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Abstract 

Remote sensing is an invaluable tool to objectively illustrate the rapid decline in habitat extents 

worldwide. Over the years, diverse Earth Observation platforms have been used to generate land 

cover maps, each with its unique characteristics. In addition, considerable semantic differences 

between the definition of land cover classes results in inevitable differences in baseline estimates 

for each class (e.g. forest). Here we compare forest cover and surface water estimates over four 

time periods spanning three decades for the Xingu River basin, Brazil, from pre-existing 

remotely sensed classifications for this area based on both optical and radar data. Because forest 

health in this area is directly related with the health of the freshwater ecosystem, we illustrate 

potential impacts of map choice on conservation of fish fauna. Understanding differences 

between the many remotely sensed baselines is fundamentally important to avoid information 

misuse and objectively decide on the most appropriate dataset for each conservation or policy 

making question. Our findings demonstrate the importance of transparency in the generation of 

remotely sensed datasets and in the importance of users familiarizing themselves with the 

characteristics and limitations of each data set chosen. 
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Introduction 

Earth observation from satellite imagery is fundamentally important for conservation (Li et 

al. 2016; Rose et al. 2015). Since the early days of deforestation mapping from satellites (Skole 

and Tucker 1993; Townshend and Justice 1988; Westman et al. 1989), remote sensing has 

become an invaluable tool (O'Connor et al. 2015; Paganini et al. 2016; Proenca et al. 2017) for 

objectively illustrating the rapid decline in habitat extent (Pimm et al. 2001). Land-Use and 

Land-Cover Change (LUCC) due to agricultural expansion, hydropower development and 

pastureland intensification are among the most visible footprints of anthropogenic influence on 

the landscape (Foley et al. 2011; Rockstrom et al. 2009). A growing world population, increasing 

consumption and global food security concerns have led to surges in production of agricultural 

and animal products (Dias et al. 2016; Godfray et al. 2010; Lambin and Meyfroidt 2011) that 

cause acute LUCC transformations in the tropics (Hansen et al. 2010).  

Amazonian forests are both home to nearly a quarter of the world’s known terrestrial 

biodiversity and are drivers of global atmospheric circulation (Malhi et al. 2008). As such, they 

are vital not only for biodiversity conservation but also for climate change mitigation (Pereira 

and Viola 2019). Humans have modified this biome since pre-Columbian occupation (Levis et 

al. 2017; Lombardo et al. 2013; McMichael et al. 2017). Although Amazonian deforestation 

rates have slowed in the early 2000s (Nepstad et al. 2014), Brazil’s recent policies have 

progressively favored the energy production and agri-business sectors, weakening environmental 

laws (Brancalion et al. 2016; Fearnside 2016a; Rajao and Georgiadou 2014). Across the 

Amazon, the construction of roads that enable transport of timber (legal and illegal), 
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deforestation for cattle ranching and the establishment of large monocultures (e.g. soy, corn, 

cotton) are the leading causes of Amazonian deforestation and deterioration of soil and water 

quality (Abell et al. 2011; Dias et al. 2015; Durigan et al. 2013; Ferreira Marmontel et al. 2018; 

Gauthier et al. 2019; Ilha et al. 2019; Klarenberg et al. 2019; Lees et al. 2016; Lessa et al. 2015; 

Macedo et al. 2013; Mello et al. 2018a; Mello et al. 2018b; Rodrigues et al. 2018; Zimbres et al. 

2018). In soybeans alone, Brazil increased its gross production by 94% between 1991 and 2013 

(FAO 2016). The Brazilian Ministry of Agriculture estimated that grain and beef production will 

increase by nearly 30% by 2020 (MAPA 2015). Policies favoring agribusinesses have also 

deregulated the use of agrochemical products, many of which have been banned in other 

countries for years; 30% of agrochemical products used in Brazil are prohibited by the European 

Union (Costa et al. 2018). The widespread use of these agrochemicals has considerably increased 

the contamination indexes of soil and water bodies across the country. Furthermore, a resurgence 

of deforestation is expected in the near future as the current government is decreasing 

conservation policies throughout Brazil (Fernandes et al. 2017; Freitas et al. 2018; Scarrow 

2019; Tollefson 2018).  

The Xingu River, traversing ~2,700 km through the States of Mato Grosso and Pará, is the 

fourth largest tributary of the Amazon River. Its basin covers 51 million hectares, of which 20 

million hectares are Indigenous land and 8 million hectares are protected land (Villas-Boas 

2012). The Xingu watershed encompasses a complex geomorphological base (Sawakuchi et al. 

2015; Silva et al. 2015) which promotes an extraordinary aquatic biodiversity and high rates of 

endemism (Sabaj Perez 2015). There are an estimated 600 species of fish, 10% of them endemic 

to the river basin (Barbosa et al. 2015; Camargo et al. 2004; Chamon and Sousa 2017; Cramer 
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and de Sousa 2016; Fitzgerald et al. 2018; Giarrizzo et al. 2015; Sousa et al. 2018; Varella and 

Ito 2018).  

