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Behavior involves the ongoing interaction between an organism and
its environment. One of the prevailing theories of adaptive behav-
ior is that organisms are constantly making predictions about their
future environmental stimuli. However, how they acquire that pre-
dictive information is still poorly understood. Two complementary
mechanisms have been proposed: predictions are generated from
an agent’s internal model of the world or predictions are extracted di-
rectly from the environmental stimulus. In this work, we demonstrate
that predictive information, measured using mutual information, can-
not distinguish between these two kinds of systems. Furthermore,
we show that predictive information cannot distinguish between or-
ganisms that are adapted to their environments and random dynam-
ical systems exposed to the same environment. To understand the
role of predictive information in adaptive behavior, we need to be
able to identify where it is generated. To do this, we decompose in-
formation transfer across the different components of the organism-
environment system and track the flow of information in the system
over time. To validate the proposed framework, we examined it on
a set of computational models of idealized agent-environment sys-
tems. Analysis of the systems revealed three key insights. First,
predictive information, when sourced from the environment, can be
reflected in any agent irrespective of its ability to perform a task. Sec-
ond, predictive information, when sourced from the nervous system,
requires special dynamics acquired during the process of adapting
to the environment. Third, the magnitude of predictive information
in a system can be different for the same task if the environmental
structure changes.
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Predictive coding is emerging as a strong candidate for its1

ability to provide a general framework for understanding2

the neural basis of behavior (1–4). The idea is that organ-3

isms encode information about future environmental stimuli4

in their neural activity based on their knowledge of the envi-5

ronment. Intuitively, an organism that is able to predict the6

consequences of its action on its future sensory experiences7

is more likely to be adapted to its environment. There are8

two prominent research fronts that study the role of predic-9

tive coding in behavior: the hierarchical predictive processing10

framework (5, 6) and the efficient coding principle (7, 8). These11

two fronts are complementary because they address different12

aspects of how a nervous system acquires predictive informa-13

tion. The hierarchical predictive processing framework focuses14

on how predictions are generated in the organism’s brain. The15

efficient coding principle focuses on how the nervous system16

extracts predictive information from environmental stimuli.17

Both theories have been supported by experimental evidence,18

primarily in the visual and auditory systems (9–12).19

In living organisms, predictive information is likely acquired20

from a dynamically changing contribution of the environment21

and the agent’s own internal dynamics (2). Consequently, 22

although different systems may be equally predictive about 23

their future stimuli, the operation of their nervous systems 24

may be entirely different. Therefore, understanding the role 25

of predictive information in behavior requires that the source 26

of information is identified. In this paper, we address the 27

following questions. How do we identify the source of predictive 28

information and study its dynamics during a behavior? Does 29

tracking the source of predictive information better explain an 30

agent’s ability to perform a task? What are the factors that 31

influence the source and magnitude of predictive information 32

encoded in a neural network? 33

In the first part of this paper, we demonstrate that predic- 34

tive information will generate indistinguishable results for 35

systems that are at the two extremes of potential agent- 36

environment interaction: a system whose only source of pre- 37

dictive information is the nervous system and a system whose 38

only source of predictive information is the environmental 39

stimuli. In order to better understand how the nervous system 40

generates predictive information, we propose that it is essen- 41

tial to decompose information transfer across the different 42

components of the system and to track the flow of information 43

in the agent-environment system over time. The principal con- 44

tribution of this paper is an information-theoretic framework 45

to quantify the contributions from the nervous system and 46

the contributions from the environmental stimuli to the total 47

predictive information in an agent. First, we decompose the 48

total predictive information in the neural system into infor- 49

mation that was uniquely transferred from each source. In 50

order to do this, we employ multivariate extensions to infor- 51
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Fig. 1. Predictive information source estimation based on idealized agent-environment interaction. [A] Sensory stimuli (S) and neural activity (N) are two coupled dynamical
systems. [B] Agent-environment interaction unrolled over time. X represents current neural activity, N(t), Y , future environmental state, S(t + δt), and A and B represent
the sources, namely past neural activityN(t− δt) and past environmental state, s(t− δt) respectively. [C] Partial information diagram for calculating the sources of predictive
information in an agent-environment system. The total information that X has about Y is a combination of information that is available uniquely from A alone (green), uniquely
from B alone (yellow), synergistically from their combination [A,B] (pink), and redundantly from both of them (purple). PID allows us to measure information transfer using
these components. Alternatively, they can also be measured by estimating the total redundant information from both sources combined (red) and removing the information from
the other source.

