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Abstract38

There is increasing interest about the interplay between host genetics and gut39

microbiome on human complex diseases, with prior evidence mainly derived from40

animal models. In addition, the shared and distinct microbiome features among41

human complex diseases remain largely unclear. We performed a microbiome42

genome-wide association study to identify host genetic variants associated with gut43

microbiome in a Chinese population with 1475 participants. We then conducted44

bi-directional Mendelian randomization analyses to examine the potential causal45

associations between gut microbiome and human complex diseases. We did not find46

evidence supporting the causal effect of gut microbiome on human complex diseases.47

In contrast, atrial fibrillation, chronic kidney disease and prostate cancer, as predicted48

by the host genetics, had potential causal effect on gut microbiome. Further49

disease-microbiome feature analysis suggested that gut microbiome features revealed50

novel relationship among human complex diseases. These results suggest that51

different human complex diseases share common and distinct gut microbiome52

features, which may help re-shape our understanding about the disease etiology in53

humans.54

55
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Introduction56

Ever-increasing evidence has suggested that gut microbiome is involved in many57

physiological processes, such as energy harvest, immune response, and neurological58

function1-3. With successes of investigation into the clinical application of fecal59

transplants, modulation of gut microbiome has emerged as a potential treatment60

option for some complex diseases, including inflammatory bowel disease and61

colorectal cancer 4,5. However, it is still unclear whether the gut microbiome has the62

potential to be clinically applied for the prevention or treatment of many other63

complex diseases. Therefore, it is important to clarify the bi-directional causal64

association between gut microbiome and human complex diseases or traits.65

66

Mendelian randomization (MR) is a method that uses genetic variants as instrumental67

variables to investigate the causality between an exposure and outcome in68

observational studies6. Prior literature provides evidence that the composition or69

structure of the gut microbiome can be influenced by the host genetics7-10. On the70

other hand, host genetic variants associated with gut microbiome were rarely explored71

in Asian populations, thus we are still lacking instrument variables to perform MR for72

gut microbiome in Asians. This calls for novel microbiome genome-wide association73

study (GWAS) in Asian populations.74

75

Along with the causality issue between the gut microbiome and human complex76

diseases, it is so far unclear whether human complex diseases had similar or unique77

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 26, 2019. ; https://doi.org/10.1101/2019.12.26.888313doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.26.888313
http://creativecommons.org/licenses/by-nc-nd/4.0/


5

5

gut microbiome features. Identifying common and distinct gut microbiome features78

across different diseases might shed light on novel relationships among the complex79

diseases and update our understanding about the disease etiology in humans. However,80

the composition and structure of gut microbiome are influenced by a variety of factors81

including environment, diet and regional variation 11-13, which posed a key challenge82

for the description of representative microbiome features for a specific disease.83

Although there were several studies comparing disease-related gut microbiome 14-16,84

few of them has examined and compared the microbiome features across different85

human complex diseases.86

87

In the present study, we performed a microbiome GWAS in a Chinese cohort study:88

the Guangzhou Nutrition and Health Study (GNHS)17, including 1475 participants.89

Subsequently, we applied a bi-directional MR method to explore the genetically90

predicted relationship between gut microbiome and human complex diseases. To91

explore novel relationships among human complex diseases based on gut microbiome,92

we investigated the shared and distinct gut microbiome features across diverse human93

complex diseases 18.94

95

Result96

Overview of the study97

Our study was based on the GNHS, with 4048 participants (40-75 years old) living in98

urban Guangzhou city recruited during 2008 and 2013 17. In the GNHS, stool samples99
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were collected among 1937 participants during follow-up visits, among which 1475100

unrelated participants without taking anti-biotics were included in our discovery101

microbiome GWAS. We then included additional 199 participants with both genetic102

and gut microbiome data as a replication cohort, which belonged to the control arm of103

a case-control study of hip fracture in Guangdong Province, China 19.104

105

For both discovery and replication cohorts, genotyping was carried out with Illumina106

ASA-750K arrays. Quality control and relatedness filters were performed by107

PLINK1.9 20. We conducted the genome-wide genotype imputation with 1000108

Genomes Phase3 v5 reference panel by Minimac321-23. HLA region was imputed with109

Pan-Asian reference panel and SNP2HLA v1.0.3 24-26.110

111

Association of host genetics with gut microbiome features112

We performed a series of microbiome GWAS with PLINK 1.9 based on logistic113

models for binary variables 20. For continuous variables, we used GCTAwith mixed114

linear model-based association (MLMA) method 27,28. We also analyzed categorical115

variable enterotypes of the participants based on genus-level relative abundance of gut116

microbiome, using the Jensen-Shannon Distance (JSD) and the Partitioning Around117

