
Smash++: an alignment-free and memory-efficient tool to find

genomic rearrangements

Morteza Hosseini1,∗, Diogo Pratas1,2,
Burkhard Morgenstern3,4, Armando J. Pinho1

1IEETA/DETI, University of Aveiro, 3810-193 Aveiro, Portugal,
2Department of Virology, University of Helsinki, 00100 Helsinki, Finland,

3Department of Bioinformatics, University of Göttingen,
Goldschmidtstr. 1, 37077 Göttingen, Germany,

4Göttingen Center of Molecular Biosciences (GZMB),
Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany

∗seyedmorteza@ua.pt

Abstract

Background: The development of high-throughput sequencing technologies and, as its result,

the production of huge volumes of genomic data, has accelerated biological and medical research and

discovery. Study on genomic rearrangements is crucial due to their role in chromosomal evolution, ge-

netic disorders and cancer; Results: We present Smash++, an alignment-free and memory-efficient

tool to find and visualize small- and large-scale genomic rearrangements between two DNA sequences.

This computational solution extracts information contents of the two sequences, exploiting a data

compression technique, in order for finding rearrangements. We also present Smash++ visualizer, a

tool that allows the visualization of the detected rearrangements along with their self- and relative

complexity, by generating an SVG (Scalable Vector Graphics) image; Conclusions: Tested on sev-

eral synthetic and real DNA sequences from bacteria, fungi, Aves and mammalia, the proposed tool

was able to accurately find genomic rearrangements. The detected regions complied with previous

studies which took alignment-based approaches or performed FISH (Fluorescence in situ hybridiza-

tion) analysis. The maximum peak memory usage among all experiments was ∼1 GB, which makes

Smash++ feasible to run on present-day standard computers.

keywords: genomic rearrangement; alignment-free; genome comparison; genome duplication;

data compression; information theory; probabilistic-algorithmic model; complexity; visualization;

high-throughput sequencing

1 Background

With the ever-increasing development of high-throughput sequencing (HTS) technologies, a massive

amount of genomic information is produced at much higher speed and lower cost than was possible

before [1]. Analyses of such information has led to the advancement of our understanding of biology and

disease, over the past decade [2, 3]. Computational solutions play a key role in dry-lab analysis of the

deluge of HTS data by using efficient and fast algorithms.

Genome rearrangements are mutations that alter the arrangement of genes on a genome, and usually

occur in the presence of errors in cell division following meiosis or mitosis. These structural abnormalities

in chromosomes include, but are not limited to, deletions, duplications, translocations, inversions and

insertions, mostly occur as an accident in the sperm or egg cell and hence are present in every cell of the

body [4, 5].

1

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 25, 2019. ; https://doi.org/10.1101/2019.12.23.887349doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.23.887349
http://creativecommons.org/licenses/by-nd/4.0/

Studies on chromosomal aberrations, which underlie many genetic diseases and cancer, are cru-

cial for diagnostics, prognostics and targeted therapeutics [6, 7]. Examples of such diseases are the

Wolf–Hirschhorn syndrome (WHS), that is caused by a partial deletion from human chromosome loca-

tion 4p16.3 [8], the Charcot–Marie–Tooth disease (CMT), that is most commonly caused by duplication

of the gene encoding peripheral myelin protein 22 (PMP22) on human chromosome 17 [9], and the acute

myeloid leukemia (AML), that may be caused by translocations between human chromosome 8 and

21 [10].

In this paper, we present Smash++, an alignment-free tool that finds chromosomal rearrangements

between two DNA sequences based on their information content, which is obtained by a data compression

technique. This computational solution follows a combination of probabilistic and algorithmic approaches

for having a quantitative definition of information, although it can be seen as more of a probabilistic

one [11]. Associated with Smash++, we present a visualizer that is capable of visualizing as SVG images

informationally similar regions between two genomic sequences. This tool also provides self- and relative

redundancy (complexity) for the similar regions.

Smash++ is an improved version of Smash [12], featuring (1) improved accuracy, obtained by using

multiple finite-context models along with substitution-tolerant Markov models to find fine-grained and

coarse-grained chromosomal rearrangements, (2) presenting self-complexity (redundancy) and relative

redundancy of informationally similar regions between two DNA sequences, (3) improved user interface

(UI) in command line, by adding several options to customize the tool for running, and resulting SVG

image, by adding markers for positions of DNA bases and also plotting self- and relative redundancy,

and (4) improved performance, in terms of memory usage.

2 Results and Discussion

2.1 Implementation

Smash++ is implemented in the C++ language and is licensed under GNU GPLv3. It generates infor-

mation maps for two sequences and, based upon that, finds similar regions in them, in which there can be

potentially DNA rearrangements. Therefore, Smash++ gives an insight into positions of rearrangements

that have happened between two sequences. The tool comes with a visualizer, that can be called in the

command line with a flag called “-viz”. Similar regions in reference and target sequences are shown with

the same color, that are chosen randomly using HSV color model. For more information about usage of

the tool, see note S3 of the supplementary material.

The machine used for the tests had a 4-core 3.40 GHz Intel® Core� i7-6700 CPU and 32 GB of

RAM. The Python script “xp.py”, in the “experiment” directory, can be used to reproduce the results

by switching False/True the variables associated with each dataset.

2.2 Dataset

Smash++ and several other methods have been tested on a collection of synthetic and real sequences,

that are described in Table 1. We used the GOOSE toolkit (https://github.com/pratas/goose) to

make the synthetic sequences of which the sizes vary from 1.5 Kb to 100 Mb. We applied mutations and

reversely complemented parts of the sequences. For a real dataset, we chose different sequences from

bacteria, Aves, mammalia and fungi, with the sizes of ∼1 Mb to ∼127 Mb.

2

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 25, 2019. ; https://doi.org/10.1101/2019.12.23.887349doi: bioRxiv preprint

https://github.com/pratas/goose
https://doi.org/10.1101/2019.12.23.887349
http://creativecommons.org/licenses/by-nd/4.0/

2.3 Application on synthetic data

Figure 1 illustrates the result of running Smash++ and the associated visualizer on a synthetic dataset.

The top sections show how we have built the reference and the target sequences. For example, to build

the reference sequence in Figure 1a, we generated three random sequences of size 500 b, using GOOSE,

and concatenated them. For building the target sequence, we made reverse complements of parts I and

III from the reference, and also mutated part II 2%, then we concatenated the parts in the order shown

in the figure. Figures 1b, c and d follow the same procedure. To build the target in Figure 1e, we

mutated the first 1 Kb block of the reference 1%, the second block 2%, the third block 3%, up until the

60th block that we mutated 60%.

The bottom sections of Figure 1 show the output of the Smash++ visualizer, detecting similar regions

regardless of their sizes. Note that for each detected region, the average value of redundancy and relative

redundancy is illustrated. In Figure 1b, part II of the reference is mutated 90%, i.e., nine out of every ten

bases is mutated, on average. As expected, Smash++ does not recognize similarity between this pair of

regions. Also, in the case of parts III and IV of the reference, since we detect similarity between part III

of the reference and I of the target, and also part IV of the reference and II of the target, and there is no

space between these regions, we join them and consider them as a bigger region of size 50 Kb. Figure 1e

shows that Smash++ is able to detect ∼43% of mutation, which has been made possible by the usage

of substitution-tolerant Markov models (see section “Methods”). Figure 1 shows that Smash++ can be

employed to detect small-scale and large-scale similarities between DNA sequences.

2.4 Application on real data

Figure 2 shows similarities between real sequences, found by Smash++. Subfigures a and b show sim-

ilarities of chromosomes 18 and 14 of Gallus gallus (chicken) with orthologous chromosomes 20 and 16

of Meleagris gallopavo (turkey), respectively. These avian species, that are of great agricultural and

commercial importance, are estimated to have diverged at 37.2 MYA [13]. Figures 2a and b demonstrate

that Smash++ was able to find the inversions confirmed by FISH analysis, reported at [14, 15].

In Figures S1 and S2 of the supplementary material, we have compared Smash++ with other methods,

on GGA 18 / MGA 20 and GGA 14 / MGA 16 chromosomes, respectively. The methods included in these

figures are: (a) Smash++; (b) progressiveMauve [16], that uses an alignment objective score to detect

rearrangement breakpoints when genomes have unequal gene content. It also applies a probabilistic

alignment filtering method in order for removing erroneous alignments of unrelated sequences; (c) the

method proposed in [15], that takes a bacterial artificial chromosome (BAC)-based approach along with

FISH analysis to develop an integrated physical, genetic and comparative map of chicken and turkey;

(d) SynBrowser [17], that constructs synteny blocks using prebuilt alignments in the UCSC genome

browser database; and (e) FISH analysis [14].

Figure 2c demonstrates similarities between chromosomes 12 of Homo sapiens and Pan troglodytes,

that are estimated to have diverged at 6.7 MYA. A comparison to other methods is provided in Fig-

ures S3 of the supplementary material. The methods include: (a) Smash++; (b) progressiveMauve;

(c) Cinteny [18], that performs sensitivity analysis for synteny block detection and for the subsequent

computation of reversal distances, by means of an extended version of ternary search trees (TST). Embed-

ded in this extension are “walks” through the leaves of the tree, that correspond to walks on the genome

markers in their linear order; (d) SynBrowser; and (e) D-Genies [19], that works based on alignment of

genomes by minimap2 software package [20].

