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 22 

Abstract 23 

One persistent curiosity in visuomotor adaptation tasks is that participants often do not 24 

reach maximal performance. This incomplete asymptote has been explained as a consequence 25 

of obligatory computations within the implicit adaptation system, such as an equilibrium 26 

between learning and forgetting. A body of recent work has shown that in standard adaptation 27 

tasks, cognitive strategies operate alongside implicit learning. We reasoned that incomplete 28 

learning in adaptation tasks may primarily reflect a speed-accuracy trade-off on time-29 

consuming motor planning. Across three experiments, we find evidence supporting this 30 

hypothesis, showing that hastened motor planning may primarily lead to under-compensation. 31 

When an obligatory waiting period was administered before movement start, participants were 32 

able to fully counteract imposed perturbations (experiment 1). Inserting the same delay 33 

between trials - rather than during movement planning - did not induce full compensation, 34 
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suggesting that the motor planning interval predicts the learning asymptote (experiment 2). In 35 

the last experiment, we asked participants to continuously report their movement intent. We 36 

show that emphasizing explicit re-aiming strategies (and concomitantly increasing planning 37 

time) also lead to complete asymptotic learning. Findings from all experiments support the 38 

hypothesis that incomplete adaptation is, in part, the result of an intrinsic speed-accuracy trade-39 

off, perhaps related to cognitive strategies that require parametric attentional reorienting from 40 

the visual target to the goal. 41 

 42 

Keywords: sensorimotor adaptation; reaction time; motor planning; asymptote; explicit 43 

strategies; 44 
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Introduction 46 

One of the persistent curiosities in studying the human mind is the idea of canonical 47 

computations, i.e. that the brain applies similar computations to perform a wide range of 48 

different tasks (e.g. Miller, 2016; Pack & Bensmaia, 2015). While most examples for such 49 

canonical computations, e.g. linear receptive fields (Movshon et al., 1978,DiCarlo & Johnson, 50 

2000), divisive gain control and normalization (e.g. Carandini & Heeger, 2011) or soft-51 

thresholding of noisy signals (e.g. Ringach & Malone, 2007) have been identified in the fields 52 

of neuroscience and artificial intelligence, they have largely eluded scientists in psychology. 53 

However, there have been a few but famous instances when psychologists have discovered 54 

law-like descriptions of human behavior suggesting the application of similar behavioral 55 

algorithms across a wide range of tasks.  56 

One example of such a canonical computation in behavior is the speed-accuracy 57 

tradeoff, that is the inverse relation between the accuracy of an action and the time taken to 58 

produce it (for a recent review, see Heitz, 2014). The speed-accuracy tradeoff has been shown 59 

to shape behavior (a) across domains from motor control (Fitts, 1954; Plamondon & Alimi, 60 

1997) and perception (Grosjean et al., 2007; Ratcliff, 2002) to memory (Hacker, 1980) and 61 

mental imagery (Cerritelli et al., 2000; Decety & Jeannerod, 1996), and (b) across species from 62 

insects (e.g. Chittka et al., 2003; Ings & Chittka, 2008) and rodents (e.g. Rinberg et al., 2006) 63 

to monkeys (Heitz & Schall, 2012) and humans (Wickelgren, 1977).  64 

 Another example is the law of practice, according to which performance improvements 65 

are generally larger early during practice before they become systematically smaller as practice 66 

progresses giving rise to a negatively accelerated relationship between performance and the 67 

number of practice trials (Snoddy, 1926, Crossman, 1959, Chen et al., 2005). Regardless of its 68 

actual parameters, all versions of the law of practice postulate that performance improvements 69 

asymptote, at some point, to a specific performance plateau. For complex skills such as 70 
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swimming or track and field, it is almost impossible to determine a priori the absolute 71 

maximum level of performance (but see Berthelot et al., 2015). This is not the case in many 72 

experimental paradigms, for instance, in novel visuomotor transformation tasks (e.g., force 73 

field adaptation or rotations of visual feedback), where individuals have to adapt an existing 74 

movement. These simple manipulations allow for the evaluation of performance improvements 75 

relative to an absolute maximum, i.e. an ideal, complete compensation of the transformation 76 

(Cunningham, , Lackner & Dizio, 1994, Shadmehr et al., ).  77 

Interestingly, one common observation in this context is that of an incomplete learning 78 

asymptote. That is, if individuals are required to make reaching movements and counteract a 79 

30˚ visuomotor rotation, their performance curve tends to asymptote below full compensation, 80 

for instance around ~25˚ (Holland et al., 2018, Huberdeau et al., 2015, Haith et al., 2015, Kooij 81 

et al., 2016, van der Kooij et al., 2015). This under-compensation leaves a residual performance 82 

error significantly different from zero (Hinder et al., 2010, Shmuelof et al., 2012, Spang et al., 83 

