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ABSTRACT 24 

Computational advances have fostered the development of new methods and tools to integrate 25 

gene expression and functional evidence into human-genetic association analyses. Integrative 26 

functional genomics analysis for altered response to alcohol in mice provided the first evidence 27 

that multi-species analysis tools, such as GeneWeaver, can identify or confirm novel alcohol-28 

related loci. The present study describes an integrative framework to investigate how highly-29 

connected genes linked by their association to tobacco-related behaviors, contribute to individual 30 

differences in tobacco consumption. Data from individuals of European ancestry in the 31 

UKBiobank (N=139,043) were used to examine the relative contribution of orthologs of a set of 32 

genes that are transcriptionally co-regulated by tobacco or nicotine exposure in model organism 33 

experiments to human tobacco consumption. Multi-component mixed linear models using 34 

genotyped and imputed single nucleotide variants indicated that: (1) variation within human 35 

orthologs of these genes accounted for 2-5% of the observed heritability (meta h2
SNP-Total=0.08 36 

[95% CI: 0.07, 0.09]) of tobacco/nicotine consumption across three independent folds of 37 

unrelated individuals (enrichment ranging from 0.85 - 2.98), and (2) variation around (5, 10, 15, 38 

25, and 50 Kb regions) the set of co-transcriptionally regulated genes accounted for 5-36% of the 39 

observed SNP-heritability (enrichment ranging from 1.60 – 31.45). Notably, the effects of 40 

variants in co-transcriptionally regulated genes were enriched in tobacco GWAS. These findings 41 

highlight the advantages of using multiple species evidence to isolate genetic factors to better 42 

understand the etiological complexity of tobacco and other nicotine consumption. 43 

 44 

 45 

 46 
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INTRODUCTION 47 

Contemporary thought on genetic research of complex traits in humans is that large scale 48 

genome-wide association studies (GWAS) are required to identify reproducible single nucleotide 49 

polymorphism (SNP) associations that can lead to insights into biological systems that underpin 50 

a particular phenotype. The agnostic nature of GWAS, i.e., all SNPs being tested without bias, is 51 

a strength that allows for the identification of previously unrecognized biological underpinnings. 52 

However, the GWAS approach is not without limitations. For example, examination of genome-53 

wide variation requires a stiff penalty for multiple comparisons leading to the need for 54 

increasingly large sample sizes. The requirement of sample sizes in the 100’s of thousands to 55 

millions (i.e., mega-GWAS) exerts pressure on the depth of phenotyping that may be done (i.e., 56 

more intensive and costly phenotypes are untenable for Mega-GWAS studies). Additionally, 57 

SNPs implicated by GWAS are not always readily associated with gene function. In fact, a 58 

majority of GWAS hits fall in non-coding or intergenic regions1. Linkage disequilibrium allows 59 

for a relatively sparse coverage of the genome to be maximally informative, but simultaneously 60 

limits the immediate “translatability” of the signals (i.e., a SNP identified by GWAS may be a 61 

proxy for a causative SNP some genomic distance away). In sum, while GWAS findings have 62 

become increasingly reproducible as sample sizes increase, it has become increasingly evident 63 

that additional sources of data (e.g., gene regulatory and epigenetic data2) are needed to 64 

understand how subtle SNP effects increase risk for pathology or can be utilized in identifying 65 

critical biological mechanisms. 66 

Genetic studies of tobacco consumption assume that genetic variation in the biological 67 

sample collected (e.g., blood and saliva) reflects the genetic influences in brain that mediate the 68 

psychoactive properties of nicotine and other chemicals found in tobacco products. Nicotine has 69 
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been shown to cause changes in neural organization, particularly in the brain’s reward systems, 70 

psychomotor and cognitive processes via its ability to interact with nicotinic acetylcholine 71 

receptors (nAChRs).3; 4 By altering neural circuits, especially those comprising the dopaminergic 72 

systems of the midbrain, nicotine elicits a high potential for addiction, regardless of the form in 73 

which it is marketed.5 Altogether, these properties of tobacco products highlight putative genetic 74 

mechanisms that may mediate consumption. The largest tobacco consumption meta-GWAS, to 75 

date, has identified 566 genetic variants in 406 loci associated with various phenotypes related to 76 

tobacco consumption (i.e., initiation, cessation, and heaviness of use).6  While the individual 77 

effects of these loci are limited, their application in the form of polygenic risk scores (PRS; i.e., 78 

the sum weighted effect of genome-wide variants that have been shown to predict individual 79 

differences on a trait) has been shown to have some utility in predicting consumption in similarly 80 

ascertained samples.6 Moreover, the variation in predictive utility of a PRS based on how the 81 

polymorphisms included are selected (e.g., p-value thresholds versus Best Linear Unbiased 82 

Predictors) underscores the need for additional lines of evidence to prioritize a subset of genome-83 

wide signals contributing to consumption. However, short of increasing sample sizes to realize 84 

shared cumulative variant effects across subgroups of tobacco users in a GWAS, there are few 85 

methods to increase power to realize other genetic variants. 86 

One approach to increase power in GWAS is the use of prioritized subsets of genomic 87 

variants while correcting for the overall genome-wide false discovery rate (FDR) using a 88 

multivariate mixed linear modeling framework. Indeed, the use of mixed models and prioritized 89 

subset approaches that fit multiple single nucleotide polymorphisms (SNPs) simultaneously have 90 

been shown to  account for variation in a trait and improve power in association analyses.7 The 91 

recent development and application of genomic-relatedness-matrix restricted maximum 92 
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likelihood (GREML8; 9) to addiction phenotypes and other complex traits, provides a multivariate 93 

framework so that the joint effects of loci can be determined. Moreover, GREML enhances 94 

power to localize the source of genetic variance for complex traits by aggregating the effects 95 

across a priori defined regions or categories of SNPs while accounting for LD.10
  For instance, 96 

we applied GREML to Heroin Dependence and showed that SNPs in the 1-10% MAF range 97 

largely contribute to the known additive genetic variance even while controlling for LD.11 98 