Medoids (PAM) clustering algorithm 29. The participants were subsequently clustered118

into two groups according to the enterotypes (Prevotella vs Bacteroides). Thereafter,119

we performed GWAS for enterotypes using logistic regression model to explore120

potential associations between host genetics and enterotypes. However, we did not121
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find any genome-wide significant locus with p<5×10-8. Furthermore, we used a122

restricted maximum likelihood analysis (REML) with GCTA to estimate the123

SNP-based heritability, and the estimate heritability of the enterotype was 0.055124

(SE=0.19, Supplementary Table S2) 30.125

126

To examine the association of host genetic variants with alpha diversity, we performed127

GWAS for three indices (Shannon diversity index, Chao1 diversity indices and128

observed OTUs index), but again no genome-wide significant signal (p<5×10-8) was129

found. In the discovery cohort, the heritability of alpha diversity ranged from 0.054 to130

0.14 (SE=0.20 for all indices, Supplementary Table S2). To further investigate if there131

is host genetic basis underlying alpha diversity, we constructed a polygenic score for132

each alpha diversity indicator in the replication cohort, using the genetic variants133

which showed suggestive significance (p<5×10-5) in the discovery GWAS. The134

polygenic score was not significantly associated with its corresponding alpha diversity135

index in our replication cohort. Meanwhile, none of the associations with alpha136

diversity indices reported in the literature could be replicated (Supplementary Table137

S7) 7.138

139

We performed a beta diversity GWAS using a tool called MicrobiomeGWAS 31, and140

found that one locus at SMARCA2 gene (rs6475456) was associated with141

beta-diversity at a genome-wide significance level (p=3.96×10-9). However, we could142

not replicate the results in the replication cohort, which may be due to the limited143
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sample size of the replication cohort. In addition, prior literature had reported 73144

genetic variants that were associated with beta diversity 8,13,32,33, among which we145

found that 3 single nucleotide polymorphisms (SNP, UHRF2 gene-rs563779, LHFPL3146

gene-rs12705241, CTD-2135J3.4-rs11986935) had nominal significant (p<0.05)147

association with beta-diversity in our cohort (Supplementary Table S6), although none148

of the association survived Bonferroni correction. These studies used various methods149

for the sequencing and calculation of beta diversity, which raised challenges to verify150

and extrapolate results across populations.151

152

We then took the genetic loci reported to be associated with individual taxa in prior153

studies 7,8,13,33 for replication in our GNHS dataset. Although there are still some154

signals with nominal significance (p<0.05) in our study (e.g., 7 loci associated with155

Lachnospiraceae, Coprococcus or Bacteroides with p<0.05; Supplementary Table S5),156

none of the associations of these genetic variants with taxa survived the Bonferroni157

correction (p<1×10-4). The null results may be because of various clustering158

similarities, classifiers or reference databases to annotate taxa and different159

sequencing methods used in these studies.160

161

We subsequently performed GWAS discovery for individual gut microbes in our own162

GNHS discovery dataset. For the taxa present at more than ninety percent of163

participants and alpha diversity, we used Z-score normalization to transform the164

distribution and carried out analysis based on a log-normal model. AMLMA test in165
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the GCTAwas used to assess the association, with the first five principal components,166

age, sex and sequencing batch fitted as fixed effects and the effects of all the SNPs167

fitted as random effects 27,28,34. For other taxa present at fewer than ninety percent, we168

transformed the absence/presence of the taxon into binary variables and used169

PLINK1.9 to perform a logistic model, adjusted for the first five principal components,170

age, sex and sequencing batch.171

172

For all the gut microbiome taxa, the significant threshold was defined as 5×10-8 in the173

discovery stage. As some taxa were correlated with each other, we also used an174

eigendecomposition analysis to calculate the effective number of independent taxa on175

each taxonomy level (phylum level: 2.3, class level: 2.9, order level: 2.9, family level:176

5.5, genus level: 5.6, species level: 3.2) 35,36. We found that 6 taxa were associated177

with host genetic variants in the discovery cohort (p<5×10-8/n, n is the effective178

number of independent taxa on each taxonomy level, Supplementary Table S4);179

however, these associations were not significant (p>0.05) in the replication cohort. We180

then used a threshold of p<5×10-5 at the GWAS discovery stage to incorporate181

additional genetic variants which may explain a larger proportion of heritability for182

taxa, based on which we constructed a polygenic score for each taxon in the183

replication. We found that the polygenic scores were significantly associated with 3184

taxa including Coriobacteriaceae, Odoribacter and Parabacteroides_undefined in the185

replication set (p<0.05, Methods, see also Figure 1A, 1B, 1C).186

187
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Genetic correlation of gut microbiome and traits188

We used GCTA to perform a bivariate GREML (genomic-relatedness-based restricted189

maximum-likelihood) analysis to estimate the genetic correlation between gut190

microbiome and traits in the GNHS 27,37. The traits included BMI, fasting blood sugar191