Figure 2d illustrates similarities between Xanthomonas oryzae pv. oryzae PXO99A and Xanthomonas

oryzae pv. oryzae MAFF 311018, two strains of Xanthomonas oryzae pv. oryzae (Xoo) pathogen, which

causes the disease of bacterial blight of rice (Oryzae sativa L.). That is the most serious bacterial disease

3

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 25, 2019. ; https://doi.org/10.1101/2019.12.23.887349doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.23.887349
http://creativecommons.org/licenses/by-nd/4.0/

of rice that can reduce yields by as much as 50% [21]. Note that to have a clearer picture, we have not

plotted the shades connecting similar regions. This can be achieved by “-l 6” option while calling the

Smash++ visualizer. Figure S4 of the supplementary material provides the comparison of Smash++ with

progressiveMauve and the study [21], which uses an alignment method to find genome rearrangements in

Xoo. As can be seen, the result provided by Smash++ conforms to the one presented in the study [21],

without performing an alignment.

2.5 Comparison to Smash

To have a better understanding of the improvement we have made over the first version, Smash, we

compare the two tools on a synthetic and a real dataset (see Figure 3). In Table 1, the procedure of

making the synthetic data (RefComp and TarComp) is described. Figure 3a shows the comparison of

running Smash and Smash++ on the synthetic dataset. For Smash, we used an FCM with k-mer size

of 14, and for Smash++, we used a cooperation of an FCM with k-mer size of 14 and an STMM with

number of substitutions of 5. As the information profiles show, Smash++ is able to model better the

data, since it uses less information (lower information contents) to describe the target based on the

reference; this is possible because of employing a cooperation of the FCM and the STMM instead of

using solely an FCM. We expect the output to have the following format: parts I, II, III and IV of the

reference and the target are similar (including rearrangements), there is also inverted repeats between

parts V, VI and VII of the sequences, and finally, there are rearrangements between parts VIII, IX and X

of the sequences. When there is no space between consecutive regions, Smash++ joins them; therefore,

we expect Smash++ to detect three similar regions: the one including parts I, II, III and IV, the one with

parts V, VI and VII, and the one including parts VIII, IX and X. The rearrangements map shows that

Smash++ fulfills our expectation. On the other side, Smash was not able to detect all rearrangements,

showing that to model such dataset, we need more than a single FCM.

The result of running Smash and Smash++ on a real dataset, Saccharomyces cerevisiae chromosome

VII and Saccharomyces paradoxus chromosome VII, is demonstrated in Figure 3b. S. cerevisiae is a

species of yeast that plays a key role in winemaking, baking and brewing. It has been a eukaryotic

model organism that gives insights into molecular functioning of human cells [22]. S. paradoxus is closest

known species to the S. cerevisiae, that has proved its importance on different fields of the life sciences,

including evolution, ecology and biotechnology [23]. For the experiment, we ran Smash using an FCM

with k-mer size of 14, and Smash++ using an FCM with k-mer size of 14 cooperated with an STMM

with number of substitutions of 5. As can be seen, using an FCM along with an STMM could drastically

improve modeling the data, which led to find rearrangements more accurately. The rearrangements map

of Smash++ conforms to the previous study [22].

2.6 Robustness against fragmented data

Inherited from Smash, Smash++ is capable of finding similarities between a fragmented reference and a

target sequence. Figure S5 of the supplementary material shows robustness of the proposed tool against

fragmented data, for different randomly permutated block sizes. As can be seen, the same three target

regions are detected even when the reference is fragmented to 100,000 blocks of 30 bases. This capability

might be of interest in case of non-assembled sequences or in presence of assembly errors; note that this

approach can not be considered as an alternative to assembly.

4

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 25, 2019. ; https://doi.org/10.1101/2019.12.23.887349doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.23.887349
http://creativecommons.org/licenses/by-nd/4.0/

2.7 Benchmarking

Figure 4 illustrates performance of the proposed tool in terms of memory and time usage for all datasets

(for more details, see supplementary Table S1). Size of the datasets are mentioned on top of each circle,

in black, and number of detected similar regions between each pair of sequences is mentioned inside the

circles, in white. The legend shows the precise size of datasets in bases (b). Figure 4a shows the peak

memory in gigabytes used by Smash++ on all synthetic and real datasets. The maximum peak memory

usage, ∼1.08 GB, was when the proposed tool was ran on human and chimpanzee chromosomes 12, that

are the biggest datasets with the total size of ∼268 Mb. It should be mentioned that the memory usage

of Smash++ is related to the k-mer size that is used for modeling the data, since different data structures

are employed for different k-mer sizes (see section “Methods”). The sizes 13 and 14 were used to perform

the experiments. The maximum memory usage of ∼1 GB enables Smash++ to run on any computer,

nowadays.

Figure 4b demonstrates elapsed (wall clock) times, in minutes. The elapsed times rely on the file sizes

along with the number of detected similar regions, meaning that the more the number of regions is and/or

the greater the dataset size is, the more the time will be taken. Note that it is not a linear relation. As an

example, the pair datasets “Large” and the pair “PXO99A MAFF311018” have approximately the same

total size of 10 Mb. In the former case that two similarities is detected, Smash++ takes ∼26 seconds,

but in the latter case with 23 similarities, the proposed tool takes ∼1.8 minutes to run. As another

example, carrying out Smash++ on the pair “XLarge” with the total size of 200 Mb and four similarities

detected, takes approximately the same wall clock time as carrying out on the pair “HS12 PT12” that

has the total size of ∼268 Mb and three similar regions are detected. Regarding the pair “Perm30”

with 11,607 similarities detected, we should notice that it has a massively fragmented reference sequence

with 10,000 fragments of 30 b, therefore it is by far the most time-consuming dataset. Note that the

difference between the values of 10,000 (number of reference fragments) and 11,607 (number of similar

regions) arises from the fact that a number of the reference chunks are similar to more than one target

region and vice versa. It is worth mentioning that due to the absence of a tool that provides relative

and self-complexity in addition to detecting similarities, we cannot have a fair camparison to other tools

in terms of time and memory usage; therefore, we have only provided the performance results for the

proposed tool.

3 Conclusions

Finding genomic rearrangements is crucial, since they play an important role in genetic disorders, can-

cer and chromosomal evolution. We presented Smash++, an alignment-free tool that accurately finds

small- and large-scale genomic rearrangements between pairs of DNA sequences, by employing a data

compression approach. This memory-efficient tool was successfully tested on several synthetic and real

data from bacteria, fungi, Aves and mammalia. The presented results showed that the detected rear-

rangements complied with previous studies which used alignment-based methods or performed FISH

analysis. Smash++ consumed a maximum of ∼1 GB of memory, among all experiments, which showed

that it can be run on any computer, nowadays. The proposed tool has the potential to improve accu-

racy of diagnostic and genetic counselling, and also to guide future inverstigations into development of

personalized therapeutic.

5

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 25, 2019. ; https://doi.org/10.1101/2019.12.23.887349doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.23.887349
http://creativecommons.org/licenses/by-nd/4.0/

4 Methods

The schema of the proposed method is illustrated in Figure 5. Smash++ takes as inputs a reference and

a target sequence and produces as output a position file, including local similarities of the two sequences,

which can then be used by the Smash++ visualizer to produce an SVG image illustrating the similarities.

This process has eight major stages: (1) compression of the original target file, based on the model of the

original reference file, (2) filtering the information profile, which is the output of stage 1, and segmenting

the target sequence, (3) reference-free compression of the segmented sequences, obtained by the previous

stage, (4) compression of the original reference file, based on the model of segmented sequences, which

are obtained by stage 2, (5) filtering the information profile and segmenting the reference sequence,

(6) reference-free compression of the segmented sequences, (7) aggregating positions, that are generated

by stages 3 and 6, and (8) visualizing the positions. The following sections describe the process in detail.

4.1 Data modeling

We consider sequences over the nucleotide alphabet Θ = {A,C,G,T}; our goal is to measure the de-

gree of local similarity between two such sequences. More specifically, we consider a reference sequence

S = s1, . . . , sN over Θ, and we want to measure the local information content of a target sequence, given

this reference sequence. To this end, we employ a combination of finite-context models and substitution-

tolerant Markov models to derive different probablitly measures for observing a nucleotide x in a sequence,

given the context of the previous k nucleotides (Fig. 6a); these probabilities are then mixed (by multipli-

cations and additions shown in Fig. 6b) to provide the final probability (P) of observing the nucleotide

x. The following subsections describe the models we use in detail.

Finite-context model (FCM)

We consider the probability of observing a certain nucleotide, given the previous k nucleotides, by using

the relative frequency of this event in the reference sequence S. For x ∈ Θ and a k-mer Q ∈ Θk, let

N(x|Q) be the number of occurrences of Q in S that are followed by nucleotide x, and let N(Q) be the

number of occurrences of Q in S. As in [11, 24, 25], we then define

PFCM(x|Q) =
N(x|Q) + α

N(Q) + 4 · α
, (1)

where “4” is the size of alphabet Θ and α is a pseudo-count parameter. For α = 1, Eq. 1 turns into the

Laplace estimator. Note that an FCM has the Markov property, in which the conditional probability

distribution of observing a nucleotide depends only upon the state of preceding k-mer.

