to our computational
approach, and to present the technical details of building the digital Bacillaria. First, we will
provide an overview of neural networks and machine intelligence. Then the methods used for
extracting data from individual video images will be presented, along with more detailed
descriptions for methods employed in the data analysis. The paper will conclude with an analysis
using several techniques for image processing and discovering the computational features that
define a Bacillaria colony. These include the shape parameters of the cell, techniques to extract
intracellular features, and techniques to approximate colony movement. Our techniques range
from formal deep learning techniques for extracting morphological features to the creation of
masks and templates to quantify images extracted from time-series.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2019. ; https://doi.org/10.1101/2019.12.21.885897doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.21.885897
http://creativecommons.org/licenses/by/4.0/


7

Description of Neural Networks. Neural Networks are computer programs assembled from
many computational units that behave as an adaptive system. This adaptive system is inspired by
the nervous system: providing the systematic power and computational capabilities of a
computer with the densely reticulating connectivity of a model of a biological brain. The
rationale for using neural networks (sometimes referred to a connectionist approach) in a
computational setting is to simulate the pattern recognition and decision-making properties of
biological learning.

Input units are designed to receive various forms of information from the outside world
that the network will attempt to learn about, recognize, or otherwise process information. Other
units reside on the opposite side of the network and signal how it responds to the information it's
learned; those are known as output units. Situated between input units and output units are one or
more layers of hidden units, which, together, form the majority of the network. Most neural
networks are fully connected, which means each hidden unit and each output unit is connected to
every unit in the adjacent layers on either side. Connections between one unit and another are
represented by a number called a “weight”, which can be either positive (if one unit excites
another) or negative (if one unit suppresses or inhibits another). The higher the weight, the more
influence one unit has on another. (This corresponds to the way actual brain cells trigger one
another across tiny gaps called synapses, with excitatory or inhibitory connections.)

Neural networks learn things through training and testing. During both training (when the
ANN learns associations) and testing (when the ANN makes associations), patterns of
information are fed into the network via the input units. This in turn triggers layers of hidden
units, which ultimately trigger the output units. This common design is called a feedforward
network. Each unit receives inputs from the units to its left, and the inputs are multiplied by the
weights of the connections they travel along (Figure 4). Every unit adds up all the inputs it
receives. When the sum is more than a certain threshold value, the unit "fires" and triggers the all
connected units.

For a neural network to learn, there has to be an element of feedback involved—just as
children learn by being told what they're doing is right or wrong. In fact, we all use feedback, all
the time. Neural networks learn things through a process of feedback called backpropagation (or
backprop). This involves comparing the output a network produces with the output it was meant
to produce, and then modify the weights of the connections between the units in the network
accordingly. In time, backpropagation causes the network to adapt to the desired output (or learn),
reducing the difference between actual and intended output to the point where the two coincide,
so the network figures things out exactly as it should.

Once the network has been trained with enough learning examples, it reaches a point
where you can present it with an entirely new set of inputs that it has never seen before and see
how it responds. For example, suppose you've been teaching a network by showing it many
pictures of chairs and tables, represented in some appropriate way it can understand, and telling
it whether each one is a chair or a table. As an example, suppose we train the model with 25
images of chairs and 25 images of tables. Depending on how completely the model is trained,
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new examples will be categorized as either a chair or a table. This is generalized from its past
experience rather than being generated de novo.

The inputs to a network are essentially binary numbers: each input unit is either switched
on or switched off. Using five input units, we can feed in information about different features of
an object using binary strings. For example, a chair might conform to five feature categories:
possessing a back, possessing a top, having soft upholstery, allows for comfortable sitting, and
storage capacity. This results in a series of categorical responses: Yes, No, Yes, Yes, No (10110).
For a table, these responses might be: No, Yes, No, No, Yes (01001). During the learning phase,
the network is simply looking at binary strings (e.g. 10110 and 01001), to determine what
represents a chair and what represents a table.

