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Abstract 
 

Background: Antibodies targeting abnormally glycosylated proteins have been ineffective in 

treating cancer. Antibody-drug conjugates are emerging as an efficient option, which allow 

specific delivery of drugs into tumors. We and others have dissected the abnormally 

glycosylated tandem repeat region of MUC1 glycoprotein as three site-specific glycosylated 

neoantigen peptide motifs (PDTR, GSTA, GVTS) for monoclonal antibody binding. Methods: 

Internalization of monoclonal antibodies was studied by immunofluorescence staining and 

colocalization with lysosomal markers in live cells. Antibody positivity in tumor and 

peritumoral tissue samples were studied by immunohistochemistry. The efficacy of 

anti-MUC1 ADCs were evaluated with various cancer cell lines and mouse tumor xenograft 

model. Results: We describe an anti-MUC1 ADC by conjugating GSTA neoantigen-specific 

16A with monomethyl auristatin E (MMAE). 16A-MMAE showed potent antitumoral 

efficacy with IC50 ranging from 0.2 to 49.4 nM toward multiple types of cancer cells. In vivo, 

16A-MMAE showed dose-dependent inhibition of tumor growth in mouse xenograft of 

NCI-H838 NSCLC cell line, with minimum effective dose at 1 mg/kg. At the dose of 3 mg/kg, 

16A-MMAE did not cause significant toxicity in a transgenic mouse expressing human 

MUC1. Conclusions: The high antitumoral efficacy of 16A-MMAE suggest that aberrant 

glycosylated MUC1 neoantigen is a target with high positivity in multiple cancer types for 

ADC development. Personalized therapy may be achieved by development of 

glycosite-specific antibody-drug conjugates. 
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Introduction 

Mucin-1 (MUC1), also known as EMA, PEM or CA15-3 antigen, is a transmembrane 

glycoprotein that has been studied as a significant target for tumor immunotherapy.1, 2 In 

healthy cells, MUC1 is a heavily O-glycosylated protein. The extracellular portion contains a 

variable number of tandem repeats (VNTR), and the number of tandem repeats range from 20 

to 120. Each TR consists of 20 amino acids and there are five potential O-glycosylation sites.3, 

4 MUC1 is expressed in almost all epithelial cancers.5-8 Tumor MUC1 differs from normal 

MUC1 by abnormal, truncated glycosylation. The truncated glycosylation forms glycopeptide 

epitopes that can be recognized by specific antibodies. Since such glycopeptide epitopes are 

tumor specific, they may represent potential targets for therapeutic antibodies. However, 

monoclonal antibody therapeutics targeting MUC1 has not shown efficacy in clinical trials.9, 

10 It was hypothesized MUC1 subunit containing the tandem repeats circulates at high levels 

in cancer patients and acts as a “sink” precluding delivery of antibodies to the tumor cell 

surface. However, significant inhibition of circulating MUC1 on antibody-dependent cellular 

cytotoxicity was only observed in patient serum with MUC1 levels above 100 U/ml.11 High 

levels of circulating autoantibodies against both the cancer-specific isoform of MUC1 and the 

non-glycosylated signal peptide domain of MUC1 (up to 200 μg/ml) were reported in human 

cancers.12 Several groups reported that autoantibodies toward a single glycopeptides epitope 

in cancer patients is highly variable.13 Some researchers have reported that autoantibodies to 

aberrantly glycosylated MUC1 in early stage breast cancer are associated with a better 

prognosis.14 Whether autoantibodies toward MUC1 affect the efficacy and specific targeting 

of antibody drug remain unclear. There is no data on affinity of autoantibodies toward MUC1. 

Clearly, for development of therapeutic antibodies, high-affinity is a critical criteria.  

Recent efforts have been focused on evaluating MUC1’s potential as candidates for 

antibody-drug conjugates. An antibody-drug conjugate (ADC) consists of three components: 

an antibody, an antitumoral agent and a linker. The first ADC approved by FDA was 

gemtuzumabozogamicin (Mylotarg), a humanized anti-CD33 IgG4 antibody conjugated to 

calicheamicin, a potent cytotoxic agent that causes double-strand DNA breaks.15 It was used 

to treat patients with relapsed acute myeloid leukemia. There are currently two other FDA 

approved ADCs in clinic. Brentuximabvedotin (Adcetris) is an anti-CD30 antibody linked to a 
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MMAE, an antimitotic agent which inhibits cell division by blocking the polymerisation of 

tubulin. It was approved for the treatment of relapsed or refractory systemic anaplastic large 

cell lymphoma or Hodgkin’s lymphoma.16 Trastuzumabemtansine (Kadcyla) is an anti-Her2 

antibody linked to the tubulin inhibitor maytansine derivative DM1 (T-DM1). It is used in 

advanced Her2-positive breast cancer patients.17 Furthermore, more than 30 ADCs are in 

clinical development, targeting a wide range of blood tumors and solid carcinomas.18  