mation theory (13). Second, we unroll information over time52

to backtrack the origin of the source of predictive information53

and how they change over time. To validate the proposed54

theoretical framework, we examine it on a set of computa-55

tional models of agent-environment systems, where the agent56

is driven by a dynamical recurrent neural network (14, 15).57

The systems have been deliberately designed so that the source58

of predictive information is tractable and manipulable. We59

demonstrate how the proposed framework correctly reveals60

different sources of predictive information in systems with61

otherwise similar amounts of predictive information. Ulti-62

mately, we demonstrate how revealing the flow of information63

across the agent-environment system can help us to better64

understand the mechanisms underlying predictive coding.65

Predictive information is studied in living organisms be-66

cause it is considered a signature of their adaptive capaci-67

ties (5, 8, 9). In the second part of this paper we study the68

relationship between a system’s ability to perform a task and69

its predictive information. In order to do this, we turn to70

a computational model of an agent that is required to pro-71

cess the received stimulus from the environment and make a72

decision based on it. Specifically, we study predictive informa-73

tion in the context of a relational categorization task (16, 17).74

We generate model systems that are adapted to their envi-75

ronment and yet remain tractable to analysis by optimizing76

dynamical recurrent neural networks using an evolutionary77

algorithm to perform the task (18, 19). We then proceed to78

analyze the resulting systems using predictive information and79

we compare the results against that of random systems that80

cannot solve the task. Counterintuitively, we observe that81

predictive information in trained neural networks is similar82

to predictive information in random neural networks. This83

suggests that predictive information alone is not sufficient to84

distinguish between living organisms that are adapted to their85

environments and non-adaptive systems. The rest of the paper86

focuses on an analysis of optimized and random systems using87

the framework proposed. Altogether, we demonstrate that88

decomposing predictive information across the components89

of an agent-environment system, and unrolling it over time90

reveals its true nature.91

Identifying the source of predictive information 92

Predictive information is the information encoded in neural 93

activity about its future stimulus. Formally, it is defined as 94

mutual information between current neural activity (Nt) and 95

the stimulus at a future time (St′) (9, 20–23), according to: 96

I(St′ , Nt) =
∑
st′ ,nt

PN (nt)P (st′ |nt) log2
P (st′ |nt)
PS(st′ ) [1] 97

where t′ = t+ δt with δt > 0, PS is the distribution of environ- 98

mental stimuli, PN is the distribution of neural activity across 99

the entire experiment, P (st′ |nt) is the conditional probability 100

that the stimulus is s at a future time t′ given that we have 101

observed a neural activity of n at time t. When this measure 102

is estimated using the stimulus and neural activity across all 103

data points separated in time by some δt, it is a measure of 104

reduction in uncertainty in future stimulus given the current 105

neural activity. 106

The presence of predictive information in a neural network 107

suggests there is a source where this information was gener- 108

ated. In an idealized agent-environment system (Fig. 1A), 109

the source of information can be either the neural activity 110

in the previous time step, the environmental stimulus in the 111

previous time step, or both (Fig. 1B). Measuring predictive 112

information as defined in equation 1 requires that we exam- 113

ine two variables: current neural activity (Nt, henceforth X) 114

and future stimulus (St+δt, henceforth Y ). Identifying the 115

source of this predictive information requires that we exam- 116

ine two additional variables: past neural network activity 117

(Nt−δt, henceforth A) and past stimulus (St−δt, henceforth B). 118

Such an analysis requires that we adopt multivariate exten- 119

sions to information theory. We focus specifically on Partial 120

Information Decomposition (PID) (13), a method for decom- 121

posing multivariate mutual information into combinations of 122

unique, redundant and synergistic contributions, as well as 123

measures of information gain, loss and transfer (13, 24–32). 124

In order to identify the source of predictive information, we 125

can decompose the total information that the current neural 126

activity has about the future stimulus into three components: 127

(a) information uniquely transferred from past environmental 128

stimulus, TY ;A→X ; (b) information uniquely transferred from 129

past neural network activity, TY ;B→X ; and (c) information 130
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Fig. 2. Predictive information in systems on the extremes
of the range of possible agent-environment interactions [A]
Schematic and traces of a Central Pattern Generator (CPG)
that influences the environment through intrinsically generated
oscillations. [B] Schematic and traces of a Passive Perceiver
(PP) that is driven by oscillatory inputs from the environment
(in this case, by the environmental signals recorded from the
CPGs) [C] Estimating total predictive information as shown in
equation 1 shows that CPG and PP models encode similar
amounts of predictive information about environmental state in
the next time-step. [D] Decomposing that total information into
information that came from the environment and the neural
network consistently showed that information about the next
time-step in the CPG originated in the neural network (yellow)
before becoming redundant (purple) as the environment and
the neural network synchronized. [E] Conversely, with PPs,
the environment was consistently shown to be the source of
information (blue) before they environment and neural network
synchronize and become redundant (purple).

redundantly transferred from past environment stimulus and131

past neural network activity, TY ;{A,B}→X , according to:132

TY ;A→X = ΠR(Y ; {[A,B], X})−ΠR(Y ; {B,X})
TY ;B→X = ΠR(Y ; {[A,B], X})−ΠR(Y ; {A,X})