Similarly, Brazel et al., demonstrated that exonic rare variants in and around common variants 99 

are capable of indexing upwards phenotypic and genetic variance of alcohol and nicotine 100 

consumption, respectively, albeit with varied effects across phenotypes.12  101 

While there have been several advances in application of genome-wide addiction 102 

genetics, overcoming the limitation of how to integrate prior knowledge and prioritize genomic 103 

variants, outside of broad functional categories (e.g., 3’ UTR, Intergenic, Rare coding, etc.), 104 

remains a critical limitation. Furthermore, lack of ready access to brain tissue in a living intact 105 

human precludes a direct understanding of tissue-specific epigenetic and/or expression 106 

differences that arise from continued exposure, which would aid in localizing expression 107 

quantitative trait loci sensitive to drug processes. In light of these concerns, the intuitive appeal 108 

of human-only genetic analysis is diminished, and suggests that another compelling approach is 109 

the use of complementary genomic data from model organism systems.   110 

In this study, we evaluate the possibility of bridging between human GWAS and model 111 

organism genomics using a novel and integrative framework to answer the empirical question as 112 

to whether or not findings from model system studies may be leveraged with the human GWAS 113 

approach to speed advancements in this area. We used transcriptome-informed exposure models 114 

of tobacco/nicotine to parse genome-wide SNP-heritability estimates to test this hypothesis 115 
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directly. This was achieved using the GeneWeaver heterogeneous functional genomics 116 

repository and analysis system as the primary platform for integration of evidence13 across 117 

existing studies.  118 

 119 

MATERIALS & METHODS 120 

Building an a priori network of genes co-transcriptionally regulated by nicotine  121 

A gene set for nicotine consumption was identified using GeneWeaver 14; 15,  a genomics 122 

data repository and analysis system. GeneWeaver integrates data from  numerous databases, such 123 

as NCBI and ENSEMBL, various model organism databases (e.g., the Mouse and Rat Genome 124 

Databases, and the Zebrafish Model Organism Database) and genomic experimental results from 125 

the literature to produce curated sets of genes that can be analyzed using a suite of analytical 126 

tools.13 GeneWeaver was specifically designed for integration of genomic evidence and 127 

comprises over 199,664 gene sets spanning studies across 10 species. Using GeneWeaver we 128 

identified genes of interest from several Mus musculus, Rattus norvegicus, and Danio rerio 129 

functional genomics (typically microarray) experiments. As of October 2019, relevant data from 130 

no other species were identified upon review of the current literature and archived experimental 131 

sets available in GeneWeaver. Figure 1 outlines the protocol for establishing separate lines of 132 

evidence for each species.  133 

We first identified studies by literature review or by shared summary statistics archived 134 

in the GeneWeaver system. Experimental studies were included if they provided differential 135 

expression or whole genome co-expression network analyses along with accessible summary 136 

statistics. Literature searches focused on exposure studies utilizing nicotine-specific model 137 

organism paradigms, including subcutaneous nicotine treatment, IVSA, nicotine delivered to the 138 
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animal’s drinking water, and nicotine-induced conditioned place preference (see Table 1; no 139 

studies involving Drosophila melanogaster were identified which was most likely due to the fact 140 

that nicotine is a natural insecticide). Priority was given to weighted gene co-expression network 141 

analysis (WGCNA) studies to minimize inflation of the Type I error rate typically seen in QTL 142 

studies. Next, we merged studies with multiple reported gene sets (i.e., either by region, up/down 143 

regulated, or across time) to avoid inflating the replication threshold of individual genes. We 144 

then identified orthologous genes using GeneWeaver’s “Combine Gene sets” function which 145 

merges multiple gene sets into a single matrix while accounting for orthology across species; 146 

none of the identified studies were conducted in human samples.13 Lastly, identified gene sets 147 

were compared to the current human genome build (hg19) to localize relevant variants that were 148 

conserved across species; 712 orthologous genes were identified. Given the lack of a proof of 149 

principle for prospectively integrating model organism evidence in human studies we integrated 150 

the limited evidence across studies, especially given the minimal overlap between gene sets 151 

(Jaccard similarity ~0.00-0.01; supplemental Table S1). Of these genes, 201 were replicated 152 

twice across GeneWeaver gene lists. For instance, ABL1 and GRIK2 were only observed in five 153 

brain regions from the Wang et al. study, but not observed in other studies. Supplementary 154 

Figure 1 provides a bipartite graph visualization of the 51 genes that were present in at least three 155 

gene lists.  When collapsing across study and removing duplicates, 21 genes were observed 156 

across studies (see Supplementary Table S2). None of them overlapped across more than two 157 

studies. The analyses described below focused on SNPs in and around the 712 orthologous genes 158 

(GeneWeaver Gene Set ID: GS357552). 159 

-------------------------------------Insert Figure 1 here ----------------------------------- 160 

 161 
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-------------------------------------Insert Table 1 here ----------------------------------- 162 

 163 

Fold creation and power calculation for the UK Biobank tobacco consumption sample 164 

Hypotheses were tested using multiple subsets (i.e., folds) of the UKB data for 165 

computational efficiency and to demonstrate the robustness of the findings via replication as 166 

each dataset contained unrelated individuals. Analyses focus on the reported number of 167 

cigarettes by each participant (i.e., for prior and current smokers; nonsmokers were excluded). 168 

