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Abstract 

Type VI CRISPR enzymes have recently been identified as programmable RNA-guided, 

RNA-targeting Cas proteins with nuclease activity that allow for specific and robust target gene 

knock-down without altering the genome. However, we currently lack information about optimal 

Cas13 guide RNA designs for high target RNA knock-down efficacy. To close this gap, we 

conducted four massively-parallel Cas13 screens targeting the mRNA of a destabilized green 

fluorescent protein (GFP) transgene and CD46, CD55 and CD71 cell surface proteins in human 

cells. In total, we measured the activity of 24,460 guide RNA including 6,469 perfect match guide 

RNAs and a diverse set of guide RNA variants and permutations with mismatches relative to the 

target sequences.  

We find that guide RNAs show high diversity in knock-down efficiency driven by crRNA-

specific features as well as target site context. Moreover, while single mismatches generally reduce 

knock-down to a modest degree, we identify a critical region spanning spacer nucleotides 15 – 21 

that is largely intolerant to target site mismatches. We developed a computational model to identify 

guide RNAs with high knock-down efficacy. We confirmed the model’s generalizability across a 

large number of endogenous target mRNAs and show that Cas13 can be used in forward genetic 

pooled CRISPR-screens to identify essential genes. Using this model, we provide a resource of 

optimized Cas13 guide RNAs to target all protein-coding transcripts in the human genome, 

enabling transcriptome-wide forward genetic screens.  

 

*  *  * 
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Type VI CRISPR enzymes have recently been identified as programmable RNA-guided, 

RNA-targeting Cas proteins with nuclease activity that allow for target gene knock-down without 

altering the genome. In addition to target RNA knock-down 1–9, Cas13 proteins have been used to 

enable viral RNA detection systems 7,9–11, site-directed RNA editing 12, demethylation of m6A-

modified transcripts 13, RNA live-imaging 14,15, and modulation of splice site choice as well as 

cleavage and polyadenylation site usage 5,16,17.  

Cas13 proteins are guided to their target RNAs by a single CRISPR RNA (crRNA) 

composed of a direct repeat (DR) stem loop and a spacer sequence (guide RNA) that mediates 

target recognition by RNA-RNA hybridization. Although Cas13 enzymes exert some non-specific 

collateral nuclease activity upon activation 4–6,10,18, they have greatly reduced off-target activity in 

cultured cells compared to RNA interference 2,5,12. Previous studies have shown that Cas13 guide 

RNAs have minimal Protospacer Flanking Sequence (PFS) constraints in mammalian cells 1,4,12,19 

and that RNA target sites should be preferentially accessible for Cas13 binding 1,2,4. Beyond these 

basic parameters, we currently lack information about optimal Cas13 crRNA designs for high 

target RNA knock-down efficacy.  

To date, three different Cas13 effector proteins (PguCas13b, PspCas13b, RfxCas13d) have 

been reported to show high RNA knock-down efficacy with minimal off-target activity 5,12. We 

compared the ability of these three Cas13 enzymes to knock-down GFP mRNA when directed to 

either the cytosol or the nucleus. RfxCas13d (CasRx) consistently showed the strongest target 

knock-down, especially when fused to a nuclear localization sequence (NLS) (Supplementary 

Fig. 1a - c). Using Cas13d-NLS, we varied the guide length while maintaining a constant guide 

RNA 5’ end or 3’ end relative to a 30 nt reference guide. In both experiments, we found the most 

pronounced target knock-down using guide RNAs with a length of 23 – 30 nt (Supplementary 
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Fig. 1d). Structural analysis of another Cas13d variant (EsCas13d, PDB: 6E9E/6E9F) suggested 

that guide RNAs longer than 20 nt extend outside the effector protein binding cleft and that 22 nt 

guide RNAs provide optimal knock-down 20. However, additional guide RNA-target hybridization 

up to 30 nt in total does not impair target knock-down. 

To systematically assess the RfxCas13d target knock-down efficacy of thousands of guide 

RNAs, we established a monoclonal HEK293 cell line expressing destabilized GFP and 

doxycycline-inducible Cas13d protein. We lentivirally delivered a library of 7,500 crRNAs that 

target the GFP coding sequence, containing perfect match and mismatch guide RNAs (Fig. 1a). 

We performed fluorescence activated cell sorting (FACS) to gate cells in four bins based on their 

GFP intensity (Supplementary Fig. 2a). Guide counts showed high concordance between bins 

across three independent transductions with clear separation of bin 1, which contained cells with 

the lowest GFP expression (Supplementary Fig. 2b-d).  

We calculated the log2 fold-change (log2FC) crRNA enrichment between all bins and the 

unsorted input guide RNA distribution (Supplementary Data 6). Perfect match guide RNAs were 

enriched in bin 1, while increasing numbers of mismatches led to a gradual decrease in guide 

enrichment (Fig. 1b, Supplementary Fig. 3a, b). This was true for the whole crRNA population 

as well as for individual guides and their corresponding guides with 1 – 3 mismatches (Fig. 1b-c, 

Supplementary Fig. 3c). As a control, the library also contained 537 non-targeting crRNAs and 

they were effectively depleted from bin 1 (Fig. 1b, Supplementary Fig. 3a, b). As expected, guide 

abundances in bin 1 were negatively correlated to those in bins 2 to 4, which contained cells with 

higher GFP intensities (Supplementary Fig. 3d, e). Taken together, this suggests that the 

enrichments of guide RNAs in bin 1 accurately reflect target mRNA knock-down. 
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Figure 1. CRISPR Type VI-D RfxCas13d GFP knock-down pooled tiling screen. (a) The GFP-targeting library 
contained 400 guide RNAs that were perfectly matched, 100 guide RNAs with a single mismatch at each of the 27 
guide positions (n = 2,700 guides), 30 guide RNAs with 100 random double mismatches (n = 3,000 guides), and 17 
guides with consecutive double (n = 442 guides) and triple (n = 425 guides) mismatches. CrRNAs are lentivirally 
transduced into double-transgenic TetO-RfxCas13d and GFPd2PEST HEK293 cells. After selection, cells are sorted 
by GFP intensities into 4 bins. (b, c) Log2 fold-change (log2FC) enrichment scores of guide RNAs comparing guide 
RNA counts of the lowest fluorescence (Bin 1) to the input (unsorted) cell population. Scores are demarcated by the 
type of designed crRNAs as given by the list in a. (b) All crRNAs. (c) A single perfect match (PM) crRNA and 
corresponding derivative crRNAs with mismatches. Guide log2FC enrichments are calculated relative to the perfect 
match reference guide  (Dlog2FC). Black lines denote medians. (d) Distribution of perfect match guide RNAs along 
the GFP mRNA and their log2FC enrichment. Guide RNAs are separated into targeting efficiency quartiles Q1-Q4 
with Q4 containing guides with the best knock-down efficiency. (e) GFP knock-down validation for 6 guides (3 with 
high efficacy and 3 with low efficacy) highlighted in d. (n = 3 transfection replicates; Veh = vehicle transfection, NT 
= non-targeting crRNAs). Significance from a one-tailed t-test. (f) Relative targeting efficacy (Dlog2FC) of guides 
with single nucleotide mismatches (SM) at the indicated position relative to their cognate perfect match guides. 
Significance: * p < 0.05, ** p < 0.01, *** p < 0.001 from a two-tailed t-test. (g) (top) Change in targeting efficacy by 
guide RNA nucleotide identity or mismatch type. (bottom) Change in targeting efficacy for SM, CD, or consecutive 
triple mismatch (CT) by position. (h) Validation of RfxCas13d seed region. (left) Individual perfect match and 
mismatch guides relative to GFP target mRNA. (right) Percent GFP negative cells after co-transfection of specific 
GFP-targeting crRNAs normalized to the non-targeting control. Veh = vehicle transfection, NT = non-targeting 
crRNA, PM= perfect match guide RNA. 