Substitution-tolerant Markov model (STMM)

Given the reference sequence S, we use the aforementioned probability distribution PFCM to define a

sequence S′ = s′−k, s
′
−k+1, . . . , s

′
N recursively by

s′i =

 A if i < 1

arg max
x∈Θ

PFCM(x|s′i−k, . . . , s′i−1) if i ≥ 1.

6

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 25, 2019. ; https://doi.org/10.1101/2019.12.23.887349doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.23.887349
http://creativecommons.org/licenses/by-nd/4.0/

For x ∈ Θ and a k-mer Q ∈ Θk, we then define N ′(x|Q) as the number of occurrences of Q followed by

x and N ′(Q) as the number of occurrences of Q, respectively, in the sequence S′. Finally, we define

PSTMM(x|Q) =
N ′(x|Q) + α

N ′(Q) + 4 · α
. (2)

STMMs, that are probabilistic-algorithmic models [26, 11], can be used along with FCMs to modify

the behavior of Smash++ when confronted with nucleotide substitutions in genomic sequences. These

models can be disabled, to reduce the number of mathematical calculations, and consequently, increase

the performance of the proposed method. Such operation is automatically performed using an array of

size k (the context size), named history, which preserves the past k hits/misses. Observing a symbol in

the sequence, the memory is checked for the symbol with the highest number of occurrences. If they are

equal, a hit is saved in the history array; otherwise, a miss is inserted into the array. Before getting to

store a hit/miss in the array, it is checked for the number of misses and in the case they are more than a

predefined threshold t, the STMM will be disabled and also the history array will be reset. This process

is performed for each nucleotide in the sequence.

The following example shows the distinction between an FCM and an STMM. Assume that the

current context at a certain position is AGACGTAC, and the number of occurrences of symbols saved

in memory is 10, 6, 15 and 8 for A, C, G and Ts, respectively; also, the symbol to appear in the

sequence is T. An FCM considers the next context as GACGTACT, while an STMM considers it as

GACGTACG, since the nucleotide G is the most probable symbol, based on the number of occurrences

stored in memory.

Cooperation of FCMs and STMMs

When FCMs and STMMs are in cooperation, the probability of observing a nucleotide x in a sequence

S can be estimated as

P (x) =
∑

1≤i≤m

PFCMi
(x|Q) wi +

∑
0≤j<n

PSTMMj
(x|Q) wj , ∀x ∈ S, (3)

in which m and n denote the number of FCMs and STMMs, respectively, and wi and wj are weights

assigned to each FCM and STMM, respectively, based on its performance. We have

wip ∝ (wip−1
)γiPFCM(x|Qp−1), 1 ≤ i ≤ m,

wjp ∝ (wjp−1)γjPSTMM(x|Qp−1), 0 ≤ j < n,
(4)

where p denotes a certain position, and γi and γj ∈ [0, 1) are forgetting factors predefined for each model.

Also, ∑
1≤i≤m

wi +
∑

0≤j<n

wj = 1. (5)

By experimenting different forgetting factors for models, we have found that higher factors should be

assigned to models that have higher context-order sizes (less complexity) and vice versa. As an example,

when the context size k = 6, γi or γj ' 0.9 and when k = 18, γi or γj ' 0.95 would be appropriate

choices. These values show that forgetting factor and complexity of a model are inversely related.

4.2 Storing models in memory

The FCMs and STMMs include, in fact, count values which need to be saved in memory. For this purpose,

four different data structures have been employed considering the context-order size k, as follows:

7

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 25, 2019. ; https://doi.org/10.1101/2019.12.23.887349doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.23.887349
http://creativecommons.org/licenses/by-nd/4.0/

� table of 64 bit counters, for 1 ≤ k ≤ 11,

� table of 32 bit counters, for k = 12, 13,

� table of 8 bit approximate counters, for k = 14, and

� Count-Min-Log sketch of 4 bit counters, for k ≥ 15.

The table of 64 bit counters, that is shown in Figure 7a, simply saves the number of events for each

context. The table of 32 bit counters saves in each position the number of times that the associated

context is observed. When a counter reaches the maximum value 232 − 1 = 4294967295, all the counts

will be renormalized by dividing by two, as shown in Figure 7b.

Approximate counting is a method that employs probabilistic techniques to count large number of

events, while using a small amount of memory [27]. Figure 8 shows the algorithm for two major functions

associated with this method, Update and Query. In order to update the counter, a pseudo-random

number generator (PRNG) is used the number of times of the counter’s current value to simulate flipping

a coin. If it comes up 0/Heads each time or 1/Tails each time, the counter will be incremented. Figure 7c

shows the difference between arithmetic and approximate counting, and also the values which are actually

stored in memory. Note that since an approximate counter represents the actual count by an order of

magnitude estimate, one only needs to save the exponent. For example, if the actual count is 8, we store

in memory log2 8 = 3.

Count-Min-Log Sketch (CMLS) is a probabilistic data structure to save frequency of events in a table

by means of a family of independent hash functions [28]. The algorithm for updating and querying

the counter is shown in Figure 9. In order to update the counter, its current value is hashed with d

independent hash functions. Then, a coin is flipped the number of times of the counter’s current value,

employing a pseudo-random number generator. If it comes up 0/Heads each time or 1/Tails each time,

the minimum hashed values (out of d values) will be updated, as shown in Figure 7d.

CMLS requires a family of pairwise independent hash functions H = {h : U → [m]}, in which

each function h maps some universe U to m bins. In this family of functions, the probability that all

x, y ∈ U, x 6= y will hash to any pair of hashed values z1, z2 is as if they were perfectly random, i.e.,

Ph∈H [h(x) = z1 ∧ h(y) = z2] = 1/m2. A hash function in this family can be obtained by

ha,b(x) = ((ax+ b) mod p) mod m, (6)

where p ≥ m is a prime number and a and b are randomly chosen integers modulo p with a 6= 0. Note

that if the number of bins is a power of two, m = 2M , multiply-add-shift scheme [29] can be used to

avoid modular arithmetic. A hash function in this scheme can be obtained by:

ha,b(x) = ((ax+ b) mod 2w) div 2w−M , (7)

in which w is the number of bits in a machine word, e.g., 64, a is a random positive integer less than 2w

and b is a random non-negative integer less than 2w−M . Such hash function can be implemented in the

C++ language by

ha,b(x) = (uint64_t) (a*x+b) >> (w-M).

8

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 25, 2019. ; https://doi.org/10.1101/2019.12.23.887349doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.23.887349
http://creativecommons.org/licenses/by-nd/4.0/

4.3 Finding similar regions

To find similar regions in reference and target sequences, a quantity is required for measuring the simi-

larity. We use “per symbol information content”, in bpb (bit per base), which can be calculated as

I(x) = − log2 P (x), ∀x ∈ S, (8)

where P (x) denotes the probability of observing a nucleotide x in the sequence S, obtained by Equation 3.

The information content is the amount of information required to represent a symbol in the target

sequence, based on the model of the reference sequence. The less the value of this measure is for two

regions, the more amount of information is shared between them, and, therefore, the more similar are

the two regions. Note that a version of this measure has been introduced in [12], which employs a single

FCM to calculate the probabilities. In this paper, however, we exploit a cooperation between multiple

FCMs and STMMs for highly accurate calculation of such probabilities.

The procedure of finding similar regions in a reference and a target sequence, illustrated in Figure 10,

is as follows: after creating the model of the reference, the target is compressed based on that model

and the information content is calculated for each symbol in the target. Then, the content of the whole

target sequence is smoothed by a Hann window [30], which is a discrete window function given by

w[n] = 0.5− 0.5 cos
(

2πn
N

)
, where 0 ≤ n ≤ N and length of the window is N + 1. Next, the smoothened

information content is segmented considering a predefined threshold, meaning that the regions with the

content greater than the threshold are filtered out. This is carried out for both regular and inverted

repeat homologies and, at the end, the result would be the regions in the target sequence that are similar

to the reference sequence (Figure 10a). The described phase repeats for all of the target regions found,

in the way that after creating the model for each region, the whole reference sequence is compressed to

find those regions in the reference that are similar to each of the target regions (Figure 10b). The final

result would have the form of Figure 10c.

4.4 Computing complexity

After finding the similar regions in reference and target sequences, we evaluate redundancy in each region,

knowing that it is inversely related to Kolmogorov complexity, i.e., the more complex a sequence is, the

less redundant it will be [31]. The Kolmogorov complexity, K, of a binary string s, of finite length, is

the length of the smallest binary program p that computes s in a universal Turing machine and halts. In

other words, K(s) = |p| is the minimum number of bits required to computationally retrieve the string

s [32, 33].

The Kolmogorov complexity is not computable, hence, an alternative is required to compute it ap-

proximately. It has been shown in the literature that a compression algorithm can be employed for this

purpose [34, 35, 36]. In this paper, we employ a reference-free compressor to approximate the complexity

and, consequently, the redundancy of the found similar regions in the reference and the target sequences.