We identified 139,043 individuals of European ancestry as identified by principal components 169 

analysis and multidimensional scaling16; 17, who were no more related than second cousins and 170 

who also provided smoking data. The number of folds were determined a priori in order to 171 

maximize statistical power. The GCTA-GREML Power Calculator was used to estimate a priori 172 

power for sample sizes that provided at least 70% power to detect SNP-heritability estimates as 173 

small as one-third of 1% (0.333%).18 Power was based on the previously reported SNP-174 

heritability and observed variance of the off-diagonal elements (~6.68x10-4) in each fold.6  175 

Consequently, the total sample was divided into three approximately equal folds (nnic1=41,263, 176 

nnic2=41,368, nnic3=41,213), each of which was made constitutionally equivalent by randomly 177 

sampling individuals from each quartile of the nicotine consumption distribution. 178 

Genotype quality control  179 

Analyses focused on raw and imputed genotypes obtained using the Affymetrix UK 180 

BiLEVE Axiom and UK Biobank Axiom® arrays, which genotyped ~850,000 variants (details 181 

available here: https://www.ukbiobank.ac.uk/scientists-3/genetic-data/). Quality control and 182 

imputation (to over 90 million SNPs, indels, and large structural variants) was performed by a 183 

collaborative group headed by the Wellcome Trust Centre for Human Genetics. Analyses 184 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2019. ; https://doi.org/10.1101/2019.12.23.887083doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.23.887083
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

focused on genotyped and imputed SNPs with good quality scores (r2 > 0.3). PLINK (version 1.9) 185 

was used to filter markers using the following criteria: genotyping rate >99%, minor allele 186 

frequency > 0.01, Hardy-Weinberg equilibrium p-value > 0.0001, and missing genotype rate < 187 

0.10.19  188 

 189 

Regions-of-Interest Heritability Mapping 190 

Given evidence for the import of intergenic variants in complex traits/disease, we 191 

partitioned the genetic variance of nicotine consumption into three regions-of-interest based on 192 

the list of genes acquired from the GeneWeaver database.20 As illustrated in Figure 2, the “gene” 193 

region was demarcated by the start and stop positions of each of the consumption genes. The 194 

flanking “buffer” regions of the genome were set to encompass the base pairs directly up-/down- 195 

stream of the 5’ and 3’ ends of each gene, respectively. We considered six buffer lengths in order 196 

to capture the effects of transcription factor (TF) binding sites whose exact position is unknown 197 

(0 kilo-base pairs (kb), 5kb, 10kb, 25kb, 35kb, and 50kb). Following marker extraction, the 5’ 198 

and 3’ variants for each buffer length were aggregated into a single buffer marker variant list for 199 

a given length. In addition, we examined the effects of all unselected variants (referred to as 200 

“other variants”), which belonged to regions of the genome that comprised SNP markers that 201 

were not within the parameters specified for the gene or buffer regions defined by the 202 

consumption gene set (Table 2 provides a count of the number of SNPs assigned to each 203 

component of the model). Consequently, the number of SNPs that comprised the “other variants” 204 

category varied depending on the length of the buffer regions. 205 

 206 

-------------------------------------Insert Figure 2 here ----------------------------------- 207 
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 208 

The relative contribution of variants within the gene, buffer, and ‘all other’ components 209 

was evaluated under a polygenic model. Regions-of-Interest heritability mapping was achieved 210 

using multiple genetic components in GREML analyses implemented in GCTA [version 1.92] 211 

using the set of SNPs from each ROI to define the components of the model.21; 22 Analyses 212 

employed a set of three genetic relatedness matrices (GRMs) for a given fold. Variance 213 

component ROI-G reflected variation across SNPs in the transcriptionally regulated gene set 214 

depicted in Table 1. ROI-Buffers, of varying lengths, was used to reflect the effect of loci around 215 

the ROI-G. ROI-All_Others, reflected aggregate variant effects from the remainder of the 216 

genome, given the corresponding size of ROI-G and ROI-Buffer. The significance of each 217 

variance component was assessed using a likelihood ratio test while accounting for age and sex. 218 

Population stratification effects were controlled using strict selection for individuals of European 219 

Ancestry using genomic principal components and multidimensional scaling.11 Enrichment (E) 220 

values were calculated to determine whether the observed component-heritability estimates were 221 

greater than what would be expected by chance given the observed total genetic variance and the 222 

4.6 million SNPs used in the analysis (i.e., the variance explained we would expect via a random 223 

selection of loci of the same size from the genome). As such, the statistical significance of an 224 

enrichment was evaluated on the basis of whether the expected h2
SNP fell within the 95% 225 

confidence interval of the observed h2
SNP (i.e., E > 1.96). 226 

 227 
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Meta-analyzed SNP-heritability estimates were obtained by pooling results across folds 229 

and meta-analyzing using a weighted fixed-effect model. Heritability estimates across UKB-230 

folds were combined using fixed-effects inverse-variance meta-analysis implemented in R using 231 

the “rmeta” package. Mixed linear model association analyses were performed in GCTA and 232 

gene-based testing were done using MAGMA (version 1.06) implemented in FUMA (v.1.3.5e).23 233 

Gene-level p-values were used to conduct gene set tests against "Curated Gene Sets" and "GO 234 

terms" pathways identified in Msigdb v5.2.24 We considered all SNP and gene-based signals 235 

below 5x10-8 and 2.89x10-6 as genome-wide and gene-wide (i.e., based on 17287 genes tested) 236 

significant, respectively; further, we also implemented a less conservative threshold using a False 237 

Discovery Rate (FDR) of q<0.05.25 All analyses minimized the effects of confounders by 238 

including sex, testing site location, age, and age2 as covariates.  239 

 240 

RESULTS 241 

Co-expressed Genes in Model Organisms Explain Variation in Human Tobacco Consumption  242 