Methods

Video extraction
Microscopy videos of Bacillaria were obtained from a number of sources (private

archives and YouTube). The video frames were then processed to obtain segmented features and
numeric variables. Deep Learning models DeepLabv3 [40] (a TensorFlow library) and
OpenDevoCell (built with DeepLearning4J [41]) were then used to analyze these images.
Information was extracted in a manner that allows for both supervised and unsupervised
classification of the Bacillaria colony. We populated our dataset with frames of the microscopy
videos of Bacillaria. The dataset for the DeepLabv3 analysis consisted of around 20,000 frames
of secondary microscopy data, which contains much variety related to Bacillaria movement. The
data for the OpenDevoCell and time-lapse analyses comes from microscopy data collected
specifically for these analyses.

Image Skeleton Creation. The pre-masked images (skeletons) derived for our primary data
were created in GIMP 2.10 [42]. First, we converted each raw image to an indexed (1-bit)
imaged with no color dithering. Next, we converted the resulting binary map to an RGB (red,
green, blue) indexed image. Select the cell area (RGB value 0,0,0) by color, and change to RGB
value to (0,217,0). Maintaining the selection by color, edit the stroke selection function to a
width of 1.0 pixels for a thin skeleton, and 5.0 pixels for a thick skeleton. This ensures separation
between edges that are close together while also remaining selectable by the segmentation
algorithm.

Once the boundaries (which were colored as 0,217,0) have been selected, select the area
inside the boundary and change to RGB value 0,0,0. These transformations should result in a
black cell surface area with a light green boundary. The final step is to change the background
color (select the background by color) to RGB value 0,0,0. To create a thick skeleton from a thin
skeleton, select the think skeleton by color and then select the border function. The border width
should be set to 4, hard border, and filled with RGB value 0,217,0. The pseudo-code for GIMP
script-fu is located on Github [43].

Image Tracking for Movement. We also employ image tracking for the primary microscopy
data. The tracking of a partial image (template) of a diatom can be used under certain conditions
to obtain its trajectory. In particular, a movement of the diatoms in a plane perpendicular to the
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optical axis is essential. Sufficiently differentiated structures (chloroplasts) are required. The
boundaries between neighboring diatoms are not considered.

Image tracking is done using Tracker 5.1.3 [44], an image analyzer that provides
information regarding the motion of features between movie frames. For the tracking of paths in
videos, various algorithms have been developed and implemented [45]. Each method has specific
applications and strengths. It is often assumed that the objects to be tracked differ significantly
from a sufficiently homogeneous background, yet this is not the case for Bacillaria paxilifer
colonies.

Image tracking allows for cells in the colony to be tracked without complete separation
from its background. Our ad-hoc method of feature selection defines cells as an ellipse registered
with horizontal and vertical axes (Figure 3A). For sake of consistency, all video frames are
rotated by 31 degrees and cropped. This was done primarily to make alignment of the ellipse and
the diatom identical. This allows for templates of different size in addition to a direct comparison
between cells using the x-axis. The tracking procedure proceeds by numbering the cells within a
colony (see Figure 3B). The cell labeled “1” indicates the reference cell that is fixed relative to
the substrate. Diatoms labeled “2” and “3” are then tracked as shown in the bottom panel of
Figure 3. As these numeric values refer to the position of a particular cell relative to a reference
cell (position of cell #2 relative to cell #1), an offset value must be added in order to optimize
initial positions relative to movement.

Figure 3. Demonstration of the image tracking procedure. A: definition of tracked feature (white
ellipse within a cell). B: labeled (numbered) cells with relative measurements provided in red.
The determined coordinates refer to a target in the middle of the template. The target can be
moved and placed on the apex of the diatom being tracked. Then the coordinates of the apex are
captured. This position is indicated in Figure 3A by a mark and a vertical line. Image scale:
38.36 μm per cm, or 0.325 μm per pixel. Scale bars 50 µm.

Deep Learning
Deep Learning [46, 47] is implemented using a pre-trained model called DeepLabv3 and

open-source software with a web interface called OpenDevoCell (based on DeepLearning 4J [41],
a Java-based library that works with TensorFlow). DeepLabv3 [48] is a package for TensorFlow
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[49] and Deep Learning 4J. OpenDevoCell is open-source software located on Github [50] and
as a web-based application [51].