This compressor works based on cooperation of FCMs and STMMs, which has been previously described

in detail. Note that the difference between reference-based and reference-free version of such compressor

is that, in the former mode, a model is first created for the reference sequence and, then, the target

sequence is compressed based on that model, while in the latter mode, the model is progressively created

at the time of compressing the target sequence.

Availability of source code and requirements

� Project name: Smash++

9

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 25, 2019. ; https://doi.org/10.1101/2019.12.23.887349doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.23.887349
http://creativecommons.org/licenses/by-nd/4.0/

� Project home page: https://github.com/smortezah/smashpp

� Operating system(s): Linux, macOS, Windows

� Programming language: C++, Python

� Other requirements: C++ 14, Python 3

� License: GNU GPLv3

Availability of supporting data and materials

The data sets supporting the results of this article are available in the Smash++ Github repository,

https://github.com/smortezah/smashpp/experiment/dataset.

Additional files

A single Supplementary notes file, including:

Supplementary Figure S1. Comparison of Smash++ and other methods on G. gallus chromosome

18 and M. gallopavo chromosome 18.

Supplementary Figure S2. Different methods ruuning on G. gallus chromosome 14 and M. gallopavo

chromosome 16.

Supplementary Figure S3. Comparing with other methods on H. sapiens chromosome 12 and

P. troglodytes chromosome 12.

Supplementary Figure S4. Result of running different methods on X. oryzae pv. oryzae PXO99A

and X. oryzae pv. oryzae MAFF 311018.

Supplementary Figure S5. Similarity of a target sequence to a fragmented reference sequence, that

is randomly permutated by different block sizes.

Supplementary Table S1. Performance of Smash++ running on all synthetic and real datasets.

Supplementary Note S1. Software manual for Smash++.

Declarations

List of abbreviations

AML: acute myeloid leukemia; BAC: bacterial artificial chromosome; CMT: Charcot–Marie–Tooth;

CMLS: Count-Min-Log Sketch; CPU: central processing unit; FCM: finite-context model; FISH: Flu-

orescence in situ hybridization; GB: gigabyte; GGA: Gallus gallus; GHz: gigahertz; HS: Homo sapi-

ens; HSV: Hue, Saturation, Value; HTS: high-throughput sequencing; KB: kilobyte; MB: megabyte;

MGA: Meleagris gallopavo; MYA: million years ago; NCBI: national center for biotechnology infor-

mation; PMP22: peripheral myelin protein 22; PRNG: pseudo-random number generator; PT: Pan

troglodytes; RAM: random access memory; Sc: Saccharomyces cerevisiae; Sp: Saccharomyces paradoxus;

STMM: substitution-tolerant Markov model; SVG: Scalable Vector Graphics; TST: ternary search tree;

UI: user interface; WHS: Wolf–Hirschhorn syndrome; UCSC: University of California, Santa Cruz.

Ethical Approval

Not applicable.

10

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 25, 2019. ; https://doi.org/10.1101/2019.12.23.887349doi: bioRxiv preprint

https://github.com/smortezah/smashpp
https://github.com/smortezah/smashpp/experiment/dataset
https://doi.org/10.1101/2019.12.23.887349
http://creativecommons.org/licenses/by-nd/4.0/

Consent for publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Funding

This work was supported by Programa Operacional Factores de Competitividade – COMPETE (FEDER);

and by national funds through the Foundation for Science and Technology (FCT), in the context of

the projects [UID/CEC/00127/2014, PTCD/EEI-SII/6608/2014] and the grants [PD/BD/113969/2015,

UID/CEC/00127/2019].

Author’s Contributions

M.H. developed the software and wrote the manuscript. D.P. and A.J.P. contributed to and tested the

software. D.P., B.M. and A.J.P. provided guidance. All authors contributed to the manuscript.

Acknowledgements

We would like to thank everyone who has contributed to the development of Smash++, through testing

and feedback.

References

[1] J. Reuter, D. V. Spacek, and M. Snyder, “High-throughput sequencing technologies,” Molecular

Cell, vol. 58, no. 4, pp. 586–597, 2015.

[2] D. E. V. Villamor, T. Ho, M. Al Rwahnih, R. R. Martin, and I. E. Tzanetakis, “High throughput

sequencing for plant virus detection and discovery,” Phytopathology, vol. 109, no. 5, pp. 716–725,

2019.

[3] S. M. Rego and M. P. Snyder, “High throughput sequencing and assessing disease risk,” Cold Spring

Harbor perspectives in medicine, vol. 9, no. 1, p. a026849, 2019.

[4] T. Hartmann, M. Middendorf, and M. Bernt, “Genome rearrangement analysis: Cut and join genome

rearrangements and gene cluster preserving approaches,” in Comparative Genomics. Springer, 2018,

pp. 261–289.

[5] R. Gardner, R. M. Gardner, and D. J. Amor, Gardner and Sutherland’s Chromosome Abnormalities

and Genetic Counseling. Oxford University Press, 2018, no. 70.

[6] A. Theisen and L. G. Shaffer, “Disorders caused by chromosome abnormalities,” The application of

clinical genetics, vol. 3, p. 159, 2010.

[7] J. Damas, D. C. Samuels, J. Carneiro, A. Amorim, and F. Pereira, “Mitochondrial DNA rearrange-

ments in health and disease–a comprehensive study,” Human mutation, vol. 35, no. 1, pp. 1–14,

2014.

11

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 25, 2019. ; https://doi.org/10.1101/2019.12.23.887349doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.23.887349
http://creativecommons.org/licenses/by-nd/4.0/

[8] A. Dufke, J. Seidel, M. Schöning, M. Döbler-Neumann, C. Kelbova, T. Liehr, V. Beensen,

C. Backsch, U. Klein-Vogler, and H. Enders, “Microdeletion 4p16.3 in three unrelated patients

with Wolf-Hirschhorn syndrome,” Cytogenetic and Genome Research, vol. 91, no. 1-4, pp. 81–84,

2000.

[9] V. Timmerman, E. Nelis, W. Van Hul, B. Nieuwenhuijsen, K. Chen, S. Wang, K. B. Othman,

B. Cullen, R. J. Leach, C. Hanemann et al., “The peripheral myelin protein gene PMP–22 is con-

tained within the Charcot–Marie–Tooth disease type 1A duplication,” Nature genetics, vol. 1, no. 3,

p. 171, 1992.

[10] L. Huang, L. V. Abruzzo, J. R. Valbuena, L. J. Medeiros, and P. Lin, “Acute myeloid leukemia

associated with variant t(8;21) detected by conventional cytogenetic and molecular studies: a report

of four cases and review of the literature,” American Journal of Clinical Pathology, vol. 125, no. 2,

pp. 267–272, 2006.

[11] M. Hosseini, D. Pratas, and A. J. Pinho, “AC: A compression tool for amino acid sequences,”

Interdisciplinary Sciences: Computational Life Sciences, vol. 11, no. 1, pp. 68–76, 2019.

[12] D. Pratas, R. M. Silva, A. J. Pinho, and P. J. Ferreira, “An alignment-free method to find and

visualise rearrangements between pairs of DNA sequences,” Scientific Reports, vol. 5, p. 10203,

2015.

[13] S. Kumar, G. Stecher, M. Suleski, and S. B. Hedges, “Timetree: a resource for timelines, timetrees,

and divergence times,” Molecular Biology and Evolution, vol. 34, no. 7, pp. 1812–1819, 2017.

[14] R. A. Dalloul, J. A. Long, A. V. Zimin, L. Aslam, K. Beal, L. A. Blomberg, P. Bouffard, D. W.

Burt, O. Crasta, R. P. Crooijmans et al., “Multi-platform next-generation sequencing of the domes-

tic turkey (Meleagris gallopavo): genome assembly and analysis,” PLoS Biology, vol. 8, no. 9, p.

e1000475, 2010.

[15] Y. Zhang, X. Zhang, T. H. O’Hare, W. S. Payne, J. J. Dong, C. F. Scheuring, M. Zhang, J. J. Huang,

M.-K. Lee, M. E. Delany et al., “A comparative physical map reveals the pattern of chromosomal

evolution between the turkey (Meleagris gallopavo) and chicken (Gallus gallus) genomes,” BMC

Genomics, vol. 12, no. 1, p. 447, 2011.

[16] A. E. Darling, B. Mau, and N. T. Perna, “progressivemauve: multiple genome alignment with gene

gain, loss and rearrangement,” PloS One, vol. 5, no. 6, p. e11147, 2010.

[17] J. Lee, W.-y. Hong, M. Cho, M. Sim, D. Lee, Y. Ko, and J. Kim, “Synteny portal: a web-based

application portal for synteny block analysis,” Nucleic Acids Research, vol. 44, no. W1, pp. W35–

W40, 2016.

[18] A. U. Sinha and J. Meller, “Cinteny: flexible analysis and visualization of synteny and genome

rearrangements in multiple organisms,” BMC Bioinformatics, vol. 8, no. 1, p. 82, 2007.

[19] F. Cabanettes and C. Klopp, “D-genies: dot plot large genomes in an interactive, efficient and

simple way,” PeerJ, vol. 6, p. e4958, 2018.

[20] H. Li, “Minimap2: pairwise alignment for nucleotide sequences,” Bioinformatics, vol. 34, no. 18,

pp. 3094–3100, 2018.