(FBS), glycosylated hemoglobin (HbA1c), systolic blood pressure (SBP), diastolic192

blood pressure (DBP), high density lipoprotein cholesterol (HDL-C), low density193

lipoprotein cholesterol (LDL-C), total cholesterol (TC) and triglyceride (TG), none of194

which could pass Bonferroni correction. Additionally, HDL-C was the only trait that195

had nominal genetic correlation (p<0.05) with gut microbes (specifically,196

Desulfovibrionaceae and [Prevotella], Supplementary Table S3).197

198

Bi-directional assessment of the genetically predicted association between gut199

microbiome and complex diseases/traits200

Using genetic variants-composed polygenic scores as genetic instruments, we201

performed MR analysis to assess the putative causal effect of microbiome202

(Coriobacteriaceae, Odoribacter and Parabacteroides_undefined) on human complex203

diseases or traits. Inverse variance weighted (IVW) method was used for the MR204

analysis, while other three methods (Weighted median, MR-Egger and MR-PRESSO)205

38,39 were applied to confirm the robustness of results. The horizontal pleiotropy was206

assessed using MR-PRESSO Global test and MR-Egger Regression. For the analysis207

of gut microbiome on complex traits, we downloaded public available GWAS208

summary statistics of complex traits (n=58) and diseases (type 2 diabetes mellitus209
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(T2DM), atrial fibrillation (AF), colorectal cancer (CRC) and prostatic cancer (PCa))210

reported by BioBank Japan 40-44. There was no evidence that these taxa had causal211

association with human complex diseases or traits in our MR analyses212

(Supplementary Table S9), which may be due to the limited genetic instruments213

discovered in our present study.214

215

We subsequently performed a reserve MR analysis to assess the potential causal effect216

of human complex diseases on gut microbiome features. For the reserve MR analyses,217

the diseases of interests included T2DM, AF, coronary artery disease (CAD), chronic218

kidney disease (CKD), Alzheimer's disease (AD), CRC and PCa, and their219

instrumental variables for the MR analysis were based on the previous large-scale220

GWAS in East Asians40,45-50. The results suggested that AF and CKD were causally221

associated with gut microbiome (See also Figure 2A, 2B, Supplementary Table S10).222

Genetically predicted higher risk of AF was associated with lower abundance of223

Coprophilus, Lachnobacterium, Barnesiellaceae, Veillonellaceae and Mitsuokella,224

and higher abundance of Alcaligenaceae. Additionally, genetically predicted higher225

risk of CKD could increase Anaerostipes abundance and higher risk of PCa could226

decrease [Prevotella].227

228

To further investigate the potential complex diseases that may be correlated with the229

taxa affected by AF, we applied Phylogenetic Investigation of Communities by230

Reconstruction of Unobserved States (PICRUSt) to predict the disease pathway231
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abundance 51. We used Spearman's rank-order correlation to test whether 22 human232

complex diseases were associated with the aforementioned AF-associated taxa (See233

also Figure 2C). The heatmap indicated that cancers and neurodegenerative diseases234

including Parkinson’s disease (PD), AD, amyotrophic lateral sclerosis (ALS) as well235

as AF were correlated with similar gut microbiome. Although the association among236

these diseases are highly supported by previous studies 52-54, no study has compared237

common gut microbiome features across these different diseases.238

239

Microbiome features of human complex diseases240

To compare gut microbiome features across human diseases, we chose 22 human241

complex diseases from predicted abundance and performed k-medoids clustering 18.242

We used an m× nmatrix to perform the cluster analysis, where m is the number of243

participants and n is the number of selected diseases. According to optimum average244

silhouette width 55, we chose optimal number of clusters for further analysis (See also245

Figure 3A). The plot showed that neurological diseases including ALS and AD246

belonged to the same cluster, while PD and CRC had much similarity in gut247

microbiome. The results also suggested that systemic lupus erythematosus (SLE) and248

chronic myeloid leukemia (CML) shared similar gut microbiome features. Moreover,249

we could replicate these clusters in our replication cohort, which suggested that the250

clustering results were robust (See also Figure 3B).251

252

We further asked whether gut microbiome contributed to the novel clustering. To this253
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end, we repeated the analysis among participants who took antibiotic less than two254

weeks before stool sample collection, considering that antibiotic treatments were255

believed to cause microbiome imbalance, and the clusters were totally different in this256

group (See also Figure 3C). The results indicated a totally different clustering, which257

suggested that gut microbiome indeed contributed to the correlations among diseases.258