Deep Learning is an instance of the neural network approach and relies upon a network
with a large number of hidden layers relative to a standard neural network. We discuss neural
networks in more detail in a previous section of this paper. In general, a deeper network with
more hidden layers translates into a larger feature space. This provides a user with models that
have better resolution, but also models that have a greater potential for error [52]. To promote
reproducibility, a tutorial for DeepLabv3 implementation is available on Github [49], and the
software implementation is available on Github [53].

Bounding Box Method (DeepLab v3). Now we turn to the segmentation and measuring of
individual Bacillaria cells. The first step is to employ methods for identifying the boundaries of
cells, in particular, to distinguish the boundaries from the area of other cells and the image
background. This is done by defining a bounding box and then applying a cell segmentation
method to a single image (Figure 4). We define five points on each cell: a) the two ends of the
cell (1 and 2 in Figure 4), b) the midpoint of the line formed between points 1 and 2 (3 in Figure
4), and c) the edges of a cell (4 and 5 in Figure 4) defined by drawing a line perpendicular to the
axis defined by points 1, 2, and 3. Centroids are then calculated from these data in a post-
processing step by finding the midpoints between and maximum values for the x (centroid x) and
y (centroid y) axes.

Soft Bounding Box Method (OpenDevoCell). The OpenDevoCell platform was originally
trained using pixel labeling and segmentation masks. Pixel level labeling requires a lot of effort
and time, and does not always provide great results. A lot of data that we have is partially labeled,
where instead of each pixel is given a zero or one label each pixel has a membership in a macro
category. The data provides spatial information about these categories in the form of �R�U�L�
coordinates or �t��� (polar coordinates). One way of approaching the problem is by broadly
defining divisions in the form of boxes and refining the boxes using a deep Convolutional Neural
Network (CNN) [54] to get a semantically segmented image. In this case, semantic refers to
specific labels and distinguishing between different labels.

The OpenDevoCell technique uses region proposal methods to generate segmentation
masks. The candidate segments are used to update the deep CNN. The semantic features learned
by the network are used to generate better candidates and proceed as an iterated procedure. This
method was originally applied to Caenorhabditis elegans embryogenesis data by utilizing the
spatial locations and making the bounding boxes. With ground-truthed bounding boxes, we can
find the candidate masks that overlap the most with the bounding boxes. An error/cost function is
used to maximize the overlap. For application to Bacillaria colonies, we convert our dataset to
skeletons using a procedure implemented in GIMP 2.10. These skeletons are pre-masks that
mimic the initial condition of the Caenorhabditis elegans embryos, which was a series of high-
resolution images in which membrane expression of a GFP marker was used to define cell
boundaries.

Noise Reduction (DeepLab v3). Since edge detection is susceptible to noise in the image [55],
the DeepLab v3 pre-trained model uses a noise reduction algorithm. The first step is to remove
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the noise in the image with a 5x5 Gaussian kernel which results in spatial smoothing [56]. To
find the intensity gradient of a given image, smoothed (locally averaged) images are then filtered
with a Sobel kernel [57] in both horizontal and vertical directions to get the first derivatives in
the horizontal direction (Gx) and vertical direction (Gy). From these two images, we can find an
edge gradient and direction for each pixel as follows:

��R� � �R� � �U�

�� � ����ଃ
�U
�R

[1]

[2]

The gradient direction is always perpendicular to edges. It is rounded to one of four angles
representing vertical, horizontal and two diagonal directions.

Figure 4. A diagram showing the five points on a sample cell (two ends, midpoint of the
transverse line, and edges of the cell). Image scale: 38.36 μm per cm, or 0.325 μm per pixel.
Scale bars 50 µm.