We and others have dissected the abnormally glycosylated TR region as neoantigen 

peptide motifs (PDTR, GSTA, GVTS) for monoclonal antibody binding.2, 19 In this study, we 

screened monoclonal antibodies specific to above three neoantigen peptide motifs and 

synthesized antibody-MMAE for treatment of cancer. 
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Materials and Methods 

Cell lines and reagents 

Human tumor cell lines NCI-H838 (H838), NCI-H2030 (H2030), NCI-H1650 (H1650), 

NCI-H1975 (H1975), NCI-H23 (H23), NCI-H520 (H520), NCI-H460 (H460), NCI-H292 

(H292), NCI-H1229 (H1229), A549, PC9, MCF-7, SKBR3, PANC-1, CFPAC1, N87, 

HGC-27, H8910, SKOV3, ES2, Hey and KGN (obtained from the America Type Culture 

Collection, ATCC) were cultured at 37 °C with 5% CO2 in RPMI-1640 or DMEM media 

(Life Technologies) supplemented with 10% fetal bovine serum (FBS, Life Technologies). 

The Endo-S was expressed in E. coli following the reported procedure.20 MMAE and 

Fmoc-ValCit (valine-citrulline)-PAB-PNP were purchased from Levena Biopharma (Nanjing, 

China). Other chemical reagents and solvents were purchased from Sinopharm Chemical 

Reagent Co. (Shanghai, China) or Sigma-Aldrich and used without further purification. The 

MAbPac RP column (4 μm, 3.0 × 100 mm) was purchased from ThermoFisher. Nuclear 

magnetic resonance (NMR) spectra were measured on a Varian-MERCURY Plus-500 

instrument. ESI-HRMS spectra were measured on an Agilent 6230 LC-TOF MS spectrometer. 

 

Confocal microscopy 

H838 cells were seeded on glass covers lips in 3.5 cm dishes (1.5 ×105 cells per well) and 

cultured at 37 °C with 5% CO2 in RPMI-1640 with 10% fetal bovine serum for 24 hours. 

Cells were incubated with 2 μg/ml cy5-labelled 16A mAb for 3.5 hours, and subsequently 

incubated with 75 nM lysosome fluorescent probe (LysoTracker Red DND 99, ThermoFisher) 

for 30 min. Cells were washed, fixed, and observed with a confocal laser scanning 

microscope (Nikon A1R, Japan). 

 

Internalization of 16A antibody 

To measure the internalization of antibody, multiple sets of 2 ×105 H838 cells were first 

incubated with unlabeled 16A mAb at a saturating concentration of 5 μg/ml. The negative 

control group without internalization was kept on ice for 150 min. For internalization 
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experiments, other sets of antibody-coated cells were incubated at 37 °C to allow antibody 

internalization for different time periods (30, 60, 90, 120 and 150 min). At the end of 

incubation, cells were washed with ice cold PBS buffer and then stained with a PE-labelled 

anti-mouse IgG secondary antibody (Southern Biotech, Birmingham, AL) at 1 μg/ml 

concentration for 30 min on ice. After 3 washes with PBS, the cells were harvested and 

analyzed by flow cytometry to calculate mean fluorescent intensity (MFI). The amount of 

16A antibody internalized into cells at each time point was determined by the percentage of 

MFI decrease as compared to control cells that were incubated at 4 °C for 150 min.   

 

Flow cytometry staining of cancer cell lines  

Cell surface expression of MUC1 was assessed by flow cytometry staining. The cells were 

washed with 2% BSA in PBS and then incubated with the 16A21, SM3 or C595 antibody 

(Abcam, US) at 5 µg/ml for 30 min at 4 °C. After washing, cells were incubated with 

PE-labelled anti-mouse IgG (1 µg/ml) for 30 min at 4 °C. After washing, cells were analyzed 

by FACS Calibur (BD company) and the data were analyzed using FlowJo software (version 

7.6). 

 

Immunohistochemistry 

Tumor tissue array slides were from Crownbio, China. Immunohistochemistry was performed 

by Bond RX automatic IHC&ISH machine, Leica. In brief, paraffin-embedded tissue samples 

were treated by Dewax solution and antigen retrieval buffer sequentially, followed by staining 

with primary and secondary antibodies. All of the staining was scanned with NanoZoomer 

Image system. The intensity of IHC staining were scored at four levels, 0 (negative), 1 (weak 

staining), 2 (medium staining), 3 (strong staining). The percentages of tumor cells at different 

intensity levels are evaluated.  

Total Score = (% at 0) × 0 + (% at 1) × 1 + (% at 2) × 2 + (% at 3) × 3.  