The estimated total additive genetic effect (i.e., SNP-heritability) of tobacco consumption 243 

ranged from 7.6% to 9.5% across the three folds (see Table 2 reported meta-h2
SNP-Total values). 244 

Variants across the ROI-genes component of the model (ROI-G) accounted for approximately 245 

0.2-0.4% of the variation in tobacco consumption across folds (see Table 2) while those in the 246 

buffer (ROI-Buffer) and remainder of the genome (ROI-All_Others) accounted for 0.4-3% and 247 

5-8%, respectively. There was significant enrichment (E) in almost all instances where the 248 

variants in or surrounding the genes of interest were examined (Table 3); no enrichment was 249 

observed in the ROI-All_Others category.  250 

-------------------------------------Insert Table 2 here ----------------------------------- 251 
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There was limited association between variance explained by ROI-G and buffer length 252 

(model R2 across folds ranging 0.003-0.09; see Figure 3 panel A). On the contrary, the variance 253 

explained by SNPs in and around the genes of interest (i.e., ROI-Buffer) that were modeled using 254 

buffers of various length (ROI-buffer-#Kb) increased over buffer size (model R2 across folds 255 

ranging 0.75-0.86; see Figure 3 panel B), whereas the variance explained decreased for ROI-256 

All_Others as buffer size increased (model R2 across folds ranging 0.73-0.81; see Figure 3 panel 257 

C). This result is in line with the observation from previous work that variance explained is 258 

proportional to DNA length22, consistent with a polygenic model. Notably, variance explained by 259 

variants located around genes of interest were positively associated with buffer size, but the 260 

enrichment decreased with buffer size (see Figure 4), suggesting that that the trait-associated 261 

variants are more enriched near genes.  262 

-------------------------------------Insert Figure 3 here ----------------------------------- 263 

-------------------------------------Insert Figure 4 here ----------------------------------- 264 

 265 

Genome-wide Association, Gene-based, and Gene set effects  266 

Association analyses using all 139,043 smokers confirmed previously associated regions 267 

identified in a larger meta-analysis that included these data.6 We identified 594 signals that were 268 

genomewide significant, and a larger set of 938 signals with q<0.05 (see supplementary Table S3 269 

for complete summary statistics and Supplementary Figures S2 and S3 for the Manhattan and Q-270 

Q plot, respectively). The top signals resided on chromosomes 15, 19, 8, 7, 4, 3, and 1 (see 271 

Supplementary Figures S4 thru S7 for regional association plots for associations across nicotinic 272 

acetylcholine receptor genes CHRNA4/A5/A6 and CYP2A6, respectively). Most of the 273 

associated SNPs are functionally annotated as intronic, intergenic, and intronic non-coding RNA 274 
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(see Supplementary Figure S8). Gene-based analyses identified 20 genes that surpassed the 275 

Bonferroni significance threshold and 31 with q<0.05 (see Supplementary Table S4 and 276 

Supplementary Figures S9 and S10 for the gene-based test Manhattan and Q-Q plots, 277 

respectively). Of the gene-wide significant genes, four were differentially expressed across the 278 

model organism experiments and this overlap was more than we would expect by chance, OR = 279 

7.20, empirical p = 4.41E-3. Post-hoc examination of the test statistics (i.e., using 10,000 280 

permutations of 500 gene sets from non-GeneWeaver genes) indicated that the majority of the 281 

signals originated from genes largely captured by the a priori Mus musculus studies (two sample 282 

t-test:  t = 2.2813, df= 664.87, empirical p = 0.023; Supplementary Figure S11). Gene set 283 

analyses, which focused on curated gene sets and GO term annotations from MsigDB, identified 284 

745 significant gene sets (p<0.05), but only one gene set, REACTOME: Presynaptic Nicotinic 285 

Acetylcholine Receptors (R-HSA-622323; https://reactome.org/PathwayBrowser/#/R-HSA-286 

622323) survived multiple-testing correction (Bonferroni-corrected p = 2.5x10-8).  287 

 288 

DISCUSSION 289 

We integrated genomic and bioinformatic analyses which provided a rapid approach for 290 

filling the translational space between human and animal genetics research. Similar to other 291 

genetic studies of drug use26-28, these findings indicated a neuro-epigenetic component to the 292 

genetic inheritance of tobacco consumption, while also localizing genomic regions of interest. 293 

By using a genetic sample of over 100,000 humans and meta-analyzing across three species from 294 

seven gene expression studies, we found that approximately 4.2%-39.5% of the heritability for 295 

the frequency of human tobacco use can be attributed to mRNA readout related to nicotine 296 

exposure/consumption in the brain. Given that the observed neuro-molecular associations 297 
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observed with tobacco/nicotine use were inferred via model systems, irrespective of prior GWAS 298 

findings, it stands to reason that integrating knowledge across species will enhance genomic 299 

discoveries related to tobacco use. Importantly, most cross-species findings appeared to be 300 

buried under the conservative genome-wide significant threshold – demonstrating the strength of 301 

our approach, which incorporates significant and non-significant sources of genomic variations a 302 

priori and helps accommodate the numerous (relevant) genes with small effect sizes riddled 303 

across the human genome. Notably, these observations highlight an interesting perspective of 304 

polygenic effects, in so much as it provides support for a mixture of effects on tobacco 305 

consumption.  306 

This study demonstrates the importance of transcriptionally regulated genes and is in 307 

accordance with broad human GWAS research, which detects most of its associations among 308 

intergenic regions.1 Our results suggest that the genetic proclivity to tobacco use is mediated, in 309 

part, by gene expression in relevant brain regions that relate to specific behavioral mechanisms. 310 