2017, Kooij et al., 2016, van der Kooij et al., 2015, Vaswani et al., 2015).  84 

One accepted approach to explain this phenomenon is to leverage state-space models 85 

of adaptation, which are incremental Markovian learning algorithms that balance both learning 86 

and forgetting during adaptation (Cheng & Sabes, 2006, Smith et al., 2006, Thoroughman & 87 

Shadmehr, 2000). When fit to human learning data, most values of learning and forgetting 88 

parameters can produce a steady-state equilibrium at an arbitrary asymptote. Consequently, 89 

these models provide a natural explanation of the commonly observed undershoot, via an 90 

assumption that some amount of forgetting (i.e., reversion to baseline) is inevitable on each 91 

trial of the task. This interpretation suggests that incomplete compensation during motor 92 

learning is simply a built-in feature of the underlying learning mechanism.  93 

However, Vaswani and colleagues (2015) demonstrated that humans, in principle, 94 

possess the capacity to overcome this incomplete asymptote. In their study, visual feedback of 95 
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their movement was “clamped” after learning; that is the cursor controlled by the participant 96 

moved in a fixed trajectory toward the target or to a nearby location with participants only 97 

controlling the amplitude. When visual feedback was clamped to a slight deviation from the 98 

target with no variability, individuals appeared to adopt a new learning strategy that allowed 99 

them to fully compensate a novel visuomotor transformation. To explain this, Vaswani and 100 

colleagues (2015) postulated an exploratory learning mechanism that is suppressed by error-101 

based learning. The putative suppressed process only contributes to performance when error-102 

based learning is disengaged, which in their study was caused by a persistent residual error in 103 

combination with a contextual change (i.e., the introduction of a lack of natural movement 104 

variability) (Shmuelof et al., 2012, Vaswani et al., 2015, Vaswani & Shadmehr, 2013, Wong 105 

et al., 2015).  106 

In the present study, we propose and evaluate one alternative, perhaps more 107 

parsimonious account of how humans might overcome incomplete asymptotic learning: 108 

namely, the level of performance achieved at the later stages of visuomotor adaptation may 109 

primarily reflect an intrinsic speed-accuracy tradeoff driven by time-consuming movement 110 

planning.  111 

In line with this, research in perceptual decision-making has established that choice 112 

reaction time reflects a trade-off between waiting for more information and acting early in order 113 

to speed up the accumulation of (uncertain) rewards on future trials (Churchland et al., 2008, 114 

Cisek et al., 2009, Thura et al., ; Thura & Cisek, 2017). While visuomotor adaptation tasks 115 

traditionally are not studied in the framework of decision-making, recent research has 116 

highlighted an important role for volitional decision-making strategies in adaptation tasks (i.e., 117 

the explicit re-aiming of movements to counteract perturbations; Bond & Taylor, 2015, Heuer 118 

& Hegele, 2015, McDougle et al., 2015, Schween & Hegele, 2017, Taylor et al., 2014). Further 119 

evidence suggests that in the context of adaptation to a novel visuomotor rotation such 120 
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strategies may take the form of mentally rotating the aiming direction of the reaching 121 

movement (McDougle & Taylor, 2019), which has been known to require long preparation 122 

times (Fernandez-Ruiz et al., 2011, Haith et al., 2015, McDougle & Taylor, 2019). Thus, an 123 

incomplete learning asymptote could simply arise from hurried movement initiation leading to 124 

prematurely terminating mental rotation of an abstract aiming trajectory during movement 125 

planning.  126 

We tested our hypothesis over three behavioral experiments where we artificially 127 

extended planning time. We predicted that this simple manipulation would alleviate incomplete 128 

asymptotic learning. In the first experiment (experiment 1), we introduced a mandatory waiting 129 

period between target presentation and movement onset. In experiment 2, we sought to exclude 130 

effects of the total experiment duration by emphasizing the role of within-trial movement 131 

planning time versus between-trial consolidation. Finally, in experiment 3, we used an aiming 132 

report method (Taylor et al., 2014) to promote the application of explicit motor learning 133 

strategies before movement execution and elucidate their influence on the learning asymptote.  134 

 135 

Methods 136 

Participants 137 

Ninety neurologically healthy and right-handed students from the Justus Liebig 138 

University Giessen were recruited as participants (Experiment 1: N = 36, Experiment 2: 139 

N = 36, Experiment 3: N = 18) and received monetary compensation or course credit for their 140 

participation. Written, informed consent was obtained from all participants before testing. The 141 

experimental protocol was approved by the local ethics committee of the Department of 142 

