
VariantStore: A Large-Scale Genomic Variant Search Index1

Prashant Pandey1, Yinjie Gao1, and Carl Kingsford∗1
2

1Computational Biology Department, School of Computer Science, Carnegie Mellon University,3

5000 Forbes Ave., Pittsburgh, PA4

May 6, 20205

Abstract6

The ability to efficiently query genomic variants from thousands of samples is critical to achieving7

the full potential of many medical and scientific applications such as personalized medicine. Performing8

variant queries based on coordinates in the reference or sample sequences is at the core of these applica-9

tions. Efficiently supporting variant queries across thousands of samples is computationally challenging.10

Most solutions only support queries based on the reference coordinates and the ones that support queries11

based on coordinates across multiple samples do not scale to data containing more than a few thousand12

samples. We present VariantStore, a system for efficiently indexing and querying genomic variants and13

their sequences in either the reference or sample-specific coordinate systems. We show the scalability14

of VariantStore by indexing genomic variants from the TCGA-BRCA project containing 8640 samples15

and 5M variants in 4 Hrs and the 1000 genomes project containing 2500 samples and 924M variants in16

3 Hrs. Querying for variants in a gene takes between 0.002 – 3 seconds using memory only 10% of the17

size of the full representation.18

Advanced sequencing technology and computing resources have led to large-scale genomic sequencing ef-19

forts producing genomic variation data from thousands of samples, such as the 1000 Genomes project [1–3],20

GTEx [4], and The Cancer Genome Atlas (TCGA) [5]. Analysis of genomic variants combined with pheno-21

typic information of samples promises to improve applications such as personalized medicine, population-22

level disease analysis, and cancer remission rate prediction. Although numerous studies [6–12] have been23

∗To whom correspondence should be addressed: carlk@cs.cmu.edu

1

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2019.12.24.888297doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.24.888297

performed over the past decade involving genomic variation, the ability to scale these studies to large-scale24

data available today and in the near future is still limited.25

On an individual sample, the typical result of sequencing, alignment, and variant calling is a collection of26

millions of sample-specific variants. A variant is identified by the position in the chromosome where it27

occurs, an alternative sequence, a list of samples that contain the variant, and phasing information. The28

standard file format to report these variants is the variant call file (VCF) [13].29

A common task is to identify all the samples with a given pattern of variants or identify all samples that have30

variants in a given gene. These tasks are translated into variant queries that require finding variants, samples31

with variants, or sample sequences between two positions in a chromosome. Applications often compare32

variants across multiple samples and need to perform the above queries based on sample-specific coordinate33

systems. A coordinate system is a system that uniquely identifies the positions of variants in a given genome.34

Each sample in variation data has a coordinate system that can be different from the reference coordinate35

system. Variants can appear at different positions in a sample coordinate system compared to the reference36

due to insertions and deletions (indels).37

To effectively use variant information from many samples, medical and scientific applications must often38

answer many instances of one or more of the following types of queries:39

1. Find the closest variant to position X for all samples in the reference coordinates.40

2. Find the sequence between positions X and Y for sample S in the reference coordinates.41

3. Find the sequence between positions X and Y for sample S in the sample coordinates.42

4. Find all variants between positions X and Y for sample S in the reference coordinates.43

5. Find all variants between positions X and Y for sample S in the sample coordinates.44

6. Find all variants between positions X and Y for all samples in the reference coordinates.45

These queries can be further used as building blocks for more complicated queries, such as finding samples46

with more than a given number of variants between two positions or count the number of variants for each47

sample between two positions.48

Supporting variant queries based on multiple sample coordinate systems requires maintaining a function per49

sample that can map a position in the reference coordinate (as present in VCF files) to the sample coordinate.50

2

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2019.12.24.888297doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.24.888297

Maintaining thousands of such functions requires storing and accessing an order of magnitude more data51

than only indexing variants based on a single reference coordinate system. Efficiently supporting thousands52

of coordinate systems adversely affects the memory footprint and computational complexity of the system53

making this problem much more challenging. This limits the scalability of variant indexes that support54

multiple coordinate systems to variation data containing only a few thousands samples.55

VG toolkit [14] is one of the most widely used tools to represent genomic variation data and it also sup-56

ports multiple coordinate systems. It encodes genomic variants from multiple samples in a graph, called a57

variation graph. A variation graph is a sequence graph where each node represents a sequence and a set of58

nodes through the graph, known as a path, embeds the complete sequence corresponding to the reference or59

a sample. Each node on a path is assigned a position indicating the location of the sequence in the coordi-60

nate system of the path. A node can be assigned multiple positions based on the number of paths that pass61

through the node. The variation graph enables read alignment against multiple sample sequences contain-62

ing variants simultaneously and avoids mapping biases that arise when mapping reads to a single reference63

sequence [14–18].64

VG toolkit stores each sample path as a list of nodes in the graph and maintains a separate index corre-65

sponding to the coordinates of the reference and samples. Storing a separate list of nodes for each sequence66

impedes the scalability of the representation for storing variation from thousands of samples. Moreover,67

variants are often shared among samples, so storing a list of nodes for each sample path introduces redun-68

dancy in the representation. VG toolkit is designed to optimize read alignment and uses sequence-based69

indexes for alignment. It can not be directly used for variant queries that require an index based on the70

position of variants in multiple sequence coordinates. Finally, the VG toolkit representation does not store71

phasing information contained in VCF files, which is required in many analyses.72

Multiple solutions have been proposed that efficiently index variants and support a subset of the variant73

queries described above. GQT [19] was the first tool that proposed a sample-centric index for storing and74

querying variants. It stores variants in compressed bitmap indexes and supports efficient comparisons of75

sample genotypes across many variant positions. BGT [20] and GTC [21] proposed variant-centric indexes76

that store variants in compressed bit matrices. They support queries for variants in a given region and allow77

filtering returned variants based on subsets of samples. The SeqArray library [22] is another variant-centric78