 
We noticed considerable heterogeneity of guide enrichment within each class (Fig. 1b-c). 

By examining perfect match guide RNAs along the target mRNA, we observed a position-
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dependent effect, suggesting an influence of the target sequence context on the guide RNA efficacy 

(Fig. 1d). We selected 6 guides along the GFP target transcript with either high or low enrichment 

and validated their relative target knock-down efficacies by transfection of individual guides 

followed by FACS readout (Fig. 1e).  

To examine if Cas13 can tolerate mismatches between the guide RNA and the target RNA, 

we calculated the relative log2 fold change (D log2FC) for each mismatch guide by subtracting the 

log2FC from the reference (perfect match) guide (Fig. 1f). We found a critical (“seed”) region for 

Cas13d knock-down efficacy between guide RNA nucleotides 15 to 21 with its center at nucleotide 

18 relative to the guide RNA 5’ end. Although seed regions have been shown for Cas13a 

orthologs 1,21,22, one group reported no clear seed region for Cas13d 20 while another group showed 

position-dependent mismatch sensitivity for Cas13d in a cell-free assay 23. Within the seed region, 

single mismatches led to diminished guide enrichment, while mismatches outside the seed region 

were better tolerated (Fig. 1f). The critical region was present irrespective of the mismatch identity 

(Fig. 1g). Similarly, consecutive double and triple mismatches indicated the presence of the critical 

region (Fig. 1g, Supplementary Fig. 4a). For randomly distributed double mismatches, the largest 

change in enrichment was observed in cases where both mismatches are in the seed region 

(Supplementary Fig. 4b). Increasing the number of mismatches to three largely abrogated target 

knock-down (Supplementary Fig. 4a). For this reason, the critical region may have been masked 

in previous studies on RfxCas13d which used four consecutive mismatches 20.  

Given the heterogeneity in enrichment for guide RNAs that have mismatches in the seed 

region, we sought to assess the effect of surrounding nucleotide context. We used partial 

correlation to control for the knock-down efficacy of the cognate perfect match guide 

(“reference”), as poorly performing crRNAs might not allow for large changes in enrichment 
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(Supplementary Fig. 5a). Controlling for the reference crRNA efficacy, mismatches in a ‘U’-

context in the target site negatively impact Cas13d activity, whereas mismatches in a ‘GC’-context 

were better tolerated (Supplementary Fig. 5b). We confirmed the presence of the seed region in 

transfection experiments using guides with single or double nucleotide mismatches to the GFP 

mRNA (Fig. 1h). A single mismatch at guide position 18 led to a marked decrease in knock-down 

efficacy relative to a perfect match guide RNAs. While a perfect match guide decreased the 

percentage of GFP-positive cells to ~29%, a single mismatch at guide position 18 resulted in 75% 

GFP-positive cells and a double mismatch at positions 17 and 18 resulted in ~79% GFP positive 

cells (Fig. 1h).  

 Importantly, the center of the RfxCas13d seed region coincides with conserved contacts 

between a helical domain in Cas13d protein and the backbone of the guide RNA-target hybrid 

interface. This interaction resides opposite of the guide RNA position 17-18 with the target RNA 

20. The helical domain is located between both HEPN-domains needed for target cleavage, and 

mutation of the interacting amino acids in EsCas13d completely abolished target cleavage 20. 

Mismatches at the seed center thus may impair HEPN-domain activity. 

Next we sought to assess the features that may affect knock-down efficacy for perfect 

match guide RNAs (see Supplementary Note 1 for details). One of the features impacting the 

observed guide RNA enrichments in the GFP tiling screen was crRNA folding: Predicting 

secondary structures and corresponding minimum free energy (MFE) of perfect match crRNAs 

showed a positive correlation between the MFE and guide efficacy (Supplementary Fig. 6a). In 

particular, ‘G’-dependent structures, such as predicted G-quadruplexes, showed diminished target 

knock-down. Given that the crRNA folding is critical for effective target knock-down, we sought 

to further stabilize and improve the DR by repairing a predicted bulge in the DR, by varying the 
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length of the stem loop or by disrupting bases in the proximal DR stem (Supplementary Fig. 6b). 

Analysis of the crystal structure of EsCas13d and UrCas13d together with its crRNA suggested 

that the terminal loop in the DR may not be embedded within the protein and thus may allow 

extension (and further stabilization) of the stem loop 20,23 similar to those previously found to 

enhance Cas9 activity or utility 24,25. We observed that any change in stem length abrogated target 

knock-down completely (Supplementary Fig. 6c). Also, repairing the bulged nucleotide within 

the stem loop decreased target knock-down. However, disrupting the first base pair within the 

proximal stem further increased Cas13d targeting efficacy, leading to a novel RfxCas13d DR with 

improved knock-down capability. We tested the modified DR on 6 additional guides targeting GFP 

and found that the modified DR improved target knock-down especially for guides with low 

knock-down efficiency (Supplementary Fig. 6d). 

We defined 15 crRNA and target-RNA features based on their correlation with observed 

guide enrichment in our exploratory data analysis (Supplementary Table 1, Supplementary 

Note 1, Supplementary Data 7). With these features, we sought to derive a generalizable ‘on-

target’ model to predict Cas13d target knock-down. We compared the ability of machine learning 

approaches to predict guide efficiency (observed log2FC) in the held-out data (see Methods) and 

found that a Random Forest (RF) model had the best prediction accuracy (Supplementary Fig. 

7a), weighting the crRNA folding energy, the local target ‘C’-context, and the upstream target ‘U’-

context as the most important features (Supplementary Fig. 7b). Other learning approaches 

frequently chose similar features, suggesting that these features are the main drivers of Cas13d 

GFP knock-down (Supplementary Fig. 7c). To identify key predictor of guide efficiency, we 

iteratively reduced the number of features, monitoring the model performance and derived a 

minimal model that explained about 37% of the variance (r2) with a Spearman correlation (rs) of 
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~0.58 to the held-out data (Fig. 2a, Supplementary Fig. 7d). In comparison, an support vector 

machine (SVM) regression model with a similar structure to a Cas9 guide prediction algorithm 26 

performed worse when applied to this data (r2 = 0.21, rs = 0.44) (Fig. 2a). We used 10-fold cross-

validation to confirm that the model can readily separate poor performing guide RNAs from 

effective crRNAs. Accordingly, 46% of the guides present in the highest efficacy-quartile are 

predicted to reside in the best performing quartile. Conversely, 64% of guides present in the lowest 

efficacy-quartile are predicted to reside in the poorest performing quartile (Supplementary Fig. 