[21] S. L. Salzberg, D. D. Sommer, M. C. Schatz, A. M. Phillippy, P. D. Rabinowicz, S. Tsuge, A. Furu-

tani, H. Ochiai, A. L. Delcher, D. Kelley et al., “Genome sequence and rapid evolution of the rice

pathogen Xanthomonas oryzae pv. oryzae pxo99a,” BMC Genomics, vol. 9, no. 1, p. 204, 2008.

12

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 25, 2019. ; https://doi.org/10.1101/2019.12.23.887349doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.23.887349
http://creativecommons.org/licenses/by-nd/4.0/

[22] G. Fischer, E. P. Rocha, F. Brunet, M. Vergassola, and B. Dujon, “Highly variable rates of genome

rearrangements between hemiascomycetous yeast lineages,” PLoS Genetics, vol. 2, no. 3, p. e32,

2006.

[23] G. Charron, J.-B. Leducq, C. Bertin, A. K. Dubé, and C. R. Landry, “Exploring the northern limit

of the distribution of Saccharomyces cerevisiae and Saccharomyces paradoxus in north america,”

FEMS yeast research, vol. 14, no. 2, pp. 281–288, 2014.

[24] K. Sayood, Introduction to data compression. Morgan Kaufmann, 2017.

[25] A. J. Pinho and D. Pratas, “MFCompress: a compression tool for FASTA and multi-FASTA data,”

Bioinformatics, vol. 30, no. 1, pp. 117–118, 2013.

[26] D. Pratas, M. Hosseini, and A. J. Pinho, “Substitutional tolerant Markov models for relative com-

pression of DNA sequences,” in International Conference on Practical Applications of Computational

Biology & Bioinformatics (PACBB). Springer, 2017, pp. 265–272.

[27] R. Morris, “Counting large numbers of events in small registers,” Commun. ACM, vol. 21, no. 10,

pp. 840–842, 1978.

[28] G. Pitel and G. Fouquier, “Count-min-log sketch: Approximately counting with approximate coun-

ters,” in International Symposium on Web AlGorithms, Deauville, France, Jun 2015.

[29] P. Woelfel, “Efficient strongly universal and optimally universal hashing,” in International Sympo-

sium on Mathematical Foundations of Computer Science. Springer, 1999, pp. 262–272.

[30] R. Blackman and J. Tukey, “Particular pairs of windows,” The measurement of power spectra, from

the point of view of communications engineering, pp. 95–101, 1959.

[31] M. Hosseini, D. Pratas, and A. J. Pinho, “Cryfa: a secure encryption tool for genomic data,”

Bioinformatics, vol. 35, no. 1, pp. 146–148, 2018.

[32] A. Turing, “On computable numbers, with an application to the Entscheidungsproblem,” Proceed-

ings of the London Mathematical Society, vol. 42, no. 2, pp. 230–265, 1936.

[33] M. Li and P. Vitányi, An introduction to Kolmogorov complexity and its applications, 3rd ed.

Springer, 2009.

[34] H. Zenil, F. Soler-Toscano, J.-P. Delahaye, and N. Gauvrit, “Two-dimensional Kolmogorov complex-

ity and an empirical validation of the Coding theorem method by compressibility,” PeerJ Computer

Science, vol. 1, p. e23, Sep. 2015.

[35] R. Antão, A. Mota, and J. A. T. Machado, “Kolmogorov complexity as a data similarity metric:

application in mitochondrial DNA,” Nonlinear Dynamics, vol. 93, no. 3, pp. 1059–1071, Aug 2018.

[36] C. Faloutsos and V. Megalooikonomou, “On data mining, compression, and kolmogorov complexity,”

Data Mining and Knowledge Discovery, vol. 15, no. 1, pp. 3–20, Aug 2007.

[37] H. Ochiai, Y. Inoue, M. Takeya, A. Sasaki, and H. Kaku, “Genome sequence of Xanthomonas oryzae

pv. oryzae suggests contribution of large numbers of effector genes and insertion sequences to its

race diversity,” Japan Agricultural Research Quarterly: JARQ, vol. 39, no. 4, pp. 275–287, 2005.

13

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 25, 2019. ; https://doi.org/10.1101/2019.12.23.887349doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.23.887349
http://creativecommons.org/licenses/by-nd/4.0/

T
ab

le
1:

S
y
n
th

et
ic

an
d

re
al

d
a
ta

se
t

u
se

d
in

th
e

ex
p

er
im

en
ts

.
T

h
e

re
al

d
at

as
et

ca
n

b
e

d
ow

n
lo

ad
fr

om
N

C
B

I
v
ia

ac
ce

ss
io

n
n
u

m
b

er
(a

cc
es

s.
)

p
ro

v
id

ed
in

th
e

d
es

cr
ip

ti
on

s.
S

eq
u

en
ce

G
ro

u
p

L
en

gt
h

(b
)

D
es

cr
ip

ti
on

G
G

A
18

A
ve

s
11

,3
73

,1
40

A
cc

es
s.

:
C

M
00

01
10

–
G

a
ll

u
s

ga
ll

u
s

ch
ro

m
os

om
e

18
.

M
G

A
20

A
ve

s
10

,7
30

,4
84

A
cc

es
s.

:
C

M
00

09
81

–
M

el
ea

gr
is

ga
ll

o
pa

vo
is

ol
at

e
N

T
-W

F
06

-2
00

2-
E

00
10

b
re

ed
A

v
ia

ge
n

tu
rk

ey
b

ra
n

d
N

ic
h

o
la

s
b

re
ed

in
g

st
o
ck

ch
ro

m
os

om
e

20
.

G
G

A
14

A
ve

s
16

,2
19

,3
08

A
cc

es
s.

:
C

M
00

01
06

–
G

a
ll

u
s

ga
ll

u
s

ch
ro

m
os

om
e

14
.

M
G

A
16

A
ve

s
14

,8
78

,9
91

A
cc

es
s.

:
C

M
00

09
77

–
M

el
ea

gr
is

ga
ll

o
pa

vo
is

ol
at

e
N

T
-W

F
06

-2
00

2-
E

00
10

b
re

ed
A

v
ia

ge
n

tu
rk

ey
b

ra
n

d
N

ic
h

o
la

s
b

re
ed

in
g

st
o
ck

ch
ro

m
os

om
e

16
.

H
S

12
M

am
m

al
ia

13
3,

27
5,

30
9

A
cc

es
s.

:
N

C
00

00
12

–
H

o
m

o
sa

p
ie

n
s

ch
ro

m
os

om
e

12
,

G
R

C
h

38
.p

13
P

ri
m

ar
y

A
ss

em
b

ly
.

P
T

12
M

am
m

al
ia

13
0,

99
5,

91
6

A
cc

es
s.

:
N

C
03

68
91

–
P

a
n

tr
og

lo
d
yt

es
is

ol
at

e
Y

er
ke

s
ch

im
p

p
ed

ig
re

e
#

C
04

71
(C

li
n
t)

ch
ro

m
os

om
e

12
.

P
X

O
99

A
B

ac
te

ri
a

5,
2
38

,5
55

A
cc

es
s.

:
C

P
00

09
67

–
X

a
n

th
o
m

o
n

a
s

o
ry

za
e

p
v
.

o
ry

za
e

ca
u

se
s

th
e

m
a
jo

r
d

is
ea

se
of

b
ac

te
ri

al
b

li
gh

t
of

ri
ce

(O
ry

za
sa

ti
va

L
.)

.
X

.
o
ry

za
e

p
v
.

o
ry

za
e

P
X

O
99

A
st

ra
in

is
v
ir

u
le

n
t

to
w

ar
d

a
la

rg
e

n
u

m
b

er
of

ri
ce

va
ri

et
ie

s
re

p
re

se
n
ti

n
g

d
iv

er
se

ge
n

et
ic

so
u

rc
es

of
re

si
st

an
ce

[2
1]

.
M

A
F

F
31

10
18

B
ac

te
ri

a
4,

94
0,

2
17

A
cc

es
s.

:
A

P
0
08

22
9

–
X

.
o
ry

za
e

p
v
.

o
ry

za
e

M
A

F
F

31
10

18
is

a
J
ap

an
es

e
ra

ce
1

st
ra

in
[3

7]
.

S
cV

I I
F

u
n

gi
1,

09
0,

94
0

A
cc

es
s.

:
N

C
00

11
39

–
S

a
cc

h
a
ro

m
yc

es
ce

re
vi

si
a
e

S
28

8C
ch

ro
m

os
om

e
V

II
.

S
p

V
II

F
u

n
gi

1,
10

5,
96

7
A

cc
es

s.
:

C
P

02
02

99
–

S
a
cc

h
a
ro

m
yc

es
pa

ra
d
o
xu

s
st

ra
in

U
F

R
J
50

81
6

ch
ro

m
os

om
e

V
II

.
R

ef
S

S
y
n
th

et
ic

1,
50

0
It

co
n

si
st

s
of

th
re

e
se

gm
en

ts
of

50
0

b
as

e
si

ze
.