Cattle have been present on the Xingu floodplains for over 100 years, but prior to the 1970s 

the herds were relatively small, and deforestation was minimal (Goulding et al. 2003).  In the 

1980s, large herds were introduced.  As a result, the natural forest outside of protected areas and 

Indigenous lands in an area larger than France has been either deforested or heavily modified 

(Dias et al. 2016; Goulding et al. 2003).  The displacement of the cattle ranches by large-scale 

agriculture subsequently led to the greatest rates of deforestation in the region (Barona et al. 

2010).  Proliferation of genetically modified soy has further increased crop yields; the basin 

provides 8% of the World’s soy production. Mega scale soy plantations are considered as one of 

the main threats to the environment and rural livelihoods in Brazil (Fearnside 2001). 

The Xingu basin also has an intricate mosaic of Indigenous tribes and "ribeirinhos" living on 

the floodplain; continuous human occupation has modified the landscape over at least the last 

1500 years (Schwartzman et al. 2013). Today, twenty-five groups/tribes of Indigenous peoples 

are recognized, the most well-known being the Juruna, the Araweté and the Kayapó. In addition, 

over 200 ribeirinhos settlements of various sizes from single family occupations to small 

communities are estimated to reside on the floodplains of the river (Schwartzman et al. 2013). 

While conservation priorities often neglect ichthyofauna (Abell et al. 2011; Nogueira et al. 

2010; Stiassny 1996), some initiatives have begun to include freshwater ecosystems, recognizing 

the divergence of aquatic and terrestrial diversity (Abell et al. 2008; Beaumont et al. 2011; 

Dinerstein et al. 2019; Olson and Dinerstein 2002). Quantifying change in a biologically and 

anthropogenically diverse landscape such as the Xingu basin is paramount. Given its large 

extent, remote sensing derived land cover products are the most efficient sources of such 
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information. Importantly, these data also provide historical assessments of change for the last 

four decades. Several land cover products have been produced by different agencies/groups, at 

varying scales and time periods. Despite individually reporting high levels of accuracy, 

uncertainty and disagreement between them is well known (Foody 2004; Foody 2006; Fritz and 

See 2008; Herold et al. 2006) including limited agreement on the spatial distribution of the 

individual classes (McCallum et al. 2006; Tsendbazar et al. 2016). Therefore, despite 

acknowledgement of deforestation as a primary driver of biodiversity loss, uncertainty in 

baseline estimates persists (Sexton et al. 2016).  Our objective is to compare forest cover and 

surface water estimates over time for the Xingu basin from pre-existing remotely sensed 

classifications in order to determine potential impacts of land cover map choice on conservation 

of fish fauna. We also include a newly developed publicly available classification for the region 

using Landsat data (Kalacska et al. 2019). Forest health in this area is directly influences the 

health of the fresh water ecosystem. Therefore, changes in forest cover and fragmentation have a 

negative impact on the aquatic species, many of them endemic to the region. Given the current 

political will in Brazil towards conservation in an ever-changing international economic climate 

(Abessa et al. 2019; Escobar 2019; Fuchs et al. 2019), understanding differences between the 

many remotely sensed baselines is fundamentally important to avoid information misuse and 

objectively indicate potential issues when used for conservation or policy making. 

 

Materials and Methods 

STUDY AREA 

The study area is ~1.3M km2 encompassing the Xingu river basin, Brazil (Figure 1). This 

area includes portions of five states (Amazonas, Pará, Mato Grosso, Tocantins and Goiás) and 
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two diverse biomes (Amazonia and Cerrado). The Upper Xingu headwaters are spread across a 

sedimentary basin (Parecis basin) (Sabaj Perez 2015). Many of these headwaters have little or no 

protection and are increasingly affected by industrial agriculture, leading to massive erosion of 

the riverbanks as well as contamination from pesticides and fertilizers (Sanches et al. 2012). 

Recent human activity has increased industrial agriculture (i.e. soy, cotton and corn) and 

extensive cattle farms leading to deforestation and associated decrease in stream water quality 

(Barona et al. 2010; Durigan et al. 2013; Mello et al. 2018b; Stella and Bendix 2019). A more 

reliable road system has also opened not only the agrarian frontier (Schmink et al. 2019) but has 

also facilitated artisanal illicit gold mining operations leading to elevated mercury contamination 

(Da Silva et al. 2018a). These headwaters are home to a number of endemic fishes (e.g. the small 

cichlid Apistogramma kullanderi, catfish Hartia rondoni and characins Moenkhausia 

petymbuaba, M. chlorophtalma and Knodus nuptiales) with distributions limited to one or few of 

the rivers/streams. 

The ichthyofauna of the middle portion of the river that is draining Pre-Cambrian rocks of 

the Brazilian Shield, spanning from Sao Felix do Xingu to upstream of Belo Monte north of the 

Volta Grande, differs greatly from the headwaters. The rapids of the middle Xingu, where most 

of the fish diversity and endemism is found (e.g. 20 endemic loricariid catfish such as 

Hypancistrus zebra, Pseudacanthicus pirara and Scobinancistrus aureatus), are being destroyed 

by hydropower development. The Belo Monte dam complex, the third largest in the world, 

operates on a run-of-river basis with electricity generation varying according to the river inflow. 