7e). Similarly, the predicted standardized guide score of the N top- or bottom-ranked crRNAs 

confirmed that the model can effectively separate crRNAs that perform well from those that 

perform poorly (Supplementary Fig. 7f).  

To show that our model is generalizable, we predicted guides to target the endogenous 

transcripts of CD46 and CD71, which encode cell surface proteins, and measured the guide knock-

down efficacy by FACS. For each gene, we chose 3 guide RNAs predicted to have high knock-

down efficacy (Q3 or Q4) and 3 guide RNAs predicted to have low knock-down efficacy (Q1 or 

Q2). On an individual guide level, we found that the majority of guides with higher predicted guide 

scores suppressed CD46 and CD71 protein expression more robustly than guides with lower guide 

scores (Fig. 2b). Comparing the observed knock-down across all three high-scoring to all three 

low-scoring guide RNAs, we found a significant improvement for CD71, while for CD46 we 

observed considerable variance. To increase throughput and test guide RNA efficacy predictions 

for more genes, we first generated a small crRNA library targeting 10 essential and 10 control 

genes with both 3 high-scoring and 3 low-scoring guide RNAs and monitored their depletion in a 

gene essentiality screen over time. Essential genes were chosen from genes that were strongly 

depleted in previous RNAi screens 27 (Supplementary Fig. 8a). Most high-scoring guides 
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targeting essential genes were progressively depleted over time, while low-scoring guides showed 

largely no depletion (Fig. 2c, Supplementary Fig. 8b).  

In addition, we performed a second targeted essentiality screen in A375 cells targeting 35 

essential and 65 control genes with both 20 high-scoring and 20 low-scoring guide RNAs. Similar 

to the HEK293 screen above, we found that high-scoring guides that target essential genes were 

progressively depleted over time (Fig. 2d, Supplementary Fig. 8c). Although high-scoring guide 

RNAs were generally more depleted than low-scoring guide RNAs on a per gene level, we noticed 

that not all predicted essential genes showed depletion upon Cas13d targeting (Supplementary 

Fig. 8c-d), suggesting that RNAi-screen derived essentiality scores may not be one-to-one 

transferable to Cas13d derived essentiality.  

We calculated a significance score of gene depletion based on the guide rank consistency 

for the 20 high-scoring guides and found strong enrichment of defined essential genes at the top 

of the list (Fig. 2e). The  guide RNA depletion scores correlated better with the DEMETER2 

RNAi 27 scores used to define the set of essential genes to be tested (up to rs = 0.71 using the best 

guide) than with the Cas9 STARS  scores 28 (up to rs = 0.61) (Fig. 2f). Taken together, this suggest 

that the crRNA and target RNA features derived from the GFP tiling screen can generalize to 

predict Cas13d guide efficacy for novel targets, and that these guide predictions can be used in 

pooled CRISPR-Cas13 screens.  
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Figure 2. RfxCas13d on-target guide RNA prediction model. (a) Correlation of predictions from a Random Forest 
(RF) regression model (either with all features or a minimal set of the most predictive features) and a support vector 
machine with L1 regression to held-out screen data. (b) Validation of on-target model testing 3 high-scoring and 3 
low-scoring guide RNAs via targeting of cell-surface proteins and antibody labeling to measure target knock-down 
by FACS. Relative knock-down indicates the percent reduction (relative to non-targeting guide RNAs) in the mean 
fluorescence intensity. (n = 3 transfection replicates). (c) Validation of on-target model assaying 3 high-scoring and 3 
low-scoring guide RNAs per gene in a gene essentiality screen in HEK293 cells with growth dropout phenotype testing 
10 essential genes and 10 control genes. Each point represents one guide as a mean of three replicate experiments. 
The y-axis depicts the log2 fold-change (FC) of the guide RNA at the indicated time point relative to the Day 0 sample. 
One-sided KS-test comparing high-scoring and low-scoring guides, *** p = 2x10-5, **** p = 2x10-6. (d) A375 
essentiality screen with growth dropout phenotype assaying 20 high-scoring and 20 low-scoring guide RNAs per gene. 
One-sided KS-test comparing high-scoring or low-scoring guides to the distribution of non-targeting guides. 
* p = 0.043, ** p = 0.0095, **** p < 1x10-44. (e) Gene ranking for essentiality based on the robust rank aggregation 
(RRA) p-value across replicates for all 20 high scoring guides. Blue dots denote essential genes from a prior RNAi 
screen 27. (f) Spearman rank correlation of Cas13d gene depletion (as in e) with prior CRISPR-Cas9 and RNAi screens 
in A375 cells. Analysis includes genes represented in all libraries (n = 35 essential genes and n = 15 control genes). 
(RNAi  screen: A375 DEMETER2 v5 score 27, Cas9 screen: A375 STARS score 28).   

 

Our predictive on-target model based on the GFP tiling screen was largely able to separate 

guide RNAs with low knock-down efficiency from those with high efficiency. However, given 

that we observed remaining heterogeneity among the predicted high-scoring guides, we sought to 

improve our on-target model by enlarging our training dataset. Therefore, we performed three 

additional Cas13d tiling screens targeting the main transcript isoforms of the cell surface proteins 

CD46, CD55 and CD71 in HEK293 cells coupled with FACS readout selecting for cells with 
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decreased surface protein expression (Fig. 3a-c; Supplementary Fig. 9a-b). Besides perfect 

match guide RNAs, we added several guide RNA classes (Supplementary Fig. 9a). For each 

screen, perfect match guide RNAs showed the strongest guide enrichment relative to the unsorted 

input samples, while reverse complement negative control guides and non-targeting guides were 

depleted (Supplementary Fig. 9c). In the new screens we reduced the overall guide length to 23 

bases and included a set of guide length variants ranging in length from 15 to 36 nucleotides. 

Starting from 23 nucleotide length, guides RNAs exerted full knock-down efficiency, while longer 

guide 3’ends did not have any deleterious effects (Supplementary Fig. 9d).  

Perfect match guides targeting coding regions (CDS) were more strongly enriched 

compared to guides targeting untranslated regions (UTRs) or introns (Supplementary Fig. 9e). 

UTR-targeting guides may show lower enrichments as each target gene may be represented by 

multiple transcript isoforms with alternative UTR usage. Hence, guides targeting coding regions 

have a higher likelihood to find the cognate target site while, for example, 3’UTR-targeting guide 

RNAs find their target site only in a fraction of the expressed transcripts isoforms. Accordingly, 

the low enrichment for intron-targeting guide RNAs may be explained by the short-lived nature of 

introns. For these guides, the intronic target site is present only for a short period of time, which 

likely enables the transcript to evade Cas13 targeting. For this reason, guide RNA knock-down 

efficiency may not be directly comparable between CDS-targeting guides and UTR- or intron-

targeting guides.  