TY ;{A,B}→X = ΠR(Y ; {A,B,X})
[2]133

where ΠR(Y ; {A1, A2, ..Ak}) is the redundant information that134

random variables A1 through Ak have about the random135

variable Y and [A,B] refers to a random variable that is a136

concatenation of A and B. In words, information about Y137

transferred uniquely from source A to X is estimated as the138

total redundant information from the combined sources [A,B]139

minus the information that is redundant with the other source140

B. This decomposition of the total information into different141

contributions is typically represented using a PI-decomposition142

diagram (Fig. 1C). Several approaches have been proposed to143

measure redundant information, ΠR (24, 33, 34). Here, we144

use Imin because this is the only approach that can guarantee145

non-negative information decomposition in a system with four146

random variables, as is the case here.147

During the course of behavior, the flow of information in a148

system changes over time (35, 36). In order to understand the149

source of predictive information for any agent-environment sys-150

tem, it is not enough to decompose information from multiple151

sources; we must also track its flow of information over time.152

Although information theoretic measures are typically aver-153

aged over time, the measures described above can be unrolled154

over time (36, 37). This is done by measuring information155

transfer at each time-point using data collected across several156

trials thereby allowing us to study the dynamics of predictive157

information sources.158

Disparate systems with similar predictive information159

Neural systems can be predictive in fundamentally different160

ways: they can generate predictive information internally or161

they can extract it from environmental stimulus. We use162

computational models of two extreme conditions where the163

ground-truth predictive information source is known to be164

the environment in one condition and the neural network165

in the other, to demonstrate that (a) predictive information166

cannot distinguish between these different kinds of systems167

and (b) it is only through decomposing the information across 168

sources and unrolling over time that we can distinguish the 169

two systems based on their operation. The two conditions we 170

consider are agent-environment interactions at two extremes of 171

the range of possible interactions: a central pattern generator 172

(CPG) and a passive perceiver (PP). In the CPG condition, 173

the neural network influences the environment by producing 174

spontaneous oscillatory activity but receives no input from 175

the environment (Fig. 2A). In the PP condition, the neural 176

network is influenced by input from the environment, but it 177

does not affect the environment (Fig. 2B). We evolved 100 178

different dynamical recurrent neural network CPGs, and in 179

each case, we fed the sum of the neurons’ outputs to the 180

environment (Fig. S1A,B). For the PPs, we generated 100 181

random neural networks and fed them an oscillatory input. 182

In order to provide the same distribution of activity as the 183

CPG condition, we provided the random neural networks 184

with the same oscillatory environmental signal that CPGs 185

generated (Fig. S1C). The environmental signal and neural 186

data were recorded from each instance for 500 trials where, 187

in each trial the environment started with a different initial 188

condition. Although, the environmental signal and the neural 189

activity exhibit oscillatory activity in both conditions, the key 190

difference in the operation of these systems is that in the CPGs 191

the neural network drives its own activity and in the PP, the 192

environment drives the neural network. Therefore, the neural 193

network is the source of predictive information in the CPGs 194

and the environment is the source of predictive information in 195

the PPs. 196

As a first step in the analysis of these two systems, we used 197

the recorded data to measure predictive information in the 198

neural network about the environmental signal in the next 199

time-step (δt = 0.02s). To calculate predictive information, 200

data distributions were constructed using all tuples of neural 201

activity at time t and environmental signal at time t + δt, 202

averaged across time and trials. The analysis revealed that the 203

neural networks, in these two otherwise diametrically opposed 204

systems, encoded similar levels of information about stimulus 205

in the next time step (Fig. 2C). From this first experiment, we 206

conclude that predictive information is not sufficient to distin- 207

guish systems that generate their own predictive information 208

from systems that encode the information available from the 209

environmental stimuli. 210
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Fig. 3. Predictive information source dynamics with structured stimuli. [A] Distribution of cue and corresponding probes in the relational categorization task. For each cue,
the probe can be one of two values: greater, cue + 1, or lesser, cue − 1, with the expected outputs of +1 (red) and −1 (blue) respectively. [B] One trial of the relational
categorization task. The cue stimulus is presented till t=5, followed by a delay period with no stimulus (t=5 to t=15) and then a probe that is greater (red) or lesser (blue) than the
cue is provided. [C] Behavior of the best out of 100 dynamical neural networks optimized to perform this task showing perfect categorization of the relational value from 35 trials
where the probe was greater (red) and 35 where the probe was lesser (blue). [D] Dynamics of information about the cue during the cue stage show information uniquely
provided by the environment (green) initially, but becoming redundantly available in the neural network and environment (purple) as it encoded the cue. [E] Towards the end of
the cue stage, information is entirely redundant (purple). When the stimulus stops being provided at t=5, the neural network is the unique source of information about the cue
(orange). [F] Dynamics of information about the cue just before the probe arrives showing that the neural network continues to retain information about the cue (orange). At
t=15, when the probe is provided, information quickly becomes redundant (purple) denoting that the probe has information about the cue.