Psychology and Sport Science. All participants were self-declared right-handers. Data from 143 

one participant (experiment 2) were excluded due to a large number of irregular trials (i.e. 144 
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premature movement initiation, and moving too fast or too slow). 145 

 146 

Apparatus 147 

Participants sat on a height-adjustable chair facing a 22’’ widescreen LCD monitor 148 

(Samsung 2233RZ; display size: 47,3 cm x 29,6 cm; resolution: 1680 x 1050 pixels; frame rate 149 

120 Hz), which was placed on eye level 100 cm in front of them. Their right hand held a 150 

digitizing stylus, which they could move across a graphics tablet (Wacom Intuos 4XL). Their 151 

hand position recorded from the tip of the stylus was sampled at 130 Hz. Stimulus presentation 152 

and movement recording were controlled by a custom build MATLAB script (R2017b), 153 

displayed above the table platform, thus preventing direct vision of the hand (left panel Figure 154 

1A). 155 

 156 

Task 157 

Participants performed center-out reaching movements from a common start location 158 

to targets in different directions. They were instructed to move the cursor as quickly as possible 159 

from the start location in the direction of the displayed target and “shoot through it”. On the 160 

monitor, the start location was in the center of the screen, marked by the outline of a circle of 161 

7 mm in diameter. On the table surface, the start location was 20 – 25 cm in front of the 162 

participant on the body midline. The target location, marked by a filled green circle of 4 mm 163 

in diameter, varied from trial to trial. Targets were placed on an invisible circle with a radius 164 

of 100 mm around the start location; target locations were 0, 45, 90, 135, 180, 225, 270, and 165 

315° (0° is from the start location to the right, 90° is forward, 270° is backward; right panel 166 

Figure 1A). On baseline and adaptation trials, visual feedback was given by a filled white circle 167 

(radius 2.5 mm). 168 
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 169 

Design and Procedure 170 

The experiment consisted of three phases: baseline training, training with a 45° 171 

clockwise (CW) visuomotor rotation, and posttests (Figure 1B). Baseline training had veridical 172 

hand-cursor mapping and was organized into three blocks of eight trials each. In experiment 3, 173 

baseline training included three additional blocks in which participants had to report their 174 

aiming direction prior to movement onset. Each block consisted of a random permutation of 175 

the eight target directions without any direction being repeated in successive trials. Training of 176 

the visuomotor rotation of 45° CW consisted of 40 blocks of eight trials each.  177 

The posttest phase consisted of two types of trials: an explicit test (see below) 178 

comprising three blocks of eight trials each with each target location occurring once per block, 179 

and three blocks of eight aftereffect test trials without visual feedback, with the instruction that 180 

the cursor rotation would be absent. In the explicit test trials (Hegele & Heuer, 2010,Heuer & 181 

Hegele, 2008), start and target locations were presented together with a white line, centered in 182 

Figure 1 schematic display of the experimental setup (A), overall protocol (B) and sequence of one trial (C). Each participant 
performed center-out reaching movements with a stylus on the tablet. Visual stimuli and the cursor were presented on a 
monitor. The visual cursor was displaced according to the protocol (B). During baseline, cursor and stylus position were 
veridical, during adaptation, the cursor was rotated 45°clockwise relative to the stylus position. Within-trial timing differed 
between groups (C). Group dependent differences within one trial occurred either during the pre- or post-movement interval. 
Whereas the FREE and WAIT_ITI groups had no specific task during the pre-movement interval, WAIT_PLAN1 and 
WAIT_PLAN2 groups were required to wait 2.5 s and the AIM group reported their movement aim. During post-movement 
interval, only the participants in the WAIT_ITI group were required to wait 2.5 s, whereas all other group continued with the 
next trial immediately. Panel A adapted from (Schween, Taylor, & Hegele, 2018) under CC-BY-4.0 license. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 17, 2020. ; https://doi.org/10.1101/2019.12.26.888941doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.26.888941
http://creativecommons.org/licenses/by/4.0/


the start location with its length corresponding to target distance. Initially, the line was 183 

presented at an angle of 180° CCW of the respective target’s direction. Participants instructed 184 

the experimenter to adjust the orientation of the line to match the direction of the movement 185 

they judged to be correct for the particular target presented.  186 

Each single-movement trial started with the presentation of a white circle in the center 187 

of the screen, serving as the starting position for the subsequent reaching movement. In order 188 

to help guide participants’ movements back to the start, a white concentric circle appeared after 189 

feedback presentation, scaling its radius based on the cursor’s distance from the starting circle.  190 