We also observed a slight decrease in guide efficiency of intron-targeting guides 

immediately downstream of the 5’-splice-site and within the -50 to 0 nucleotide upstream of the 

3’-splice-site summarizing across all 39 introns present (Supplementary Fig. 9f).  These sites are 

typically bound by the spliceosome 29,  suggesting that guide RNAs targeting these regions may 
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compete with the splice machinery and other splice factors for the target sequences. As transcript 

maturation in the nucleus seemingly influences the guide RNA targeting efficiency, we wondered 

if the exon-junction-complex (EJC) would affect knock-down of the matured transcript in the same 

way. The EJC typically binds ~20-24 nucleotides 5’ upstream to the exon-exon-junction upon 

splicing 30,31. Indeed, we observed a depletion of high-scoring guide RNAs within a window of -

20 to 0 nucleotides 5’ upstream to the exon junction (Supplementary Fig. 9g). 

 

 

Figure 3. Improvement of RfxCas13d on-target guide RNA prediction model with tiling screens over 
endogenous transcripts. (a-c) Distribution of perfect match guide RNAs along the coding region (CDS) of CD46, 
CD55 and CD71 mRNA and their log2 fold-change (FC) enrichments. Positive FC values indicate better transcript 
knock-down. Guide RNAs are separated into targeting efficiency quartiles Q1-Q4 per gene with Q4 containing guides 
with the best knock-down efficiency. Numbered bars below indicate exons. (d) Correlation of predictions from the 
RFminimal (=RFGFP) model and the updated RFcombined regression model to held-out screen data using bootstrapping 
across all four tiling screens. (e) Comparison of predicted and measured log2FC quartiles across the 10-fold model 
cross-validation. Quartile definition as in a-c. (f) Spearman rank correlation between observed guide RNA depletion 
(= target knock-down) and the predicted guide score for the indicated Cas13d essentiality screens and indicated on-
target models (see Fig 2c-d and Supplementary Fig. 8). 
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To improve our on-target model, we focused on perfect match guide RNAs that target 

CDS-regions and increased the number of high-confidence model input observation from ~400 to 

nearly 3000. Similar to the initial GFP-screen, guide RNAs efficiencies were distributed along the 

coding region in a non-random manner (Fig. 3a-c). We repeated the assessment of features that 

may affect knock-down efficacy (see Supplementary Note 2 for details). Notably, the increased 

number of observations uncovered positional nucleotide preferences (Supplementary Fig. 10a-

b). Guide enrichments correlated positively with G- and C-base probabilities in the seed region 

around guide position 18. And surrounding this region U- and A-base probabilities correlate 

positively with the target knock-down. We derived an updated on-target model using 2,918 CDS-

targeting guide RNAs across all four tiling screens and selected 35 out of 644 evaluated features 

in a similar fashion as before (see methods) (Supplementary Table 2, Supplementary Note 2, 

Supplementary Data 7).  

The combined Random Forest model (RFcombined) displayed improved prediction accuracy 

compared to the initial RFminimal model (from here on referred to as RFGFP) explaining ~47% of the 

variance (r2) with a Spearman correlation (rs) of ~0.67 to the held-out data (Fig. 3d, 

Supplementary Fig. 10c). Using 10-fold cross-validation the model effectively separated low-

scoring guides from high-scoring guides, assigning 63% of the guide RNAs correctly to the highest 

efficacy-quartile (Fig. 3e). Similarly, the predicted guide scores of the top- or bottom-ranked guide 

RNAs (ranked by the observed knock-down efficiency) separate guides that performed well from 

those that performed poorly more than expected by chance (Supplementary Fig. 10d). Further, 

we performed leave-one-out cross-validation training on three data sets while predicting guide 

scores for the held-out fourth screen. The RFcombined model generalized well for endogenous genes 
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(mean ± sd: rs = 0.63 ± 0.01) but was less predictive for the GFP transgene (rs = 0.33) 

(Supplementary Fig. 10e).  

Finally, we compared the ability of both models, the RFGFP and RFcombined model, with 

respect to their ability to correctly predict the knockdown efficiencies for the two essentiality 

screens. Both screens were designed based on guide predictions made by the RFGFP model. In both 

cases, the RFcombined was in better agreement with the observed knock-down efficiencies across all 

genes (Fig. 3f). Likewise, we found that the RFcombined showed improved agreement with the 

observed guide RNA depletion also on a gene level for the 10 most depleted genes in the A375 

fitness screen (RFGFP: rs = 0.46 ± 0.16, RFcombined: 0.58 ± 0.14). Taken together, we show that our 

updated RFcombined on-target model is able to predict Cas13d guide RNA target knock-down 

efficiencies, separating poorly performing guides from guides with high efficacy and generalized 

across numerous targets.  

 We applied our model and predicted guide RNAs for all protein-coding transcripts in the 

human genome (GENCODE v19). We made these predictions available through a user-friendly, 

web-based application (https://cas13design.nygenome.org). In addition, we report the 10 highest-

scoring crRNAs for the 5’ UTR, CDS and 3’ UTR of each transcript (Supplementary Fig. 11a, 

Supplementary Data 8). We partitioned the predicted guide RNAs according to the efficacy 

quartiles in our four screens. Only 15.2% of all possible guides fall into the highest scoring (best 

knock-down) quartile (Q4) (Supplementary Fig. 11b). A large fraction of guide RNAs are 

predicted to have lower efficacy (36.8% of all guides are in Q1 or Q2), which emphasizes the value 

of optimal guide selection for high knock-down efficacy. However, almost all transcripts have top-

scoring guide predictions (Supplementary Fig. 11c). 
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Taken together, we performed a set of pooled screens for CRISPR Type VI Cas13d and 

defined targeting rules for optimal guide design. We show that crRNA choice and target RNA-

context constrain target knock-down efficacy and, using this data, we develop and validate an ‘on-

target’ model to predict guides with high efficacy. Although we specifically sought to define rules 

for active Cas13d, we believe that our model may be transferable to inactive (catalytically dead) 

Cas13d effector proteins. Beyond our on-target guide design, we identified a critical seed region 

in the crRNA that is sensitive to target mismatch. We provide evidence that this seed region can 

be used in living cells to discriminate between target RNAs with high similarity, such as allele-

specific single nucleotide polymorphisms.  
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Methods 
 
Cloning of Cas13 nuclease, guide RNAs and destabilized EGFP plasmids 
Using Gibson cloning, we modified the EF1a-short (EFS) promoter-driven lentiCRISPRv2 (Addgene 
52961) or lentiCas9-Blast (Addgene 52962) plasmids with several different transgenes32. For the 
destabilized EGFP construct, we introduced a PEST sequence and nuclear localization tag on EGFP to 
create EFS-EGFPd2PEST-2A-Hygro (pLentiEGFPdestabilized) from lentiCas9-Blast. To test the upstream 
U-content, we introduced a multiple cloning site (MCS) into pLentiEGFPdestabilized right after the stop 
codon, and used the MCS to introduce oligonucleotide sequences with variable U-content32. 
 