To further demonstrate common microbiome features across different diseases, we259

examined the correlation of the predicted diseases with genus-level taxa. The results260

showed that human complex diseases had shared similar gut microbiome features, as261

well as distinct features on their own (See also Figure 4).262

263

To validate the accuracy of the association between the predicted disease-related gut264

microbiome features and the corresponding disease, we used T2DM as an example,265

examining the association of predicted T2DM-related microbiome features with266

T2DM risk in our GNHS samples. We constructed a microbiome risk score (MRS)267

based on 16 selected taxa with predicted correlation coefficient with T2DM greater268

than 0.2. A logistic regression was used to examine the above MRS with T2DM risk269

in the GNHS (n=1886, with 217 T2DM cases). The results showed that higher MRS270

was associated with lower risk of T2DM (odds ratio: 0.850, 95% confidence interval:271

0.804 to 0.898, p=8.75×10-9).272

273

Based on the above results, we proposed a hypothesis that related diseases might274

share similar gut microbiome features. To test for this hypothesis, we performed275
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validation analysis by including GNHS participants who had one of the following276

self-reported diseases: stroke (n=8), chronic hepatitis (n=19), coronary heart diseases277

(CHD) (n=40), cataract (n=124) and insomnia (n=68). The results of k-medoids278

clustering suggested that CHD, cataract and insomnia shared common gut279

microbiome features, which was supported by the prior research reporting that both280

patients suffering insomnia and women receiving cataract extraction had increased281

risks of CHD 56-58.282

283

Discussion284

Our study is among the first to investigate the host genetics-gut microbiome285

association in East Asian populations and reveals that several microbiome species286

(e.g., Coriobacteriaceae and Odoribacter) are influenced by host genetics. We then287

show that complex diseases such as atrial fibrillation, chronic kidney disease and288

prostate cancer, have potential causal effect on gut microbiome. More interestingly,289

our results indicate that different human complex diseases may be mechanically290

correlated by sharing common gut microbiome features, but also maintaining their291

own distinct microbiome features.292

293

Previous studies and our study showed that gut microbiome had an inclination to be294

influenced by host genetics 8,10,33,59, although the successful replication tends to be295

rare. We could not validate any of the reported genetic variants that were significantly296

associated with gut microbiome features in prior reports, which may reflect the297
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difference in population and heterogeneity between study but also raise concerns298

about the reproducibility. Many factors including ethnic differences,299

gene-environment interaction and dissimilarity in sequencing methods may make it300

hard to extrapolate results from microbiome GWAS across populations in the301

microbiome field. Nevertheless, we successfully replicate several polygenic scores of302

gut microbiome, and the current study represent the largest dataset in Asian303

populations and would be a unique resource to be used in large-scale trans-ethnic304

meta-analysis of microbiome GWAS in future.305

306

The MR analysis in the present study did not support causal effect of gut microbiome307

on diseases or traits, however, this result should be interpreted with caution because of308

the limited genetic instruments derived from GWAS. In contrast, the reverse MR309

analysis provided evidence that AF, CKD and PCa could causally influence gut310

microbiome. As our study is among the first to investigate gene-microbiome311

association in East Asians, we need further study in this region to confirm our results.312

Additionally, rare and low-frequency variants may have an important impact on313

common diseases60, thus it will be of interest to clarify the effects of low-frequency314

variants on gut microbiome in cohorts with large sample sizes in future.315

316

Our results indicate that gut microbiome helps reveal novel and interesting317

relationships among human complex diseases, suggesting that different diseases may318

have common and distinct gut microbiome features. A prior study including319
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participants from different countries identified three microbiome clusters29. Notably,320

this study focused on classifying the individuals into distinct enterotypes regardless of321

the individuals’ health status, while in the present study we described representative322

microbiome features for diseases of interest. The microbiome features revealed a323

close association of AF with neurodegenerative diseases as well as cancers, which324

was supported by prior studies showing that AF had correlation with AD and PD52,53,325

and AF patients had relatively higher risks of several cancers including lung cancer326

and CRC54,61. We also observed that microbiome features of SLE and CML were327

highly similar. Interestingly, a tyrosine kinase inhibitor of platelet-derived growth328

factor receptor, imatinib, was widely used to treat CML and significantly ameliorated329

survival in murine lupus autoimmune disease62. In addition, association between CRC330

and PD has been reported in several observational cohorts63,64. Collectively, these331

findings strongly support our hypothesis that human complex diseases sharing similar332

microbiome features might be mechanically correlated. Furthermore, from the333

perspectives of risk genes of AF and neurodegenerative diseases, previous GWAS for334

AF have identified two loci at PITX2 gene-rs6843082 and C9orf3 gene-rs7026071,335

which were also associated with the risk of ALS (p=0.0138 and p=0.049, respectively)336

65-67.337

338

In summary, we perform bi-directional MR analyses to examine the causal339

relationship between gut microbiome and human complex diseases, revealing that340

some complex diseases causally affect abundance of specific gut microbes. There is341
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no convincing evidence supporting the causal role of gut microbiome on human342

complex diseases. The disease and gut microbiome association analysis reveals novel343

relationships among human complex diseases, which may help re-shape our344

understanding about the disease etiology, as well as extending clinical indications of345

existing drugs for different diseases.346

347

Method348

Study participants and sample collection349

Our study was based on the Guangzhou Nutrition and Health Study (GNHS), with350

4048 participants (40-75 years old) living in urban Guangzhou city recruited during351