3

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2019.12.24.888297doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.24.888297

tool for the R programming language to store and query variants.79

However, these tools index variants only in the reference coordinate system and do not support variant80

queries in a sample coordinate system. Supporting multiple coordinate systems is a much harder problem to81

tackle. Furthermore, these tools do not store the reference sequence and cannot be directly used to query and82

compare sample sequences in a given region. Other tools have been proposed that use traditional database83

solutions, such as SQL and NoSQL [23–25]. However, they have proven prohibitively slow to index and84

query collections of variants.85

We present VariantStore, a system for efficiently indexing and querying genomic information (genomic86

variants and phasing information) from thousands of samples containing millions of variants. VariantStore87

supports querying variants occurring between two positions across a chromosome based on the reference or88

a sample coordinate. VariantStore bridges the gap between the tools that are space-efficient and fast but only89

support reference-based queries (e.g., GTC [21]) and VG, which maintains multiple coordinate systems by90

storing variants in a variation graph but fails to scale to thousands of samples. We show this by indexing91

variants from both the 1000 genomes and TCGA projects (> 8K samples), and show that VariantStore92

is faster than VG and takes less memory and disk space. VariantStore performs variant queries based on93

sample coordinates in less than a second. Furthermore, we have designed VariantStore to efficiently scale94

out of RAM to storage devices in order to cater to the ever increasing sizes of available variation data by95

performing memory-efficient construction and query.96

We encode genomic variation in a directed, acyclic variation graph and build a position index (a mapping97

of node positions to node identifiers) on the graph to quickly access a node in the graph corresponding to a98

queried position. Each node in the variation graph corresponds to a variant and stores a list of samples that99

contain the variant along with the position of the variant in the coordinate of those samples. The inverted100

index design allows one to quickly find all the samples and positions in sample coordinates corresponding to101

a variant. It also avoids redundancy that otherwise arises in maintaining individual variant indexes for each102

sample coordinate and scales well in practice when the number of samples grows beyond a few thousand.103

To perform index construction and query efficiently in terms of memory, we partition the variation graph104

into small chunks (usually a few MBs in size) based on the reference coordinates and store variation graph105

nodes in these chunks. During construction, an active chunk is always maintained in memory in which new106

4

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2019.12.24.888297doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.24.888297

nodes are added, and once it reaches its capacity we compress and serialize it to disk and create a new active107

chunk. The nodes in and across chunks are ordered based on the reference coordinate since they are created108

based on variants in the VCF file which are themselves ordered by the reference coordinate. During a query,109

we only load the chunks in memory that contain the nodes corresponding to the query range.110

To efficiently scale to thousands of coordinate systems (or samples), we maintain the position index only111

on the reference coordinate. The position index maps positions in the reference sequence where there is a112

variant to nodes corresponding to those variants in the variation graph. To lookup a position using a sample’s113

coordinate system, we first lookup the node corresponding to the position in the reference coordinate. We114

then traverse the sample path from the node in the graph to determine the appropriate node in the sample115

coordinate. A node with a given position in a sample coordinate is often close to the node in the reference116

coordinate with the same position.117

Results118

Our evaluation of VariantStore is based on four parameters: construction time, query throughput, disk space,119

and peak memory usage.120

To calibrate our performance numbers, we compare VariantStore against VG toolkit [26]. VG toolkit rep-121

resents variants in a variation graph and supports multiple coordinate systems but does not support variant122

queries. Therefore, we only compare the construction performance and disk space against VG toolkit.123

Data. We use 1000 Genomes Phase 3 data [27] and three of the biggest projects from TCGA in terms of the124

number of samples, Ovarian Cancer (OV), Lung Adenocarcinoma (LUAD), and Breast Invasive Carcinoma125

(BRCA), for our evaluation. 1000 Genomes data contains more variants compared to the TCGA data but126

TCGA data contains more samples. 1000 Genomes data contains a separate VCF file for each chromosome127

containing variants from thousands of samples. The number of samples in each file is ≈ 2.5K. The variants128

in 1000 Genomes project are based on GRCh37 reference genome. The TCGA data contains a separate129

VCF file for each sample. The OV, LUAD, and BRCA projects contain 2436, 2680, and 4319 VCF files130

containing both normal and tumor variants respectively. For each project in TCGA, we first merged VCF131

files using the BCF tool merge command [28] and created a separate VCF file for each chromosome. The132

variants in the TCGA project are based on GRCh38 reference genome.133

5

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2019.12.24.888297doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.24.888297

System Time Disk space Peak RAM Peak RAM Agg.
Dataset 1000 Genomes
VariantStore 3 Hrs 25 mins 41 GB 8.8 GB 153 GB
VG-toolkit 11 Hrs 10 mins 50 GB 37 GB 450 GB
Dataset TCGA (OV)
VariantStore 1 Hr 5 mins 3.4 GB 1.1 GB 17.45 GB
VG-toolkit 11 GB∗

Dataset TCGA (LUAD)
VariantStore 1 Hr 20 mins 3.5 GB 2.3 GB 36.05 GB
VG-toolkit 12 GB∗

Dataset TCGA (BRCA)
VariantStore 4 Hrs 36 mins 4.2 GB 3.2 GB 53.21 GB
VG-toolkit 14 GB∗

Table 1: Time, space, peak RAM, and peak RAM (aggregate) to construct variant index on the 1000
Genomes and TCGA (OV, LUAD, and BRCA) data using VariantStore and VG toolkit. ∗Space for the
XG index that does not contain any path information. We constructed all 24 chromosomes (1 – 22 and X
and Y) in parallel. The time and peak RAM reported is for the biggest chromosome (usually chromosome 1
or 2). The space reported is the total space on disk for all 24 chromosomes. The peak RAM (aggregate) is
the aggregate peak RAM for all 24 processes.

Index construction. The total time taken to construct the variation graph representation and index includes134

the time taken to read and parse variants from the VCF file, construct the variation graph representation and135

indexes, and serialize the final representation to disk. For VariantStore, the reported time includes the time136

to create and serialize the position index. The space reported for VariantStore is the sum of the space of the137

variation graph representation and position index.138

For VG toolkit, creating a variation graph representation with multiple coordinate systems (or sample path139

annotations) requires creating two indexes, XG and GBWT index. The XG index is a succinct representa-140

tion of the variation graph without path annotations that allows memory- and time-efficient random access141

operations on large graphs. The GBWT (graph BWT) is a substring index for storing sample paths in the142

variation graph. We first create the variation graph representation using the “construct” command including143

all sample path annotations. We then create the XG index and GBWT index from the variation graph rep-144

resentation to create an index with all sample path annotations in the variation graph. For VG toolkit, the145

reported time includes the time to create and serialize the XG and GBWT indexes. The space reported for146