 

Synthesis of NHS-ValCit-PAB-MMAE 

Antibody-MMAE was synthesized as previously described.22 NH2-ValCit-PAB-MMAE (29.7 

mM in 300 μl DMF) was added gradually (30 μl every 15 min) to a solution of disuccinimidyl 
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glutarate (DSG, 53.4 mM) prepared in a mixture (1:1 volume) of DMF/phosphate buffer (50 

mM, pH 7.5). The reaction mixture was stirred at room temperature for 3 hours and monitored 

by RP-HPLC. The product was purified by preparative HPLC to give a white powder (9.1 mg, 

76.5%). 1H NMR (500 MHz, DMSO-d6) δ 8.14 (d, J = 7.5 Hz, 1H), 7.89 (d, J = 8.6 Hz, 2H), 

7.59 (d, J = 8.1 Hz, 2H), 7.32 (d, J = 7.8 Hz, 2H), 7.28 (dd, J = 7.5, 2.7 Hz, 2H), 7.17 (s, 1H), 

5.98 (s, 1H), 5.04 (dd, J = 31.4, 17.1 Hz, 3H), 4.50 (d, J = 5.9 Hz, 1H), 4.44 (d, J = 6.6 Hz, 

1H), 4.39 (d, J = 8.3 Hz, 1H), 4.31-4.26 (m, 1H), 4.26-4.18 (m, 2H), 4.06-3.93 (m, 3H), 

3.61-3.55 (m, 2H), 3.25 (d, J = 7.7 Hz, 3H), 3.20 (d, J = 12.5 Hz, 3H), 3.12 (s, 1H), 2.98 (s, 

1H), 2.87 (dd, J = 18.5, 5.7 Hz, 3H), 2.82 (s, 3H), 2.69 (d, J = 7.5 Hz, 2H), 2.42 (d, J = 16.2 

Hz, 2H), 2.36-2.23 (m, 4H), 2.17-2.08 (m, 2H), 2.01-1.68 (m, 10H), 1.63-1.47 (m, 4H), 

1.07-0.98 (m, 6H), 0.91-0.74 (m, 21H). 13C NMR (126 MHz, DMSO-d6) δ 171.42, 171.16, 

170.54, 170.20, 168.71, 158.82, 143.61, 128.11, 127.74, 127.68, 126.68, 126.60, 126.40, 

126.35, 85.37, 74.74, 60.87, 58.12, 57.55, 57.10, 54.93, 54.06, 53.10, 47.15, 46.19, 43.70, 

43.15, 38.55, 33.58, 31.48, 30.37, 29.87, 29.63, 29.25, 26.78, 25.41, 25.30, 24.29, 23.07, 

20.56 , 19.19, 18.88, 18.12, 15.41, 15.24, 14.96, 10.26. HRMS Calcd for [M+H]+ 1334.7612, 

found 1334.7586. [M+Na]+ 1356.7931, found 1356.7399. 

 

Preparation of lysine-linked antibody-drug conjugates 

16A monoclonal antibody (1 mg/ml) and NHS-ValCit-PAB-MMAE (1.5 mM) in phosphate 

buffer (pH 8.0, 50 mM) containing 4-5% DMSO was incubated at 37 °C for 2 hours. The 

reaction mixture was immediately subject to protein-A affinity chromatography column for 

purification. Before loading the ADC sample, the protein A-agarose column was pre-washed 

with a glycine-HCl (100 mM, pH 2.5, 5 column volume) and pre-equilibrated with phosphate 

buffer (50 mM, pH 8.0, 5 column volume). After loading the ADC reaction mixture, the 

column was washed with phosphate buffer (50 mM, pH 8.0, 5 column volume) and 

glycine-HCl (20 mM, pH 5.0, 3 column volume) successively. Then the bound ADC was 

eluted with glycine-HCl (100 mM, pH 2.5, 5 column volume) followed by neutralization to 

pH 7.5 with glycine-HCl (1 M, pH 8.8) immediately. The fractions containing the target ADC 

were combined and concentrated by centrifugal filtration through a 10 kDa cut-off membrane.  
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High performance liquid chromatography (HPLC) of 16A-MMAE 

Analytical RP-HPLC was performed on LC3000 (analytic) instrument (Beijing 

ChuangXinTongHeng Ltd, China) with a C18 column (5 μm, 4.6 ×150 mm) at 40 °C. The 

column was eluted with a linear gradient of 2-90% acetonitrile containing 0.1% TFA for 30 

min at a flow rate of 1 ml/min. Preparative HPLC was performed on LC3000 instrument with 

a preparative column (Waters, C18, OBD, 5 μm, 19 ×250 mm). The column was eluted with a 

linear gradient of aqueous acetonitrile containing 0.1% TFA at a flow rate of 10 ml/min. 