To understand what makes these two neural systems differ-211

ent, it is necessary to identify the source of their predictive212

information. As a next step in our analysis, we decomposed213

the information in the neural system about the future stimuli214

across the different possible sources and we unrolled the analy-215

sis over time. At each time-point, we measured information in216

the neural network about the environmental signal in the next217

time-step that was uniquely transferred from the environment,218

uniquely transferred from the neural network and redundantly219

from both.220

In the CPG condition, since the neural networks are not221

influenced by the environment (Fig. 2A), the only source of222

information about the future environmental signal is from the223

neural network itself. Accordingly, the dynamics of information224

transfer for CPG systems reveals correctly that the neural225

network is the source of predictive information (Fig. 2D). At226

the start of the interaction between agent and environment,227

the neural network uniquely transfers information about the228

future environmental state to the environment. Following229

that, the environment quickly becomes synchronized with the230

neural activity. This means that the state of the environment231

becomes informative of its own future state. This results in232

the environment and the neural network becoming redundant233

sources of predictive information. Crucially, however, the234

environment never provides any unique information to the235

neural network about its future stimulus.236

In the PP condition, since the neural networks are driven237

by the environment (Fig. 2B), the only source of information238

about the future environmental signal is the stimulus from the239

environment itself. Accordingly, the dynamics of information240

transfer for PP systems reveals correctly that the environment241

is the source of predictive information (Fig. 2E). As opposed242

to the CPG systems, at the start of the interaction between243

the neural network and the environment, it is the environment244

that transfers unique information to the neural network. Sub-245

sequently, and similarly to the CPG condition, as the state246

of the neural network begins to encode the information from247

the environmental stimulus, the predictive information is re-248

dundantly transferred by both the neural network and the 249

environmental stimulus. Consistent with our expectation, the 250

neural network never provides any unique information to itself 251

about the future of the stimulus. 252

In summary, in this section we show that predictive in- 253

formation alone cannot distinguish between two extremely 254

different kinds of neural systems, both of which encode pre- 255

dictive information about the future of the environment. This 256

is because when the entire time course of the data is consid- 257

ered, the environment and neural network are synchronized 258

for a majority of the time. Information uniquely transferred 259

from any source is only detectable within a short time window 260

before they synchronize. In this section, we have shown that 261

decomposing information across sources and unrolling over 262

time allows us to study information source dynamics at every 263

perturbation to the agent-environment interaction and hence 264

reveals the source of predictive information. 265

Predictive information with structured stimuli 266

The natural environment is not uniformly random but is in 267

fact highly structured with spatial and temporal regulari- 268

ties (2, 38, 39). This structure is reflected in the stimulus 269

that agents receive from the environment. Accordingly, this 270

is emulated in most preparations in neuroscience, where a 271

neural system is presented with artificial stimuli with some 272

underlying structure designed by the experimenter. We posit 273

that the structure in the environment will strongly influence 274

the amount of predictive information encoded by the neural 275

network and its sources. In order to study this, we examined 276

the flow of information in a neural network model trained to 277

solve a relational categorization task. 278

Relational categorization is the ability to discriminate ob- 279

jects based on the relative value of their attributes (16, 17). 280

This task allows us to specify the inherent structure in the 281

environment by changing the distribution of objects whose 282

attributes are compared thus making it especially suited for 283

studying the influence of environmental structure on predictive 284

information. It involves providing the neural network with 285
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Fig. 4. Comparison of predictive information sources in opti-
mized and random neural networks. [A] Total predictive infor-
mation estimated by averaging over the entire course of the
task is similar in random and optimized neural networks. [B]
Total predictive information about the probe averaged across
the cue stage of the task, is the same in random and optimized
neural networks. [C] Decomposition of that total predictive
information showing that information about the probe in both
random and optimized neural networks was from the environ-
ment (green), eventually becoming redundant as they both
encoded the cue stimulus (pink). The neural network had no
role to play in its encoding of predictive information about the
probe during the cue stage (orange).