Its reservoir flooded an area of 516 km2 (Lessa et al. 2015). This follows an unfortunate trend of 

other tropical rivers around the globe (Fearnside 2016a; Latrubesse et al. 2017; Lees et al. 2016; 

Winemiller et al. 2016). The highly specialized species of fishes and other aquatic organisms 
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adapted to rheophilic habitats are not able to survive in the new conditions (Lujan and Conway 

2015). Also, almost all species rely on the flood pulse of the river, the alternation between a high 

water level during the rainy season and low water level in the dry season, to complete their life 

cycle (Junk et al. 1989). For the Xingu, the natural flood pulse was on average 4.8 m (Barbosa et 

al. 2015). The artificial regulation of the water level without mimicking the natural pulse has 

already begun to have devastating effects on the ichthyofauna (Souza-Cruz-Buenaga et al. 2019). 

In addition, in the section of the Volta Grande dewatered by the Belo Monte Dam, there is yet 

another project, called "Projeto Volta Grande" planned by the Belo Sun mining company, to 

begin massive gold extraction in an already weakened ecosystem (Tófoli et al. 2017). 

The lower portion where the Xingu enters the lowland of the Amazonas sedimentary basin is 

home to another fish fauna comprised of both Volta Grande species, and those commonly seen in 

much of the Amazon lowland (e.g. Phractocephalus hemioliopterus the redtail catfish and 

Brachyplatystoma filamentosum the piraiba). Endemics of this portion of the river include 

Hypancistrus sp. “acari pão” and the recently described Panaqolus tankei.  

 

DATA 

We downloaded ten freely available regional, country-wide and global land cover and 

surface water classifications created from remotely sensed data (Table 1).  We chose four time 

periods for which multiple datasets were available: 1989-1992, 2000, 2010, 2014-2018. Because 

each dataset was created from different imagery, with varying methodologies and have different 

output characteristics (e.g. spatial resolution, definition of forest) we evaluate each dataset in 

context to illustrate their similarities and differences. The spatial resolutions vary from 25 m 
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(JAXA Global Forest / Non-forest, Shimada et al. (2014)) to 300 m (ESA Land Cover CCI, 

Defourny et al. (2016)) and include both optical and radar satellite sensors (Table 1).  

From the optical satellite data, the Terra MODIS Vegetation Continuous Fields (VCF) 

(Dimiceli et al. 2015) and Global Forest Change (Hansen et al. 2013) classifications provide 

pixels values of percent tree cover at 250 m and 30 m spatial resolutions respectively.  For both, 

we applied a threshold of ≥ 30% to be consistent with the Brazilian forest definition (Gilbert 

2009).  Generated yearly, the Terra MODIS VCF product is a sub-pixel-level estimation of 

surface vegetation cover. It is produced from monthly composites of Terra MODIS 250- and 

500-meter resolution reflectance imagery and land surface temperature (Dimiceli et al. 2015).  

The Global Forest Cover baseline map (Hansen et al. 2013) was generated from cloud free 

mosaics of growing season Landsat 7 ETM+ images for the year 2000. Training data were 

generated from high spatial resolution Quickbird satellite imagery, as well as pre-existing 

vegetation continuous field maps derived from Landsat and MODIS imagery (Hansen et al. 

2003; Hansen et al. 2011).  

The ESA CCI Land Cover product (300 m spatial resolution) was generated for three 

reference periods each spanning five years to minimize cloud cover (Bontemps et al. 2013).  The 

primary data sources for these classifications are MERIS Full Resolution (FR) images 

supplemented with MERIS Reduced Resolution (RR) and SPOT-VGT imagery. Consistency 

with reference datasets such as GlobCover (Arino et al. 2008) and GLC2000 (European 

Commission 2003) was verified in the preparation of the land cover maps. Validation was 

performed at an observational unit of 81 ha with samples derived from Google Earth, Landsat 

TM or ETM+ imagery and multi-temporal SPOT-VG indices. 
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The Fish + Forest classifications were created from cloud free mosaics of Landsat TM5 

and Landsat 8 OLI imagery (Kalacska et al. 2019a). Due to the seasonal extensive cloud cover in 

the region each mosaic represented the median cloud free reflectance over a reference period of 

2-5 years. Covering the smallest overall area of all the datasets examined, training data were 

generated based on field visits throughout the study area. No other pre-existing datasets were 

used in the classification process. 

PRODES is a yearly product for the Amazon to monitor clear-cutting. It is one of eight 

forest monitoring systems developed by the Brazilian government (INPE 2015; Rajao and 

Georgiadou 2014; Rajão et al. 2017). TerraClass utilizes deforestation vector data from PRODES 

supplemented with satellite imagery from Landsat and MODIS (validated by SPOT-5 imagery) 

to monitor LUCC in the Brazilian Legal Amazon (de Almeida et al. 2016). MapBiomas 

classifications are yearly land cover products generated from Landsat imagery (MapBiomas 

Project).  The products are developed separately by biome; here we include subsets for the 

Amazon and Cerrado. For the MapBiomas data, model training and validation samples are 

generated from reference maps including TerraClass, PRODES, Global Forest Cover, ESA CCI 

and others.  