 

Liquid chromatography mass spectrometry (LC-MS) 

ESI-MS spectra of small molecules were measured on an Agilent 6230 LC-TOF MS 

spectrometer. The small molecules were analyzed using a short guard column and eluted with 

70% methanol containing 0.1% formic acid. The mass spectra of small molecules were 

recorded in the mass range of 200-3000 or 600-2000 under a high resolution mass-spec mode 

(HRMS, standard 3200 m/z, 4 GHz). Key source parameters: a drying nitrogen gas flow of 11 

L/min; a nebulizer pressure of 40 psi; a gas temperature of 350 °C; a fragmentor voltage of 

175 V; a skimmer voltage of 65 V; and a capillary voltage of 4000 V.  

LC-MS spectra of antibodies and ADCs were measured on the same MS spectrometer 

(Agilent 6230) with a THERMO MAbPac RP column (4 μm, 3.0 ×100 mm) at 80 °C. The 

column was eluted with an isocratic mobile phase of 20% acetonitrile (Buffer B) and 80% 

water containing 0.1% formic acid (Buffer A) for the first 3 min at a flow rate of 0.4 ml/min, 

then it was successively eluted at the same flow rate with a linear gradient of 20-50% 

acetonitrile for additional 2.5 min, an isocratic 50% acetonitrile for 2 min, another linear 

gradient of 50-90% acetonitrile 0.5 min, and an isocratic 90% acetonitrile for 2 min. The mass 

spectra of antibodies were collected under the extended mass range mode (high 20 000 m/z, 1 

GHz) in the mass range of 800-5000. Key source parameters: a drying nitrogen gas flow of 11 

L/min; a nebulizer pressure of 60 psi; a gas temperature of 350 °C; a fragmentor voltage of 

400 V; a skimmer voltage of 65 V; and a capillary voltage of 5000 V. The multiple charged 

peaks of the antibody were deconvoluted using the Agilent MassHunter Bioconfirm software 

(deconvolution for protein, Agilent technology) with the deconvolution range from 20 kDa to 

160 kDa; other parameters were set at default values for protein deconvolution. The TOF was 
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calibrated over the range 0-6000 m/z using Agilent ESI calibration mix solution before 

analysis. The peak of MS 922 is the internal standard for calibration.  

 

Pharmacokinetic studies of ADC 

All animal studies were approved by the animal care and use committee of Tongji University. 

All experiments were carried in SPF housing facilities. Groups of mice (n=3, C75BL/6 strain, 

8-week-old) were injected intravenously with a single dose of non-conjugated 16A mAb or 

16A-MMAE at 5 mg/kg (mean body weight of mice being 20 g). Whole blood sample was 

collected from tail vein at various time points (0.25, 6, 24, 48, 96, 144, and 192 hours post 

dose). Serum was separated by centrifugation and stored at -80 °C until analysis.  

The antibody drug concentrations were analyzed by ELISA. 96-well plates were coated 

with 1.5 μg/ml streptavidin (S4762, Sigma) at 4 °C overnight. Plate was blocked with 1% 

bovine serum albumin in PBS at 37 °C for one hour, then incubated with 2 μg/ml biotinylated 

MUC1 glycopeptide antigen at 37 °C for 1 hour. After washing, the mouse plasma samples 

and calibration standards of 16A/16A-MMAE (serial concentration: 400 to 3.125 ng/ml) were 

added. The binding reaction of plasma antibody drug was for 1 hour at 37 °C. After washing, 

the plate was incubated with horseradish peroxidase (HRP)-conjugated anti-mouse IgG at 

37 °C in 1 hour, and visualized by adding 100 µl of TMB substrate solution for 30 min at 

room temperature followed by 100 µl of terminating solution. The absorbance was measured 

at 450 nm. Antibody drug concentrations and pharmacokinetics parameters were calculated 

using the PK solver software. 

 

Cytotoxicity assay 

The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) method was 

used to measure the in vitro efficacy of the ADCs. Briefly, cells were plated at 5000 cells per 

well in 96-well plates at 37 °C and 5% CO2 for overnight. The ADC samples were serially 

diluted from 100 to 10e-4 μg/ml in culture medium. Cell viability was assessed after 72 hours 

by the MTT method. IC50 was determined by GraphPad Prism version 5 (GraphPad Software, 

Inc. San Diego, CA). 
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Efficacy of 16A-MMAE in mouse xenograft tumor models 

Groups of Balb/c nu/nu mice (6-week-old, female) were inoculated with 1×107 H838 cells in 

200 μl of PBS on the right flank. Tumor size was measured starting on day 8 (day 7 after first 

injection) and then every 2-3 days. The longest length (a) and the length perpendicular to the 

longest length (b) were used in the formula V = ½ ×a ×(b)2 to obtain the tumor volume in 

mm3. Mice were randomized into different treatment groups (n =5) when tumors reached a 

size between 150 and 250 mm3, and treated by antibody drugs.  