stimuli across three stages: cue, delay, and probe. In the286

cue stage, the neural network is provided with a stimulus of287

specific magnitude for a duration of time. This is followed288

by a delay stage, where no stimulus is provided. Finally, in289

the probe stage, the neural network is provided with a second290

stimulus. The magnitudes for the cue and probe stage stimuli291

are picked from a predesignated distribution (Fig. 3A). It is292

this distribution that defines the structure in the environment.293

For this study, we design it such that the stimulus in the294

probe stage can have a magnitude that is one of two values:295

smaller (cue − 1) or larger (cue + 1) than the stimulus pro-296

vided during the cue stage (Fig. 3B). The goal of the neural297

network in this task to perform a relational categorization298

of “greater than” or “lesser than” by producing an output299

of +1 or −1 respectively, during the probe phase. This task300

has been widely studied in a variety of contexts including in301

humans (40), pigeons (41), rats (42), insects (43), as well as302

using computational models (44, 45).303

In this section, we show results from analysis of neural304

networks performing the relational categorization task. We305

demonstrate that decomposing information across the sources306

and unrolling over time reveals that the environment is struc-307

tured by appropriately attributing the observed predictive308

information to either the environment or the dynamics of309

the neural network. Furthermore, we demonstrate that en-310

coding predictive information alone is not indicative of task311

performance and that the magnitude and source of predic-312

tive information can change during the course of a behavior313

depending on environmental structure and neural network314

dynamics.315

Characterizing information source dynamics in the best opti-316

mized neural network. Dynamical recurrent neural networks317

were optimized using an evolutionary algorithm to perform318

the relational categorization task. A total of 100 independent319

evolutionary runs yielded an ensemble of 100 different neural320

networks that could successfully perform the task (Fig. S2A).321

The best neural network from this ensemble achieved a per-322

formance of 93.12%. Although this neural network correctly323

classified all probes, the performance score was not perfect324

due to slight deviations in the output (Fig. 3C).325

In order to better understand how a neural network per-326

formed this task, we can characterize the flow of information327

across the agent-environment system. To this end, we decom-328

posed the total information that the best neural network from329

the ensemble had about the cue into information uniquely 330

transferred from the environment, uniquely transferred from 331

the neural network, and redundantly from both, during the 332

course of the task. During the cue stage, the environment 333

was initially the unique source of information about the cue 334

(Fig. 3D). As the neural network encoded the stimulus, the 335

source became redundant. During the delay stage, the envi- 336

ronment ceases to be a source of information. As the neural 337

network had already encoded information about the cue, it 338

becomes the unique source (Fig. 3E). Crucially, the neural 339

network preserves this information throughout the delay stage. 340

Finally, during the probe stage, the environment once again be- 341

comes a source, and therefore the source is redundant (Fig. 3F). 342

Note that when the environment provides the probe stimulus 343

it became the source of information about the cue. Since the 344

neural network already contained information about the cue, 345

the neural network and the environment both redundantly act 346

as the source. 347

As explained previously, predictive information in this task 348

arises from the relationship between cue and probe stimuli. 349

Encoding information about the cue automatically results in 350

encoding information about the probe (and vice versa). This 351

is because knowing the cue significantly reduces uncertainty 352

about the probe; the probe can only be one of two values 353

given a cue. Predictive information that the neural network 354

has about the probe and its sources is qualitatively similar to 355

the information it has encoded about the cue (Fig. S3A). The 356

neural network encodes information about the probe stimulus 357

upon receiving the cue, and retains that predictive informa- 358

tion during the delay stage. This is merely a consequence of 359

encoding and retaining the cue. The entire ensemble of neural 360

networks optimized to perform this task consistently exhibit 361

this phenomenon of encoding information about the probe 362

transferred uniquely from the cue stimulus (Fig. S3B) and is 363

even robust to noise in the neural network (Fig. S5). 364

Environmental regularities induces predictive information in 365

any neural network. Since optimized neural networks encode 366

information about the probe merely by encoding the cue, does 367

any neural network that encodes the cue also encode informa- 368

tion about the probe, and therefore have similar predictive 369

information? In order to study this, we created 100 random 370

neural networks and presented them with the same task. Al- 371

though these neural networks were not able to perform the 372

relational categorization task (Fig. S2B), they encoded similar 373
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Fig. 5. Influence of neural network and environmental properties on predictive Information [A] Both random and optimized neural networks have similar levels of information
about the probe at the beginning of the delay stage (light orange), but unlike optimized neural networks, random neural networks lose that information by the end of the
delay stage (dark orange). [B] Total predictive information in the optimized neural networks about the probe during the cue stage showed a significant drop upon changing
environmental statistics from 2 probes/cue to 9 probes/cue. [C] Drop in total information show in B can be attributed to the drop in information uniquely from the environment
about the probe in the 9 probes/cue setting.