The cursor was displayed when it was within 3 mm of the start location. Once the start position 191 

was held for 300  ms, a tone (440Hz, 0.05 ms duration) was presented, followed by a green 192 

target (radius 4 mm) appearing in one of the eight target positions and the start circle 193 

disappeared. Depending on the assigned group, participants were either instructed to move 194 

freely after the target appeared (experiment 1: FREE; experiment 2: WAIT_ITI), to wait 2.5 s 195 

for a second tone serving as an imperative (“go” signal) for the movement (experiment 1: 196 

WAIT_PLAN1; experiment 2: WAIT_PLAN2), or to report their movement direction and 197 

subsequently initiate the reach (experiment 3: AIM).  198 

The white cursor was visible until it exceeded a movement amplitude of 3 mm, after 199 

which it disappeared. When the participant’s hand crossed an invisible circle that contained the 200 

target, the cursor froze and turned red, providing terminal endpoint feedback for 1.25 s. 201 

Movements that fell outside the range of instructed movement time criteria (MT < 100 ms or 202 

> 300 ms) were followed by an error message on the screen and the trial was aborted. Those 203 

trials were neither repeated nor used in subsequent analyses. If participants moved too soon in 204 

one of the waiting groups (before the target appearance or the go cue, see below), they were 205 

reminded to wait, and the trial was repeated.  206 

 207 
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Groups 208 

The three experiments included five different groups: Two groups of participants took 209 

part in experiment 1. One group (N = 19) was instructed to move straight to the target after it 210 

appeared with no additional time constraints before moving (FREE). The other group 211 

(WAIT_PLAN1, N = 17) was instructed to wait until they heard a high-pitched tone (1000 Hz, 212 

0.05 ms duration) that served as a go-signal. Inspired by previous work indicating that 213 

participants are able to mentally rotate their aim 90° off-target within ~1 s (McDougle 214 

& Taylor, 2019), we chose a 2.5 s wait interval to provide ample planning time for the 45˚ 215 

rotation task at hand. The go-signal was presented after this wait interval.  216 

Experiment 2 consisted of two groups: the WAIT_PLAN2 group (N = 22) was a 217 

replication of the WAIT_PLAN1 group in experiment 1. Participants in the WAIT_ITI group 218 

(N = 20) could initiate movements as soon as the target had appeared on the screen replicating 219 

the planning interval of the FREE group from experiment 1. Critcally, the WAIT_ITI 220 

experienced an additional 2.5 s waiting period after the presentation of the endpoint feedback. 221 

Thus, the two groups, WAIT_PLAN2 and WAIT_ITI, had matched trial lengths but disparate 222 

planning intervals. During the 2.5 s inter-trial delay in the WAIT_ITI group, only the target 223 

was visible on the screen and participants were told to maintain their final hand position.  224 

Experiment 3 included a single group of participants who were asked to report their 225 

aiming direction prior to movement initiation (AIM group, N = 18); (Bond & Taylor, 2015, 226 

McDougle et al., 2015,Taylor et al., 2014). The participants in this group saw a numbered ring 227 

of visual landmarks. The numbers were arranged at 5.63-degree intervals, with the current 228 

target positioned at the “0” position. Clockwise, the numbers became larger, and 229 

counterclockwise the numbers became smaller (up to 32, -32, respectively), forming a circle 230 

20 cm in diameter. Participants were instructed to verbally report the number they were aiming 231 

their reach at before moving (see (Taylor et al., 2014) for further information on this task). 232 
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Verbal reports were manually registered by the experimenter on each reporting trial. 233 

 234 

Data Analysis 235 

Position of the stylus on the tablet surface was sampled at 130 Hz and each trial was 236 

separately low-pass filtered (fourth-order Butterworth, 10 Hz) using Matlab’s filtfilt command, 237 

and then numerically differentiated. Tangential velocity was calculated as the Euclidean of x- 238 

and y-velocity vectors. Behavior was analyzed in terms of two parameters: reaction time and 239 

endpoint error. Reaction time (RT) was calculated as the interval between target presentation 240 

and movement onset, which was defined when tangential velocity exceeded 30 mm/s for at 241 

least 5 frames (38.5  ms). Endpoint error was calculated as the angular difference between the 242 

vector connecting the start circle and the target, and the vector connecting the start circle and 243 

the terminal hand position. Endpoint errors were calculated for both training trials and the 244 

aftereffect trials. The outcome variable of the explicit perceptual judgement test was calculated 245 

as the angular difference between the participant-specified line orientation on the screen and 246 

the vector connecting the start and target positions.  247 

For each block of training trials and for the posttest, medians were computed for each 248 

participant following screening for outliers. Movements whose endpoint error fell outside three 249 

standard deviations of the participants’ individual mean endpoint error in that phase were 250 

considered outliers and removed (1.4% of all trials). To compare different levels of asymptote, 251 

the last five blocks of the training phase were median averaged and compared between groups 252 

using a two-sample Wilcoxon’s rank-sum test. To interpret the effect size, Pearson’s rho and 253 

its 95-percent confidence interval was calculated. Statistical analyses were done in Matlab 254 