T
ar

S
S

y
n
th

et
ic

1
,5

00
T

o
b

u
il

d
T

ar
S

,
se

gm
en

t
I

is
m

u
ta

te
d

2%
,

II
is

in
ve

rs
el

y
re

p
ea

te
d

an
d

II
I

is
d

u
p

li
ca

te
d

.
R

ef
M

S
y
n
th

et
ic

10
0,

00
0

It
h

as
fo

u
r

se
gm

en
ts

of
25

k
il

ob
as

e
si

ze
.

T
ar

M
S

y
n
th

et
ic

10
0,

00
0

F
or

b
u

il
d

in
g

T
ar

M
,
se

gm
en

t
I

of
R

ef
M

(o
u

t
of

to
ta

l
fo

u
r)

is
in

ve
rs

el
y

re
p

ea
te

d
,

II
is

m
u

ta
te

d
90

%
,

II
I

is
d

u
p

li
ca

te
d

a
n

d
IV

is
m

u
ta

te
d

3%
.

R
ef

L
S
y
n
th

et
ic

5,
00

0,
0
00

It
in

cl
u

d
es

tw
o

se
gm

en
ts

,
2,

50
0,

00
0

b
as

es
ea

ch
.

T
ar

L
S

y
n
th

et
ic

5,
00

0,
0
00

S
eg

m
en

t
I

is
in

ve
rs

el
y

re
p

ea
te

d
an

d
II

is
m

u
ta

te
d

2%
fo

r
b

u
il

d
in

g
T

ar
L

.
R

ef
X

L
S
y
n
th

et
ic

10
0,

00
0,

00
0

It
is

m
ad

e
of

fo
u

r
se

gm
en

ts
,

25
,0

00
,0

00
b

as
es

ea
ch

.
T

ar
X

L
S

y
n
th

et
ic

10
0,

00
0,

00
0

S
eg

m
en

t
I

is
m

u
ta

te
d

1%
,

se
gm

en
ts

II
an

d
II

I
ar

e
in

ve
rs

el
y

re
p

ea
te

d
an

d
se

gm
en

t
IV

is
d

u
p

li
ca

te
d

to
m

a
k
e

T
a
rX

L
.

R
ef

M
u

t
S

y
n
th

et
ic

60
,0

00
It

in
cl

u
d

es
60

se
gm

en
ts

of
1

k
il

ob
as

e
si

ze
.

T
ar

M
u

t
S

y
n
th

et
ic

60
,0

00
T

o
b

u
il

d
T

ar
M

u
t,

th
e

fi
rs

t
se

gm
en

t
(I

)
is

m
u

ta
te

d
1%

,
th

e
se

co
n

d
se

gm
en

t
is

m
u

ta
te

d
2%

,
th

e
th

ir
d

o
n

e
is

m
u

ta
te

d
3%

,
an

d
so

on
.

R
ef

C
om

p
S

y
n
th

et
ic

1
,0

00
,0

00
It

co
n

si
st

s
of

10
se

gm
en

ts
of

10
0

k
il

ob
as

es
.

T
ar

C
om

p
S

y
n
th

et
ic

1,
0
00

,0
00

F
or

b
u

il
d

in
g

it
,

th
e

fi
rs

t
se

gm
en

t
(I

)
of

R
ef

C
om

p
is

d
u

p
li
ca

te
d

,
th

e
se

co
n

d
,

th
ir

d
an

d
fo

u
rt

h
se

gm
en

ts
a
re

m
u

-
ta

te
d

1%
,

2%
an

d
3%

,
re

sp
ec

ti
ve

ly
.

T
h
e

se
gm

en
ts

V
,
V

I
an

d
V

II
of

R
ef

C
om

p
ar

e
in

ve
rs

el
y

re
p

ea
te

d
,

th
en

m
u

ta
te

d
4%

,
5%

an
d

6%
,

re
sp

ec
ti

ve
ly

.
F

in
al

ly
,

th
e

se
gm

en
ts

V
II

I,
IX

an
d

X
ar

e
m

u
ta

te
d

7%
,

8%
an

d
9%

,
re

sp
ec

ti
v
el

y.
R

ef
P

er
m

S
y
n
th

et
ic

3,
00

0,
0
00

It
in

cl
u

d
es

th
re

e
se

gm
en

ts
of

1
m

eg
ab

as
e

si
ze

.
In

ad
d

it
io

n
to

th
e

or
ig

in
al

se
q
u

en
ce

,
it

is
p

er
m

u
ta

te
d

,
u

si
n

g
G

O
O

S
E

to
ol

k
it

,
b
y

b
lo

ck
s

of
si

ze
s

45
0

K
b

,
30

K
b

,
1

K
b

an
d

30
b

.
T

ar
P

er
m

S
y
n
th

et
ic

3,
00

0,
00

0
T

o
b

u
il

d
T

ar
P

er
m

,
th

e
fi

rs
t

se
gm

en
t

is
m

u
ta

te
d

1%
,

th
e

se
co

n
d

se
gm

en
t

is
in

ve
rs

el
y

re
p

ea
te

d
an

d
th

e
th

ir
d

o
n

e
is

m
u

ta
te

d
2
%

.

14

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 25, 2019. ; https://doi.org/10.1101/2019.12.23.887349doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.23.887349
http://creativecommons.org/licenses/by-nd/4.0/

0 b

10 Kb

20 Kb

30 Kb

40 Kb

50 Kb

60 Kb

70 Kb

80 Kb

90 Kb

100 Kb

0 b

10 Kb

20 Kb

30 Kb

40 Kb

50 Kb

60 Kb

70 Kb

80 Kb

90 Kb

100 Kb

RefM TarM

Relative
Redundancy

Redundancy

0.0 2.00.5 1.0 1.5

0 b

150 b

300 b

450 b

600 b

750 b

900 b

1.0 Kb

1.2 Kb

1.4 Kb

1.5 Kb

0 b

150 b

300 b

450 b

600 b

750 b

900 b

1.0 Kb

1.2 Kb

1.4 Kb

1.5 Kb

RefS TarS

Relative
Redundancy

Redundancy

0.0 2.00.5 1.0 1.5

0 b

500 Kb

1 Mb

1.5 Mb

2 Mb

2.5 Mb

3 Mb

3.5 Mb

4 Mb

4.5 Mb

5 Mb

0 b

500 Kb

1 Mb

1.5 Mb

2 Mb

2.5 Mb

3 Mb

3.5 Mb

4 Mb

4.5 Mb

5 Mb

RefL TarL

Relative
Redundancy

Redundancy

0.0 2.00.5 1.0 1.5

0 b

10 Mb

20 Mb

30 Mb

40 Mb

50 Mb

60 Mb

70 Mb

80 Mb

90 Mb

100 Mb

0 b

10 Mb

20 Mb

30 Mb

40 Mb

50 Mb

60 Mb

70 Mb

80 Mb

90 Mb

100 Mb

RefXL TarXL

Relative
Redundancy

Redundancy

0.0 2.00.5 1.0 1.5

0 b

5 Kb

10 Kb

15 Kb

20 Kb

25 Kb

30 Kb

35 Kb

40 Kb

45 Kb

50 Kb

55 Kb

60 Kb

0 b

5 Kb

10 Kb

15 Kb

20 Kb

25 Kb

30 Kb

35 Kb

40 Kb

45 Kb

50 Kb

55 Kb

60 Kb

RefMut TarMut

Relative
Redundancy

Redundancy

0.0 2.00.5 1.0 1.5

a b c d e
RefS

(Reference)

I
(500 b)

II
(500 b)

III
(500 b)

Inv.
Repeat

Mutated
2%

Inv.
Repeat

TarS
(Target)

RefS
(Reference)

I
(500 b)

II
(500 b)

III
(500 b)

Inv.
Repeat

Mutated
2%

Inv.
Repeat

TarS
(Target)

RefS
(Reference)

I
(500 b)

II
(500 b)

III
(500 b)

Inv.
Repeat

Mutated
2%

Inv.
Repeat

TarS
(Target)

RefM
(Reference)

I
(25 Kb)

II
(25 Kb)

III
(25 Kb)

IV
(25 Kb)

Dupl.

Mutated
3%

Mutated
90%

Inv.
Repeat

TarM
(Target)

RefM
(Reference)

I
(25 Kb)

II
(25 Kb)

III
(25 Kb)

IV
(25 Kb)

Dupl.

Mutated
3%

Mutated
90%

Inv.
Repeat

TarM
(Target)

RefM
(Reference)

I
(25 Kb)

II
(25 Kb)

III
(25 Kb)

IV
(25 Kb)

Dupl.

Mutated
3%

Mutated
90%

Inv.
Repeat

TarM
(Target)

RefL
(Reference)

I
(2.5 Mb)

II
(2.5 Mb)

Mutated
2%

Inv.
Repeat

TarL
(Target)

RefL
(Reference)

I
(2.5 Mb)

II
(2.5 Mb)

Mutated
2%

Inv.
Repeat

TarL
(Target)

RefL
(Reference)

I
(2.5 Mb)

II
(2.5 Mb)

Mutated
2%

Inv.
Repeat

TarL
(Target)

RefXL
(Reference)

I
(25 Mb)

II
(25 Mb)

III
(25 Mb)

IV
(25 Mb)

Mutated
1%

Inv.
Repeat

Dupl.

Inv.
Repeat

TarXL
(Target)

RefXL
(Reference)

I
(25 Mb)

II
(25 Mb)

III
(25 Mb)

IV
(25 Mb)

Mutated
1%

Inv.
Repeat

Dupl.