amounts of total predictive information as the trained neural374

networks (Fig. 4A). Specifically, they encode the same amount375

of information about the probe during the cue stage (Fig. 4B).376

Furthermore, decomposing that information revealed that the377

information originated from the environmental stimulus and378

that the neural network dynamics had no role in its encoding379

of predictive information in both random and optimized neural380

networks (Fig. 4C). Thus, predictive information alone is not381

sufficient to distinguish neural networks optimized to perform382

specific tasks from random neural networks that are merely383

reflecting the information provided by the environment.384

Information decomposition distinguishes between random385

and optimized neural networks. Unlike CPG and PP that were386

distinguished based on having different information sources,387

random and optimized neural networks in the relational cate-388

gorization task have the same information sources. Even un-389

der this condition, decomposing the total information across390

sources and unrolling over time helps distinguish them by391

revealing differences in the magnitude of information trans-392

ferred from each source over time. Specifically, predictive393

information sourced by the neural network during the delay394

stage is markedly different between random and optimized395

neural networks. As discussed in the previous section, opti-396

mized neural networks preserve information about the cue397

(and hence predictive information about the probe) during398

the delay stage. In contrast, random neural networks tend399

to lose that information. As a consequence, the amount of400

unique information provided by the neural network at the end401

of the delay period is higher for the trained neural networks402

than for the random neural networks (Fig. 5A). This difference403

disappears when information is measured across time, and can404

only be observed by unrolling it over time.405

Statistics of the environment influences magnitude of predic-406

tive information. Encoding the cue results in encoding infor-407

mation about the probe in this task because of the relationship408

between them. How does changing this relationship impact409

predictive information in the neural networks? In order to410

study this, without changing the nature of the relational cate-411

gorization task we merely changed the structure in the envi-412

ronment. This was achieved by modifying the task such that413

the probe could be one of 9 possible values for a given cue,414

rather than one of two possible values (Fig. S4B). Reduction415

in uncertainty about the probe’s value given the cue is now416

much less compared to the original environmental structure 417

(Fig. S4D,E). This will be reflected in the information that 418

the cue can provide about the probe. However, this came at 419

no cost to performance because the neural networks were still 420

encoding the cue just as well. The same ensemble of optimized 421

neural networks were able to perform this task successfully 422

without any more training (Fig. S4E). Information dynamics 423

was then measured using data recorded under this 9-probe 424

condition. Measuring the total information in the neural net- 425

work during the cue stage about the probe revealed that there 426

was significantly less information in the neural network in 9 427

probes per cue condition (Fig. 5B). The reduction in total pre- 428

dictive information can be wholly attributed to the reduction 429

in information about the probe (Fig. 5C). Thus, differences 430

in environmental structure can result in significantly different 431

amounts of predictive information encoded in neural networks 432

without any behavioral differences. 433

Discussion 434

The study of predictive coding and its relevance to behavior has 435

been studied from multiple perspectives in the literature with 436

regards to the source of information: predictive information 437

can be generated by the neural network (5, 6) and predictive 438

information can be provided by the environment (7, 20). In 439

this work, using computational models where the ground-truth 440

about the source of information was known, we demonstrate 441

that predictive information can originate from either the envi- 442

ronment or the neural network or both, and that the source 443

of information can dynamically change during the course of a 444

behavior. In order to do this, we first presented a theoretical 445

framework based on multivariate information theory that al- 446

lows us to infer the source of predictive information and its 447

dynamics. This involved decomposing the total information 448

that neural networks encode about a future stimulus into infor- 449

mation transferred uniquely from the neural network, uniquely 450

from the environment and redundantly from both sources. We 451

validated this framework using the CPG and PP models where 452

information is known to originate from the neural network 453

and the environment respectively. Second, using the more 454

structured relational categorization task, we demonstrated 455

that (a) amount of predictive information encoded in a neural 456

network is not indicative of its performance; (b) the source 457

of information about a future stimulus can change during the 458

course of the task; and (c) the source of information about a 459
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future stimulus can change within the same task depending460