(R2017b) and R (version 3.5.1, http://www.R-project.org/). All results are based on median 255 

parametric tests  256 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 17, 2020. ; https://doi.org/10.1101/2019.12.26.888941doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.26.888941
http://creativecommons.org/licenses/by/4.0/


Results 257 

Experiment 1 258 

Experiment 1 tested the speed-accuracy hypothesis by artificially prolonging 259 

movement planning time. To do so, we compared two groups. The FREE group could freely 260 

initiate their movement, representing a “standard” adaptation experiment. The WAIT_PLAN1 261 

group was required to withhold movement initiation until hearing a “go”-signal 2.5 s after 262 

target onset. As shown in Figure 2A, the FREE group displayed the typical incomplete 263 

asymptote, whereas the WAIT_PLAN1 group achieved a greater asymptote 264 

(meanWAIT_PLAN1 = 46.66, sdWAIT_Plan1 = 5.85, meanFREE = 41.15, sdFREE = 8.28; V = 244, p = 265 

0.001). Hand directions late during practice were significantly less than 45° in the FREE group 266 

(V = 32.5, p = 0.018, r = -0.61, 95% CI = [-0.84, -0.21] ), while the WAIT_PLAN1 group did 267 

not differ significantly from 45° (V = 108, p = 0.62, r = 0.12, 95% CI = [-0.33, 0.53]). 268 

Figure 2 Mean hand direction (panels A-C) and mean reaction times (panels D-F) during practice plotted separately by 
experiments and groups. Panel G-I show the median hand direction during explicit and implicit posttests, separately and the 
individual data from single participants. The horizontal dashed lines in panels A-C and H-I indicate ideal compensation for 
the 45° cursor rotation. In panels D-F, they indicate the forced waiting times of 2.5 seconds in the WAIT_PLAN groups. 
Shaded error bands represent standard deviation of the mean. 
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In the explicit judgment test (Figure 2G), the FREE group estimated the rotation to be 269 

significantly smaller relative to the WAIT_PLAN1 group (meanFREE = 24.78°, sdFREE = 5.45°, 270 

meanWAIT_PLAN1 = 30.65°, sdWAIT_PLAN1 = 8.33°; V = 81.5, p = 0.036, r = -0.36, 95% CI = [-271 

0.62, -0.01]). Implicit aftereffects (Figure 2G) did not differ significantly between the groups 272 

(meanFREE = 9.99°, sdFREE = 3.81°, meanWAIT_PLAN1 = 9.35°, sdWAIT_PLAN1 = 3.67°; V = 179, 273 

p = 0.59, r = 0.09, 95% CI = [-0.24, 0.39]). 274 

 275 

Experiment 2 276 

Experiment 1 showed that forcing participants to prolong their planning time before 277 

movement onset on each trial led to an increase in asymptotic learning. While this observation 278 

is consistent with our speed-accuracy trade-off hypothesis, the WAIT_PLAN1 group also 279 

exhibited significantly larger amounts of explicit knowledge of the rotation, raising the 280 

possibility that this group shows complete asymptote simply because of larger amounts of 281 

accumulated explicit knowledge during training. To test this, in experiment 2 we manipulated 282 

when the additional waiting time occurred within a trial. If it was a matter of simply building 283 

a more elaborate representation of the perturbation by raising awareness and thus accumulating 284 

more explicit knowledge of the rotation, then additional processing time between movements 285 

should suffice to facilitate complete asymptotic learning. If, on the other hand, the pre-286 

movement planning period was crucial, one would expect that adding time to the interval 287 

between the appearance of the target and the signal to initiate the movement would lead to 288 

better performance than adding time to the post-feedback interval, i.e. the time interval between 289 

the disappearance of terminal endpoint feedback and the onset of the next target. Experiment 290 

2 tested this by contrasting asymptotic learning in a second group that had to wait for 2.5 s 291 

during movement planning (WAIT_PLAN2; replication of WAIT_PLAN1) with a group that 292 

had to wait for 2.5 s after feedback presentation before the next trial started (WAIT_ITI). In 293 
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line with our speed-accuracy-hypothesis, inserting waiting time into the planning phase led to 294 

an asymptote not significantly different from 45° (V = 235, p = 0.28, r = 0.25, 95% CI = [-0.18, 295 

0.66]) whereas inserting the waiting time into the intertrial interval lead to an asymptote 296 

significantly less than 45° (V = 63, p = 0.019, r = -0.44, 95% CI = [-0.75, -0.05]). Those two 297 

asymptotes were significantly different from each other (meanWAIT_PLAN2 = 46.33, 298 

sdWAIT_PLAN2 = 3.99; meanWAIT_ITI = 43.96, sdWAIT_ITI = 3.01; W = 311, p = 0.011, r = -0.34, 299 