For the CRISPR Type-VI orthologs, we cloned effector proteins (PguCas13b: Addgene 103861, 
PspCas13b: Addgene 103862, RfxCas13d: Addgene 109049) and their direct repeat (DR) sequences 
(PguCas13b: Addgene 103853, PspCas13b: Addgene 103854, RfxCas13d: Addgene 109053) into 
lentiCRISPRv2. In this manner, we created pLentiRNACRISPR constructs: hU6-[Cas13 DR]-EFS-[Cas13 
ortholog]-[NLS/NES]-2A-Puro- WPRE, where [Cas13 ortholog] was one of PguCas13b, PspCas13b, or 
RfxCas13d and [NLS/NES] was either a nuclear localization signal or nuclear export signal. To generate 
doxycycline-inducible Cas13d cell lines, we cloned NLS-RfxCas13d-NLS (Addgene 109049) into TetO-
[Cas13]-WPRE-EFS-rtTA3-2A-Blast. For the screens, we changed the DR in the lentiGuide-Puro vector 
(Addgene 52963) to contain the RfxCas13d DR using Gibson cloning to create lentiRfxGuide-Puro 
(pLentiRNAGuide) 32. All plasmids will be made available on Addgene. 
 
Guide cloning was done as described previously32. All constructs were confirmed by Sanger sequencing. 
All primers used for molecular cloning and guide sequences are shown in Supplementary Data 1. 
 
 
 
Cell culture and monoclonal cell line generation 
HEK293FT cells were acquired from Thermo Fisher Scientific (R70007) and A375 cells were acquired 
from ATCC (CRL-1619). HEK293FT and A375 cells were maintained at 37°C with 5% CO2 in D10 media: 
DMEM with high glucose and stabilized L-glutamine (Caisson DML23) supplemented with 10% fetal 
bovine serum (Serum Plus II Sigma-Aldrich 14009C) and no antibiotics.  
 
To generate doxycycline-inducible RfxCas13d-NLS HEK293FT and A375 cells, we transduced cells with 
a RfxCas13d-expressing lentivirus at low MOI (<0.1) and selected with 5µg/mL Blasticidin S 
(ThermoFisher A1113903). Single cell colonies were picked after by sparse plating. Clones were screened 
for Cas13d expression by western blot using mouse anti-FLAG M2 antibody (Sigma F1804).  
 
For the GFP tiling screen RfxCas13d-expressing cells were transduced with pLentiEGFPdestabilized 
lentivirus at low MOI (<0.1) and selected with 100µg/ml Hygromycin B (ThermoFisher 10687010) for 2 
days. Single-cell colonies were grown by sparse plating. Resistant and GFP-positive clonal cells were 
expanded and screened for homogenous GFP expression by FACS.  
 
 
Transfection and flow cytometry 
For all transfection experiments, we seeded 2x105 HEK293FT cells per well of a 24-well plate prior to 
transfection (12 - 18 hours) and used 500 or 750 ng plasmid together with a 5-to-1 ratio of Lipofectamine 
2000 (ThermoFisher 11668019) or 1 mg/mL polyethylenimine (Polysciences 23966) to DNA (e.g. 2.5µl 
Lipofectamine2000 or PEI mixed with 0.5µg plasmid DNA). Flow cytometry or fluorescence-assisted cell 
sorting (FACS) was performed at 48 hrs post-transfection. All transfection experiments were performed in 
biological triplicate. 
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For the CRISPR Type-VI ortholog comparison (Supplementary Fig. 1a-c), we cloned the effector proteins 
(PguCas13b: Addgene 103861, PspCas13b: Addgene 103862, RfxCas13d: Addgene 109049) and their 
direct repeat sequences (PguCas13b: Addgene 103853, PspCas13b: Addgene 103854, RfxCas13d: 
Addgene 109053) as described above. We co-transfected the pLentiRNACRISPR constructs together with 
a GFP expression plasmid in a 2:1 molar ratio. The guide RNA length comparison (Supplementary Fig. 
1d) was done using previously published RfxCas13d constructs (Addgene 109049 and 109053), except that 
we removed the GFP cassette from the RfxCas13d plasmid. The modified RfxCas13d construct and guide 
plasmids were co-transfected together with a GFP expression plasmid in a 2:2:1 molar ratio. For the DR 
modification experiment (Supplementary Fig. 6c) we transfected RfxCas13d expressing cells, starting 
doxycycline-induction (1µg/ml) at the time of cell plating. The guide plasmid and GFP expression plasmid 
were co-transfected at a 1:1 molar ratio. 
 
For the model validation flow cytometry (Fig. 2b) we transfected RfxCas13d-expressing cells with a guide 
RNA expressing plasmid. 48 hours post transfection, the cells were stained for the respective cell surface 
protein for 30 min at 4°C and measured by FACS. (BioLegend: CD46 #352405 clone TRA-2-10, CD71 
(TFRC) #334105 clone CYIG4). 
 
For the screen result validation (Fig. 1e) and seed validation experiments (Fig. 1h) we co-transfected 
RfxCas13d-expressing cells with a guide RNA expressing plasmid and GFP plasmid at a 1:1 molar ratio. 
At 48 hours post-transfection, the cells were analyzed by flow cytometry.  
 
To assess the upstream U-context (Supplementary Note 1), we transfected upstream-U context modified 
pLentiEGFPdestabilized-MCS plasmid together with either a crRNA plasmid into RfxCas13d-expressing 
in a 2:1 molar ratio. Each GFP-upstreamU-context plasmid was co-transfected with both a targeting or a 
non-targeting guide RNA used for calculating the knock-down, as a change in 3’UTR uridine content could 
attract RNA-binding proteins that may affect RNA stability independent of Cas13. We selected the zero-
uridine oligonucleotide from a set of 10000 in silico randomized 52mers with {A24,C14,G14} with minimal 
predicted RNA-secondary structure as determined by RNAfold 33 with default setting. 
 
For flow cytometry analysis, cells were gated by forward and side scatter and signal intensity to remove 
potential multiplets. If present, cells were additionally gated with a live-dead staining (LIVE/DEAD Fixable 
Violet Dead Cell Stain Kit, Thermo Fisher L34963). For each sample we analyzed at least 5000 cells. If 
cell numbers varied, we randomly sampled all samples to the same number of cells before calculating the 
mean fluorescence intensity (MFI). For GFP co-transfection experiments, we only considered the 
percentage of transfected cells with the highest GFP expression determined by comparing the non-targeting 
control to wild-type control cells. For the upstream U-context co-transfection experiments, we considered 
the whole cell populations.  
 
For knock-down experiments of endogenous genes (Fig. 2b), we determined the percentage of transfected 
cells with lower target gene signal than the non-targeting control in the condition with the highest observed 
knock-down. For all conditions, we analyzed the same bottom percentage of cells. For the selected cells, 
we compared the MFI of targeting guides relative to non-targeting guides to determine the percent knock-
down. To directly compare relative rank of individual guides as done in Fig. 2b, we normalized the effect 
size by setting the most effective guide to 100%. For the seed validation (Fig. 1f), we determined the 
percentage of transfected (GFP-positive) cells with GFP signal higher than Lipofectamine vehicle treated 
control cells. The percentage of transfected cells was normalized to percentage of GFP-positive cells in the 
non-targeting guide control. 
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Screen library design and pooled oligo cloning 
To design the RfxCas13d guide RNA library for GFP, we selected the 714 bp coding sequence (without 
start codon) to be targeted. In silico, we generated all perfectly matching 27mer guide RNAs with minimal 
constraints (T-homopolymer < 4, V-homopolymer < 5, 0.1 < GC-content < 0.9) and selected 400 by random 
sampling. From these, we sampled 100 guide RNAs and introduced one random nucleotide conversion at 
each position (n = 2700, SM set). From these 100, we randomly sampled 17 guide RNAs and introduced 
26 or 25 consecutive double (n = 442, CD set) and triple (n = 425, CT set) mismatches, respectively. We 
sampled an additional 13 guide RNAs from the SM set (in total, 30 guide RNAs) and introduced 100 
random double mismatches at any position for each guide RNA if not present already in the set of 17 
consecutive double mismatches (n = 3000, RD set). In total, we designed 6,967 GFP targeting guides and 
added 533 non-targeting guides (NT set) of the same length from randomly generated sequences that did 
not align to the human genome (hg19) with less than 3 mismatches.  
 