The TanDEM-X global forest classification (50 m spatial resolution) was generated from 

bistatic interferometric synthetic aperture radar (InSAR) data (HH polarization, X-band) 

acquired over the 2011-2015 period for the generation of a global digital elevation model (Esch 

et al. 2017; Martone et al. 2018). Forest is defined as > 60% tree cover from the Global Forest 

Change map (Hansen et al. 2013). The JAXA global forest classification (25 m spatial 

resolution) is a yearly product (Shimada et al. 2014) generated from HH and HV polarized L-
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band Synthetic Aperture Radar (PALSAR and PALSAR-2).  To be consistent with the FAO 

definition, areas with a tree cover ≥ 10% are included in the JAXA global forest dataset.  

While the surface water class was included in eight of the landcover classifications 

described above, we also examine the EC JRC/Google (Pekel et al. 2016) product created 

exclusively for surface water (1984 – 2015 period). We include the percent occurrence and 

maximum extent layers. To create a binary water/terrestrial classification we applied a threshold 

of 30% to the occurrence layer. Lastly, the HydroSHEDS river network is a model of the world’s 

rivers derived from the SRTM GL3 digital elevation model (DEM). The network has been 

hydrologically conditioned using a sequence of automated procedures including sink filling, 

stream burning, and manual corrections, among others (Lehner et al. 2008). This dataset is 

different from the others because water occurrence is not directly observed, it is derived from a 

hydrologically conditioned DEM. 

Each dataset was subset to the ~1.3M km2 area of interest (Figure 1) and total forest and 

water (where available) areas were calculated. A fragmentation analysis focused on four main 

class metrics of forest cover and their change over time for the different land cover 

classifications with FragStats v4 (McGarigal et al. 2012). Class area (CA) and percentage of 

landscape (PLAND) are important measures of landscape composition; specifically, how much 

of the landscape is comprised of a particular land cover (McGarigal et al. 2012). In this study, 

CA is a good indicator of the total forest area lost over time, while PLAND allows for 

comparison between maps of the percent of forest lost over time. For the three classifications 

available for all four time periods (i.e. ESA, Fish + Forest and MapBiomas), two additional 

indices were calculated: Largest Patch Index (LPI) and the Landscape Division Index 

(DIVISION). LPI measures the change in the landscape comprised by the largest patch, while 
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DIVISION is a standardized measure of the probability of two randomly selected pixels in the 

landscape not being located in the same patch of the corresponding patch type (McGarigal et al. 

2012). DIVISION ranges 0 - 1, with a value of 0 when the landscape is comprised of a single 

patch.  Due to a software limitation (32-bit software) the 25 m and 30 m spatial resolution 

datasets were resampled to 90 m prior to the calculation of these fragmentation metrics.   

Spatial fragmentation analyses consisting of Entropy and Foreground Area Density 

(FAD) were calculated for each dataset with the GUIDOS Toolbox (Vogt and Riitters 2017). 

Spatial entropy is the degree of disorder in the spatial arrangement of the forest class. A single 

compact forest patch has minimum entropy whereas maximum entropy is found when the forest 

class is split into the maximum number of patches given the area and dispersed equally over the 

entire area (i.e. checkerboard pattern) (Vogt and Riitters 2017).  FAD measures the proportion of 

forest pixels at five observation scales (7, 13, 27, 81, 243 pixels).  Results are classified into six 

classes: < 10% (rare), 10-39% (patchy), 40-59% (transitional), 60-89% (dominant), 90-99% 

(interior), 100% (intact). The final maps represent the average from the five observation scales 

(Vogt and Riitters 2017).  Morphological Spatial Pattern Analysis (MSPA) (Soille and Vogt 

2009) was applied to each forest classification to map morphometric details of the forest patches. 

Seven mutually exclusive classes of core, islet, loop, bridge, perforation, edge, and branch were 

mapped by MSPA for forest in each dataset. 

 
Results 
 

The forest cover maps for the four time periods are illustrated in Figure 2. Overall, the 

trend across datasets is a loss in forest area over time as expected. Differences among the maps 

can be attributed to several factors including spatial resolution, cloud cover, input data, data 

quality, methodology, etc. For example, the forest NE of Vitoria do Xingu is noticeably absent in 
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the PRODES 2010 map likely due to cloud cover. Also, the two coarse datasets (ESA and 

MODIS) have a more generalized representation of the forest cover. In addition, even within 

time periods there is a both an area and spatial arrangement difference in forest cover between 

datasets (Figures 1 and 2). For the earliest time period the region south and east of Canarana as 

well as north of Santarém have greater forest cover in the MapBiomas map than in either ESA or 

Fish + Forest (Figure 1a). The same pattern can be seen for the other three time periods as well 

with the MapBiomas data showing the greatest forest cover in that region. For the 2000 time 

period the Global Forest Cover map is most similar to MapBiomas showing greater forest cover 

in the southern and eastern sections than the other classifications (Figure 1b). 