The different treatment groups include 16A (15 mg/kg), 16A-MMAE (0.5, 1, 3, 5 and 15 

mg/kg), and vehicle PBS, respectively. Mice received one or two doses of ADCs (second dose 

was 48 hours after first dose), non-conjugated antibodies, or vehicle PBS administered by 

intravenous injection. Statistic analysis was performed with GraphPad Prism version 5 

(GraphPad Software, Inc. San Diego, CA).  

 

16A-MMAE toxicity in hMUC1 transgenic mice 

Groups of hMUC1-Tg mice22 (024631-C57BL/6-Tg(MUC1)79.24Gend/J, 8-week-old, n=6 

per group, 3 males and 3 females, from Jackson Laboratory) were treated by 16A-MMAE via 

tail vein injection at a single dose of 0, 3, 15, or 30 mg/kg. Systemic tissue toxicity was 

examined at the Shanghai Institute of Materia Medica’s Center for Drug Safety Evalution and 

Research. Clinical pathology parameters were assessed on days 3, 14, and 28. Tissue samples 

of heart, liver, spleen, lung, kidney, gastric, pancreatic, and small intestine from ADC treated 

hMUC1 transgenic mice were fixed in 4% formaldehyde and embedded in paraffin blocks. 

Tissue sections were stained with hematoxylin and eosin. 

 

Efficacy of 16A-MMAE on MUC1-expressing syngeneic tumor in hMUC1 transgenic mice 

A B16-OVA-hMUC1 cell line was generated by stable transfection of B16-OVA cell line23 

with a pcMV3-hygro(R) plasmid (Sino Biological, China) encoding human MUC1 gene. 

Groups of hMUC1-Tg mice22 (024631-C57BL/6-Tg(MUC1)79.24Gend/J, 8-week-old, from 

Jackson Laboratory) were inoculated with 1×105  B16-OVA-hMUC1 cells in 200 μl of PBS 

on the right flank. Mice were randomized into different treatment groups (n = 4) when tumors 

reached a size about 100 mm3. The different treatment groups include 16A-MMAE (3 and 10 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 30, 2019. ; https://doi.org/10.1101/2019.12.22.885566doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.22.885566


 11

mg/kg), and vehicle PBS, respectively. Mice received two doses of 16A-MMAE (second dose 

was 48 hours after first dose), or vehicle PBS administered by intravenous injection. Statistic 

analysis was performed with GraphPad Prism version 5 (GraphPad Software, Inc. San Diego, 

CA). 
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Results 

Internalization and delivery of 16A antibody to lysosomes 

We have screened a panel of mAbs specific to abnormally glycosylated MUC1 peptide motifs 

(PDTR, GSTA, GVTS) and focused on 16A mAb.21 The cy5-labelled 16A was initially 

localized on the cell surface after 30 min incubation at 37 °C (Fig. 1A, green). After 4 hours 

incubation at 37 °C, 16A was effectively internalized through endocytosis. The intracellular 

16A co-localized with LysoTrack Red DND 99, a red-fluorescent dye for labeling and 

tracking acidic organelles in live cells, indicating that 16A was internalized and transported to 

the lysosomes (Fig. 1A, yellow). Lung cancer cell line H838 internalized 16A antibody within 

150 min (Fig. 1B). 

 

Positivity of 16A antibody epitope in cancer cells and tissues 

By flow cytometry analysis, we found that 16A antibody which specifically binds to GSTA 

neoantigen as we previously reported21 showed high positivity in 11 NSCLC cell lines (Fig. 

2A). In contrast, SM3 and C595, two antibody clones which specifically bind to PDTR 

neoantigen epitope, showed extremely low positivity in NSCLC cell lines. We further 

confirmed this finding by immunohistochemistry staining in consecutive sections of tumor 

tissues from NSCLC patients. Tumors from same patients showed strong staining to 16 

antibody, but are negative for SM3 or C595 (Fig. 2B, 2C and 2D). 

We and others previously reported findings that antibodies specific to tumor MUC1 

preferentially bind to cell surface of tumor cells, but not heatlhy cells.2 IHC staining showed 

strong binding of 16A mAb to lung (Fig. 3A and Fig. S1), breast, TNBC (Fig. 3A and Fig. S2) 

and gastric (Fig. S3) cancer tissues. Positivity of 16A mAb staining was more than 60% in 

lung, breast, TNBC (Fig. 3B and Table 1) and gastric cancers (Fig. S3 and Table 1). Weak 

binding was found in colon and rectum cancer tissues by 16A antibody (Fig. S3 and Table 1). 

Significant higher expression was found in lung adenocarcinoma and squamous carcinoma as 

compared to peritumoral tissues (Fig. S4).  

16A staining was found in cytoplasm of peritumoral cells (Fig. 3C), but not cell surface. 

In contrast, strong staining by 16A was found on cell surface of tumor tissue cells (Fig. 3D). 