For CD46, CD55 and CD71 library design, we selected the transcript isoform with highest isoform 
expression in HEK-TE samples (determined by Cancer Cell Line Encyclopedia CCLE; GENCODE v19) 
and longest 3’UTR isoform (CD46: ENST00000367042.1, CD55: ENST00000367064.3, CD71: 
ENST00000360110.4). As described above, we generated all perfectly matching 23mers, and selected 
~2000 evenly spaced guide RNAs per target. In addition to PM, SM, RD and NT sets as described above, 
we included for each target a set of guide length variants (n = 450, LV set), guide RNAs targeting intronic 
sequences near splice-donor and splice-acceptor sites across all 39 annotated introns (n = 2122, I set) and 
an additional negative control set of reverse complementary perfect match sequences (n = 300, RC set). 
Further details are in Supplementary Data 2. 
 
For both targeted essentiality screens, we used the DEMETER2 v5 27 data set from the Cancer Dependency 
Map portal (DepMap) to determined essential and control genes. Specifically, we selected essential genes 
with low log2 fold-change (FC) enrichments across all cell lines and in the respective assay cell line 
(Supplementary Fig. 8a,c). For our HEK293FT cells, we considered data for HEK-TE cells. Furthermore, 
we selected genes with one transcript isoform constituting more than 75% of the gene expression with 
expression level less than ~150 transcripts per million (TPM). We predicted guide RNA efficiencies using 
the minimal RFGFP model and removed all guides with matches or partial matches elsewhere in the 
transcriptome. We allowed up to 3 mismatches when looking for potential off-targets. From the set of 
remaining perfect match guide RNA predictions, we manually selected three high-scoring and three low-
scoring guides for the HEK293FT cell line screen to ensure that each guide fell into non-overlapping regions 
of the target transcripts. For the A375 cell line targets, we selected the top 20 high-scoring guide RNAs. 
For the set of 20 low-scoring guides, we chose among the bottom 60 to reduce the overlap of guide RNAs 
that fall into the same region. In this way, we assayed 20 genes in HEK293FT cells targeting 10 essential 
and 10 control genes with three low-scoring and three high-scoring guides, as well as three non-targeting 
guides (n = 123). For the A375 screen, we targeted 100 genes (35 essential and 65 control genes) with 40 
guides each (20 high- and 20 low-scoring) and included 680 non-targeting sequences (n = 4680). 
 
All large-scaled pooled crRNA libraries were synthesized as single-stranded oligonucleotides (Twist 
Biosciences), PCR amplified using NEBNext High-Fidelity 2X PCR Master Mix (M0541S) 
(Supplementary Data 1), and Gibson cloned into pLentiRfxGuide-Puro. The guides for the HEK293FT 
essentiality screen were ordered from IDT, array cloned, confirmed by Sanger sequencing, and 
subsequently pooled using equal amounts. Complete library representation with minimal bias (90th 
percentile/10th percentile crRNA read ratio: 1.68 – 2.17) were verified by Illumina sequencing (MiSeq). 
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Pooled lentiviral production and screening 
Lentivirus was produced via transfection of library plasmid with appropriate packaging plasmids (psPAX2: 
Addgene 12260; pMD2.G: Addgene 12259) using polyethylenimine (PEI) reagent in HEK293FT. At 3 
days post-transfection, viral supernatant was collected and passed through a 0.45 um filter and stored at -
80C until use. 
 
Doxycycline-inducible RfxCas13d-NLS human HEK293FT, double-transgenic HEK293FT-GFP or A375 
cells were transduced with the respective library pooled lentiviruses in separate infection replicates ensuring 
at least 1000x guide representation in the selected cell pool per infection replicate using a standard 
spinfection protocol. We generated either 2 or 3 independent replicate experiments. After 24 hours, 
RfxCas13d expression was induced by addition of 1µg/ml doxycycline (Sigma D9891) and cells were 
selected with 1 ug/mL puromycin (ThermoFisher A1113803), resulting in ~30% cell survival. Puromycin-
selection was complete ~48 post puromycin-addition. Assuming independent infection events (Poisson), 
we determined that ~83% of surviving cells received a single sgRNA construct. Cells were passaged every 
two days maintaining at least the initial cell representation and supplemented with fresh doxycycline. 
 
The tiling screens were terminated after 5 to 10 days. For all targets we noted maximal knock-down after 
2-4 days (data not shown). For cell surface proteins, cells were stained in batches of 1x107 cells for 30 min 
at 4°C (BioLegend: CD46 clone TRA-2-10 #352405 - 3µl per 1x106 cells; CD55 clone JS11 #311311 - 
1.5µg per 1x106 cells; CD71 clone CYIG4 #334105 - 4µl per 1x106 cells). We collected unsorted samples 
for input guide RNA representation of approximately 1000x coverage for each sample and sorted at least 
another 1000x representation into the assigned bins based on their signal intensities (GFP: lowest 20%, 
20%, 20% and remaining highest 40%, Supplementary Fig. 2a; CD proteins lowest 20% and highest 20%, 
Supplementary Fig. 9b; Supplementary Data 2). Cells were PBS-washed and frozen at -80°C until 
sequencing library preparation. In each case, the bin containing the lowest 20% represented the strongest 
target knock-down. 
 
The essentiality screens were started (Day 0) upon complete puromycin selection, which was at 5 days after 
transduction. Cells were passaged every two to three days maintaining at least the initial cell representation 
and supplemented with fresh doxycycline. At Day 0 (=Input) and every 7 days, we collected a >1000x 
representation from each sample. The HEK293FT cell screen was conducted in triplicate and cultured for 
4 weeks. The A375 cell screen was conducted in duplicate and cultured for 2 weeks. 
 
 
Screen readout and read analysis 
For each sample, genomic DNA was isolated from sorted cell pellets using the GeneJET Genomic DNA 
Purification Kit (ThermoFisher K0722) using 2x106 cells or less per column. The crRNA readout was 
performed using two rounds of PCR 34. For the first PCR step, a region containing the crRNA cassette in 
the lentiviral genomic integrant was amplified from extracted genomic DNA using the PCR1 primers in 
Supplementary Data 1. 
 
For each sample, we performed PCR1 reactions as follows: 20 µl volume with 2 ug of gDNA in each 
reaction limited by the amount of extracted gDNA (total gDNA ranged from 8µg to 50 ug per sample with 
an estimated representation of 106 diploid cells per ~6.6 ug gDNA. PCR1: 4µl 5x Q5 buffer, 0.02U/µl Q5 
enzyme (M0491L), 0.5uM forward and reverse primers and 100ng gDNA/µl. PCR conditions: 98°C/30s, 
24x[98°C/10s, 55°C/30s, 72°C/45s], 72°C/5min).  
 