VG toolkit is the sum of the space of the XG and GBWT indexes. VG toolkit could not build GBWT index147

on TCGA data even after running for more than a day. We only report space for the XG index (which does148

not contain any sample path annotations) for TCGA data.149

6

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2019.12.24.888297doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.24.888297

For both VariantStore and VG toolkit, we created 24 separate indexes, one each for chromosomes 1 − 22,150

and X and Y. Each of these indexes were constructed in parallel as a separate process. We report the time151

taken for construction as the time taken by the process that finishes last. For disk space, we report the total152

space taken by all 24 indexes. For peak memory usage, we report the highest individual and aggregate peak153

RAM usage for all processes.154

The performance of VariantStore and VG toolkit for constructing the index on the 1000 Genomes and TCGA155

data is shown in Table 1.156

VariantStore is 3× faster, takes 25% less disk space, and 3× less peak RAM than VG toolkit. For the157

TCGA data, VG toolkit could not build GBWT index embedding all sample paths. However, even the space158

needed for the XG index (not embedding sample paths) is≈ 3.3× larger than the VariantStore representation159

containing all sample paths.160

Query throughput. We measured the query throughput for all six queries mentioned above. To show the161

robustness of query efficiency on different data we evaluate on two different chromosome indexes from two162

different projects. We chose Chromosome 2 which is one of the bigger chromosomes and Chromosome 22163

which is one of the smaller ones. We evaluate query time on chromosome indexes from 1000 Genomes and164

TCGA LUAD data.165

To perform queries, we specify a pair of positions in the reference or a sample coordinate system depending166

on the query type and optionally a sample name. Query parameters, such as the length of the queried region167

and density of variants in that region, affect the query timing. Therefore, we performed three sets of query168

benchmarks containing 10, 100, and 1000 queries and report the aggregate time. For each query in the set,169

we uniformly randomly pick the start position across the full chromosome length. The size of the query170

range is set to ≈ 42K bases which is approximately the length of a typical gene. Picking multiple query171

regions uniformly randomly across the chromosome provides a good coverage of different regions across172

the chromosome.173

To measure the query throughput, we only load the position index and graph topology in memory and the174

variation graph representation is kept on disk before performing the query. Keeping the variation graph175

representation on disk keeps the peak memory usage low and all disk accesses are performed during the176

query to load appropriate node chunks.177

7

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2019.12.24.888297doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.24.888297

Query#1 Query#2 Query#3 Query#4 Query#5 Query#6

101

102

103

104
Ti

m
e

in
se

cs
(L

og
-s

ca
le

) 10 100 1000

(a) Time for 10, 100, and 1000 queries on Chromosome 22 index in VariantStore for 1000 Genomes data.

Query#1 Query#2 Query#3 Query#4 Query#5 Query#6

100

101

102

103

104

Ti
m

e
in

se
cs

(L
og

-s
ca

le
) 10 100 1000

(b) Time for 10, 100, and 1000 queries on Chromosome 22 index in VariantStore for TCGA LUAD data.

Figure 1: Time reported is the total time taken to execute 10, 100, and 1000 queries. For all queries the
query length is fixed to ≈ 42K. Query#1: Closest variant, Query#2: Seq in ref coordinate, Query#3: Seq
in Sample coordinate, Query#4: Sample variants in ref coordinate, Query#5: Sample variants in Sample
coordinate, Query#6: All variants in ref coordinate

The query throughput on 1000 Genomes data is shown in Figures 1a and 2a. For all query types, the178

aggregate time taken to execute queries increases linearly with the number of queries. Finding the sequence179

corresponding to a sample in a region (Queries #2, #3) takes less time compared to finding variants in a180

region (Queries #4, #5, #6). Finding the sequence takes less time because it involves traversing the sequence181

specific path in the region and reconstructing the sequence. However, finding variants in a given region takes182

more time because it involves an exhaustive search of neighbors at each node in the region to determine all183

the variants that are contained by a given sample or all samples.184

The query throughput on TCGA data is shown in Figures 1b and 2b. The TCGA data has twice as many185

samples compared to 1000 Genomes data but there are fewer variants. This makes the variation graph much186

8

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2019.12.24.888297doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.24.888297

Query#1 Query#2 Query#3 Query#4 Query#5 Query#6
101

102

103

Ti
m

e
in

se
cs

(L
og

-s
ca

le
) 10 100 1000

(a) Time for 10, 100, and 1000 queries on Chromosome 2 index in VariantStore for 1000 Genomes data.

Query#1 Query#2 Query#3 Query#4 Query#5 Query#6

101

102

103

Ti
m

e
in

se
cs

(L
og

-s
ca

le
) 10 100 1000

(b) Time for 10, 100, and 1000 queries on Chromosome 2 index in VariantStore for TCGA LUAD data.

Figure 2: Time reported is the total time taken to execute 10, 100, and 1000 queries. For all queries the
query length is fixed to ≈ 42K. Query#1: Closest variant, Query#2: Seq in ref coordinate, Query#3: Seq
in Sample coordinate, Query#4: Sample variants in ref coordinate, Query#5: Sample variants in Sample
coordinate, Query#6: All variants in ref coordinate

sparser and queries in the position index become more expensive compared to traversing the graph between187

two positions. Finding all variants is the fastest query because the variation graph is very sparse and most188

position ranges are empty. Traversing the graph to find the sequence or variants for a sample takes similar189

amount of time. Finding the closest variant from a position takes the most amount of time because it involves190

performing multiple position-index queries to determine the closest variant.191

For both 1000 Genomes and TCGA LUAD data, finding the closest variant query is faster for Chromosome 2192

because variants in Chromosome 22 are more dense compared to Chromosome 2 which makes it faster to193

locate the closest variant.194

9

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2019.12.24.888297doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.24.888297

Figure 3: Time (seconds) and peak memory usage (GB) with increasing query length for “Sample sequence
in the reference coordinate” (query #2) for 1000 Genomes chromosome 22 index. The time taken increases
as the query length increases. But the memory usage remains constant regardless of the query length.