Non-maximum Suppression (DeepLabv3). The DeepLab v3 pre-trained model also utilizes
non-maximum suppression. After getting gradient magnitude and direction, a full scan of an
image is done to remove any unwanted pixels which may not constitute an edge. For this, at
every pixel, a pixel is checked if it is a local maximum in its neighborhood in the direction of the
algorithmic gradient (see Figure 5).
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Hysteresis Thresholding (DeepLabv3). DeepLab v3 also uses hysteresis thresholding [58] for
image segmentation (Figure 6). Hysteresis refers to the retention of low threshold edges that are
associated with high threshold edges. This stage of processing decides which edges in the image
are most likely to be actual edges. Hysteresis thresholding relies on two threshold values, Vmin
and Vmax. Any edges with intensity gradient more than Vmax are sure to be edges, while those
below Vmin are sure to be non-edges and thus discarded. Those that lie between these two
thresholds are classified edges or non-edges based on their connectivity. Hysteresis occurs when
the number of edges identified by this method are fewer than those defined by Vmin, but greater
than those defined by Vmax.

Figure 5. Point A is on the edge (vertical direction). The gradient direction is normal to the edge.
Point B and C are in gradient directions. So point A is checked with point B and C to see if it
forms a local maximum. If so, it is considered for the next stage, otherwise, it is suppressed (set
to zero). The result is a binary image with “thin edges”.

The edge A is above the Vmax, so considered as “sure-edge”. Although edge C is below
Vmax, it is connected to edge A, so that also considered as a valid edge and we get that full curve.
But edge B, although it is above minVal and is in the same region as that of edge C, it is not
connected to any “sure-edge”, so it is discarded (Figure 6). It is very important that we have to
select Vmin and Vmax accordingly to get the correct result. This stage also removes small pixels
noises on the assumption that edges are long lines and ultimately produces strong edges in the
image. Although this is quite an advanced technique, we are still not able to detect the cells when
a colony stretches out during its course of the movement (see examples in Figure 1).

DeepLabv3 Analysis
A number of methods were considered in the course of segmenting images for analysis

by the DeepLabv3 model. The results for two of these (watershed and canny edge detection) are
presented and contrasted here. The watershed and Canny edge detection analyses are done in
OpenCV [59]. Two methods are presented as a means of comparing performance on static
images, and then these methods are contrasted with the deep learning results.
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Figure 6. Diagram showing an example of hysteresis thresholding and the labeled edge relative
to the “sure edge” threshold (Vmax).

DeepLabv3 Model Dataset. Our dataset used as input to the pre-trained model has been
extracted from YouTube videos of Bacillaria colonies. The image backgrounds are normalized
and rotated to be in horizontal alignment. The data are normalized using a z-score transform (or
y-score transform for images with an n < 6). This creates a coordinate space that is based on
individual colonies relative to the mean and standard deviation of the full dataset. The full
dataset of images and segmented cells (N = 65, n = 810) is also paired down to a dataset of
selected samples (N = 46, n = 599). The selected dataset is also analyzed using a Principle
Component Analysis (PCA) using SciLab 6.0 [60].

Feature detection methods. The Watershed method [61] is based on the concept of geographic
watersheds, or drainage basins. The relative contrast of pixels across the image is used to define
the watersheds (high-intensity regions) and the boundaries between watersheds (low-intensity
regions). This is done by treating image intensities for each pixel as part of an elevation map [62],
which results in a binary classification of the image. The Watershed algorithm is particularly
good at finding contours between distinct regions of an image. Thresholding of overall image
intensity was done using a marker-based approach (optimization via trial-and-error).

Canny edge detection [63] operates on a noise-filtered intensity gradient derived from the
original image data. As with the watershed method, Canny edge relies on a series of thresholding
and filtering techniques to determine the strength of potential edges in the image. One of these is
to rely on averaging and signal suppression to classify all potential edges into a set of four
angular orientations (0, 45, 90, 135) across a 180-degree arc. Canny edge detection also involves
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a hysteresis step, which is employed to deal with ambiguous components of the signal relative to
an intensity threshold [64].