2008 and 2013 17. We followed up participants every three years. In the GNHS, stool352

samples were collected among 1937 participants during follow-up visits. Among353

those with stool samples, 1717 participants had genetic data and 1475 participants354

with identical by decent (IBD) less than 0.185.355

356

We included 199 participants with both genetic and gut microbiome data as a357

replication cohort, which belonged to the control arm of a case-control study of hip358

fracture with the participants (52-83 years old) recruited between June 2009 and359

August 2015 in Guangdong Province, China 19.360

361

Blood samples of all participants were collected after an overnight fasting and buffy362

coat was separated from whole blood and stored at -80℃. Stool samples were363
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collected during the on-site visit of the participants at Sun Yat-sen University. All364

samples were manually stirred, separated into tubes and stored at -80℃ within four365

hours.366

367

Genotyping data368

For both discovery and replicattion cohorts, DNAwas extracted from leukocyte using369

the TIANamp® Blood DNAKit as per the manufacturer’s instruction. DNA370

concentrations were determined using the Qubit quantification system (Thermo371

Scientific, Wilmington, DE, US). Extracted DNAwas stored at -80°C. Genotyping372

was carried out with Illumina ASA-750K arrays. Quality control and relatedness373

filters were performed by PLINK1.9 20. Individuals with high or low proportion of374

heterozygous genotypes (outliers defined as 3 standard deviation) were excluded68.375

Individuals who had different ancestries (the first two principal components ±5376

standard deviation from the mean) or related individuals (IBD>0.185) were377

excluded68. Variants were mapping to the 1000 Genomes Phase3 v5 by SHAPEIT 23,69378

and then we conducted the genome-wide genotype imputation with 1000 Genomes379

Phase3 v5 reference panel by Minimac321,22. Genetic variants with imputation380

accuracy RSQR > 0.3 and MAF > 0.05 were included in our analysis. We used381

Pan-Asian reference panel consist of 502 participants and SNP2HLA v1.0.3 to impute382

HLA region 24-26.383

384

Sequencing and processing of 16S rRNA data385
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Microbial DNAwas extracted from fecal samples using the QIAamp® DNA Stool386

Mini Kit per the manufacturer’s instruction. DNA concentrations were determined387

using the Qubit quantification system. The V3-V4 region of the 16S rRNA gene was388

amplified from genomic DNA using primers 341F and 805R. Sequencing was389

performed using MiSeq Reagent Kits v2 on the Illuimina MiSeq System.390

391

Fastq-files were demultiplexed by the MiSeq Controller Software. Ultra-fast sequence392

analysis (USEARCH) was performed to trim the sequence for amplification primers,393

diversity spacers, sequencing adapters, merge-paired and quality filter70. Operational394

taxonomic units (OTUs) were clustered based on 97% similarity using UPARSE71.395

OTUs were annotated with Greengenes 13_8396

(https://greengenes.secondgenome.com/). After randomly selecting 10000 reads for397

each sample, Quantitative Insights into Microbial Ecology (QIIME) software version398

1.9.0 was used to calculate alpha diversity (Shannon diversity index, Chao1 diversity399

indices and observed OTUs index) based on the rarefied OTU counts72.400

401

Statistical analysis402

Genome-wide association analysis of gut microbiome features403

For each of the GNHS participants and the replication cohort, we clustered404

participants based on genus-level relative abundance, estimating the JSD distance and405

PAM clustering algorithm, and then defined two enterotypes according to406

Calinski-Harabasz Index29,73. PLINK 1.9 was used to perform a logistic regression407
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model for enterotypes and taxa present at fewer than ninety percent, adjusted for age,408

sex and the first five principal components.409

410

For beta diversity, the analyses for the genome-wide host genetic variants with beta411

diversity was performed using MicrobiomeGWAS31, adjusted for covariates including412

the first five principal components, age and sex. We filtered OTUs present at fewer413

than ten percent of participants to calculate Bray–Curtis dissimilarity.414

415

Alpha diversity was calculated after randomly sampling 10000 reads per sample. For416

the taxa present at more than ninety percent of participants and alpha diversity, we417

used Z-score normalization to transform the distribution and carried out analysis418

based on a log-normal model. Amixed linear model based association (MLMA) test419

in GCTAwas used to assess the association, fitting the first five principal components,420

age, sex and sequencing batch as fixed effects and the effects of all the SNPs as421

random effects 27,28,34. For other taxa present at fewer than ninety percent, we422

transformed the absence/presence of the taxon into binary variables and used423

PLINK1.9 to perform a logistic model, adjusted for the first five principal components,424

age, sex and sequencing batch. For all the gut microbiome features, the significant425

threshold was defined as 5×10-8 /n (n is the effective number of independent taxa on426

each taxonomy level) in the discovery stage. We estimated genomic inflation factors427

with LDSC v1.0.1 at local server 74.428

429
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Proportion of variance explained by all SNPs430