Similarly recent genome-wide research identified genome-wide significant loci in 311 

neurotransmission and reward learning genes for tobacco use and prioritized non-synonymous 312 

protein coding variants.6 By using just half of the sample size from Liu et al., our findings 313 

corroborated the importance of reward-related and neurotransmission genes and further 314 

disentangle the underlying genetic structure of tobacco consumption by highlighting 315 

transcriptionally relevant cis-eQTLs in hundreds of genomic regions. Overall, our study suggests 316 

that the genetic architecture of tobacco consumption feeds into the neuro-molecular landscape 317 

via modulation of gene expression. 318 

These data also suggest that the use of model systems allows for the direct sampling of 319 

brain tissue, in the context of a trait relevant phenotype which models, in a simplified way, 320 
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characteristics of human disease measured in an organism (e.g., Mus musculus, Drosophilae 321 

Melanogaster, Rattus Norvegicus, and Caenorhabditis elegans, to name a few) with a genome 322 

that has some similarities to humans, including mammals with high percentages of orthologous 323 

genes. It is important to note that when we refer to “modeling” here, we are not referring to the 324 

questionable practice of establishing a single gene perturbation in a model organism as a 325 

“model” of a person with a disease. Rather we are referring to the practice of evaluating the 326 

complex genomic basis of traits that are characteristic of various aspects of the disease state.  327 

Taken alone, model system work has a number of key advantages (over and above access to 328 

brain tissue) including, but not limited to, the use of neurogenetic methods (e.g., optogenetic, 329 

thermogenetic, etc.) which can introduce much larger biological effects in model systems than 330 

could be seen in typical GWAS studies. Additionally, controlled environmental exposures (e.g., 331 

pharmacological, behavioral, etc.) may be used in model systems in a fashion that would be 332 

impossible in humans. The strengths of model systems allow for smaller-sample studies to be 333 

maximally informative due to larger effect sizes and tighter experimental control, but the 334 

“translatability” of these findings to the human condition has limitations.  While some more 335 

basic behavioral traits are convincingly modeled in animals, other complex phenotypes and 336 

disorders are represented only in part by these systems 29 . Furthermore, the phylogenetic 337 

distance between the model organism and Homo sapiens can pose additional challenges as only a 338 

subset of genes will be conserved in an informative way; notably, studies have shown 339 

conservation of epigenetic marks across mice and humans.30 Attempts to leverage conserved 340 

evidence across mice and humans in alcohol dependence research have revealed networks of 341 

genes and loci, which had gone undetected in prior GWAS.31 In sum, model systems bring 342 
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unique advantages and disadvantages to behavior genetics that may complement human GWAS 343 

studies of related traits. 344 

These analyses identified various genes previously linked to nicotine consumption and 345 

cessation, including validated nicotinic acetylcholine receptor genes CHRNA3/A4/A5/B4, as well 346 

as nicotine metabolism genes (CYP2A6/A7), which provides a sanity-check for our genome-wide 347 

analyses. Mechanistic research in mice suggests that a mutation of the CHRNA5 gene and 348 

concomitant habenular expression of CHRNA5 robustly increases nicotine consumption, but not 349 

after experimentally restoring habenuala CHRNA5 levels back to normal32. These results buttress 350 

our findings delineating the path from genetic predisposition to gene expression and eventually 351 

specific behavioral outcomes and may suggest a gene x drug interaction. That is, those at higher 352 

genetic risk for tobacco use may have an altered physiological response that increases 353 

susceptibility for augmented consumption.33; 34 Apart from the established nicotinic acetylcholine 354 

receptors, we also discovered significant genetic association of chromosome 19 genes: RAB4B, 355 

EGLN2 and CYP2A6 with tobacco consumption. RAB4B is involved in the breakdown of GTP 356 

for vesicular transport35 and was previously associated with PFC gene expression among those 357 

with major depression.36 While RAB4B, EGLN2 and CYP2A6 are in strong linkage 358 

disequilibrium, research suggests they correspond to largely independent mechanisms.37 Our 359 

study suggests that RAB4B is driven by a brain-dependent mechanism (identified in mice)38 and 360 

might underlie neuroplasticity processes related to nicotine reward39. On the other hand, EGLN2 361 

and CYP2A6 were not associated with gene expression findings in animal models of nicotine 362 

use/exposure. EGLN2 is a hypoxia inducible factor and plays a role in oxygen homeostasis40 and 363 

may be uniquely associated with humans because the vehicle for nicotine intake is via oxygen 364 

restricting smoke (i.e., carbon monoxide present in cigarette smoke preferentially binds to 365 
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hemoglobin and thus reduces its ability to transport oxygen), whereas animal models typically 366 

study nicotine through injections or implementation in the drinking water. CYP2A6 is an enzyme 367 

that accounts for ~80% of nicotine clearance41 and is almost exclusively expressed in the liver, 368 

which is a likely reason that it was not included in our brain-mediated cross-species gene list. 369 

Therefore, our integrative approach better contextualizes the effects of genes associated with 370 

human complex traits and better determines how specific genetic associations relate to relevant 371 

model systems in particular tissues.  372 

While novel, there are several considerations for interpreting the current findings. First, 373 

these analyses are limited by current understanding of the consequences of tobacco exposure 374 

using only microarray studies. We sought to overcome this limitation by integrating multiple 375 

sources of information using differences across brain and model organisms, but future studies are 376 

needed to determine whether these effects are invariant, as well as whether the experimental 377 

paradigm itself may alter this line of evidence, especially as the volume of literature increases.  378 