Inv.
Repeat

TarXL
(Target)

RefXL
(Reference)

I
(25 Mb)

II
(25 Mb)

III
(25 Mb)

IV
(25 Mb)

Mutated
1%

Inv.
Repeat

Dupl.

Inv.
Repeat

TarXL
(Target)

RefMut
(Reference)

..
.

I
(1 Kb)

II
(1 Kb)

..
.

LX
(1 Kb)

Mutated
1%

Mutated
2%

Mutated
60%

TarMut
(Target)

RefMut
(Reference)

..
.

I
(1 Kb)

II
(1 Kb)

..
.

LX
(1 Kb)

Mutated
1%

Mutated
2%

Mutated
60%

TarMut
(Target)

RefMut
(Reference)

..
.

I
(1 Kb)

II
(1 Kb)

..
.

LX
(1 Kb)

Mutated
1%

Mutated
2%

Mutated
60%

TarMut
(Target)

Figure 1: Similarities between synthetic sequences with different sizes, detected by Smash++. The
parameters used are: k-mer size = 14 and number of substitutions in STMM = 5, which are the default
parameters used by Smash++. For the threshold, the default value of 1.5 and 1.97 are used for subfigures
a-d and e, respectively. (a) 1.5 Kb sequences; (b) 100 Kb sequences. No similarity is detected for part II
of the reference, since it is mutated 90%. Parts III and IV of the reference and I and II of the target are
joined, since there is no space between consecutive regions; (c) 5 Mb sequences; (d) 100 Mb sequences;
(e) 60 Kb sequences. ∼43% of mutation is detected.

15

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 25, 2019. ; https://doi.org/10.1101/2019.12.23.887349doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.23.887349
http://creativecommons.org/licenses/by-nd/4.0/

b

0 b

1.5 Mb

3 Mb

4.5 Mb

6 Mb

7.5 Mb

9 Mb

10.5 Mb

12 Mb

13.5 Mb

15 Mb

0 b

1.5 Mb

3 Mb

4.5 Mb

6 Mb

7.5 Mb

9 Mb

10.5 Mb

12 Mb

13.5 Mb

15 Mb

GGA 14 MGA 16

Relative
Redundancy

Redundancy

0.0 2.00.5 1.0 1.5

a

0 b

1 Mb

2 Mb

3 Mb

4 Mb

5 Mb

6 Mb

7 Mb

8 Mb

9 Mb

10 Mb

11 Mb

0 b

1 Mb

2 Mb

3 Mb

4 Mb

5 Mb

6 Mb

7 Mb

8 Mb

9 Mb

10 Mb

GGA 18 MGA 20

Relative
Redundancy

Redundancy

0.0 2.00.5 1.0 1.5

c

0 b

15 Mb

30 Mb

45 Mb

60 Mb

75 Mb

90 Mb

105 Mb

120 Mb

135 Mb

0 b

15 Mb

30 Mb

45 Mb

60 Mb

75 Mb

90 Mb

105 Mb

120 Mb

135 Mb

HS 12 PT 12

Relative
Redundancy

Redundancy

0.0 2.00.5 1.0 1.5

d

0 b

500 Kb

1 Mb

1.5 Mb

2 Mb

2.5 Mb

3 Mb

3.5 Mb

4 Mb

4.5 Mb

5 Mb

0 b

500 Kb

1 Mb

1.5 Mb

2 Mb

2.5 Mb

3 Mb

3.5 Mb

4 Mb

4.5 Mb

5 Mb

PXO99A MAFF 311018

Relative
Redundancy

Redundancy

0.0 2.00.5 1.0 1.5

Figure 2: Similarities in a real dataset, detected by Smash++. (a) G. gallus (chicken) chr. 18 and
M. gallopavo (turkey) chr. 20. The parameters were k-mer size = 14, no. substitutions in STMM = 5,
threshold = 1.9 and min block size (m) = 500, 000, i.e., the regions smaller than 500,000 bases were
not considered for further processing; (b) G. gallus chr. 14 and M. gallopavo chr. 16. The result is
obtained by setting k = 14, no. substitutions = 5, threshold = 1.95 and m = 400, 000; (c) H. sapiens
(human) chr. 12 and P. troglodytes (chimpanzee) chr. 12. The parameters were k = 14, without using
STMM, threshold = 1.9 and m = 100, 000; (d) X. oryzae pv. oryzae PXO99A (a rice pathogen) and
X. oryzae pv. oryzae MAFF 311018 (a rice pathogen). The result obtained by setting k = 13, threshold =
1.55 and m = 10, 000.

16

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 25, 2019. ; https://doi.org/10.1101/2019.12.23.887349doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.23.887349
http://creativecommons.org/licenses/by-nd/4.0/

TarComp
(Target)

RefComp
(Reference)

Synthetic
Dataset

a I
(100 Kb)

X
(100 Kb)

II
(100 Kb)

III
(100 Kb)

IV
(100 Kb)

V
(100 Kb)

VI
(100 Kb)

VII
(100 Kb)

VIII
(100 Kb)

IX
(100 Kb)

Dupl.
Mutated

9%
Mutated

1%
Mutated

2%
Mutated

3%
Inv. Repeat &
Mutated 4%

Inv. Repeat &
Mutated 5%

Inv. Repeat &
Mutated 6%

Mutated
7%

Mutated
8%

Real
Dataset

b
Saccharomyces cerevisiae
chromosome VII
(Reference)

Saccharomyces paradoxus
chromosome VII
(Target)

Smash++

Models

Information profile

Rearrangements

Model

Information profile

Rearrangements

Smash

0 b 100 Kb 200 Kb 300 Kb 400 Kb 500 Kb 600 Kb 700 Kb 800 Kb 900 Kb 1 Mb 1.1 Mb0 b 100 Kb 200 Kb 300 Kb 400 Kb 500 Kb 600 Kb 700 Kb 800 Kb 900 Kb 1 Mb 1.1 Mb

0 b 100 Kb 200 Kb 300 Kb 400 Kb 500 Kb 600 Kb 700 Kb 800 Kb 900 Kb 1 Mb 1.1 Mb0 b 100 Kb 200 Kb 300 Kb 400 Kb 500 Kb 600 Kb 700 Kb 800 Kb 900 Kb 1 Mb 1.1 Mb

Substitution-Tolerant
Markov Model

Finite-context
Model

k = 14
a = 0.001
g = 0.95

t = 5
a = 0.001
g = 0.95

k = 14
a = 0.001

Finite-context
Model

Sc.VII

Sp.VII

Smash++

Models

Information profile

Rearrangements

Model

Information profile

Rearrangements

Smash

k = 14
a = 0.001

Finite-context
Model

0 b 100 Kb 200 Kb 300 Kb 400 Kb 500 Kb 600 Kb 700 Kb 800 Kb 900 Kb 1 Mb0 b 100 Kb 200 Kb 300 Kb 400 Kb 500 Kb 600 Kb 700 Kb 800 Kb 900 Kb 1 Mb

0 b 100 Kb 200 Kb 300 Kb 400 Kb 500 Kb 600 Kb 700 Kb 800 Kb 900 Kb 1 Mb0 b 100 Kb 200 Kb 300 Kb 400 Kb 500 Kb 600 Kb 700 Kb 800 Kb 900 Kb 1 Mb

Ref

Tar

0 b 100 Kb 200 Kb 300 Kb 400 Kb 500 Kb 600 Kb 700 Kb 800 Kb 900 Kb 1 Mb

0 b 100 Kb 200 Kb 300 Kb 400 Kb 500 Kb 600 Kb 700 Kb 800 Kb 900 Kb 1 Mb

Ref

Tar

R
ela

tive Red
und

anc
y

R
edu

nda
nc

y

0.0

2.0

0.5

1.0

1.5

0 b 100 Kb 200 Kb 300 Kb 400 Kb 500 Kb 600 Kb 700 Kb 800 Kb 900 Kb 1 Mb

0 b 100 Kb 200 Kb 300 Kb 400 Kb 500 Kb 600 Kb 700 Kb 800 Kb 900 Kb 1 Mb

Ref

Tar

R
ela

tive Red
und

anc
y

R
edu

nda
nc

y

0.0

2.0

0.5

1.0

1.5

Substitution-Tolerant
Markov Model

Finite-context
Model

k = 14
a = 0.001
g = 0.95

t = 5
a = 0.001
g = 0.95

0 b 100 Kb 200 Kb 300 Kb 400 Kb 500 Kb 600 Kb 700 Kb 800 Kb 900 Kb 1 Mb 1.1 Mb

0 b 100 Kb 200 Kb 300 Kb 400 Kb 500 Kb 600 Kb 700 Kb 800 Kb 900 Kb 1 Mb 1.1 Mb

R
ela

tive
 Red

und
anc

y

R
edu

nd
a

nc
y

0.0

2.0

0.5

1.0

1.5Sc.VII

Sp.VII

0 b 100 Kb 200 Kb 300 Kb 400 Kb 500 Kb 600 Kb 700 Kb 800 Kb 900 Kb 1 Mb 1.1 Mb

0 b 100 Kb 200 Kb 300 Kb 400 Kb 500 Kb 600 Kb 700 Kb 800 Kb 900 Kb 1 Mb 1.1 Mb

R
ela

tive
 Red

und
anc

y

R
edu

nd
a

nc
y

0.0

2.0

0.5

1.0

1.5Sc.VII

Sp.VII

Figure 3: Comparison of Smash++ and Smash on (a) synthetic dataset. Using cooperation of an FCM
and an STMM (in Smash++) produces more accurate results rather than using a single FCM (in Smash);
and (b) real dataset, including S. cerevisiae chr. VII and S. paradoxus chr. VII. The rearrangements
maps clearly show the improvement made over Smash, using an FCM along with an STMM.