We used the GREMLmethod in GCTA to estimate the proportion of variance431

explained by all SNPs 30. The taxa were divided into two groups based on whether the432

taxa were present in the ninety percent of participants or not. For alpha diversity and433

taxa, our model was adjusted for constrain covariates including sex and sequencing434

batch, as well as quantitative covariates including the first five principal components435

and age. The model was adjusted for the same covariates except for sequencing batch436

for analysis of enterotype.437

438

Genetic correlation of gut microbiome and traits439

We used GCTA to perform a bivariate GREML analysis to estimate the genetic440

correlation between gut microbiome and traits in the GNHS27,37. The gut microbiome441

was divided into two groups according to the previous description. We used442

continuous variables to taxa present at more than ninety percent of participants and443

traits. For taxa present at fewer than ninety percent of participants, we used binary444

variables according to the absence/presence of taxa. This analysis included traits such445

as BMI, FBS, HbA1c, SBP, DBP, HDL-C, LDL-C, TC and TG.446

447

Constructing polygenic scores for taxa and alpha diversity448

We selected lead SNPs using PLINK v1.9 with the ‘—clump’ command to clump449

SNPs that p value < 5×10-5 and r2<0.1 within 0.1 cM. We used beta coefficients as450

weight to construct polygenic scores for taxa and alpha diversity. For alpha diversity451
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and taxa present at more than ninety percent participants, we constructed weighted452

polygenic scores and performed the analysis on a general linear model with a negative453

binomial distribution to test for association between the polygenic scores and taxa,454

adjusted for the first five principal components, age, sex and sequencing batch. We455

used weighted polygenic scores and logistic regression to the absence/presence taxa,456

adjusted for the same covariates as in the above analysis. Taxa with significance457

(p<0.05) in the replication cohort were included for the further analysis.458

459

The effective number of independent taxa460

As some taxa were correlated with each other, we used an eigendecomposition461

analysis to calculate the effective number of independent taxa on each taxonomy level462

35,36. Matrix M is an m×n matrix, where m is the number of participants and n is the463

number of taxa on the corresponding taxa level. Matrix A is the variance-covariance464

matrix of matrix M. P is the matrix of eigenvectors. diag ���������� is the diagonal465

matrix comprised of the ordered eigenvalues, which can be calculated as:466

diag ���������� � �����

The effective number of independent taxa can be calculated as:467

���
� ���

�

���
� ��

��

468

Bi-directional MR analysis469

In the analysis of potential causal effect of gut microbiome features on diseases, we470

used independent genetic variants (selected as part of the polygenic score analysis) as471
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the instrument variables. In the analysis of potential causal effect of diseases on gut472

microbiome features, we selected genetic variants that were replicated in East Asian473

populations as instrument variables. As all instrument variables were from East Asian474

populations, we chose independent genetic variants (r2<0.1) based on GNHS cohort.475

We identified the best proxy (r2 > 0.8) based on GNHS cohort or discarded the variant476

if no proxy was available. We used inverse variance weighted (IVW) method to477

estimate effect size. To confirm the robustness of results, we performed other three478

MR methods including weighted median, MR-Egger and MR-PRESSO. To assess the479

presence of horizontal pleiotropy, we performed MR-PRESSO Global test and480

MR-Egger Regression. Effect sizes of gut microbiome on traits were dependent on481

units of traits43 (Supplementary table S1). Results of human complex diseases on the482

absence/presence gut microbiome were presented as risk of presence (vs absence) of483

the microbiome per log odds difference of the disease. Results of diseases on other484

gut microbiome and alpha diversity were presented as changes in abundance of taxa485

(10-SD of log transformed) per log odds difference of the respective disease.486

487

The statistical significance of gut microbiome on traits and diseases was defined as488

p<0.0008 (0.05/62). In addition, the statistical significance of diseases on gut489

microbiome features was defined as p<0.05/n (n is the effective number of490

independent taxa on the corresponding taxonomy level). Results that could not pass491

Bonferroni adjustment but p<0.05 in all four MR methods were considered as492

potential causal relationships. We performed MR analyses on R v3.5.3.493
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494

Pathway analysis495

We used OTUs by QIIME and annotated the variation of functional genes with496

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States497

(PICRUSt) 51. The pathways and diseases were annotated using KEGG 75-77. We used498

Spearman's rank-order correlation to investigate association of predicted pathway or499

diseases abundance with taxa. In the heatmap, diseases were clustered with ‘hcluster’500

function on R. To test whether non-normalized pathway or disease abundance was501

associated with each other, we used SPIEC-EASI to test the interaction relationship,502

and then used Cytoscape v3.7.2 to visualize the interaction network 78,79.503

504

Construction of the microbiome risk score505

To construct a microbiome risk score for T2DM, we used a Spearman's rank-order506

correlation to select taxa with the absolute value of correlation coefficient higher than507