The effect of query range on peak memory usage. We performed another query benchmark to evaluate195

the effect of size of the position range on the peak memory usage and time. For this benchmark, we chose the196

“Sample sequence in reference coordinate” query (query #2) because this query involves traversing the full197

sample path between two positions. We performed sets of 100 queries with increasing size of the position198

range and record the total time and peak RAM usage. For each query in the set, we uniformly randomly199

pick the start position across the full chromosome length.200

Effect of the query range size on peak memory usage and time is shown in Figure 3. The memory usage201

remains constant regardless of the query length. This is because during a query we access node chunks in202

sequential order and regardless of the query length only load at most two node chunks in RAM at a time.203

This keeps the memory usage essentially constant.204

The effect of number of variants on query time. We also evaluate how the number of variants in the205

position range affects the query time. For this benchmark, we performed the “All variants in the reference206

coordinate” query (query #6) because this query involves performing a breadth-first search in the graph to207

10

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2019.12.24.888297doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.24.888297

Figure 4: Time (seconds) and the number of variants in the query region for “All variants in the reference
coordinate” (query #6) for 1000 Genomes chromosome 22 index. Query times are binned based on the
number of variants in the query region and mean time is reported in each bin. The mean time increases as
the number of variants increases in the region.

determine all variants in a region and the query time depends on the number of variants in the region. To208

perform queries on regions with different number of variants, we chose 1000 regions with a fixed size of the209

position range (≈ 42K bases) and start position chosen uniformly randomly across the chromosome.210

Effect of the number of variants in the query region on query time is shown in Figure 4. The query time211

increases as the number of variants in the queried region increases. This is because when the number of212

variants is in a region is small the graph is sparser and faster to traverse and report all variants.213

Comparison with a reference-based variant index. To understand the overhead of maintaining thousands214

of coordinate systems on the performance of VariantStore, we compare VariantStore to a variant index that215

only indexes variants based on the reference coordinate system and supports a subset of variant queries. We216

use GTC [29] in our evaluation as it is the fastest and smallest reference-based variant index. We compare217

the query performance for two variant queries (Query#4 “Sample variants in ref coordinate” and Query#6218

“All variants in ref coordinate”) supported by GTC.219

GTC took 6× less time and an order of magnitude less space to construct and store the variant index com-220

pared to VariantStore. Furthermore, variant queries were also about an order of magnitude faster in GTC221

11

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2019.12.24.888297doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.24.888297

GTC (Query#4)

VariantStore (Query#4)

GTC (Query#6)

VariantStore (Query#6)

100

101

102

103
T i

m
e

in
se

cs
(L

og
-s

ca
le

) 10 100 1000

(a) Chromosome 22 index.

GTC (Query#4)

VariantStore (Query#4)

GTC (Query#6)

VariantStore (Query#6)

100

101

102

103

Ti
m

e
in

se
cs

(L
og

-s
ca

le
) 10 100 1000

(b) Chromosome 2 index.

Figure 5: Time reported is the total time taken to execute 10, 100, and 1000 queries on 1000 genomes data.
For all queries the query length is fixed to≈ 42K. Query#4: Sample variants in ref coordinate and Query#6:
All variants in ref coordinate

(see Figure 5). The slow performance of VariantStore is because of the overhead of maintaining the variation222

graph for representing multiple coordinate systems. During index creation, adding a variant requires split-223

ting a reference node, adding the variant node in the graph, and updating the mapping function for all the224

samples corresponding to the variant. To query, we first map the variant position to a node in the graph using225

the position-index and then traverse the path in the graph to answer queries. On the other hand, adding and226

querying variants can be performed fairly efficiently using compressed bit vectors in reference-only variant227

indexes. If an application only requires querying variants based on a single reference coordinate system228

then GTC offers a space-efficient and faster alternative, but it does not support queries using per-sample229

coordinate systems or general genome graph traversals.230

Experimental hardware. All experiments on 1000 Genomes data were performed on an Intel Xeon CPU231

E5-2699A v4 @ 2.40GHz (44 cores and 56MB L3 cache) with 1TB RAM and a 7.3TB HGST HDN728080AL232

HDD running Ubuntu 18.04.2 LTS (Linux kernel 4.15.0-46-generic) and were run using a single thread.233

Benchmarks for TCGA data were performed on a cluster machine running AMD Opteron Processor 6220234

@ 3GHz with 6MB L3 cache. TCGA data was stored on a remote disk and accessed via NFS.235

12

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2019.12.24.888297doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.24.888297

Discussion236

We attribute the scalability and efficient index construction and query performance of VariantStore to the237

variant-oriented index design. VariantStore uses an inverted index from variants to the samples which scales238

efficiently when multiple samples share a variant which is often seen in genomic variation data. The inverted239

index design further allows us to build the position index only on the reference sequence and use graph240

traversal to transform the position in reference coordinates to sample coordinates.241

All the supported variant queries look for variants in a contiguous region of the chromosome which allows242

VariantStore to partition the variation graph representation into small chunks based on the position of nodes243

in the chromosome and sequentially load only the relevant chunks into memory during a query. This makes244

VariantStore memory-efficient and scale to genomic variation data from hundreds of thousands of samples245

in future.246

The variation graph representation in VariantStore is smaller and more efficient to construct than the rep-247

resentation in VG toolkit. It can be further used in read alignment as a replacement to the variation graph248

representation in the VG toolkit.249

While the current implementation does not support adding new variants or updating the reference sequence250

in an existing VariantStore, this is not a fundamental limitation of the design. In future, we plan to extend251

the immutable version of VariantStore to support dynamic updates following the LSM-tree design [30].252

Methods253

Variation graph254

A variation graph (VG) [14] (also defined as a genome graph in Kim et al. [17] and Rakocevic et al. [18]) is255

a directed, acyclic graph (DAG) G = (N,E, P) that embeds a set of DNA sequences. It comprises of a set256

of nodes N , a set of direct edges E, and a set of paths P . For DNA sequences, we use the alphabet {A, C,257

G, T, N}. Each ni ∈ N represents a sequence seq(ni). Edges in the graph connect nodes that are followed258

on a path. Each sample in the VCF file follows a path through the variation graph. The embedded sequence259

given by the path is the sample sequence. Given that a variation graph is a directed graph, edges can be260

13

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2019.12.24.888297doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.24.888297

traversed in only one direction. Although, not applicable to VariantStore, an edge can also be traversed in261

the reverse direction when the variation graph is used for read alignment [14, 17, 18].262

Each path p = nsn1 . . . npnd in the graph is an embedded sequence defined as a sequence of nodes between263

a source node ns and a destination node nd. Nodes on a path are assigned positions based on the coordinate264

systems of sequences they represent [31]. The position of a node on a path is the sum of the lengths of the265

sequences represented by nodes traversed to get to the node on the path. For a path p = n1 . . . np, position266