At such a large scale (Figure 1), most of the datasets appear similar and as such it may be 

difficult for users to choose between them. However, the forest class statistics reveal differences 

in the total area classified as forest (CA) (Figure 2). For example, for the year 2000, the 

difference between the minimum (67% Fish + Forest) and the maximum (76.2% Global Forest 

Cover and MapBiomas) is just over 120,000 km2, approximately the area of Pennsylvania. For 

the most recent time period that difference increases to just over 220,000 km2 (approximately the 

area of Utah) between PRODES (52.5%) and MapBiomas (69.3%). It is important to note that 

the portion of the State of Goías in the study area (3% of total area) is not included in the 

PRODES estimates. The deforestation trend between datasets is largely consistent (Figure 2); 

there is a decrease in forest area over the four time periods. While all datasets continue to show a 

decrease in forest area between the 2010 and the most recent period (2014-2018), the 

MapBiomas and PRODES datasets indicate a slight increase. For PRODES the reason is likely 

due to cloud cover contamination in the 2010 data (also seen in Figure 2c) leading to a lower 
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overall area of forest.  The JAXA data indicate the greatest forest loss between those two time 

periods.  

The PLAND trends are consistent with CA, with forest loss ranging from 10.3% between 

1992-2015 for ESA, to 15.6% and 15.1% for Fish + Forest and MapBiomas, respectively. There 

is also an overall decrease in the area of the largest patch (LPI) over the four time periods for 

ESA and Fish + Forest (Figure 3c) consistent with temporal erosion of the main core of the intact 

forest (Figure 4a). In contrast, the LPI indicates a recovery of the largest patch area from 2010 to 

2017 from MapBiomas (Figure 3c). Furthermore, DIVISION shows that a consistent 

fragmentation process is occurring in this area over the four time periods based on the ESA and 

Fish + Forest classifications (Figure 3d). As with the LPI metric from MapBiomas, DIVISION 

also indicates a decrease in fragmentation between 2010 and 2017 for this dataset (Figure 3d). 

Temporal visualization of deforestation (Figure 4a) illustrates a gradual reduction of the 

forest cover with the deforestation encroaching upon the core forest areas.  While substantial 

deforestation occurs in Mato Grosso, in Pará the effect of roads (e.g. north of Castelo do Sonhos 

and between Itaituba and Altamira) leading to increased deforestation is evident. Marked 

deforestation for urban growth and increased agricultural development around Sao Felix do 

Xingu can be seen between 1989 and 2000 with forest loss in the sustainable use area (Figure 4b) 

west of the town. The majority of the remaining intact forest in both Pará and Mato Grosso is 

within the boundaries of protected areas and Indigenous territories. Heavy deforestation is also 

seen in the Volta Grande and around Altamira after 2010 attributable to the construction of the 

Belo Monte dam (Da Silva et al. 2018b) (Figure 1, Figure 4a).  

The spatial FAD (Figure 5) and entropy (Figure 6) results illustrate large differences in 

the landscape (i.e. fragmentation, connectivity and intact forest) depending on the choice of 
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forest cover map.  For the oldest time period (Figure 5a) the most noticeable difference is the 

lack of intact forest west of Querencia from the ESA data.  Due to the coarser spatial resolution 

of the ESA data (300 m vs 30 m for MapBiomas and Fish + Forest) the areas of forest in Mato 

Grosso at this time are not large enough to be considered ‘intact’ based on the multiple scales of 

assessment in the FAD metric (i.e. the largest scale of FAD is 243 pixels which results in a 

moving window of 72.9 x 72.9 km for ESA). There is less intact forest around Sao Félix do 

Xingu based on the Fish + Forest dataset due to the increased number of small deforestation 

patches which are not present in the MapBiomas data.  Similar trends can be seen in subsequent 

time periods with the coarsest spatial resolution data (i.e. EAS and MODIS) showing the least 

amount of intact forest. For 2000 (Figure 5b), between ESA and MODIS there are considerable 

differences in the Volta Grande region (Altamira, Jericoá, Vitória do Xingu) with the forest 

being classified as transitional and dominant between Altamira and Santarém from the MODIS 

data whereas from ESA there is a large patch of intact forest in the same region. From the finer 

spatial resolution maps, the Global Forest Cover shows the largest continuous patches of intact 

forest in comparison to MapBiomas or Fish + Forest which indicate a higher proportion of 

‘interior’ forest and greater fragmentation of the intact forest class.  Interestingly, in 2010 (Figure 

5c), the high resolution JAXA dataset (25 m spatial resolution) has similarly large patches of 

intact forest, similar to the coarse spatial resolution ESA and MODIS data. In contrast, the other 

30 m datasets (PRODES, Fish + Forest, MapBiomas, TerraClass) all show a high degree of 

fragmentation especially west of Sinop and Sorriso but also throughout Mato Grosso. The same 

pattern is seen for the most recent time period (Figure 5d) with the exception of TanDEM-X 

which has diagonal striping artifacts throughout the study area resulting in an erroneous FAD 

classification.  
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The entropy metrics (Figure 6) illustrate the same general pattern as the FAD (Figure 5) 

but the differences between datasets are more pronounced. For example, even in the oldest time 

period (Figure 6a), substantial differences between the three datasets can be seen, especially in 

the north between Itaituba and Altamira with MapBiomas indicating the greatest amount of 

fragmentation. For the other two data sets, ESA and Fish + Forest, increased entropy can be seen 

along the road between Itaituba and Altamira, but the fragmentation does not extend as far into 

the surrounding forest. For the year 2000 (Figure 6b), very high degrees of fragmentation can be 

seen from all datasets in Mato Grosso and Goías. The larger number of small forest patches in 

those states in the Global Forest Cover and MapBiomas datasets indicates the highest amount of 

fragmentation.  For 2010 (Figure 6c), ESA and MapBiomas have the largest number of small 

dispersed patches of forest in the landscape leading to the most fragmented landscape outside of 

the main intact forest region. That same pattern can be seen for the most recent time period 