0.2. Score for each taxon abundance <5% quantile in our study was defined as 0. For508

those above 5%, score for each taxon showing negative association with T2DM was509

defined as 1; score for each taxon showing positive association with T2DM was510

defined as -1. We then summed up values from all taxa. We selected logistic511

regression model to estimate association of the MRS with T2DM risk, and linear512

model to estimate the association of the MRS with the continuous variables, adjusted513

for age, sex, dietary energy intake, alcohol intake and BMI at the time of sample514

collection.515
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516

Clustering diseases517

The clustering analysis was carried out with ‘cluster’ and ‘factoextra’ for plot on R.518

We performed PAM algorithm based on predicted abundance of diseases or average519

relative abundance after Z-score normalization 80. PAM algorithm searches k medoids520

among the observations and then found nearest medoids to minimize the dissimilarity521

among clusters 18. Given a set of objects � � ���，��������, the dissimilarity between522

objects �� and �� is denoted by d ��� � The assignment of object i to the523

representative object j is denoted by ���. ��� is a binary variable and is 1 if object i524

belongs to the cluster of the representative object j. The function to minimize the525

model is given by:526

���

�

���

�

� ��� �����

527

To identify the optimal cluster number, we used ‘pamk’ function in R to determine the528

optimum average silhouette width. For each object i, we defined �� as the average529

dissimilarity between object i and all other objects within its cluster. For the530

remaining clusters, b ��h represents the average dissimilarity between i and all531

objects in cluster w� The minimum dissimilarity �� can be calculated by:532

�� � ����h � ��h .533

The silhouette width for object i can be calculated by:534

�h� �
�� � ��

��� �� ���

Then we calculated the average of silhouette width for each object. The cluster535
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number is determined by the number of which the average silhouette width is536

maximum.537
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Figure legends759
Figure 1 Association of host polygenic score with gut microbiome. The participants760
were divided into high and low polygenic score group according to median levels of761
the polygenic score. The dots on the right of the box represent the distribution of762
polygenic score. The dash line in the box is the position of median line and the solid763
line is the position of mean line. The length of box depends on upper quartile and764
lower quartile of datum. Sample size at the discovery stage is 1475, and that at765
replication stage is 199. (A). Correlation of Coriobacteriaceae abundance with the766
polygenic score (including 45 lead SNPs, Supplementary Table S8). (B). Correlation767
of undefined species belonging to Parabacteroides genus768
(Parabacteroides_undefined) with the polygenic score (including 32 lead SNPs,769
Supplementary Table S8). (C). Correlation of Odoribacter presence with the770
polygenic score (including 43 lead SNPs, Supplementary Table S8).771

772
Figure 2 Effect of host genetically predicted higher atrial fibrillation risk on gut773
microbiome. (A). Causal association of atrial fibrillation with abundance of774
Burkholderiales, Alcaligenaceae, Lachnobacterium and Coprophilus. The effect sizes775
of atrial fibrillation on taxa are changes in abundance of bacteria (10-SD of776
log-transformed) per genetically determined higher log odds of atrial fibrillation. (B).777
Causal association of atrial fibrillation with presence of Barnesiellaceae,778
Veillonellaceae_undefined and Mitsuokella. The effect size of atrial fibrillation on779
taxa are present as odds ratio increase in log odds of atrial fibrillation. (C). The heat780
map shows correlation of AF-associated taxa with predicted diseases. The grey781
components show no significance of correlation with Bonferroni correction (p>0.05/782
(5.6*22), p>0.0004).783

784
Figure 3 Association and cluster of diseases predicted by the gut microbiome. (A).785
Plot of clusters in Guangzhou Nutrition and Health Study (GNHS) cohort (n=1919).786
(B). Plot of cluster results in the replication cohort (n=217). (C). Plot of 5 clusters in787
antibiotic-taking participants (n=18). The optimal cluster is 5 in GNHS cohort and 6788
in the replication. The clusters share consistent components between two studies. In789
contrast, components are different between antibiotic-taking participants and control790
groups. Dimension1 (Dim1) and dimension2 (Dim2) can explain 40.1% and 13.1%791
variance, respectively in GNHS cohort. The annotation for variables is as following.792
AT: African trypanosomiasis, AD: Alzheimer's disease, V1: Amoebiasis, ALS:793
Amyotrophic lateral sclerosis, BC: Bladder cancer, CD: Chagas disease, CML:794
Chronic myeloid leukemia, CRC: Colorectal cancer, V2: Hepatitis C, HD:795
Huntington's disease, HCM: Hypertrophic cardiomyopathy, V3: Influenza A, PD:796
Parkinson's disease, V4: Pathways in cancer, V5: Prion disease, PCa: Prostate cancer,797
RCC: Renal cell carcinoma, SLE: Systemic lupus erythematosus, V6: Tuberculosis,798
T1DM: Type I diabetes mellitus, T2DM: Type II diabetes mellitus, V7: Vibrio799
cholerae infection. (D). Plot of clusters in GNHS patients. Patients get only one of the800
follow diseases: stroke (n=8), chronic hepatitis (n=19), coronary heart diseases (n=40),801
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cataract (n=124) and insomnia (n=68). (E). Gut microbiome-predicted network of802
relationship among different human complex diseases. The interaction is determined803
by SPIEC-EASI with non-normalized predicted abundance data.804