P (np) is
∑p−1

i=1 |seq(ni)|. A node in the graph can appear in multiple paths and therefore can have multiple267

positions based on different coordinate systems.268

An initial variation graph is constructed with a single node and no edges using a linear reference sequence269

and a reference genome coordinate system. Variants are added to the variation graph from one or more VCF270

files [13]. A variant is encoded by a node in the variation graph that represents the variant sequence and271

is connected to nodes representing the reference sequence via directed edges. Each variant in the VCF file272

splits an existing reference sequence node into two (or three in some cases) and joins them via an alternative273

path corresponding to the variant. For example, a substitution or deletion can cause an existing reference274

node to be split into three parts (Figure 6). An insertion can cause the reference node to be split into two275

parts (Figure 6).276

Representing multiple coordinate systems in a variation graph277

Representing multiple coordinates systems in a variation graph poses challenges that are not present in linear278

reference genomes. First, a node can appear on multiple paths at a different position on each path. Second,279

given that a variation graph can contain thousands of paths and coordinate systems it would be non-trivial280

to maintain a position index to quickly get to a node corresponding to a path and position.281

Much work has been done devising efficient approaches to handle multiple coordinate systems. Rand et al.282

[31] introduced the offset-based coordinate system. VG toolkit [26] implemented the multiple coordinate283

system by explicitly storing a list of node identifiers and node offsets for each path in the variation graph.284

They store the list of node identifiers as integer vectors using the succinct data structure library (SDSL [32]).285

We call this an explicit-path representation.286

However, storing the list of nodes on each path explicitly can become a bottleneck as the number of input287

14

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2019.12.24.888297doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.24.888297

Reference sequence CAATTTGCTGATCT
Position Reference seq. Alternative seq. HG00096 HG00101 HG00103 Variant type

2 A G 0 1 1 SUBSTITUTION
2 AATT A 1 0 0 DELETION
6 T TACG 0 0 1 INSERTION

Table 2: Variants ordered by the position in the reference genome for three samples (HG00096, HG00101,
HG00103). Each variant has the list of samples that contain the variant.

paths increases. Moreover, nodes that appear on multiple paths are stored multiple times causing redundancy288

in storage. For a set of N variants and S samples the space required to store the explicit-path representation289

is O(SN) since each variant creates a constant number of new nodes in the variation graph.290

VariantStore291

We describe how we represent a variation graph in VariantStore and maintain multiple coordinate systems292

efficiently. We then describe how we build a position index using succinct data structures.293

The variation graph representation is divided into three components:294

1. Variation graph topology295

2. Sequence buffer296

3. List of variation graph nodes297

Variation graph topology. A variation graph constructed by inserting variants from VCF files often shows298

high sparsity (the number of edges is close to the number of nodes). For example, the ratio of the number299

of edges to nodes in the variation graph on 1000 Genomes data [27] is close to 1. Given the sparsity of the300

graph, we store the topology of the variation graph in a representation optimized for sparse graphs.301

Our graph representation uses the counting quotient filter (CQF) [33] as the underlying container for storing302

nodes and their outgoing neighbors. The CQF is a compact representation of a multiset S. Thus a CQF303

supports inserts and queries. A query for an item x returns the number of instances of x in S. The CQF304

uses a variable-length encoding scheme to count the multiplicity of items. In our graph representation, we305

encode the node as the item and id of the outgoing neighbor as the count of the item in the CQF.306

For nodes with a single outgoing neighbor, we store the node and its neighbor together (without an indirec-307

tion) so we can access them quickly. For nodes with more than one outgoing neighbor we store outgoing308

15

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2019.12.24.888297doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.24.888297

neighbors in separates lists. In the variation graph, most nodes have a single outgoing neighbor and using309

this compact and optimized representation we achieve cache efficient and fast traversal of the graph.310

We use the version of the counting quotient filter with no false-positives to map a node to its outgoing311

edge(s). We store the node id as the key in the CQF and if there is only one outgoing edge we encode the312

outgoing neighbor id as the count of the key. If there are more than one outgoing edges we use indirection.313

We maintain a list of vectors where each vector contains a list of outgoing neighbor identifiers corresponding314

to a node. We store the node id as the key and the offset in the list of vectors (or index of the vector containing315

the list of outgoing neighbor ids) as the count of the key.316

Sequence buffer. The sequence buffer contains the reference sequence and all variant sequences corre-317

sponding to each substitution and insertion variant. All sequences are encoded using 3-bit characters in an318

integer vector from SDSL library [32, 34]. The integer vector initially only contains the reference sequence.319

Sequences from incoming variants are appended to the integer vector. Once all variants are inserted the320

integer vector is bit compressed before being written to disk.321

List of variation graph nodes. Each node in the variation graph contains an offset and length. The offset322

points to the start of the sequence in the sequence buffer and length is the number of nucleotides in the323

sequence starting from the offset. This uniquely identifies a node sequence in the sequence buffer.324

At each node we also store a list of sample identifiers that have the variant, position of the node on all those325

sample paths, and phasing information from the VCF file corresponding to each sample.326

Our representation of the list of samples is based on two observations. First, multiple samples share a variant327

and storing a list of sample identifiers for each variant is space inefficient. Instead, we store a bit vector of328

length equal to the number of samples and set bits corresponding to the present samples in the bit vector.329

Second, multiple variants share the same set of samples. We define an equivalence relation ∼ over the set330

of variants. Let E(v) denote the function that maps each variant to the set of samples that have the variant.331

We say that two variants are equivalent (i.e., v1 ∼ v2) if and only if E(v1) = E(v2). We refer to the set of332

samples shared by variants as the sample class. A unique id is assigned to each sample class and nodes store333

the sample class id instead of the whole sample class. This scheme has been employed previously by other334

colored de Bruijn graph representation tools [35–38] for efficiently maintaining a mapping from k-mers (a335

k-length substring sequence) to the set of samples where k-mers appear.336

16

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2019.12.24.888297doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.24.888297