95% CI = [-0.59, -0.05]) (Figure 2B).  300 

Importantly, for explicit knowledge (Figure 2H), the temporal locus of the additional 301 

waiting time did not have a significant effect: Both groups appeared to accumulate equivalent 302 

amounts of explicit knowledge (meanWAIT_ITI = 30.53°, sdWAIT_ITI = 8.57°, 303 

meanWAIT_PLAN2 = 30.88°, sdWAIT_PLAN2 = 10.21°; W = 209, p = 0.79, r = -0.04, 95% CI = [-304 

0.36, 0.25]), but showed greater explicit estimations than the FREE group in experiment 1, 305 

whose trial structure did not contain any additional waiting interval (FREE ~ WAIT_PLAN2: 306 

W = 85, p = 0.031, r = -0.37, 95% CI = [-0.63, -0.06]; FREE ~ WAIT_ITI: W = 93, p = 0.027,  307 

r = -0.37, 95% CI = [-0.63, -0.08]). As for implicit aftereffects, both groups in experiment 2 308 

achieved similar results (meanWAIT_ITI = 8.45°, sdWAIT_ITI = 4.77°, meanWAIT_PLAN2 = 7.63°, 309 

sdWAIT_PLAN2 = 3.87°; W = 214, p = 0.89, r = -0.02, 95% CI = [-0.34, 0.36]). 310 

 311 

Experiment 3 312 

In the last experiment, we sought to account for the possibility that it is not time per se, 313 

but the increased participation of explicit processes that raises the level of asymptote.  We thus 314 

instructed participants to verbally report their movement aim prior to movement execution 315 

trial-by-trial (Taylor et al., 2014), potentially priming the explicit component of adaptation. We 316 

reasoned that this procedure serves as an opportunity to replicate our findings in a procedure 317 

that requires active explicit engagement during the planning interval. Compensation for the 318 
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rotation reached asymptote around 46.63° (sd = 4.12°), which was significantly larger than 45° 319 

(V = 125, p = 0.045, r = 0.41, 95% CI = [-0.08, 0.75]), suggesting that adaptation at asymptote 320 

was complete and, in fact, overcompensated for the rotation (Figure 2C).  321 

Explicit judgements of required compensation (mean = 28.32, sd = 10.95) (Figure 2I) 322 

were significantly less than 45° (V = 0, p < 0.0002, r = -0.88, 95% CI = [-0.88, -0.87]) but 323 

significantly greater than 0° (V = 170, p < 0.0002, r = 0.87, 95% CI = [0.82, 0.88]). Implicit 324 

aftereffects (mean = 9.38, sd = 3.4) were also significantly different from both 0° and 45° 325 

(V = 171, p < 0.0001, V = 0, p < 0.0001, r = -0.87, 95% CI = [-0.88, -0.88], r = 0.87, 326 

95% CI = [0.87, 0.87], respectively). If we assume that the explicit and implicit components 327 

are the two main elements in a fully additive model that generates adaptive behavior, the 328 

implicit component can be calculated by subtracting the hand position from the aim report 329 

(Figure 2L). Comparing those values to the posttest values, we do not find a significant 330 

difference, neither in explicit nor in the implicit component (W = 123, p = 0.22; W = 129, 331 

p = 0.31, respectively). 332 

To test whether the reporting task influenced the outcome of the explicit judgement 333 

tests, we compared the posttest values between the AIM group and those of the other groups 334 

in experiments 1 and 2. There was a significant difference in the explicit judgements between 335 

the AIM group and the FREE group from experiment 1 (W = 197.5, p = 0.025, r = 0.39, 336 

95% CI = [0.05, 0.6]) but none between the WAIT_PLAN and AIM (W = 160.5, p = 0.76, r = -337 

0.05, 95% CI = [-0.36, 0.27]). Across the AIM group and WAIT_PLAN2 and WAIT_ITI 338 

groups in experiment 2, there were no differences in the explicit judgement tests (W = 160, 339 

p = 0.57, r = -0.09, 95% CI = [-0.39, 0.22]; W = 190.5, p = 0.85, r = -0.03, 95% CI = [-0.34, 340 

0.28]). Similar results were observed for the implicit aftereffects: Neither the FREE group, the 341 