Primary Dataset. We collected microscopy movies of movement for a single Bacillaria colony
using light microscopy. These data were converted into still images, which are transformed and
segmented using machine learning techniques. Microscopy is conducted using a Zeiss standard
upright microscope. All images are brightfield, 40x plain objective. Images are extracted from
videos representing 8x time-lapse. Data are collected from a colony transferred to a slide from
culture.

Primary Dataset Analysis. We will also present analysis of a primary dataset. Part of this
involves masking and segmentation of microscopy images using the OpenDevoCell platform.
The other part of this analysis involves using a time-lapse approach to track the motion of cells
over time. We are able to approximate patterns of movement and acceleration by identifying
labeled features across images over time.

OpenDevoCell. We analyzed the primary data using the OpenDevoCell application [51]. For
this analysis, there is a masking step and a segmentation step. OpenDevoCell is a Java-based
deep learning platform that uses the TensorFlow library Deep Learning 4J.

Time-lapse analysis. We also analyzed the primary data using time-lapse techniques. The time-
lapse is created using VirtualDub, version 1.10.4.35491 [65]. The Bacillaria strains contained in
our primary data (videos) have been harvested from the Neckar river in Germany (49°04'41.8"N
9°09'17.9"E). Samples were collected on September 14, 2019. The average size of each cell
(filament) is approximately 81µm.

Data Availability
Select unprocessed (raw) data are available at our Github repository [53], processed

numeric and image data (numeric tables and skeletonized images), and select video files are
available on the Open Science Framework [66].

Results

Watershed segmentation and Canny Edge Detection
Neither the Watershed Segmentation nor the Canny Edge Detection approaches provide

very strong performance. The desired feature (closed boundary around each cell) was not
detected, as interference from noise in the form of other algae or unclear cell boundaries
dominates the analysis. Examples of these results are shown in Figure 7.

Deep Learning
The results for the pre-trained model (DeepLab v3) were much more accurate. Based on

feature training using the bounding box method demonstrated in Figure 8, we are able to
reconstruct several parameters of the individual cells which suggest an accurate reconstruction of
the source image. We can also see the improved accuracy of the correct performance in Figure 9.
If the source image is not too blurry (out of focus, dominated by artifacts), the model can be
trained and features detected without too much difficulty.
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Figure 7. An example of feature identification performance for the Watershed Segmentation
algorithm (left, red boundary) and Canny Edge detection algorithm (right, white boundary).
Image scale: 38.36 μm per cm, or 0.325 μm per pixel. Scale bars 50 µm.

Figure 8. An example of feature identification training (purple rectangles) for the deep learning
approach on a single set of cells. Notice the resolution of the colony. An example of correct
performance is shown in Figure 5. Image scale: 38.36 μm per cm, or 0.325 μm per pixel. Scale
bar 50 µm.
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Figure 9. Rank-order analysis of bounding box (cell) sizes (area) across the dataset. The area is
measured in pixels squared. Image scale: 38.36 μm per cm, or 0.325 μm per pixel.

Figure 10. Rank-order analysis of height (blue) and width (red) of bounding boxes (cells) across
the dataset. The area is measured in pixels squared. Image scale: 38.36 μm per cm, or 0.325 μm
per pixel.

An analysis of the pre-trained model outputs is shown in Figures 9, 10, and 11. Figure 9
shows the distribution of cell sizes across the full dataset, ranked from smallest to largest. There
is a long tail of very large cells (750 to 800 pixels2) that represents filaments much larger than
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their neighbors. This could be due to errors in the segmentation process of bounding boxes, but
could also represent two cells lumped as one, or cell division in the process.

Figure 11. Top: location of centroids in normalized coordinate space in selected dataset for static
analysis. Bottom: First two principal components from PCA analysis of coordinates representing
sides of bounding boxes using the selected datasets for static analysis. Image scale: 38.36 μm per
cm, or 0.325 μm per pixel.
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Figure 10 also uses a rank ordering from largest to smallest instance but breaks Figure 9
down into the lengths and widths of each bounding box. In this graph, we see that the length is
generally larger than the width as expected, but that there is a more normal distribution of
bounding box lengths. This could mean that there is natural variation in the length, but this could
also be partially due to resolution loss across the image or the truncation of cells at the edge of
the image.