(Figure 6d) for ESA, MODIS, MapBiomas and TanDEM-X.  However, the striping artifacts in 

TanDEM-X greatly increase the fragmentation in the landscape.   

The scatterplot between core and edge area from the MSPA statistics further reveal the 

differences in the spatial patterns of forest fragments in the study area over time between the 

various datasets (Figure 7). Overall, an expected negative correlation indicating an increase in 

edge with decrease in core area can be seen. However, the placement in those two axes of the 

individual datasets representing the same time periods varies greatly. As an outlier, the 

TanDEM-X map from 2016 indicates the lowest core area in comparison to the amount of edge.  

This, however, is likely an artifact due to the striping seen in Figures 5 and 6. JAXA, TerraClass 

and PRODES show the least amount of attrition in core area over time compared to the other 

datasets whereas ESA has the least amount of change between the two most recent time periods.   
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 Of the water layers examine here only the EC JRC/Google and HydroSHEDS are 

explicitly water data rather than water being a land cover class extracted as part of a complete 

land cover classification (Figure 8). The focus on the Volta Grande indicates that there is a lack 

of connectivity in the water layer from the ESA data (Figure 8d) in the portion of the river north 

of Jericoá where it is the most seasonably variable (Figure 8a) and at the junction with the Iriri 

river. This is expected due to the large pixel size of the ESA data in comparison to the relatively 

narrow channels in this area of the river. Similarly, the JAXA data (Figure 8h) shows 

discontinuity throughout the river south of Altamira. The TerraClass (Figure 8e) and PRODES 

(Figure 8j) datasets have the largest extent of surface water, greater than the maximum extent in 

the EC JRC/Google data (Figure 8b). Oddly, despite the large extent of surface water, both of 

these datasets lack the Bacajá river (SE tributary of the Xingu) in the Volta Grande (Figure 9) 

which is present in every other dataset examined here and can be seen in the satellite image from 

2017 (Figure 8l).  

Because the Belo Monte dam became operational in November 2015 its reservoir should 

be present in the 2016 through 2018 datasets. In the Landsat image from 2017 (Figure 8l), the 

flooded channel and reservoir can be clearly seen. Its absence from the TanDEM-X data (Figure 

8f) may be explained by the use of the EC JRC/Google surface water layer in the TanDEM-X 

product (which at the time of writing was only available up to 2015), and the multiple year 

reference period (2011-2016) over which the radar scenes were gathered. The lack of this large 

body of water from the PRODES (Figure 8j), MapBiomas (Figure 8i) and TerraClass (Figure 8e) 

data is more difficult to explain.  However, if a pre-existing water layer was used (created prior 

to the flooding) without explicit classification of water in the more recent imagery, that may 

account for the lack of the flooded area caused by the Belo Monte dam.   
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A large difference between mapped surface water and modelled river can be seen with 

the HydroSHEDS dataset (Figure 8k). The modelled location of water in this area does not 

always correspond to the actual surface water. Similar to the findings of da Costa et al. (2019), 

here in the Volta Grande where the river is shallow, braided and traverses relatively flat terrain 

the course of the river from a DEM derived source greatly differs from datasets where the 

surface water is directly observed demonstrating a point of failure in this type of terrain for DEM 

based surface water models. 

 
Discussion 
 
 Overall our findings demonstrate the importance of transparency in the generation of 

remotely sensed datasets. While it is the producers’ responsibility to document not only the 

accuracy of a given classification but also the input sources and methodology used (e.g. inclusion 

of reference data sets, resolution, validation data source, etc.), it is the user’s responsibility to 

familiarize themselves with the characteristics and limitations of each data set they choose. Apart 

from obvious differences in granularity (i.e. spatial detail afforded by the different pixel sizes) 

and data quality (i.e. cloud cover, striping artifacts) the primary reason for the large differences 

in forest cover between the datasets examined here is not a failure of the technology, rather a 

difference in the interpretation of ‘forest’.  Differences in semantics over the meaning of the 

word have been recorded even in medieval times, with over 800 definitions existing today 

(Sexton et al. 2016). Internationally for example, FAO uses > 10% tree cover while the 

International Geosphere-Biosphere Program uses > 60%.  Individual countries, programs and 

agencies typically use a definition somewhere in between.   

Our results showcase the importance of further considering the spatial arrangement of 

forest, not only the overall area covered. As shown in the fragmentation analyses maps may have 
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similar trends but the total areas of forest and the spatial arrangement of the patches in the 

landscape may change the outcome of conservation decisions depending on the forest cover map 

chosen. Users need to take into consideration the appropriateness of the map for their proposed 

application, not only the popularity of a given dataset.  