17

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 25, 2019. ; https://doi.org/10.1101/2019.12.23.887349doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.23.887349
http://creativecommons.org/licenses/by-nd/4.0/

5
3

3

23
8

22 Mb
32 Mb

268 Mb

10 Mb
2 Mb

3 2 2

4

1 3 3 8 43 692 11607

3 Kb 200 Kb 10 Mb

200 Mb

120 Kb 2 Mb 6 Mb 6 Mb 6 Mb 6 Mb 6 Mb

Real Synthetic

1.00

1.05

1.10

P
ea

k
m

em
or

y
(G

B
)

a

5 3 3238

22 Mb 32 Mb 268 Mb10 Mb2 Mb

3 2 2 41 3 3 8 43
692

11607

3 Kb 200 Kb 10 Mb 200 Mb120 Kb 2 Mb 6 Mb 6 Mb 6 Mb
6 Mb

6 Mb

Real Synthetic

CompReal

PXO99A_MAFF311018

GGA18_MGA20

GGA14_MGA16

HS12_PT12

Small
Mutate

Medium

CompSynth

PermOrig

Perm450000

Perm30000

Perm1000

Perm30

Large
XLarge

0

100

200

300

E
la

ps
ed

 ti
m

e
(M

in
)

b

Size (b)

3000

120000

200000

2000000

2228294

6000000

10000000

10324186

22419393

31542564

200000000

268046531

Figure 4: The peak memory consumption, in gigabytes, and elapsed (wall clock) time usage, in minutes,
of Smash++ obtained by carrying out on all synthetic and real datasets described in Table 1.

18

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 25, 2019. ; https://doi.org/10.1101/2019.12.23.887349doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.23.887349
http://creativecommons.org/licenses/by-nd/4.0/

Positions Aggregation

ref

tar

tar

ref

SeqLow-pass filter

Inputs Output

SVG
Image

Visualization
Reference-based

Compression
Filtering & Segmentation

Reference-free
Compression

SeqLow-pass filter

Reference-based
Compression

Filtering & Segmentation
Reference-free
Compression

Positions Aggregation

Final Pos
Target

Pos

Reference
Pos

Visualization

Target
Seq

Reference
Seq

1 2 3 7 8

4 5 6 7 8

Inf. profile

Inf. profile

Figure 5: The schema of Smash++. The process of finding similar regions in reference and target
sequences. Computing the redundancy in each region includes eight stages. Finally, Smash++ outputs
a *.pos file that includes the positions of the similar regions, and can be then visualized, resulting in an
SVG image.

19

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 25, 2019. ; https://doi.org/10.1101/2019.12.23.887349doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.23.887349
http://creativecommons.org/licenses/by-nd/4.0/

a

b

P

wS3wF3 PS3PF3wS1wF1PF1 PS1 wF2PF2

wF3 wS3

PF3 PS3

Input
Symbol si

wF1 wS1

PF1 PS1

PF2

wF2

STMM3FCM3

Ctx1

Ctx2

FCM2

STMM1FCM1

Ctx3

G C C T G AT GT A TA...

Figure 6: Data model used by Smash++. (a) cooperation between finite-context models (FCMs) and
substitution-tolerant Markov models (STMMs). Note that each STMM needs to be associated with an
FCM. (b) probability of an input symbol is estimated by employing the probability and weight values
that have been obtained from processing previous symbols.

20

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 25, 2019. ; https://doi.org/10.1101/2019.12.23.887349doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.23.887349
http://creativecommons.org/licenses/by-nd/4.0/

minmin

+ 1

+ 1

d

val
h2(val)

𝑤

a
CountContext & curr base

135AAAAAAAAAAA

389

...
252CGATTTGCGCAA

AAAAAAAAAAC

275CGATTTGCGCAC

226CGATTTGCGCAG

TTTTTTTTTTT

269CGATTTGCGCAT

31

...

...

...

Pos

0

1

224 ‒ 4 ‒ 𝑛

224 ‒ 3 ‒ 𝑛

224 ‒ 2 ‒ 𝑛

224 ‒ 1 ‒ 𝑛

224 ‒ 1

...

...

Pos

0

1

224 ‒ 4 ‒ 𝑛

224 ‒ 3 ‒ 𝑛

224 ‒ 2 ‒ 𝑛

224 ‒ 1 ‒ 𝑛

224 ‒ 1

...

...

c

Arithmetic
Counting

..
.

..
.

..
.

0
0

1
2

4

5

3

6

7

8

11

12

13

14

15

10
9

12
3

13
3

8
3

10
3

6
2

5
2

7
3

3
2

4
2

2
1

1
1

1
2

2

4

4

4

4

8

8

8

8

8

8

8

8

9
3

14
3

Approximate
Counting

Position

Stored Count

Position

Stored Count

b

231 + 1

232 – 2

231 – 12

1

232 – 1

231

0 232 – 3

Count

Maximum count
value

𝑑

11
3

Figure 7: The data structures used by Smash++ to store the models in memory. (a) table of 64 bit
counters that uses up to 128 MB of memory, (b) table of 32 bit counters that consumes at most 960 MB
of memory, (c) table of 8 bit approximate counters with memory usage of up to 1 GB and (d) Count-
Min-Log sketch of 4 bit counters which consumes up to 1

2w× d B of memory, e.g., if w = 230 and d = 4,
it uses 2 GB of memory.

21

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 25, 2019. ; https://doi.org/10.1101/2019.12.23.887349doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.23.887349
http://creativecommons.org/licenses/by-nd/4.0/

1: function IncreaseDecision(x)
2: return True with probability 1/2x, else False
3: end function

4: function Update(x)
5: c← table[x]
6: if IncreaseDecision(c) = True then
7: table[x]← c+ 1
8: end if
9: end function

10: function Query(x)
11: c← table[x]
12: return 2c − 1
13: end function

Figure 8: Approximate counting update and query.

22

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 25, 2019. ; https://doi.org/10.1101/2019.12.23.887349doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.23.887349
http://creativecommons.org/licenses/by-nd/4.0/

Require: sketch width w, sketch depth d, m bins, prime
p ≥ m, randomly chosen integers a1..d and b1..d modulo
p with a 6= 0

1: function Hash(k, x) . Universal hash family
2: return ((akx+ bk) mod p) mod m
3: end function

4: function MinCount(x)
5: minimum← 15 . Biggest 4 bit number
6: for k ← 1 to d do
7: h← Hash(k, x)
8: if sketch[k][h] < minimum then
9: minimum← sketch[k][h]

10: end if
11: end for
12: return minimum
13: end function

14: function IncreaseDecision(x)
15: return True with probability 1/2x, else False
16: end function

17: function Update(x)
18: c←MinCount(x)
19: if IncreaseDecision(c) = True then
20: for k ← 1 to d do
21: h← Hash(k, x)
22: if sketch[k][h] = c then
23: sketch[k][h]← c+ 1
24: end if
25: end for
26: end if
27: end function

28: function Query(x)
29: c←MinCount(x)
30: return 2c − 1
31: end function

Figure 9: Count-Min-Log Sketch update and query.

23

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 25, 2019. ; https://doi.org/10.1101/2019.12.23.887349doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.23.887349
http://creativecommons.org/licenses/by-nd/4.0/

In
fo

rm
a

ti
o

n
 c

o
n

te
n

t
(b

p
b)

Base position 500 1000250 750Base position 500 1000250 750

Base position 1000250 750500Base position 1000250 750500

In
fo

rm
a

ti
o

n
 c

o
n

te
n

t
(b

p
b)

Target

Base position 500 1000250 750Base position 500 1000250 750

Reference

Reference

Target

2

0

thr

2

0

thr

2

0

thr

2

0

thr

2

0

thr

Finding target regions similar to the referencea

Finding reference regions similar to the detected target regionsb

Similar regions foundc

inverted

3

regular

1 2

inverted

3

regular

1 2

regular

1

regular

2

inverted

3

regular

1

regular

2

inverted

3

Figure 10: Finding similar regions in reference and target sequences. Smash++ finds, first, the regions
in the target that are similar to the reference, and then, finds the regions in the reference that are similar
to the detected target regions. This procedure is performance for both regular and inverted homologies.

24

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 25, 2019. ; https://doi.org/10.1101/2019.12.23.887349doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.23.887349
http://creativecommons.org/licenses/by-nd/4.0/

	Background
	Results and Discussion
	Implementation
	Dataset
	Application on synthetic data
	Application on real data
	Comparison to Smash
	Robustness against fragmented data
	Benchmarking

	Conclusions
	Methods
	Data modeling
	Storing models in memory
	Finding similar regions
	Computing complexity