WAIT_PLAN1 group from experiment 1, nor the WAIT_PLAN2 and WAIT_ITI groups had 342 

significantly different aftereffects relative to the AIM group (W = 140.5, p = 0.69, r = -0.07, 343 
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95% CI = [-0.38, 0.28]; W = 167.5, p = 0.93, r = -0.01, 95% CI = [-0.35, 0.29]; W = 227.5, 344 

p = 0.08, r = 0.19, 95% CI = [-0.13, 0.45]; W = 265.5, p = 0.05, r = 0.25, 95% CI = [-0.07, 345 

0.54], respectively). These results suggest that experimentally querying the explicit process of 346 

adaptation does not qualitatively alter the explicit/implicit learning balance but does act to 347 

improve the adaptation asymptote by slowing down planning. 348 

 349 

Discussion 350 

This study was designed to investigate whether previously reported findings of 351 

incomplete asymptotic visuomotor learning may be reframed, at least in part, as an instantiation 352 

of a ubiquitous canonical computation in human information processing: the tradeoff between 353 

the speed and accuracy of actions. In line with this hypothesis, artificially prolonging the 354 

waiting period prior to the onset of a goal-directed movement elevated asymptotic learning and 355 

appeared to eliminate residual errors. This benefit was specific to prolonging motor planning, 356 

the time interval between the appearance of the visual target and the go-signal. Prolonging the 357 

interval between visual feedback and the start of the next trial (the intertrial interval) did not 358 

provide the same benefit to learning. Our results provide support for a parsimonious 359 

explanation that time-consuming planning processes are potentially the main driver of 360 

incomplete asymptotic learning.  361 

Why did hasty planning result in consistent undershooting rather than both 362 

undershooting and overshooting (i.e., greater movement variability)? We propose that 363 

parametric mental computations in visuomotor rotation tasks could explain the undershooting 364 

phenomenon: In visuomotor rotation tasks, participants’ reaction times increase linearly with 365 

the magnitude of the imposed rotation (Georgopoulos & Massey, 1987, McDougle & Taylor, 366 

2019), reflecting a putative mental rotation process (Shepard & Metzler, 1971). Thus, in our 367 

framework, undershooting is the consequence of participants not taking the time needed to 368 
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fully complete a mental rotation of their planned reach trajectory. This view is further supported 369 

by the results of our third experiment, in which emphasizing the application of explicit aiming 370 

strategies prior to movement initiation led to qualitatively similar asymptotic learning as in the 371 

groups with prolonged planning intervals. Note that delaying movement initiation did not only 372 

cause full compensation, but induced overcompensation suggesting that implicit processes 373 

superimposed onto an accurate explicit rotation strategy may have caused reach angles to drift, 374 

gradually adapting the hand further in the direction of compensation (cf. Mazzoni, 2006). 375 

The idea of a speed accuracy tradeoff prematurely interrupting putative mental rotation 376 

processes during motor planning also provides an explanation for previously observed age-377 

related differences in visuomotor learning. Hegele & Heuer (2013) used explicit instructions 378 

and cognitive pretraining prior to learning a novel visuomotor rotation to boost explicit 379 

knowledge of the transformation. Older adults with full explicit knowledge of the 380 

transformation turned out to be less efficient in applying it for strategic corrections of their 381 

aiming movements. This age-related difference with respect to the behavioral exploitation of 382 

explicit knowledge became manifest only when participants had almost perfect explicit 383 

knowledge, but not when they had only poor explicit knowledge and thus a small range of 384 

associated strategic adjustments at different levels of exploitation. Given the present results, 385 

one could speculate that the reduced exploitation of explicit knowledge for strategic corrections 386 

in older participants is due to a combination of age-related slowing in mental rotation and the 387 

premature termination of (slowed) mentally rotating their aiming direction during motor 388 

planning. 389 

Traditionally, the incomplete asymptote phenomenon was explained by state-space 390 

models of adaptation (Cheng & Sabes, 2006, Smith et al., 2006, Thoroughman & Shadmehr, 391 

2000), according to which the adapted state reaches an equilibrium between learning from error 392 

and decaying towards baseline in each trial. As subsequent studies indicated that this model 393 
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alone is insufficient for explaining incomplete asymptotic behavior, alternatives were 394 

proposed: For example, Vaswani and colleagues (Vaswani et al., 2015) suggested that a process 395 

that learns from spatial error feedback suppresses other mechanisms that could drive full 396 

compensation (Shmuelof et al., 2012). In our study, participants in all groups received similar 397 

spatial error feedback. Thus, a potential suppression should have affected all groups equally, 398 

suggesting that spatial error feedback suppressing other learning mechanisms would not be 399 

sufficient to explain the modulations in asymptote we observed. 400 

A new approach to the state-space model is that residual errors in adaptation paradigms 401 

are caused by implicit processes that tune the sensitivity to errors until it reaches the 402 

equilibrium with constant forgetting (Albert et al., 2019). The authors in this recent study 403 