805
Figure 4 Correlation of the human complex diseases with gut microbiome on806
genus level. The heat map shows correlation of predicted diseases and gut807
microbiome on genus level. The grey components show no significance of correlation808
with Bonferroni correction (p>0.05/ (5.6*22), p>0.0004).809

810
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811
Figure 1 Association of host polygenic score with gut microbiome. The participants812
were divided into high and low polygenic score group according to median levels of813
the polygenic score. The dots on the right of the box represent the distribution of814
polygenic score. The dash line in the box is the position of median line and the solid815
line is the position of mean line. The length of box depends on upper quartile and816
lower quartile of datum. Sample size at the discovery stage is 1475, and that at817
replication stage is 199. (A). Correlation of Coriobacteriaceae abundance with the818
polygenic score (including 45 lead SNPs, Supplementary Table S8). (B). Correlation819
of undefined species belonging to Parabacteroides genus820
(Parabacteroides_undefined) with the polygenic score (including 32 lead SNPs,821
Supplementary Table S8). (C). Correlation of Odoribacter presence with the822
polygenic score (including 43 lead SNPs, Supplementary Table S8).823
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Figure 2 Effect of host genetically predicted higher atrial fibrillation risk on gut826
microbiome. (A). Causal association of atrial fibrillation with abundance of827
Burkholderiales, Alcaligenaceae, Lachnobacterium and Coprophilus. The effect sizes828
of atrial fibrillation on taxa are changes in abundance of bacteria (10-SD of829
log-transformed) per genetically determined higher log odds of atrial fibrillation. (B).830
Causal association of atrial fibrillation with presence of Barnesiellaceae,831
Veillonellaceae_undefined and Mitsuokella. The effect size of atrial fibrillation on832
taxa are present as odds ratio increase in log odds of atrial fibrillation. (C). The heat833
map shows correlation of AF-associated taxa with predicted diseases. The grey834
components show no significance of correlation with Bonferroni correction (p>0.05/835
(5.6*22), p>0.0004).836
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Figure 3 Association and cluster of diseases predicted by the gut microbiome. (A).840
Plot of clusters in Guangzhou Nutrition and Health Study (GNHS) cohort (n=1919).841
(B). Plot of cluster results in the replication cohort (n=217). (C). Plot of 5 clusters in842
antibiotic-taking participants (n=18). The optimal cluster is 5 in GNHS cohort and 6843
in the replication. The clusters share consistent components between two studies. In844
contrast, components are different between antibiotic-taking participants and control845
groups. Dimension1 (Dim1) and dimension2 (Dim2) can explain 40.1% and 13.1%846
variance, respectively in GNHS cohort. The annotation for variables is as following.847
AT: African trypanosomiasis, AD: Alzheimer's disease, V1: Amoebiasis, ALS:848
Amyotrophic lateral sclerosis, BC: Bladder cancer, CD: Chagas disease, CML:849
Chronic myeloid leukemia, CRC: Colorectal cancer, V2: Hepatitis C, HD:850
Huntington's disease, HCM: Hypertrophic cardiomyopathy, V3: Influenza A, PD:851
Parkinson's disease, V4: Pathways in cancer, V5: Prion disease, PCa: Prostate cancer,852
RCC: Renal cell carcinoma, SLE: Systemic lupus erythematosus, V6: Tuberculosis,853
T1DM: Type I diabetes mellitus, T2DM: Type II diabetes mellitus, V7: Vibrio854
cholerae infection. (D). Plot of clusters in GNHS patients. Patients get only one of the855
follow diseases: stroke (n=8), chronic hepatitis (n=19), coronary heart diseases (n=40),856
cataract (n=124) and insomnia (n=68). (E). Gut microbiome-predicted network of857
relationship among different human complex diseases. The interaction is determined858
by SPIEC-EASI with non-normalized predicted abundance data.859
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Figure 4 Correlation of the human complex diseases with gut microbiome. The864
heat map shows correlation of predicted diseases and gut microbiome on genus level.865
The grey components show no significance of correlation with Bonferroni correction866
(p>0.05/ (5.6*22), p>0.0004).867
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