Despite its importance to all ecosystems and humanity, only ~2.5% of the Earth’s water 

is freshwater and much of it stored in aquifers, glaciers and permanent snow cover (Stiassny 

1996). Unsustainable usage is not only affecting the human population and global food security 

but also the aquatic biota that depend upon those resources (Castello et al. 2013; Frederico et al. 

2016).  To compound the problem, terrestrial LUCC has a direct and grave impact on the aquatic 

ecosystems. But herein lies the problem: with few exceptions (e.g. Pekel et al. 2016), surface 

water is not the main focus in most global/regional/national classifications. And, unfortunately, 

the dedicated surface water classifications are already out of date. With an upper limit of 2015 

for the EC JRC/Google classification for example (at the time of writing), large LUCC projects 

such as the Belo Monte dam are not included. Users aware of the particular timeline of this 

hydroelectric project would know that the EC JRC/Google global surface water dataset is not 

appropriate for conservation questions past 2015 until the dataset becomes updated with more 

recent imagery and the inclusion of outdated data into more recent land cover classifications (e.g. 

MapBiomas, TanDEM-X) can have grave ramifications. Similarly, basing conservation decisions 

on a modelled river network (e.g. HydroSHEDS) without first comparing the network to 

observed surface water may lead to incorrect assumptions about the ecosystems.  

In its inorganic form, mercury is naturally found in Amazonian soils. However, 

modifications in Amazonian freshwater environments promote chemical reactions that result in 

its conversion to methylmercury (MeHg), the most toxic form of this metal (Fearnside 2016b; 
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Nevado et al. 2010).  Large construction projects, such as the Belo Monte dam, result in the 

decomposition of flooded terrestrial vegetation that deteriorates water quality and increases its 

bioavailability (Hsu-Kim et al. 2018). Former terrestrial islands in the segment of the river 

between Altamira and Pimental can be seen submerged following the flooding of the reservoir 

(Figure 10). Given the gravity of the impacts of such large construction projects on entire 

regions, users must be careful in choosing the most appropriate datasets that accurately take into 

account the footprint of such projects. 

As all datasets here demonstrate, the proliferation of large-scale LUCC in the Xingu 

basin has continued since the 1980s, the urban centres (e.g. Altamira, Sao Felix do Xingu) have 

grown, but in parallel, the livelihoods of the population residing outside these primary centres 

have also undergone changes. These changes are a result of an improved accessibility to markets, 

for example. And, large scale expansion of the agriculture, energy, mining and forestry sectors 

within the country. The importance of carefully considering baseline datasets which are accurate 

spatial representations of the landscape is also key for terrestrial diversity. For example, forest 

patch connectivity and size of the connecting patches are key factors in the conservation of 

diversity (Evju and Sverdrup-Thygeson 2016; Parker and Mac Nally 2002; Sauder and Rachlow 

2014; Taniguchi et al. 2003).  

It is recognized that new Brazilian government policies are a threat to conserving 

ecosystems across the country (Fearnside 2016a; Fernandes et al. 2017; Freitas et al. 2018; 

Tollefson 2018). The recent announcement of the administration discrediting INPE’s national 

monitoring programs of the use of remote sensing to quantify forest loss in the Amazon is 

alarming (Escobar 2019). Our study shows that regardless of the variations in forest cover, all 
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datasets concur that deforestation is still an issue in Brazil and more needs to be done to protect 

unique ecosystems like the Xingu river basin.  
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Table 1. Summary of land cover products used in the comparisons. MMU is the minimum mapping unit 
in hectares.  *Tree cover threshold of greater or equal to 30% applied. **The observational unit is 81 ha 
(Defourny et al. 2016). All sensors are “passive sensors” relying on reflected solar radiation with the 
exception of the two marked with a § which are active sensors (radar). †15 sec resolution at the equator is 
463.8 m longitude x 460.7 m latitude. At 10°S it becomes 456.8 m longitude x 460.9 m latitude.  
 

Map Year(s) Sensor(s) Pixel 
size 
(m) 

MMU 
(ha) 

Classes Reference 

ESA 1992, 
2000, 
2010, 
2015 

MERIS FR/RR, 
AVHRR, SPOT-VG, 
PROBA-V 

300 9** 22 land 
cover classes 

Bontemps et al. 
(2013) 

EC 
JRC/Google 

1984-
2015 

Landsat TM5, 7 
ETM+, OLI 8 

30 N/A Surface 
water 
occurrence,  
maximum 
extent 

Pekel et al. (2016) 

Fish + Forest 1989, 
2000, 
2010, 
2018 

Landsat TM5, OLI 8 30 0.8 Forest, Non-
forest, Water 

Kalacska et al. 
(2019a) 

Global Forest 
Change* 

2000 Landsat 7 ETM+ 30 N/A percent tree 
cover 

Hansen et al. (2013) 

JAXA 2010, 
2017 

PALSAR§/PALSAR-
2§ 

25 0.5 Forest, Non-
forest, Water 

Shimada et al. (2014) 