Moreover, strong staining by 16A was found in both cytoplasm and cell surface of breast and 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 30, 2019. ; https://doi.org/10.1101/2019.12.22.885566doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.22.885566


 13

TNBC tissue cells (Fig. 3E and 3F). 

Normal tissues including thymus, tonsil, spleen, cerebellum, pituitary, ovary, liver, 

paranephros, testis, intestine, cervix, salivary gland, bone marrow, cerebral cortex, bladder, 

striated muscle, and heart showed weak or no binding to 16A (Fig. S5). The staining to 

normal tissues are on cytoplasm of cells. 

 

Drug antibody ratio of 16A-MMAE 

MMAE, a synthetic analog of the natural product dolastatin 10，originally isolated from sea 

hare, is a potent inhibitor of tubulin polymerization.24 We synthesized 16A-MMAE using a 

cleavable ValCit dipeptide linker connecting a payload with a p-aminobenzyloxycarbonyl 

(PABC) group (Fig. 4A). ValCit linkers are selectively cleaved by lysosomal enzymes upon 

internalization of 16A-MMAE by cancer cells, resulting in release of MMAE (Fig. 4B). 

LC-MS analysis was used to determine the average drug antibody ratio (DAR) of 

16A-MMAE. The conjugation mixture contains 16A conjugates with 0, 1, 2, 3, 4, 5, and 6 

drugs per antibody, and the average DAR of 16A-MMAE was 3.11 (Fig. 4C). The 

heterogeneity of DAR values is a common property of lysine-linked ADCs, including the 

T-DM1 reported in references.25,26 In our experiment, we employed consistent conjugation 

conditions (temperature, solvent, pH, concentration, and ratio of materials). Furthermore, we 

also combined the real-time DAR monitoring as we previously reported,27 to avoid the 

batch-to-batch inconsistency. 

 

Pharmacokinetics of 16A-MMAE 

To determine the serum half-life of non-conjugated 16A antibody and 16A-MMAE in 

C57BL/6 mice, we intravenously injected 16A or 16A-MMAE and measured the serum 

antibody concentration at the different time points (0.25, 6, 24, 48, 96, 144, and 192 hours) 

(Fig. 5). The non-conjugated 16A antibody showed a serum half-life of 207.00 hours, and the 

16A-MMAE showed a shorter serum half-life (144.22 hours, Table S1). The clearance and 

mean residence time are consistent with the serum half-life.  
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IC50 of 16A-MMAE 

The cytotoxicity assay showed that 16A-MMAE exhibited strong tumor cell killing toward 

most of the lung, breast, pancreatic, gastric and ovarian (Fig. S6) cell lines. The IC50 of 

16A-MMAE was shown in Table 2. Flow cytometry results showed that most of lung, breast, 

pancreatic and gastric (Fig. S6) cancer cells could be strongly stained by 16A antibody. 

 

In vivo antitumoral activity of 16A-MMAE 

The in vivo antitumoral activity of 16A-MMAE was evaluated in a H838 mouse xenograft 

model. The results clearly showed that 16A-MMAE inhibited tumor growth in mice, in a 

dose-dependent manner. Tumor could be cured by two doses of 16A-MMAE at 3 mg/kg (Fig. 

6A). The minimal effective dose was 1 mg/kg by two doses (Fig. 6B) or single dose (Fig. 6C). 

 

In vivo toxicity of 16A-MMAE 

The in vivo toxicities of the 16A-MMAE in tumor-bearing mice were monitored by body 

weight. No significant changes were observed in treated groups under the dose of 5 mg/kg as 

compared to PBS control (Fig. 6D, 6E and 6F). To better assess drug toxicities, hMUC1 

transgenic mice22 (024631-C57BL/6-Tg(MUC1)79.24Gend/J, from Jackson Laboratory) were 

administered by escalating doses of 16A-MMAE (0, 3, 15 and 30 mg/kg) and sacrificed at 3, 

14 or 28 days after drug treatment. Tissue sections of the major organs (heart, liver, spleen, 

lung, kidney, stomach, intestine and pancreas) were analyzed after H&E staining. No obvious 

pathologic changes were found at above three time points for the group treated at the dose of 

3 mg/kg. For the 15 and 30 mg/kg groups, minor pathologic changes were observed in some 

tissues (liver, lung and kidney， Fig. S7B and 7C). Immunohistochemical staining of normal 

hMUC1-Tg mice tissues by 16A antibody showed that the target organs of toxicity are partly 

associated with the antibody binding. The 16A antibody binding was observed not only in 

liver, lung, and kidney, but also in stomach, colon, cecum, rectum, salivary gland, trachea, 

uterus, and testis. No staining by 16A antibody was found in the heart, spleen, duodenum, 

jejunum, ileum, esophagus, brain, adrenal gland, sternum, vagina, oviduct, ovary, skin, 

bladder, bicipital muscle, epididymis, prostate and seminal vesicle (Fig. S8). 
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The in vivo antitumoral activity of 16A-MMAE was also tested by a syngeneic tumor 

model in hMUC1-Tg mice using a B16-OVA cell line stably transfected by human MUC1 

gene. The results showed that 16A-MMAE inhibited tumor growth in mice, in a 

dose-dependent manner (Fig. S9). Tumor could be inhibited by two doses of 16A-MMAE at 