manipulated the variability of the perturbation and found that residual errors increase with the 404 

perturbations’ variance. We note that, whereas our hypothesis could potentially be adapted to 405 

account for these variations in asymptote (e.g. experiencing perturbation variability could 406 

affect the benefit that learners expect from planning, and thus the time they spend on it), we 407 

did not consider this possibility a priori in hypothesis generation. However, we note that in one 408 

experiment, this study also showed a speed-accuracy tradeoff by obtaining larger residual 409 

errors when the reaction time is artificially shortened compared to free reaction times, 410 

regardless of the variance of perturbation. Thus, we argue that additional planning time is an 411 

essential element in eliminating residual errors to achieve full compensation, though it need 412 

not be the only thing determining the exact asymptotic value.  413 

Moreover, we also note that consistent undershooting relative to the perturbation, as 414 

observed here and in previous studies, is critically not seen in experimental paradigms designed 415 

to isolate the implicit component of visuomotor adaptation (Morehead et al., 2017)– indeed, 416 

even when rotational perturbation are as small as ~1.75, implicit adaptation appears to 417 

asymptote around ~15˚ (Kim et al., 2018). These results suggest that claims of an incomplete 418 
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asymptote within, specifically, the implicit adaptation mechanism must define the asymptote 419 

relative to an intrinsic capacity of the system, rather than the size of the visual error. Thus, it 420 

may be that incomplete compensation relative to the visual error (i.e., task error) mainly 421 

involves cognitive processes like speed-accuracy tradeoffs, as argued here, but incomplete 422 

asymptotic performance of the implicit system relative to its own capacity (i.e., responses to 423 

sensory prediction error) requires a separate explanation. 424 

Recent accounts have framed motor planning as a time-consuming optimization process 425 

from which a reduction in movement accuracy arises naturally when constraints are imposed 426 

(Al Borno et al., 2019). Our findings suggest that similar principles apply when one is 427 

intentionally choosing to perform a movement in another direction than the one implied by the 428 

target presented, and that learners naturally constrain their planning time even in seemingly 429 

unconstrained conditions. Haith and colleagues (Haith et al., 2016) recently showed that 430 

movement preparation and initiation are independent i.e. that, instead of complete preparation 431 

triggering movement initiation, humans appear to determine a time for movement initiation 432 

based on when it expects planning to be completed. This view naturally implies the possibility 433 

to initiate a movement that has not been sufficiently prepared. The planning time chosen may 434 

therefore trade off the accuracy it expects planning to achieve within a given time and an 435 

urgency to move on (e.g. fueled by a desire to increase reward rate; Churchland et al., 2008, 436 

Cisek et al., 2009, Thura et al., , Thura & Cisek, 2017).  437 

Many of the common explanations for incomplete asymptote outlined above imply that 438 

it is a fundamental property of learning. Psychology and kinesiology traditionally distinguish 439 

learning effects from performance effects, where underlying knowledge can be identical in 440 

different cases, but retrieval processes in specific test conditions can lead to different 441 

performance profiles (Magill & Anderson, 2017, Schmidt & Lee, 2011). Whereas our 442 

experiments were not specifically designed to distinguish learning from performance effects, 443 
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our findings suggest that both may contribute to incomplete asymptote in adaptation. 444 

Specifically, explicit knowledge of the rotation magnitude was increased with added planning 445 

time in experiment 1, suggesting that some of the benefit of longer planning times may come 446 

about by learners honing their explicit knowledge. However, the observation that explicit 447 

knowledge was similarly increased regardless of whether additional time was added at the 448 

beginning or end of a trial in experiment 2 indicates that this learning effect may be a non-449 

specific consequence of longer ITIs, and that the remaining increase in asymptote is a 450 

performance effect. A recent paper analyzing preparatory neural states in rhesus monkeys 451 

performing visuomotor learning tasks also found that longer preparation times not only yielded 452 

smaller variance on the current trial, but also smaller errors on the subsequent trial, supporting 453 

a learning effect (Vyas et al., 2020). Future research could attempt to better delineate learning 454 

from performance effects in human motor adaptation.  455 

Lastly, we do not claim that other mechanisms affecting learning do not contribute to 456 

asymptotic behavior (Albert et al., 2019), or that a state-space model with gradual decay 457 

towards zero is generally invalid (Brennan & Smith, 2015). What we suggest is that one 458 

potentially major aspect determining the magnitude of asymptotic errors is a speed accuracy 459 

trade-off. Since this decision process is likely to be relevant across a broader range of motor 460 

tasks, we speculate that our results extend beyond motor adaptation and that simple 461 

interventions, like explicitly prolonging reaction times to allow for complete planning, could 462 

improve asymptotic performance in a range of motor learning tasks. 463 
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