Figure 11 contains two graphs representing different aspects of the selected dataset. The
first relationship (top) is a bivariate plot of all centroid locations among the selected data, similar
to the rank-order analysis of bounding box areas shown in Figure 9. In the second relationship
(bottom). A Principle Component Analysis (PCA) is conducted and represented by plotting the
first two principal components. Both plots use a normalized coordinate system (see Methods).

Figure 12 shows how the pre-trained model can be optimized. In this case, we tried two
different optimizations to extract the bounding boxes from random images in the training set.
Each optimization (as well as the final segmentation) provides a tradeoff between the number of
boxes and the accuracy of the segmentation set. The final segmentation included elements of
each optimization, which is a tradeoff between a greater number of boxes and an increase in false
positives. Even the most optimized result will produce false positives and false negatives due to
differences in the resolution of cell boundaries across the image.

Figure 12. An example of feature identification optimization procedures implemented in
DeepLab v3. GRAY: no optimization applied, RED: Optimization #1, BLUE: Optimization #2.
Given an initial number of training frames (y-axis), the non-optimized procedure (originally
detected) will yield a certain number of boxes (x-axis). Applying various optimization
procedures generally leads to a decreased number of boxes per frame for both low and high
numbers of boxes.
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Although this optimal tradeoff between feature number and accuracy was used in our
analysis, Figure 13 demonstrates how difficult it is to achieve a perfectly accurate segmentation.
In Figure 13, four examples of segmented images are shown with centroids of the segmented
cells plotted in a bivariate coordinate space on the left and the original image on the right. For
images A, C, E, and G a normalized coordinate space (see Methods) is used for both the x and y
axes. While it is hard to see the degree of concurrency, there is a correspondence between the
centroid locations and the cells as stacked in their respective colonies. In general, images such as
A and C are harder to resolve than images such as E and G. This is likely due to the
configuration of the colony as a “V” (as is the case with E and G) shape versus a more irregular
shape.

Now we will use the OpenDevoCell model to demonstrate what happens when a model
trained for one type of biological system (nematode embryos) is utilized to identify cells in
another context (Bacillaria colonies). This analysis does not demonstrate the efficacy of the
OpenDevoCell model, rather, it is to show how we might go beyond the bounding box method to
more general implementations. Generally, models that learn from data are generalized to a
specific set of features. Our purpose here is to see if there are any similarities between nematode
embryogenesis and diatom functional morphology. The first step in this demonstration is to
create skeletons of the original images in order to mimic the resolution of a suitable image for
OpenDevoCell, which has been trained to recognize GFP-labeled cell membrane boundaries
(between cells). We show the original images along with their corresponding image skeletons in
Figure 13 using three exemplar images from the primary data described in the Methods section.

The pre-masking exercise shown in Figure 14 demonstrates how difficult it is to define to
distinguish an outer edge versus the contours and internal features of Bacillaria cells. Yet along
with the templating analysis featured in Figure 15, we demonstrate that intracellular features can
be identified and potentially used as quantitative features. Using the DeepLabv3 pre-trained
model, we can derive bounding boxes with significant variability in how they map to the original
image. In this case, we create image skeletons that are interpretable by the OpenDevoCell model.
As the OpenDevoCell model has been optimized for fluorescent images, these image skeletons
are bright green and can be separated from both the background and extraneous noise. When
these skeletons are presented to the OpenDevoCell model, it can provide spatially-referenced
segmentation of Bacillaria colonies. These objects can also be co-registered with bounding
boxes yielded from the DeepLab analysis.