10 mg/kg. 
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Discussion 

Tissue positivity is critical for developing antibody-based therapeutics. The potential of 

post-translational modification of glycoproteins has gain recent recognition in field of cancer 

therapy. For example, the most common glycan structures in lung cancer include Tn antigen 

(GalNAc), STn antigen (Neu5Acα2-6GalNAc), and ST antigen 

(NeuAcα1-3Gaβ1-3GalNAc).28 However, the exact glycopeptide sequences in every 

individual cancer patients are highly variable and diverse, due to the “assembly line” nature of 

glycosylation pathway.29 Big data on the glycopeptide epitopes caused by such abnormal 

glycosylation on specific glycoproteins in cancer population is unavailable. We previously 

predicted the glycopeptide sequences in lung cancer by MATLAB software.21 However, these 

sequences have not been verified by mass spectrometry analysis. The availability of 

monoclonal antibodies specific to synthetic glycopeptides partially addresses this problem as 

immunohistochemical staining by such monoclonal antibodies support the expression of a 

glycopeptide sequence, in spite of the caveat that the respective monoclonal antibody may 

have cross reactivity to structurally related other glycopeptide sequences.  

Our results showed that 16A mAb, which targets the GSTA motif of MUC1,21 broadly 

binds to multiple types of cancer, including the triple negative breast cancer and gastric cancer. 

The positivity of 16A mAb staining in breast cancer (90%) is higher than SAR566658,30, 31 

which binds to a sialylated unknown MUC1 sequence in bladder, breast, ovary, pancreatic, 

head and neck cancers with positivity of 59%, 29-35%, 70%, 59%, and 17% respectively. For 

those cancer tissues negative by 16A mAb staining, other mAbs targeting PDTR or GVTS 

motifs are worthy of further investigation.  

Several ADCs targeting MUC1 have been reported. Lovat group reported the efficacy of 

hHuHFMG1 antibody-drug conjugate in esophageal adenocarcinoma.32 Kufe group reported 

an ADC targeting non-glycosylated C-termial of MUC1.33 The antitumoral efficacy and the 

toxicity are two major criteria to be studied for their clinical application. A phase I clinical 

trial for SAR566658 in patients with CA6-positive ovarian, pancreatic, and breast tumors has 

been completed.30, 31 SAR566658 is CA6 mAb conjugated to DM4, a maytansinoid derivative, 

by SPDB (N-succinimidyl-4-(2-pyridyldithio) butanoate) linker, a hindered disulfide bond 

stable linker which is stable in blood stream. Partial response was observed in breast, ovarian 
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and lung cancers. Dose-limiting toxicities were observed at 240 mg/m2 (diarrhea and keratitis). 

Late occurrence of reversible corneal toxicity was observed at > 150 mg/m2.  

In this study, we used hMUC1 transgenic mice model for further assessing the toxicity of 

16A-MMAE. Our safety data showed that 16A-MMAE was well-tolerated in hMUC1 

transgenic mice at 3 mg/kg. At higher dose, 16A-MMAE exhibited a dose-limiting toxicity. 

However, the tissue toxicity is not clearly associated with 16A mAb positivity. The 

mechanism of toxicity remain to be studied. It might be due to the low level of expression of 

16A epitopes in target organs. Alternatively, the toxicity might be due to the non-specific 

release of MMAE to mouse serum, as we used ValCit linkers which can be hydrolyzed in 

mouse plasma by carboxylesterase 1c.24,34 

Drug pay load is another critical factor for the toxicity of ADC. Recently, topoisomerase 

I inhibitor payload showed impressive success in clinical trials, including trastuzumab 

deruxtecan (Her2/Exatecan Antibody-Drug Conjugate),35 Labetuzumab Govitecan 

(CEACAM5/SN-38 Antibody-Drug Conjugate),36 Sacituzumab Govitecan (Trop-2/SN-38 

Antibody Drug Conjugate).37 Such moderately cytotoxic pay loads often led to 

no-observed-adverse-effect level (NOAEL) in dose escalating studies, thus serve as promising 

conjugates to be tested for mAbs specific to cancer glycopeptides. Novel conjugation methods 

which are more specific and potent in conjugating drug payloads to antibodies are also 

evolving.38 More interestingly, non-internalising ADC that releases its drugs upon a click 

reaction with a chemical activator was recently developed, which showed efficacy in treating 

cancer that are resistant to those ADCs must be internalized.39  

In summary, this study reports a neo-antigen epitope generated by abnromal 

post-translational modification of glycoproteins, with high positivity in a broad spectrum of 

cancer types. The balance of antitumoral efficacy and toxicity can further be fine-tuned by 

optimizing the linker and the drug payload.
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Figure legends 

Fig 1. Internalization of 16A antibody. 