Phasing information is encoded using 3 bits. Position and phasing information corresponding to each sample337

in the list of samples is stored as tuples. Tuples are stored in the same order as the samples appear in the338

sample class bit vector. To retrieve the tuple corresponding to a sample a rank operation is performed on the339

sample bit vector to determine the rank of the sample. Using the rank output, a select operation is performed340

on the tuple list to determine the tuple corresponding to a sample.341

Variation graph nodes are stored as protocol buffer objects using Google’s open-source protocol buffers342

library. Every time a new node is created we instantiate a new protocol buffer object in memory. We343

compress the protocol buffers before writing them to disk and decompress them while reading them back in344

memory.345

For a set of N variants and S samples where each variant is shared by P samples on average, each node346

contains information about P samples and storing O(N) nodes (a constant number of nodes for each variant)347

the space required to store the variation graph representation in VariantStore is O(NP). When P = 1 (i.e.,348

no two samples share a variant) the space required by the variation graph representation becomes O(N).349

Position index In order to answer variant queries we need an index to quickly locate nodes in the graph350

corresponding to input positions. These positions can be specified in multiple coordinate systems, i.e., in351

the coordinate system of the reference or a sample.352

One way to index the variation graph is to store an ordered mapping from position to node identifier. We can353

perform a binary search in the map to find the position closest to the queried position and the corresponding354

node id in the graph. However, given that there are multiple coordinate systems in the variation graph we can355

not create a single mapping with a global ordering. Keeping a separate position index for each coordinate356

system will require space equal to the explicit-path representation.357

In VariantStore, we maintain a mapping of positions to node identifiers only for the reference coordinate358

system. All nodes on the reference sequence path are present in the mapping. If the queried position is in359

the reference coordinate system we use the mapping to locate the node in the graph. However, if the queried360

position is in a sample’s coordinate system, we first locate the node in the graph corresponding to the same361

position in the reference coordinate system. Then we perform a local search by traversing the sample path362

from that node to determine the node corresponding to the position in sample’s coordinate system. The local363

graph search incurs a small, one-time cost because sample nodes are rarely far from a reference node and is364

17

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2019.12.24.888297doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.24.888297

amortized against future searches in the sample’s coordinate system.365

We create the position index using a bit vector called the position-bv of length equal to the reference se-366

quence length and a list of node identifiers on the reference path in the increasing order by their reference367

sequence positions. For every node in the list we set the bit corresponding to the node’s position in the368

position-bv. There is a one-to-one correspondence between every set bit in the position-bv and node posi-369

tions in the list. We store the position-bv using a bit vector and node list as an integer vector from the SDSL370

library [32, 34].371

Variation graph construction372

We construct the variation graph by inserting variants from a VCF file. Each variant has a position in the373

reference genome, alternative sequence (except in case of a deletion), and a list of samples with phasing374

information for each sample.375

Based on the position of the variant we split an existing reference node that contains the sequence at that376

position in the graph. We update the split nodes on the reference path with new sequence buffer offsets,377

lengths, and node positions (based on the reference coordinate system). We then append the alternative378

sequence to the sequence buffer and create an alternative node with the offset and length of the alternative379

sequence. We then add the list of tuples (position, phasing info) for each sample.380

We also need to determine the position of the alternative node on the path of each sample that contains the381

variant. One way to determine the position of the node for each sample would be to backtrack in the graph382

to determine a previous node that contains a sample variant and the absolute position of that node in the383

sample’s coordinate system. If no node is found with a sample variant we trace all the way back to the384

source of the graph. We would then traverse the sample path forward up to the new alternative node and385

compute the position. This backtracking process would need to be performed once for each sample that386

contains the variant. This would slow down adding a new variant and cause the construction process to not387

scale well with increasing number of samples.388

Instead, we construct the variation graph in two phases to avoid the backtracking process. In the first phase,389

while adding variants we do not update the position of nodes on sample paths. We only maintain the position390

of nodes on the reference path because that does not require backtracking. In the second phase, we perform391

18

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2019.12.24.888297doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.24.888297

a breadth-first traversal of the variation graph starting from the source node and update the position of nodes392

on sample paths.393

During the breadth-first traversal we maintain a delta value for each sample in the VCF file. At any node, the394

delta value is the difference between the position of the node in the reference coordinate and the sample’s395

coordinate. During the traversal, we update sample positions for each node based on the current delta value396

and reference coordinate value. Algorithm 1 gives the pseudocode of the algorithm.397

Algorithm 1 Pseudocode to fix sample positions in the variation graph. A node corresponding to a variant
contains the list of sample identifiers that have the variant and their respective positions in sample paths. A
node corresponding to the reference sequence contains the position in the reference path and optionally a
list of sample identifiers if it also represents a delete variant.

1: for i in Samples do
2: delta[i]← 0

3: for node in BFS(variation graph) do
4: if ISREFERENCE(node) then
5: for neighbor in node.neighbors do
6: if neighbor.pos[sample] = 0 then
7: neighbor.pos[sample]← node.pos[ref] + node.len+ delta[sample]
8: else
9: delta[sample]← neighbor.pos[sample]− (node.pos[ref] + node.len)

10: else
11: for samples in node.samples do
12: delta[sample]← node.pos[sample] + node.len− node.neighbor.pos[ref]

Position index construction398

In the position index, we maintain a mapping from positions of nodes on the reference path to corresponding399

node identifiers in the graph. Node positions are stored in a “position-bv” bit vector of size equal to the400

length of the reference sequence and node identifies are stored in a list. To construct the position index, we401

follow the reference path starting from the source node in the graph and for every node on the path we set402

the corresponding position bit in the position-bv and add the node identifier to the list. Node identifiers are403

stored in the order of their position on the reference path.404

Variant queries405

A query is performed in two steps. We first perform a predecessor search (largest item smaller than or equal406

to the queried item) using the queried position in the position index to locate the node np with the highest407

19

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2019.12.24.888297doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.24.888297

position smaller than or equal to the queried position pos. The predecessor search is implemented using408

the rank operation on position-bv. For bit vector B[0, . . . , n], RANK(j) returns the number of 1s in prefix409

B[0, ..., j] of B. An RRR compressed position-bv supports rank operation in constant time [32, 39]. The410

rank of pos in position-bv corresponds to the index of the node id in the node list. Figure 7a shows a sample411

query in the position index.412

Based on how reference nodes are split while adding variants the sequence starting at pos will be contained413

in the node np. All queries are then answered by traversing the graph either by following a specific path414

(reference or a sample) or a breadth-first traversal and filtering nodes based on query options.415

If the queried position is based on the reference coordinate system then we can directly use np as the start416

node for graph traversal. However, if the position is based on a sample coordinate then we perform a local417

search in the graph starting from np to determine the start node based on the sample coordinate.418