In this case, a model that works quite well for embryos performs more like the
unsupervised models shown in Figure 7. One reason why the DeepLab model may be more
successful at defining bounding boxes in this context could be the ability to recognize generic
rectangles, features which are helpful for identification but not descriptive of subtle changes in
structure or shape. This is particularly relevant in terms of cells that fall partially out of frame or
detail within what is captured as a bounding box. While difficult to obtain, the objects segmented
by this implementation of OpenDevoCell are more detailed and less square than those extracted
by the DeepLab analysis.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2019. ; https://doi.org/10.1101/2019.12.21.885897doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.21.885897
http://creativecommons.org/licenses/by/4.0/


20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2019. ; https://doi.org/10.1101/2019.12.21.885897doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.21.885897
http://creativecommons.org/licenses/by/4.0/


21

Figure 13. Four examples of how the identified features map to two different images (A, C, E, G)
of a Bacillaria colony. Points (B, D, F, H) represent the centroids for all bounding boxes
identified in images A, C, E., and G, respectively. Image scale: 38.36 μm per cm, or 0.325 μm
per pixel. Image scale: 38.36 μm per cm, or 0.325 μm per pixel. Scale bars 50 µm.

We propose that a combination of OpenDevoCell and pre-masking may be useful in
revealing potential intracellular features. This is particularly true for capturing variations within
cells, which allows for these features to be mapped to the bounding box segmentation data. This
would provide a nice balance between accuracy and detail, but also yields inconsistent results for
features that change position between frames over time.

Given our limitations in acquiring feature/background separation for sequential samples,
our final analysis is to apply motion tracking to the Bacillaria colonies across frames. This can
be done using template analysis (see Methods). The templating method is shown in Figure 3
shares commonalities with the DeepLab model in how cells are segmented and represented. In
both cases, the centroid approximation of an identified feature is used as a reference point. Yet
for purposes of approximating motion over time, the most important information for the analysis
of the movement is the positions of individual cells in a Bacillaria colony relative to neighboring
diatoms as a function of time. Highlights of our analysis for single-cell motion over time,
particularly with respect to neighboring cells, is shown in Figure 15.

At the level of individual cells, the movement of the colony appears to be oscillatory.
Comparisons of cell #2 and cell #3 reveal oscillations that are slightly out-of-phase (Figure 15A).
As we might expect, changes in velocity for the oscillation of a single cell are noisier than
changes in position for that same cell (Figure 15B). Yet the velocity function shows a relatively
smooth transition between two extremes. When the entire chain comes to rest, we observe a
dampening of both the position and acceleration time-series. In Figure 15C, the absolute value of
velocity increases linearly with time until the diatoms in consideration lie next to each other with
their apices, then decreases linearly until they slow down. Linear increases and decreases of
speed over time means that the curve of the positions is composed of parabolic segments. For
this comparison of position and velocity, we are able to replicate the findings of Yamaoka et.al
(2016). An exception to this are the ranges in the proximity of the reversal points, in which this
linearity is not given. In our analysis, the diatoms behave as if velocity is proportional to the
length of their common contact surface.

Discussion

This paper introduces a new approach to understanding biological processes more
generally and specifically Bacillaria colony morphology and movement. We employ image
processing and machine learning techniques to segment images and extract quantitative
parameters. These data can then be used to both infer the phenotypic structure of a colony and
movement patterns of these colonies [67]. Of particular interest is the combination of multiple
image processing and deep learning techniques with a biomechanical analysis. Hopefully, this
will provide guidance towards the future development of digital models.
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Figure 14. Three examples of how images of a Bacillaria colony are converted into a skeleton
image. TOP ROW: light microscopy images, MIDDLE ROW: thin skeletonization based on a
procedure implemented in GIMP, BOTTOM ROW: thick skeleton based on a procedure
implemented in GIMP. Image scale: 38.36 μm per cm, or 0.325 μm per pixel. Image scale:
38.36 μm per cm, or 0.325 μm per pixel. Scale bars 50 µm.
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Figure 15. Examples of relative movement of cells in a sample colony. A: Comparisons between
changes of position for cell #2 relative to cell #1 (red) and cell #3 relative to cell #2 (blue). B:
Comparisons between changes of position (red) and changes of velocity (blue) for cell #2
relative to cell #1. C: a phase diagram of the data shown in B, velocity versus position. D:
comparison between changes of position for cell #2 relative to cell #1 (red) and sine wave (black
dashed). The oscillation period in frame C is 62.56 seconds.