We pooled the unpurified PCR1 products and used the mixture for a single second PCR reaction per sample. 
This second PCR adds on Illumina sequencing adaptors, barcodes and stagger sequences to prevent 
monotemplate sequencing issues. Complete sequences of the 5 forward and 3 reverse Illumina PCR2 
readout primers used are shown in Supplementary Data 1. (PCR2: 50µl 2x Q5 master mix (NEB 
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#M0492S), 10µl PCR1-product, 0.5uM forward and reverse PCR2-primers in 100µl. PCR conditions: 
98°C/30s, 17x[98°C/10s, 63°C/30s, 72°C/45s], 72°C/5min). 
 
Amplicons from the second PCR were pooled by screen experiment (e.g. all GFP-screen samples) in 
equimolar ratios (by gel-based band densitometry quantification) and then purified using a QiaQuick PCR 
Purification kit (Qiagen 28104). Purified products were loaded onto a 2% E-gel and gel extracted using a 
QiaQuick Gel Extraction kit (Qiagen 28704). The molarity of the gel-extracted PCR product was quantified 
using KAPA library quant (KK4824) and sequenced on an Illumina NextSeq 500 - II MidOutput 1x150 
v2.5. 
 
Reads were demultiplexed based on Illumina i7 barcodes present in PCR2 reverse primers using bcl2fastq 
and by their custom in-read i5 barcode using a custom python script. Reads were trimmed to the expected 
guide RNA length by searching for known anchor sequences relative to the guide sequence using a custom 
python script. For the tiling screens, pre-processed reads were either aligned to the designed crRNA 
reference using bowtie 35 (v.1.1.2) with parameters -v 0 -m 1 or collapsed (FASTX-Toolkit) to count 
perfect duplicates followed by string-match intersection with the reference to retain only perfectly matching 
and unique alignments. Pre-processed guide RNA sequences from the essentiality screens were aligned 
allowing for up to 1 mismatch (-v 1 -m 1).Alignment statistics are available in Supplementary Data 3. 
The raw guide RNA counts (Supplementary Data 4) were normalized separated by screen dataset using a 
median of ratios method like in DESeq2 36 and underwent batch-correction using combat implemented in 
the SVA R package 37. Non-reproducible technical outliers were removed by applying pair-wise linear 
regression for each sample after normalization and batch-correction, collecting the residuals and taking the 
median value for each guide RNA across all sample-centric comparisons. We removed all crRNA counts 
within the top X% residuals across all samples (GFP: 2%, CD proteins: 0.5%, Essentiality screen: no outlier 
removal). For the GFP screen, we only remove outliers on a per-sample basis as needed (but not the entire 
guide RNA). For CD46, CD55 and CD71 screens, since the number of outliers was small, we decided to 
remove the entire guide RNA from the analysis. The table below indicates all filtering applied: 
 

Screen 
not 
detected* 

<N reads in input 
samples* 0 reads in any sample* masked outlier  filtered total remaining 

GFP 0 not applied not applied 4** 4 7500 7496 
CD46 19 427 (<50) 22 77 545 5605 5060 
CD55 23 88 (<50) 0 79 190 5356 5166 
CD71 3 48 (<50) 0 75 123 5999 5876 
HEK293 0 0 (<50) 0 0 0 123 123 
A375 2 10 (<100) 0 0 12 4680 4668 

* Removed before normalization 
** filtered for Bin1 guide RNAs 

 
Processed crRNA counts are available in Supplementary Data 5. Guide RNA enrichments were calculated 
building the count ratios between a bin or timepoint and the corresponding input sample and log2-
transformation (log2FC). Consistency between replicates was estimated using robust rank aggregation 
(RRA) 38. Delta log2FC for mismatching guides was calculated by subtracting the log2FC of the perfectly 
matching reference guide. For the tiling screens, all plots and analyses were performed using the mean 
guide RNA enrichments of bin 1 ( = bottom 20%) across replicates, unless indicated otherwise. Similarly, 
we used the mean guide RNA enrichments relative to Day 0 across replicates for the essentiality screen. 
Guide RNA enrichment scores (log2FC) are available in Supplementary Data 6. In all combined analyses 
across all four tiling screens, we scaled the observed log2FC separately to improve comparability. For the 
generation of a the combined on-target model, we normalized the 2918 selected CDS-targeting guides RNA 
across the four tiling screens to the same scale prior to training and testing the model. To do so, for each 
dataset D, we computed the upper and lower quartiles of the guide log2FC (UQD and LQD, respectively) as 
well as the corresponding quartiles for the log2FC among all datasets pooled together (UQP and LQP). We 
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then updated each fold change x as follows: 𝑥ˆ=[ (𝑥	 - LQD) / (UQD	 -	LQD) * (UQP	 –	LQP) + LQP]. By 
centering on quartiles, this procedure normalized the fold-change distributions in a way that was less 
susceptible to the influence of outliers of a single screen. 
 
 
Predicting RNA secondary structures and RNA-RNA hybridization energies 
crRNA secondary structure and minimum free energies (MFEs) was derived using RNAfold [ --gquad ] 
on the full-length crRNA (DR + guide) sequence 33. For building the combined on-target model and for 
testing the RFGFP model on the combined data set, we assumed 23mer guide RNAs for all guides in the GFP 
tiling screen to prevent length dependent differences in the crRNA MFE. Target RNA unpaired probability 
(accessibility) was calculated using RNAplfold [ -L 40 -W 80 -u 50 ] as described before 39. We 
performed a grid-search calculating the RNA accessibility for each target nucleotide in a window of minus 
20 bases downstream of the target site to plus 20 bases upstream of the target site assessing the unpaired 
probability of each nucleotide over 1 to 50 bases for all perfectly matching guides. Then, we calculated the 
Pearson correlation coefficient between the log10-transformed unpaired probabilities and the observed guide 
RNA log2FC for each point and window relative to the guide RNA.RNA-RNA-hybridization between the 
guide RNA and its target site was calculated using RNAhybrid [ -s -c ] 40. For the hybridization 
calculation, we did not include the direct repeat of the crRNA. We calculated the RNA-hybridization 
minimum free energy for each guide RNA nucleotide position p over the distance d to the position p + d 
with its cognate target sequence. All measures were either directly correlated with the observed crRNA 
log2FC or using partial correlation to account for the crRNA folding MFE. In each case, we computed the 
Pearson correlation.  
 