Memory-efficient construction and query419

In the variation graph representation, the biggest component in terms of space is the list of variation graph420

nodes stored as Google protobuf objects. These node objects contain the sequence information and the list421

of sample positions and phasing information. For 1000 Genomes data, the space required for variation graph422

nodes is ≈ 87% to 92% of the total space in VariantStore. However, keeping the full list of node objects in423

memory during construction or query is not necessary and would make these processes memory inefficient.424

To perform memory efficient construction and query, we store and serialize these nodes in small chunks425

usually containing ≈ 200K nodes (the number of nodes in a chunk varies based on the data to keep the426

size to a few MBs). Nodes in and across these chunks are kept in their creation order (which is roughly the427

breadth-first traversal order). Therefore, during a breadth-first traversal of the graph we only need to load428

these chunk in sequential order.429

During construction, we only keep two chunks in memory, the current active chunk and the previous one.430

All chunks before the previous chunk are written to disk. In the second phase of the construction when we431

update sample positions and during the position index creation we perform a breadth-first traversal on the432

graph and load chunks in sequential order.433

20

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2019.12.24.888297doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.24.888297

Variant queries involve traversing a path in the graph between a start and an end position or exploring the434

graph locally around a start position. All these queries require bounded exploration of the graph for which435

we only need to look into one or a few chunks.436

To perform queries with a constant memory we only load the position index and variation graph topology437

in memory and keep the node chunks on disk. We use the index and the graph topology to determine the set438

of nodes to look at to answer the query. We then load appropriate chunks from disk which contain the start439

and end nodes in the query range. For queries involving local exploration of the graph we load the chunk440

containing the start node. During the exploration, we load new chunks lazily as needed. At any time during441

the query, we only maintain two contiguous chunks in memory.442

References443

[1] 1000 Genomes Project Consortium. A map of human genome variation from population-scale se-444

quencing. Nature, 467(7319):1061, 2010.445

[2] 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human446

genomes. Nature, 491(7422):56, 2012.447

[3] 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature, 526448

(7571):68, 2015.449

[4] John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard450

Hasz, Gary Walters, Fernando Garcia, and Nancy Young. The genotype-tissue expression (GTEx)451

project. Nature Genetics, 45(6):580, 2013.452

[5] TCGA: the cancer genome atlas program, 2019. URL https://www.cancer.gov/about-nci/organization/453

ccg/research/structural-genomics/tcga. [Online accessed August 2019].454

[6] Ananyo Choudhury, Michèle Ramsay, Scott Hazelhurst, Shaun Aron, Soraya Bardien, Gerrit Botha,455

Emile R Chimusa, Alan Christoffels, Junaid Gamieldien, and Mahjoubeh Sefid-Dashti. Whole-genome456

sequencing for an enhanced understanding of genetic variation among South Africans. Nature Com-457

munications, 8(1):2062, 2017.458

21

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2019.12.24.888297doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.24.888297

[7] Sebastian Roskosch, Hákon Jónsson, Eythór Björnsson, Doruk Beyter, Hannes P Eggertsson, Patrick459

Sulem, Kári Stefánsson, Bjarni V Halldórsson, and Birte Kehr. PopDel identifies medium-size dele-460

tions jointly in tens of thousands of genomes. bioRxiv, page 740225, 2019.461

[8] Cristian Groza, Tony Kwan, Nicole Soranzo, Tomi Pastinen, and Guillaume Bourque. Personalized462

and graph genomes reveal missing signal in epigenomic data. bioRxiv, page 457101, 2019.463

[9] Frank W Albert and Leonid Kruglyak. The role of regulatory variation in complex traits and disease.464

Nature Reviews Genetics, 16(4):197, 2015.465

[10] Karen Eilbeck, Aaron Quinlan, and Mark Yandell. Settling the score: variant prioritization and466

mendelian disease. Nature Reviews Genetics, 18(10):599, 2017.467

[11] Claudia MB Carvalho and James R Lupski. Mechanisms underlying structural variant formation in468

genomic disorders. Nature Reviews Genetics, 17(4):224, 2016.469

[12] Jerome Kelleher, Yan Wong, Anthony W Wohns, Chaimaa Fadil, Patrick K Albers, and Gil McVean.470

Inferring whole-genome histories in large population datasets. Nature Genetics, 51(9):1330–1338,471

2019.472

[13] The variant call format (VCF) version 4.1 specification, 2019. URL https://samtools.github.io/473

hts-specs/VCFv4.1.pdf. [Online accessed March 2019].474

[14] Erik Garrison, Jouni Sirén, Adam M Novak, Glenn Hickey, Jordan M Eizenga, Eric T Dawson, William475

Jones, Shilpa Garg, Charles Markello, Michael F Lin, Benedict Paten, and Richard Durbin. Varia-476

tion graph toolkit improves read mapping by representing genetic variation in the reference. Nature477

Biotechnology, 36:875–879, 2018.478

[15] Alexander Dilthey, Charles Cox, Zamin Iqbal, Matthew R Nelson, and Gil McVean. Improved genome479

inference in the MHC using a population reference graph. Nature Genetics, 47(6):682, 2015.480

[16] Hannes P Eggertsson, Hakon Jonsson, Snaedis Kristmundsdottir, Eirikur Hjartarson, Birte Kehr,481

Gisli Masson, Florian Zink, Kristjan E Hjorleifsson, Aslaug Jonasdottir, and Adalbjorg Jonasdottir.482

Graphtyper enables population-scale genotyping using pangenome graphs. Nature Genetics, 49(11):483

1654, 2017.484

22

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2019.12.24.888297doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.24.888297

[17] Daehwan Kim, Joseph M Paggi, Chanhee Park, Christopher Bennett, and Steven L Salzberg. Graph-485

based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology,486

37(8):907–915, 2019.487

[18] Goran Rakocevic, Vladimir Semenyuk, Wan-Ping Lee, James Spencer, John Browning, Ivan J Johnson,488

Vladan Arsenijevic, Jelena Nadj, Kaushik Ghose, and Maria C Suciu. Fast and accurate genomic489

analyses using genome graphs. Nature Genetics, 51:354–362, 2019.490

[19] Ryan M Layer, Neil Kindlon, Konrad J Karczewski, Aaron R Quinlan, and Exome Aggregation Con-491

sortium. Efficient genotype compression and analysis of large genetic-variation data sets. Nature492

Methods, 13(1):63, 2016.493

[20] Heng Li. BGT: efficient and flexible genotype query across many samples. Bioinformatics, 32(4):494