(A) Fluorescence-labeled 16A was incubated with H838 cells for 0.5 or 4 hours at 37 °C. 

After 0.5 hour, 16A staining was located to the cellular membrane. Four hours later, the 

antibody was endocytosed and co-localized with LysoTrack Red, a marker for acidic 

organelles in live cells. (B) Time course of 16A antibody internalization by lung cancer cell 

line H838 was measured by flow cytometry. 

 

Fig 2. Staining of NSCLC cells and tissues by 16A (specific to GSTA neoantigen), SM3 

and C595 (specific to PDTR neoantigen). 

(A) NSCLC cell lines were stained by 16A, SM3 and C595 antibodies. (B) Tissue array slides 

containing consecutive tissue sections from same NSCLC patients were stained by 16A, SM3 

and C595 antibodies. 

 

Fig 3. The expression of aberrant glycosylated MUC1 peptide motif in lung and breast 

cancer tissues as stained by 16A antibody.  

(A) H-score of cancer tissue array stained with 16A. The intensity of IHC staining were 

scored at four levels, 0 (negative), 1 (weak staining), 2 (medium staining), 3 (strong staining). 

The percentages of tumor cells at different intensity levels are evaluated. Total Score = (% at 

0) ×0 + (% at 1) ×1 + (% at 2) ×2 + (% at 3) ×3. (B) 16A positivity in lung cancer, breast 

cancer and TNBC samples. (C,D,E,F) Representative photographs of MUC1 immunostaining 

inperitumoral (C), lung cancer (D), Non-TNBC (E) and TNBC (F) tissue by 16A antibody 

(original magnification ×200). Positive was defined as ≥30% of tumor with staining ≥2+. 

 

Fig 4. Preparation of ValCit-MMAE ADC and drug antibody ratio of 16A-MMAE. 

(A) The scheme for chemical synthesis of antibody-ValCit-MMAE. (B) The scheme of ValCit 

linker cleavage by the cathepsin B after the ADC is internalized by tumor cells. The activated 

MMAE drug is formed by spontaneous1,6-elimination. (C) LC-MS analysis of 16A-MMAE. 

The average drug antibody ratio is 3.11. 
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Fig 5. Pharmacokinetic profiles of non-conjugated 16A and 16A-MMAE in vivo. 

C57BL/6 mice were injected intravenously with a single dose of non-conjugated 16A mAb or 

16A-MMAE ADC at 5 mg/kg. Serum antibody concentration was measured by ELISA at 

different time points. 

 

Fig 6. Antitumoral effect of 16A-MMAE in H838 xenograft model. 

(A) Groups of mice (Balb/c nu/nu, female, 6-week-old) bearing ~200 mm3 H838 tumor were 

treated with 16A-MMAE or non-conjugated antibody at 3 mg/kg, 5 mg/kg or 15 mg/kg, 

respectively. Arrows indicate time of drug treatment. (B,C) Mice bearing ~200 mm3 H838 

tumor were treated with 16A-MMAE (one or two doses) at 0.5 mg/kg, 1 mg/kg or 3 mg/kg, 

respectively. Arrows indicate time of drug treatment. (D,E,F) The body weight of treated 

mice was measured in all groups. Data points represent mean ± SEM (n = 5). 
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Table 1. Positivity of 16A staining in solid tumors. 
Solid tumors Ratios (%) 

Lung cancer 65.8 

Non triple-negative breast cancer 91.2 

Triple-negative breast cancer 80 

Breast cancer 90 

Stomach cancer 67.1 

Colon cancer 28.5 

Rectum cancer 19.7 
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Table 2. IC50 values of 16A-MMAE for cancer cell lines. 
Cancer Type Cell line IC50 (nM) 

Lung Cancer A549 0.20 ± 0.03 

 H838 0.53± 0.08 

 H1650 0.66± 0.11 

 H2030 1.06± 0.17 

 PC9 9.80± 1.44 

 H1975 49.40± 20.27 

Breast Cancer MCF-7 1.58± 0.22 

 SKBR3 3.34± 0.41 

Ovarian Cancer  H8910 0.62 ± 0.04 

 SKOV3 32.13 ± 12.75 

 ES2 177.2 ± 6.2 

 hey >700 

 KGN >800 

Gastric Cancer HGC-27 13.24 ± 0.65 

 N87 24.04 ± 8.32 

Pancreatic Cancer CFPAC1 0.53 ± 0.40 

 PANC-1 4.09 ± 1.12 
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