This is the first attempt at characterizing individual colonies and cells using advanced
computational techniques. Future refinements of analytical techniques and input data will allow
us to build better models, bridging the gap between prior work and emerging methods. In
addition, we provide our own innovations to the study of Bacillaria. While our approach

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2019. ; https://doi.org/10.1101/2019.12.21.885897doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.21.885897
http://creativecommons.org/licenses/by/4.0/


27

provides unique information about the process of colony form and function, we are also in a
position to develop and clarify potential theoretical arguments regarding organismal phenotypes,
movement, and behavior.

Even when the various aspects of feature selection are optimized (as shown in Figure 12),
false positives are occasionally included in the output. This is true for all the techniques
presented here. For example, the segmentation process can introduce errors when the input data
is highly variable. Despite our attempt to normalize both input and output data, the normalization
procedures make certain assumptions about the data that do not fully capture natural variation.
More generally, the shape of colonies observed in our input data does not represent every
configuration found in nature. While we expect our analyses to be robust to variations on
observed shapes and movement dynamics, we cannot assure that this is the case.

Manipulations such as tracking and segmentation of diatoms colonies work best when the
colony lies in the focal plane perpendicular to the optical axis for a sufficiently long time. This is
likely to be the case for both the tracking experiments and the secondary data. Since Bacillaria
colonies often move in three dimensions, diatoms are often seen from different perspectives and
overlaps may occur. Although it is possible to force the colonies between a slide and a cover
glass into this position, the movement is often influenced by adhesion to the confining surfaces.
We must also consider the role of hydrodynamic flow in distorting the movement function within
and between measurements. Yet since Bacillaria lives at low Reynolds numbers, it is likely to
have minimal impact on the results. In general, analysis is most accurate in cases where small
colonies are in continuous contact with the visible surface.

These issues might be overcome with a larger and more diverse training set. The fact that
the number of cells in a colony is constant from one frame to the next (unless a cell division has
occurred) has not yet been incorporated. The lack of interpolation for cells that are truncated by
the edge of the microscopy image frame is another issue. While this method is able to generate
useful quantification of the image set, we still arrive at a number of issues with mapping the
functional phenotype of a Bacillaria colony to a digital representation. This is a meta-issue when
compared to false-positive identification, and so may require a new concept to characterize the
relative imprecision of the mapping between image and digital representation. Better
methodology with respect to the feature space (more subtle components of colony morphology)
would also be a helpful future advance.

This paper also makes several contributions to both computational biology and machine
learning literature. The first is to create a digital model of several parameters that are
implemented by an existing general-purpose pre-trained model. This has largely been successful
and has allowed us to extract several key parameters that describe the phenotype. We are also
able to compare these results with models trained for other specific biological tasks. This was
less successful but does guide us toward future work. This digital model will be made available
as an open-access model and can be updated with improved data and methods. Another
contribution is to create a dynamic model of the Bacillaria that will allow us to predict
movement and other deformations of the phenotype. This will help us characterize not only
modes of movement, but also any potential collective behaviors that require coordinated
decision-making between cells.
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A secondary theme of our paper are cases in which deep learning techniques succeed or
fail at capturing the desired features. In the results section, unsupervised techniques are ruled out
as inadequate, while the more technically sophisticated deep learning techniques are shown to
yield results of varying utility. Of particular interest is the level of generalizability for such
models. The optimal model should not be limited by biological variability, but should also be
able to identify uniquely biological features, even when they mimic mechanical features. One
solution to this are toy models, which can be used to capture complex processes in a simplified
and mathematically-tractable model [68]. Results of the comparison between the DeepLabv3 and
OpenDevoCell models suggest the need for a specialized pre-trained model [69] optimized for
the shape, movement patterns, and intra-cellular contours of a Bacillaria colony (see Figure 2).
Specialized pre-trained models have been created for a host of specific types of systems such as
linguistic and object recognition and transfer, so creating a model specialized for the analysis of
dynamic biological systems is both desirable and attainable.
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