590–592, 2015.495

[21] Agnieszka Danek and Sebastian Deorowicz. GTC: how to maintain huge genotype collections in a496

compressed form. Bioinformatics, 34(11):1834–1840, 2018.497

[22] Xiuwen Zheng, Stephanie M Gogarten, Michael Lawrence, Adrienne Stilp, Matthew P Conomos,498

Bruce S Weir, Cathy Laurie, and David Levine. SeqArraya storage-efficient high-performance data499

format for WGS variant calls. Bioinformatics, 33(15):2251–2257, 2017.500

[23] Anthony J Brookes and Peter N Robinson. Human genotype–phenotype databases: aims, challenges501

and opportunities. Nature Reviews Genetics, 16(12):702, 2015.502

[24] Joachim Kutzera and Patrick May. Variant-DB: A tool for efficiently exploring millions of human503

genetic variants and their annotations. In International Conference on Data Integration in the Life504

Sciences, pages 22–28. Springer, 2017.505

[25] Geert Vandeweyer, Lut Van Laer, Bart Loeys, Tim Van den Bulcke, and R Frank Kooy. VariantDB: a506

flexible annotation and filtering portal for next generation sequencing data. Genome Medicine, 6(10):507

74, 2014.508

[26] Variation graph toolkit, 2019. URL https://github.com/vgteam/vg. [Online accessed March 2019].509

23

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2019.12.24.888297doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.24.888297

[27] IGSR: the international genome sample resource, 2019. URL http://www.internationalgenome.org/510

home. [Online accessed March 2019].511

[28] BCF toolkit, 2019. URL https://samtools.github.io/bcftools/bcftools.html. [Online accessed March512

2019].513

[29] GenoTypes compressor, 2020. URL https://github.com/refresh-bio/GTC. [Online accessed January514

2020].515

[30] Patrick ONeil, Edward Cheng, Dieter Gawlick, and Elizabeth ONeil. The log-structured merge-tree516

(LSM-tree). Acta Informatica, 33(4):351–385, 1996.517

[31] Knut D Rand, Ivar Grytten, Alexander J Nederbragt, Geir O Storvik, Ingrid K Glad, and Geir K518

Sandve. Coordinates and intervals in graph-based reference genomes. BMC Bioinformatics, 18(1):519

263, 2017.520

[32] Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice: Plug and play521

with succinct data structures. In 13th International Symposium on Experimental Algorithms, (SEA522

2014), pages 326–337, 2014.523

[33] Prashant Pandey, Michael A Bender, Rob Johnson, and Rob Patro. A general-purpose counting filter:524

Making every bit count. In Proceedings of the 2017 ACM International Conference on Management525

of Data, pages 775–787. ACM, 2017.526

[34] SDSL: succinct data structure library, 2019. URL https://github.com/simongog/sdsl-sdsllite. [Online527

accessed March 2019].528

[35] Fatemeh Almodaresi, Prashant Pandey, and Rob Patro. Rainbowfish: a succinct colored de Bruijn529

graph representation. In 17th International Workshop on Algorithms in Bioinformatics (WABI 2017).530

Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.531

[36] Prashant Pandey, Fatemeh Almodaresi, Michael A Bender, Michael Ferdman, Rob Johnson, and Rob532

Patro. Mantis: A fast, small, and exact large-scale sequence-search index. Cell Systems, 7(2):201–207,533

2018.534

[37] Fatemeh Almodaresi, Prashant Pandey, Michael Ferdman, Rob Johnson, and Rob Patro. An efficient,535

24

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2019.12.24.888297doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.24.888297

scalable and exact representation of high-dimensional color information enabled via de Bruijn graph536

search. In International Conference on Research in Computational Molecular Biology, pages 1–18.537

Springer, 2019.538

[38] Fatemeh Almodaresi, Prashant Pandey, Michael Ferdman, Rob Johnson, and Rob Patro. An efficient,539

scalable, and exact representation of high-dimensional color information enabled using de bruijn graph540

search. Journal of Computational Biology, 27(4):485–499, April 2020. doi: 10.1089/cmb.2019.0322.541

URL https://doi.org/10.1089/cmb.2019.0322.542

[39] Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable dictionaries with appli-543

cations to encoding k-ary trees, prefix sums and multisets. ACM Transactions on Algorithms (TALG),544

3(4):43, 2007.545

Data availability546

Code and data are available at https://github.com/Kingsford-Group/variantstore547

Acknowledgements548

The results published here are in whole or part based upon data generated by The Cancer Genome Atlas549

(dbGaP accession phs000178) managed by the NCI and NHGRI. Information about TCGA can be found550

at http://cancergenome.nih.gov. The 1000 Genomes data used for the analyses described in this manuscript551

were obtained from https://www.internationalgenome.org/. This research is funded in part by the Gordon552

and Betty Moore Foundation’s Data-Driven Discovery Initiative through Grant GBMF4554 to C.K. and by553

the US National Institutes of Health (R01GM122935). We would also like to thank Shawn Baker for many554

helpful discussions, and Guillaume Marçais and Yutong Qiu for comments on the manuscript.555

Competing Interests556

C.K. is a co-founder of Ocean Genomics, Inc.557

25

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2019.12.24.888297doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.24.888297

(a) SUBSTITUTION

(b) DELETION

(c) INSERTION

Figure 6: A variation graph with three input samples (HG00096, HG00101, HG00103) showing the encod-
ing of substitutions, insertions, and deletions as stated in Table 2. Fig. (a) shows the substitution, (b) shows
the deletion, and (c) shows the insertion. Edges are colored (or multi-colored) to show the path taken by
reference and samples through the graph. (Ref: red, HG00096: green, HG00101: blue, HG00103: brown).
Samples with no variant at a node follow the reference path, e.g., sample HG00096 will follow the reference
path between nodes 0→ 1 and 4→ 5. Each node contains node id, the length of the sequence it represents,
and a list of samples and their positions.

26

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2019.12.24.888297doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.24.888297

(a) Position Index

(b) Variation graph representation

Figure 7: Position index and variation graph representation in VariantStore for the sample graph from Fig-
ure 6. (a) Shows the query operation for finding the node at position 5 in the sequence. (b) Phasing informa-
tion is omitted from the node list for simplicity of the figure. In implementation, phasing information using
three bits for each sample in each node.

27

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2019.12.24.888297doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.24.888297