on the regularities of the environment. Thus, predictive infor-461

mation might be necessary but is not sufficient to explain the462

neural basis of a behavior. Decomposing information across463

sources and studying its dynamics over time takes us one step464

further in understanding the role of predictive information in465

a behavior.466

The framework presented here for inferring the source of467

predictive information takes us beyond general correlations468

that information theoretic measured are known to capture by469

capturing the effects of perturbation on the neural system.470

Identifying the sources of predictive information requires that471

the system under study be perturbed. The presentation, re-472

moval or sudden change of a stimulus is a perturbation. This473

causes the system to break the redundant encoding observed474

in a steady-state. It is during such a perturbation that we475

can use partial information decomposition to determine the476

source of information in a coupled system. Once the neural477

network and the environment settle into the next steady-state478

after the transient due to the perturbation, information once479

again becomes redundant between them. Thus, through the480

combination of information decomposition, time-unrolling and481

perturbation we are able to infer the ground-truth causal482

influences in the models we have analyzed.483

The framework presented here can be applied to experi-484

mental data across multiple scales. In fact, it can be applied485

to any time-series data spanning multiple trials corresponding486

to several perturbations from the steady state. However, in487

this work, we focus on open-loop systems. Specifically, we488

focus on agent-environment systems where the agent influ-489

ences its environment or where the agent is influenced by the490

environment. Such an open-loop setup is typical in experi-491

ments in neuroscience, where the subject receives a stimulus,492

but does not have the ability to influence the future stimulus493

through their state or actions. In natural behavior, the agent494

and environment are in closed-loop interaction. The analysis495

of closed-loop systems introduces an added complexity. The496

regularities of the environment can be generated by the regu-497

larities of the neural network’s dynamics and vice-versa. As498

a result, the distribution of environmental stimuli and the499

distribution of the neural activity are dependent on each other,500

unlike the open-loop setup where one of them is independent501

of the other. As it is, the framework requires that one of502

the distributions be fixed across time in order to make fair503

comparisons of information at different time-points. Future504

work in this direction will involve extending the framework505

and designing the experimental setting that would allow us to506

infer the source of predictive information in a freely moving507

animal.508

Materials and Methods509

In the agent-environment models used throughout this paper, the510

agents were modeled using dynamical recurrent neural networks.511

The parameters of the neural network were optimized using an512

evolutionary algorithm such that it was able perform the required513

task. In this section, we specify implementation details about the514

neural network model, the tasks, and the optimization algorithm.515

Neural network model. A Continuous-Time Recurrent Neural Net-516

work (CTRNN) was used as the model neural network (14, 15).517

The neural network consisted of three layers: the input layer which518

was connected by a set of feed-forward weights to the interneuron519

layer; the interneuron layer was a CTRNN which fed into the output520

layer; the output layer produced the output of the neural network 521

which was given by a weighted combination of the interneurons’ 522

output. The dynamics of each interneuron was governed based on 523

state equations given by 524

τi
dyi

dt
= −yi +

N∑
j=1

wijoj + wini I [3] 525

oj = σ(yj + θj) [4] 526

where yi refers to the internal state of neuron i; τi, the time-constant; 527

wij , the strength of connection from neuron j to neuron i; oj , the 528

output of the neuron; I, the input and wini , the weight from the 529

input to the neuron. Based on the state of the neuron its output 530

is given by equation 4, where σ() refers to the sigmoid activation 531

function given by σ(x) = 1/(1 + e−x), and θj refers to the bias 532

of neuron j. The output of the network at any time t, O(t), is 533

estimated as a weighted sum of the outputs of each neuron (weights 534

given by woi ), passed through a sigmoid function and scaled to be 535

in the range [−1, 1]. 536

O(t) = 2 ∗ σ

(
N∑
i=1

woi oi(t)

)
− 1 [5] 537

All neural networks described in this paper were made up of 538

N = 3 neurons. The tunable parameters of such a model include 539

the weights between the neurons (wij), the input weights (wini ), the 540

output weights (woi ), time-constants (τi) and biases (θij) of each 541

neuron. The model was simulated using Euler integration with a 542

step-size of 0.02. 543

CPG task. The neural network model described above is capable 544

of intrinsically producing oscillations. To create Central Pattern 545

Generators (CPGs), neural networks were optimized to produce 546

oscillations from a range of initial conditions. The neural network 547

was started at 100 different initial conditions by systematically 548

setting the neuron outputs in the range [0, 1]. For each condition, the 549

neural activity was recorded for 10 simulation seconds. The ability 550

to generate oscillations was assessed by measuring the absolute 551

difference in each neuron’s as well as the neural network’s output 552

in consecutive time-steps across all time-points in a trial, and then 553

across trials. The neural network’s output was fed to an environment 554

governed by 555

τ
ds

dt
= −s+O [6] 556

where s refers to the state of the environment, τ refers to its time- 557

constant which was set to 0.5, and O refers to the output of the 558

neural network given by equation 5. 559

Relational categorization task. We adapted the relational catego- 560

rization task to provide neural networks with structured stim- 561

uli (16, 17, 44). This task involves first providing the neural network 562

with a cue stimulus in the range [3, 11] for 5 units of time. This is 563

followed by a delay period when no stimulus is provided for 10 units 564

of time. Finally, a probe stimulus that is of magnitude greater or 565

less than the cue is provided for 5 units of time. The goal of the task 566

is for the neural network to distinguish probes that were larger than 567

the cue or smaller than the cue, by producing an output of +1 or −1 568

respectively. In the first version of this task, the probe can take one 569

of only two values, either cue+1 or cue−1. In the second version of 570

the task, the probe can take any value in [3, 11]. While the goal of 571

the task remains the same in both versions, the distribution of the 572

probes given the cue, and therefore information that the cue gives 573

about the probe is significantly different (Fig. S4). Performance of 574

a neural network in this task was estimated by measuring absolute 575

deviation of the network’s output from the desired output of +1 576

or −1 during the probe stage. Time-averaged deviation was also 577

averaged across all trials of cue-probe values, to obtain a score in 578

the range [0, 1]. 579

Neural network optimization. Neural network models described pre- 580

viously were optimized to perform the relational categorization 581

task using an evolutionary algorithm (46, 47). This optimization 582
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methodology involves instantiating a population of 100 random583