HydroSHEDS 2000 Shuttle Radar 
Topography Mission 
(SRTM) 

15 
sec† 

N/A Water Lehner et al. (2008) 

MapBiomas 1989, 
2000, 
2010, 
2017 

Landsat TM5, 7 
ETM+, OLI 8 

30 0.5 27 Land 
cover classes 

http://mapbiomas.org 

MODIS 
Vegetation 
Continuous 
Fields * 

2000, 
2010, 
2015 

MODIS 250 N/A percent tree 
cover 

Dimiceli et al. (2015) 

PRODES 2010, 
2017 

Landsat, Terra, 
CBERS, ResourceSat 

90, 
30 

6.25  5  land cover 
classes and 
19 years of 
deforestation 

INPE (2015); Rajão 
et al. (2017) 
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TanDEM-X 
Global 
Forest/Non-
Forest 

2016 TanDEM-X§ 50 0.5 Forest, non-
forest, water 

Esch et al. (2017); 
Martone et al. (2018) 

Terra Class 
Amazônia and 
Cerrado 

2010, 
2014 

Landsat, MODIS, 
SPOT-5 

30 6.25 15-16 land 
cover classes 

de Almeida et al. 
(2016); Rajão et al. 
(2017) 
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Figure 1. Map of study area with examples of natural and altered land covers. Background map is the forest cover layer from the Fish + Forest 2018 classification 
(Kalacska et al. 2019a) A) clearing and burning of Arapujá island across from Altamira, B) Belo Monte dam, C) gold mining settlement, D) urban area at the 
ferry crossing between Belo Monte I and Belo Monte II, E) forest clearing for pasture, F) small homestead, G) confluence of the Xingu and Iriri rivers in the dry 
season with substrate exposed, H) intact forest in protected area, I) new road construction, J) large scale burning, K) intact forest surrounded by agricultural 
fields, L) agricultural encroachment on wetlands, M) mega scale cotton plantation, N) irrigated agriculture, O) Riparian forest and wetland surrounded by 
agriculture, P) illegal mining, Q) urban area, R) forest burning and influx of water contaminated by mine tailings, S) Riparian forest, T) deciduous forest 
surrounding Culuene rapids, U) large scale forest burning, V) intact forest surrounding Curuá rapids with the Hydro Energia Buriti dam reservoir in the 
background. 3D reconstructions of the landscape shown in T and V are available from (Kalacska et al. 2019b). Photographs taken by the authors.
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A

B

Figure 2. Forest (green)/ non-forest 
classification datasets examined for the study 
area for the periods A) 1989-1992, B) 2000, C) 
2010, D) 2014-2018. For PRODES and 
TerraClass the State of Goiás is greyed out as 
the results are for Amazonia only.  Locations 
of cities and the Jericoá rapids are shown for 
spatial reference.
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Figure 3. Comparison of total forest area change and fragmentation metrics for the land cover classifications. A) Total forest area 
(km2), B) PLAND, C) LPI, D) DIVISION.  Metrics of PLAND, LPI and DIVISION are only shown for the datasets for all four time 
periods. 
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Figure 4 A) change in forest cover extent from 1989 – 2018 from the Fish + Forest classifications. B) Locations of federal and state protected 
areas and indigenous territories. Background map is the 2018 Fish + Forest classification.  
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B
Figure 5. Average Foreground Area Density (FAD) classes for the A) 1989-1992, B) 2000, 
C) 2010, D) 2014-2018 time periods.
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Figure 6. Spatial entropy for the A) 1989-1992, B) 2000, C) 2010, D) 2014-
2018 time periods
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Figure 7. Relationship between MSPA statistics ‘core area’ and ‘edge’ for the forest class from the different datasets. The 
numbers represent the year of the classification.
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Figure 8. Examples of surface water classifications. Volta Grande area is shown in detail. A) Probability of surface water occurrence over the 
1984-2015 period (EC JRC/Google), B) maximum extent over the 1984-2015 period (EC JRC/Google), C) probability of occurrence greater than 
30% over the 1984 – 2015 period (EC JRC/Google), D) ESA 2015, E) TerraClass 2014, F) TanDEM-X 2011-2016 period, G) Fish + Forest 
2018, H) JAXA 2017, I) MapBiomas 2017, J) PRODES 2017, K) HydroSHEDS overlain on a single band from a Landsat OLI 8 image from 
2017 for context, L) Landsat 8 OLI image acquired in 2017 illustrating the Belo Monte reservoir and the dewatered section of the Volta Grande 
near Jericoá. 
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Figure 9. Photograph of the Bacajá river taken at its confluence with the Xingu river in the dry season. As a larger 
tributary of the Xingu river it should be present in hydrographic layers. (Photograph by O. Lucanus)
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A
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Figure 10. A) Landsat 8 OLI image from November 1, 2014; B) Landsat 8 OLI image from July 26, 2019; The satellite 
images in A and B are shown as a shortwave infrared (R):red (G): blue (B) color composite.  C) Original course of the 
river from (a) shown in blue superimposed on the surface water from (b). The flooding in the reservoir and channel 
following operationalization of Belo Monte can be clearly seen. 
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