Second, our analyses did not examine genes that have been shown to be differentially methylated 379 

by tobacco exposure; we assumed that such processes would equate to direct differences in 380 

mRNA levels, constructed gene list utilized animal research, which focused primarily on 381 

orthologous genes.42; 43 As such, there was less emphasis on regulatory elements for said genes, 382 

which may also generalize across species. We attempted to capture said effects by using buffers 383 

of various lengths to approximate the relative import of cis and possibly trans acting effects. It 384 

should be noted however, that our results are in line with the multiple enhancer variant 385 

hypothesis, which purports a similar role of noncoding variants in common traits.44  386 

Future research is warranted to determine whether our integrative framework generalizes 387 

across complex human traits. Traits with different genetic architectures, epigenetic landscapes 388 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2019. ; https://doi.org/10.1101/2019.12.23.887083doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.23.887083
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

and animal models may yield disparate findings. We found that the bulk of our cross-species 389 

signal stemmed from mouse models of nicotine use, but it will be important for future research to 390 

be conducted across multiple smoking phenotypes and include additional species/studies and 391 

incorporate findings from human tissues to benchmark findings with other model organisms. 392 

Ideally, integrative genomics comparisons would leverage equitable and minimally error prone 393 

outcomes or endophenotypes across studies. Given the array of animal models for human traits, 394 

an inviting avenue of research should clarify the utility of specific tissues, cell types and animal 395 

models in human genetics. With a large enough literature base, we may be able to better refine 396 

what tissues and specific mechanisms human genomic signals stem from and ultimately may 397 

better characterize the genetic make-up for complex traits. Future studies leveraging these 398 

approaches should consider strategies for reducing buffer size and examining heterogeneity 399 

across tissue/cell types, as well as whether the observed effects generalize across human 400 

populations (e.g., European, African, Asian, etc). 401 

 402 

Conclusions 403 

 In sum, this study represents a step forward for interspecies behavioral genetics and 404 

provides a proof of principle for bridging the gap between human and animal genetics in 405 

identifying polygenic risk variants. We show that enhancing human GWAS by incorporating a 406 

priori information on relevant traits (even across species) is a worthwhile path to unraveling the 407 

genetic basis for complex traits.  408 
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Figure Citations 566 
 567 

Figure 1. Theoretical integrative genomics approach to characterizing genetic underpinnings of 568 
nicotine consumption using model organisms.   569 
 570 
Figure 2. Visualization of each model-component utilized within statistical analyses. 571 
 572 
Figure 3. Plots of the relationship between buffer length and percent genetic variance explained 573 
by each model component. Citation: Lines shown reflect inferred trends for buffer lengths not 574 
assessed. Panel A shows the percent genetic variance explained by the gene region model 575 
component. Observed relationships between length and variance explained are reflected by the 576 
regression equation and model fit (r-squared; R2) by the following equations for Fold 1: -577 
0.002(Buffer length) + 0.0355 [model R2=0.0869]; Fold 2: -4E-05(Buffer length) + 0.0231 578 
[model R2=0.0034]; Fold 3: -8E-05(Buffer length) + 0.0428 [model R2=0.0869]. Panel B shows 579 
the percent genetic variance explained by the buffer region model component. For this 580 
component, the observed relationships between length and variance explained are reflected by 581 
the regression equation and model fit (r-squared) by the following equations for Fold 1: 582 
0.007(Buffer length) - 0.001 [model R2=0.858]; Fold 2: 0.006(Buffer length) + 0.008 [model 583 
R2=0.754]; Fold 3: 0.005(Buffer length) + 0.004 [model R2=0.86]. Lastly,  Panel C describes the 584 
percent genetic variance explained by the “all-other variants” model component. The observed 585 
relationships between length and variance explained for panel C are reflected by the regression 586 
equation and model fit (r-squared) by the following equations for Fold 1: -0.007(Buffer length) + 587 
0.966 [model R2=0.809]; Fold 2: -0.006(Buffer length) + 0.969 [model R2=0.729]; Fold 3: -588 
0.005(Buffer length) + 0.953 [model R2=0.812].  589 
 590 
Figure 4. Scatterplot illustrating change in enrichment (E) of the set of ROI-buffer variants as a 591 
function of models of with varied buffer size. Abbreviations F1, F2, and F3, correspond to folds 592 
1, 2, and 3, respectively.  593 
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Table 1. Identified Geneweaver Gene Sets Related to Tobacco/Nicotine Exposure 
Author(s)  GeneWeaver ID Model 

Organism 
Nicotine Consumption/Exposure 
Paradigm 

Experimental Design Brain Region Number of Genes 
Contributed 

Chen et al.45 GS87128 Mus musculus Subcutaneous acute nicotine treatment 
(expression changes measured at time-
points of 1, 2, 4, and 6 hrs) 

Microarray Analysis, 
WGCNA 

VTA 184 

Polesskaya et al.46 GS14885 Rattus 
norvegicus 

Subcutaneous chronic nicotine treatment 
(at ages p25, p35, p45, and p55) 

Microarray Analysis, qRT-
PCR, Principle Cluster 
Analysis 

PFC, Ventral 
Striatum, Hippo. 

66 

Wang et al.38 GS14888, 
GS14889, 
GS14890, 
GS14891, 
GS14892, 
GS14893 

Mus musculus Nicotine administration in drinking water 
in two selectively bred mouse strains 

Microarray Analysis, qRT-
PCR, WGCNA 

Amygdala, Hippo., 
nAcc, PFC, VTA 

651 

Kily et al.47 GS14902, 
GS14903 

Danio rerio Nicotine-induced conditioned place 
preference 

Microarray Analysis, qRT-
PCR 

Whole Brain 158 

Sharp et al.34 GS128167 Rattus 
norvegicus 

Chronic nicotine self-administration Microarray Analysis, RT-
PCR 

nAcc 188 

Table showing identified publications and GeneWeaver gene sets. Note: Gene set IDs can be used to review the full complement of genes supplied by each study.  
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Table 2. Estimated SNP-heritability for each component of the ROI model. 