solutions that evolves over several generations to produce solutions584

capable of performing the task. A generation is defined as the pro-585

cess of creating a new population of solutions that has improved in586

“fitness” (task performance) from the last. Each solution, referred587

to as a genotype, is an N dimensional vector corresponding to the588

parameters to be optimized. The parameters were encoded to be in589

the range [0, 1] and scaled to produce the neural network that the590

genotype encoded. In each generation, the fitness of every genotype591

is evaluated and a new population is created using a fitness-based592

selection and mutation strategy as follows: The genotypes that593

perform in the top 1% were retained as is for the next generation.594

The rest of the individuals were created by selecting two genotypes595

preferentially in proportion to their fitness and combining them. To596

these offspring, Gaussian mutation noise with mean 0 and standard597

deviation 0.01 was added before being added to the population598

of genotypes for the next generation. After a fixed number of599

generations, the best individual in the population was selected as600

the representative solution from that optimization run. 100 such601

runs were conducted to obtain an ensemble of 100 neural network602

models that successfully performed each task. For the relational603

categorization task, optimization was carried out for 500 genera-604

tions. In the case of the CPG task, at the end of 50 generations605

the optimization process was terminated and deemed successful if606

the best agent in the population reached a fitness of 30 or greater.607

This was repeated until 100 CPGs were produced. See supporting608

information (Figs. S1 and S2) for training curves, behavior of best609

optimized neural network, distribution of fitness of best models610

from 100 runs, and sample neural traces.611

Random neural networks. Matched random neural networks were612

created for the relational categorization task by shuffling the pa-613

rameters of the optimized neural networks. All parameter groups,614

namely time-constants, input weights, recurrent weights, output615

weights, and biases were randomly shuffled within themselves rather616

than across groups. Thus, the ranges of parameters were preserved617

in each group but their associations with neurons were randomly618

shuffled.619

Measuring information transfer. To identify the source of informa-620

tion over time, information transfer measures were estimated inde-621

pendently at each time point. For any given time step, data for622

environmental stimulus at the previous time step, neural activity623

of previous time step, current neural activity, and stimulus at a624

future time step, was collected across multiple trials. Probability625

densities were estimated from this data using a kernel density esti-626

mation technique known as average shifted-histograms (48) with 7627

shifted binnings of 100 bins along each dimension of the data space.628

These probability density estimates were then used to measure the629

redundant information terms in equation 2. Similar results were ob-630

served with 5 and 11 shifts and with 50 and 200 bins per dimension631

(Fig. S6). All information theoretic quantities were estimated from632

raw data using the infotheory package (49).633
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Fig. S1. Optimization and neural traces of CPG and PP. [A] Fitness over time for 100 valid runs of optimizing a CPG model. Only runs that achieved a fitness greater than 30
were deemed valid. [B] Neural traces from one trial of the best CPG demonstrating that all neurons (red) as well as the neural network output (blue) oscillate. [C] Neural traces
(orange) when the output from the CPG shown in panel B was fed to a random neural network in the PP condition demonstrating input driven oscillation in the random neural
network.

Fig. S2. Optimizing neural networks to perform relational categorization. [A] 100 independent runs all converged to near-perfect performance with deviation from a perfect
score only due to small deviations from expected output and not mis-categorization. [B] Neural activity in the CTRNN of the best optimized agent over 35 trials where probe was
larger than the cue (red) and 35 trials where the probe was lesser than the cue (blue). [C] Neural networks whose weights and time-constants were scrambled lost their ability
to perform the task.

Fig. S3. Predictive information source dynamics is consistent and similar with information about the probe. [A] At the start of the cue stage (top), information about the probe
arrives from the environment (green) as the cue is provided, and becomes redundant as the cue is encoded (pink). Towards the start of the delay stage (middle), the neural
network becomes the source of information about the probe (orange) as it retains information about the cue, and since the environment ceases to provide that information.
As the probe is provided (bottom), the environment once again becomes a source of information in addition to the neural network and they are both redundantly sources of
information (pink) [B] Predictive information source dynamics are consistent across all 100 optimized neural networks during all three stages of the task. Their mean value is
shown in bold and the shaded region represents one standard deviation around it.
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Fig. S4. Different environmental structures within the relational categorization task [A] Relational categorization task with highly structured stimuli; for each cue probe is one of
two possible values. [B] Relational categorization task with minimal structure in stimuli; probe can be one of 9 values for a given cue. [C] Conditional probability of probes given
a cue for environmental structure shown in panel A, demonstrating the significant reduction in uncertainty of the probe given the cue. [D] Conditional probability of probe values
given a cue under the environmental structure in panel B shows that probe values still have a nearly uniform distribution, and hence very less reduction in uncertainty. [E]
Neural networks optimized to perform under the distribution shown in panel A perform just as well under the distribution shown in panel B.

Fig. S5. Inferring the source of predictive information is robust to zero-mean Gaussian noise with standard deviation [A] 0.01, [B] 0.05 and [C] 0.1. Results are qualitatively
similar to results from fig. S3A for cue (top row), delay (middle row) and probe (bottom row) stages of the task.

Fig. S6. Inferring the source of predictive information with different binning and shifted-histograms. Results are qualitatively similar to results from fig. S3A after changing [A]
number of shifted bins to 3 [b] number of shifted bins to 11 [C] number of bins per dimension to 50 and [D] number of bins per dimension to 200, for cue (top row), delay (middle
row) and probe (bottom row) stages of the task.
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