Model component F1 h2
SNP F1 SE   F2 h2

SNP F2 SE   F3 h2
SNP F3 SE   h2

meta (95% CI) 
% total 
h2

meta  

ROI  - Genes                       

Gene (0kb buffer model) 3.820E-03b 1.64E-03   3.296E-03a 1.63E-03   5.459E-03aaa 1.79E-03   4.11E-3 [2.20E-3,6.00E-3] 4.96% 

Gene (5kb buffer model) 2.865E-03a 1.68E-03   1.540E-03 1.62E-03   4.184E-03aa 1.86E-03   2.74E-3 [0.80E-3,4.70E-3] 3.26% 

Gene (10kb buffer model) 1.720E-03 1.60E-03   8.890E-04 1.56E-03   2.933E-03a 1.78E-03   1.76E-3 [-0.10E-3,3.60E-3] 2.16% 

Gene (25kb buffer model) 1.260E-03 1.57E-03   1.070E-03 1.58E-03   2.773E-03a 1.76E-03   1.60E-3 [-0.20E-3,3.50E-3] 1.92% 

Gene (35kb buffer model) 1.340E-03 1.58E-03   1.310E-03 1.60E-03   2.995E-03a 1.77E-03   1.81E-3 [<-0.01E-3,3.70E-3] 2.16% 

Gene (50kb buffer model) 3.117E-03a 1.61E-03   2.600E-03a 1.59E-03   4.947E-03aa 1.78E-03   3.50E-3 [1.60E-3,5.30E-3] 4.17% 

                        

ROI - Buffer                       

Buffer 0kb N/A N/A   N/A N/A   N/A N/A   N/A N/A 

Buffer 5kb 3.253E-03a 1.78E-03   5.822E-03c 1.88E-03   3.431E-03a 1.86E-03   4.13E-3 [2.00E-3,6.20E-3] 4.95% 

Buffer 10kb 7.880E-03c 2.08E-03   8.964E-03c 2.10E-03   7.717E-03c 2.13E-03   8.19E-3 [5.80E-3,1.06E-2] 9.84% 

Buffer 25kb 1.101E-02c 2.35E-03   9.625E-03c 2.27E-03   1.016E-02c 2.39E-03   1.02E-2 [7.60E-3,1.29E-2] 12.36% 

Buffer 35kb 1.135E-02c 2.44E-03   9.542E-03c 2.35E-03   1.048E-02c 2.48E-03   1.04E-2 [7.70E-3,1.32E-2] 12.50% 

Buffer 50kb 3.141E-02c 5.29E-03   3.303E-02c 5.28E-03   2.743E-02c 5.32E-03   3.06E-2 [2.46E-2,3.66E-2] 36.47% 

                        

ROI - Other genomewide variants                           

All Other Variants (0kb buffer model) 7.145E-02b 7.82E-03   7.586E-02c 7.76E-03   8.853E-02c 8.04E-03   7.84E-2 [6.95E-2,8.73E-2] 94.92% 

All Other Variants (5kb buffer model) 6.923E-02c 7.85E-03   7.235E-02c 7.76E-03   8.658E-02c 8.06E-03   7.58E-2 [6.69E-2,8.48E-2] 91.44% 

All Other Variants (10kb buffer model) 6.607E-02c 7.80E-03   7.042E-02c 7.73E-03   8.408E-02c 8.03E-03   7.33E-2 [6.44E-2,8.22E-2] 88.00% 

All Other Variants (25kb buffer model) 6.359E-02c 7.75E-03   6.933E-02c 7.70E-03   8.184E-02c 7.99E-03   7.14E-2 [6.25E-2,8.02E-2] 85.71% 

All Other Variants (35kb buffer model) 6.319E-02c 7.73E-03   6.898E-02c 7.68E-03   8.105E-02c 7.97E-03   7.09E-2 [6.20E-2,7.97E-2] 85.22% 

All Other Variants (50kb buffer model) 4.216E-02c 7.40E-03   4.524E-02c 7.34E-03   6.242E-02c 7.72E-03   4.96E-2 [4.11E-2,5.80E-2] 59.12% 

                        

Total                       

Total heritability (0kb buffer model) 7.530E-02 7.86E-03   7.920E-02 7.79E-03   9.400E-02 8.08E-03   8.26E-2 [7.36E-2,9.15E-2] N/A 
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Total heritability (5kb buffer model) 7.530E-02 7.85E-03   7.970E-02 7.78E-03   9.420E-02 8.08E-03   8.29E-2 [7.39E-2,9.18E-2] N/A 

Total heritability (10kb buffer model) 7.570E-02 7.84E-03   8.030E-02 7.78E-03   9.470E-02 8.07E-03   8.33E-2 [7.44E-2,9.23E-2] N/A 

Total heritability (25kb buffer model) 7.590E-02 7.84E-03   8.000E-02 7.77E-03   9.480E-02 8.07E-03   8.33E-2 [7.44E-2,9.22E-2] N/A 

Total heritability (35kb buffer model) 7.590E-02 7.84E-03   7.980E-02 7.78E-03   9.450E-02 8.07E-03   8.32E-2 [7.43E-2,9.21E-2] N/A 

Total heritability (50kb buffer model) 7.670E-02 7.85E-03   8.090E-02 7.79E-03   9.480E-02 8.09E-03   8.39E-2 [7.49E-2,9.28E-2] N/A 

Table shows the estimated heritability for each fold and the meta-heritability estimated across folds. Note that components are labelled according to the observed effects used across the models with 
varied buffer lengths. Consequently, there are no effects for the 0Kb buffer length model. Abbreviations: F1-F3 indicate analysis folds 1 thru 3, N/A - not applicable, SE - standard error. Notations: a - p 
< 0.05, b p < 0.01, c p < 0.001 (van Dam et al., 2019) 

 595 
  596 

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint

this version posted D
ecem

ber 23, 2019. 
; 

https://doi.org/10.1101/2019.12.23.887083
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/2019.12.23.887083
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Table 3: Calculated Enrichment Values for Each Component of the ROI Model 

      Fold 1     Fold 2   Fold 3 

Model component 
Number of 
SNPS   

Observed 
h2

SNP  SE 
Expected 
h2

SNP Enrichment   
Observed 
h2

SNP  SE 
Expected 
h2

SNP Enrichment   
Observed 
h2

SNP  SE 
Expected 
h2

SNP Enrichment 

ROI  - Genes                                 

Gene (0kb buffer model) 81453   3.82E-03 
1.64E-
03 1.32E-03 2.90c   3.30E-03 1.63E-03 1.38E-03 2.38c   5.46E-03 1.79E-03 1.64E-03 3.32c 

Gene (5kb buffer model) 81453   2.20E-03 
1.65E-
03 1.36E-03 1.62c   1.54E-03 1.62E-03 1.39E-03 1.11   4.18E-03 1.86E-03 1.65E-03 2.54c 

Gene (10kb buffer model) 81453   1.85E-03 
1.65E-
03 1.45E-03 1.27   8.89E-04 1.56E-03 1.40E-03 0.63c   2.93E-03 1.78E-03 1.66E-03 1.77c 

Gene (25kb buffer model) 81453   1.16E-03 
1.58E-
03 1.36E-03 0.85   1.07E-03 1.58E-03 1.40E-03 0.76   2.77E-03 1.76E-03 1.66E-03 1.67c 

Gene (35kb buffer model) 81453   1.33E-03 
1.59E-
03 1.36E-03 0.97   1.31E-03 1.60E-03 1.40E-03 0.94   3.00E-03 1.77E-03 1.65E-03 1.81c 

Gene (50kb buffer model) 81453   2.86E-03 
1.60E-
03 1.45E-03 1.97c   2.60E-03 1.59E-03 1.41E-03 1.84c   4.95E-03 1.78E-03 1.66E-03 2.98c 

                                  

ROI - Buffer                                 

Buffer 0kb N/A   N/A N/A N/A N/A   N/A N/A N/A N/A   N/A N/A N/A N/A 

Buffer 5kb 10815   4.54E-03 
1.83E-
03 1.80E-04 25.20c   5.82E-03 1.88E-03 1.85E-04 31.45c   3.43E-03 1.86E-03 2.19E-04 15.68c 

Buffer 10kb 21288   8.19E-03 
2.10E-
03 3.80E-04 21.56c   8.96E-03 2.10E-03 3.67E-04 24.43c   7.72E-03 2.13E-03 4.33E-04 17.82c 

Buffer 25kb 53341   1.03E-02 
2.31E-
03 8.93E-04 11.56c   9.63E-03 2.27E-03 9.17E-04 10.50c   1.02E-02 2.39E-03 1.09E-03 9.36c 

Buffer 35kb 74436   1.04E-02 
2.40E-
03 1.24E-03 8.39c   9.54E-03 2.35E-03 1.28E-03 7.48c   1.05E-02 2.48E-03 1.51E-03 6.94c 

Buffer 50kb 841092   3.22E-02 
5.29E-
03 1.50E-02 2.15c   3.30E-02 5.28E-03 1.46E-02 2.26c   2.74E-02 5.32E-03 1.71E-02 1.60c 

                                  

ROI - Other genomewide 
variants                                 

All Other Variants (0kb 
buffer model) 4575485   7.14E-02 

7.82E-
03 7.40E-02 0.97c   7.59E-02 7.76E-03 7.78E-02 0.98   8.85E-02 8.04E-03 9.23E-02 0.96b 

All Other Variants (5kb 
buffer model) 4564670   7.08E-02 

7.80E-
03 7.60E-02 0.93c   7.23E-02 7.76E-03 7.81E-02 0.93c   8.66E-02 8.06E-03 9.23E-02 0.94c 

All Other Variants (10kb 
buffer model) 4554197   7.35E-02 

7.85E-
03 8.13E-02 0.90c   7.04E-02 7.73E-03 7.85E-02 0.90c   8.41E-02 8.03E-03 9.26E-02 0.91c 

All Other Variants (25kb 
buffer model) 4522144   6.65E-02 

7.72E-
03 7.57E-02 0.88c   6.93E-02 7.70E-03 7.77E-02 0.89c   8.18E-02 7.99E-03 9.20E-02 0.89c 

All Other Variants (35kb 
buffer model) 4501049   6.61E-02 

7.71E-
03 7.53E-02 0.88c   6.90E-02 7.68E-03 7.72E-02 0.89c   8.10E-02 7.97E-03 9.14E-02 0.89c 

All Other Variants (50kb 
buffer model) 3734393   4.37E-02 

7.37E-
03 6.66E-02 0.66c   4.52E-02 7.34E-03 6.49E-02 0.70c   6.24E-02 7.72E-03 7.60E-02 0.82c 

Table shows the estimated enrichment for each fold. Note that components are labelled according to the observed effects used across the models with varied buffer lengths. Consequently, there are no effects for the 0Kb buffer length model. Enrichment (E) reported with 
two-tailed p-value significance (a p<0.05, b p<0.01, c p<0.001). 
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