 
Assessing guide RNA nucleotide composition 
Guide RNA composition was derived by calculating the nucleotide probability within the respective guide 
RNA sequence length. To assess the presence of sequence constraints similar to a previously described anti-
tag19 or 5’ and 3’ Protospacer Flanking Sequences (PFS), we ranked all perfectly matching guide RNAs by 
their log2FC enrichment within each screen separately. We selected the top and bottom 20% 
enriched/depleted guide RNAs and calculated the positional nucleotide probability for the four nucleotides 
upstream and downstream relative to the guide RNA match. To assess nucleotide preferences at any guide 
RNA match position in addition to upstream and downstream nucleotides, we selected the top 20% of the 
log2FC-ranked perfectly matching guides as described above and calculated nucleotide preferences as 
described before 26. In brief, we calculated the probability of each nucleotide at each position for the top 
guide RNAs and all guide RNAs. The effect size is the difference of nucleotide probability by subtracting 
the values from all guides from the top guides (delta log2FC). p-values were calculated from the binomial 
distribution with a baseline probability estimated from the full-length GFP mRNA target sequence for all 
perfectly matching crRNAs. p-values were adjusted using a Bonferroni multiple hypothesis testing 
correction. 
 
 
Assessing target RNA context 
To assess the target RNA context, we calculated the nucleotide probability at each position (p) over a 
window (w) of 1 to 50 nucleotides centered around the position of interest (e.g. p = -18 with w = 11 
summarizes the nucleotide content in a window from -23 to -13 with +1 being the first base of the crRNA). 
We evaluated p for all positions within 75 nucleotides upstream and downstream of the guide RNA. The 
nucleotide context of each point was then correlated with the observed log2FC crRNA enrichments for all 
perfect match crRNAs, either directly or using partial correlation accounting for crRNA folding MFE. In 
each case we used Pearson correlation.  
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The RNA context around single nucleotide mismatches was assessed accordingly with a slight 
modification. Here, the nucleotide context was assessed relative to mismatch position summarizing the 
nucleotide probability in a window of 1 to 15 nucleotides to either side (e.g. p = 18 with w = 5 summarizes 
the nucleotide content in a window of 11 nucleotides from 23 to 13). For more details on p and w, please 
see the diagram in Supplementary Figure 5b. We used all 2,700 single nucleotide mismatch guides in the 
GFP tiling screen (100 guide RNAs x 27 mismatched positions per guide). The nucleotide context of each 
position and each window size was then correlated with the observed delta log2FC relative to the perfectly 
matching reference guide RNA, either directly or using partial correlation accounting for crRNA folding 
MFE. In each case, we used Pearson correlation. 
 
 
On-target model selection 
An explanation for all selected features for the RFGFP and RFcombined model can be found in Supplementary 
Table 1 and Supplementary Table 2, respectively. The RFcombined model feature input values can be found 
in Supplementary Data 7. All continuous feature scores were scaled to the [0, 1] interval limited to the 5th 
and 95th percentile, with a mean set to the 5th percentile. Scaled values exceeding the [0, 1] interval were 
set to 0 or 1, respectively. 
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Scaling parameters used to normalize data to the [0, 1] interval for the Random Forest Models 

Model Feature 5th percentile 95th percentile 
RFGFP crRNA MFE -23.4000 -14.5000 
 Local A probability 0.0000 0.4286 
 Local C  0.2273 0.5000 
 Local G probability 0.1429 0.4286 
 Local U probability 0.0556 0.2778 
 upstream U probability 0.0667 0.2000 
    
RFcombined crRNA MFE -20.3000 -12.8000 
 Log10 Unpaired probability -7.5546 -1.6244 
 hybridization MFE nt 3-15 -29.4000 -17.9000 
 hybridization MFE nt 15-23 -21.8000 -12.3000 
 Local Amax probability 0.0000 0.5000 
 Local Cmax probability 0.0000 0.5000 
 Local Gmax probability 0.0000 0.6667 
 Local Umax probability 0.0833 0.5000 
 Local AUmax probability 0.2727 0.7272 
 Local GCmax probability 0.2222 0.7778 
 Local Amin probability 0.0000 0.5714 
 Local Cmin probability 0.0000 0.5556 
 Local Gmin probability 0.0000 0.4444 
 Local Umin probability 0.0000 0.5000 
 Local AUmin probability 0.2222 0.7778 
 Guide A nt probability 0.0870 0.4348 
 Guide C nt probability 0.0870 0.3913 
 Guide G nt probability 0.0870 0.4348 
 Guide AA di-nt probability 0.0000 0.1818 
 Guide AC di-nt probability 0.0000 0.1364 
 Guide AG di-nt probability 0.0000 0.1818 
 Guide AU di-nt probability 0.0000 0.1364 
 Guide CA di-nt probability 0.0000 0.1818 
 Guide CC di-nt probability 0.0000 0.1364 
 Guide CG di-nt probability 0.0000 0.1364 
 Guide CU di-nt probability 0.0000 0.1364 
 Guide GA di-nt probability 0.0000 0.1364 
 Guide GC di-nt probability 0.0000 0.1818 
 Guide GG di-nt probability 0.0000 0.1818 
 Guide GU di-nt probability 0.0000 0.1364 
 Guide UA di-nt probability 0.0000 0.1364 
 Guide UC di-nt probability 0.0000 0.1818 
 Guide UG di-nt probability 0.0000 0.1818 

 
To evaluate and compare model performances, we randomly sampled 1,000 bootstrap datasets from the 
data of perfect match guide RNA log2FC response values and selected features. We used 399 data points 
for the initial RFGFP model and 2918 data points for all CDS-annotating perfect match guides across the 
four tiling screens. For the RFcombined model we normalized the observed log2FC values data prior to training 
and testing as described earlier. Normalized response values showed better generalizability compared to 
unnormalized or scaled log2FC. For each bootstrap sample, 70% of the data was used for training and the 
remaining 30% of the data was held out for testing, ensuring a 70/30 split for each screen dataset when 
testing the RFcombined model. Linear dependencies between features were identified using the function 
findLinearCombos from the R package caret and removed. The model performance was evaluated by 
calculating the Spearman correlation coefficient rs and Pearson r2 to the held-out data. We compared a 
variety of different methods 39 (see Table below).  
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# Name Function Parameter R package 
1 all subsets regression, maximizing the Baye

sian information criterion (BIC) 
regsubsets  nvmax=15, nbest=1, 

method="forward",  
really.big=T 

leaps 

2 stepwise regression, maximizing  
the BIC 

stepAIC  - MASS 

3 stepwise regression, maximizing  
the Akaike information criterion  
(AIC) 

stepAIC  - MASS 

4 Lasso regression cv.glmnet family="gaussian", 
nfolds=10, alpha = 1 

glmnet 

5 multivariate adaptive regression  
splines (MARS) 

earth degree = 1, trace = 
0, nk = 500 

earth 

6 Random Forest randomForest - randomForest 
7 principal component regression  

(PCR) 
pcr ncomp = 5 (during  

prediction) 
pls 

8 Partial Least Squares (PLSR) plsr ncomp = 5 (during  
prediction) 

pls 

9 Support Vector Machine w/ L1  
loss function (SMV+L1) 

tune method=svm, ranges 
= list(epsilon=seq(
0,1,0.025), cost= 
2^(2:8)), kernel= 
"radial" 

e1071 

 
For both models, we tested a variety of feature combinations including crRNA folding energies, RNA-RNA 
hybridization energies, target site accessibility, overall and positional (di-)nucleotide probabilities, and one-
hot encoding for single and di-nucleotide of the guide target-sites and their upstream and downstream 
flanking four nucleotides. Together, these represented 644 features for the combined on-target model. A 
full set of features for the combined on-target model can be found in Supplementary Data 7. For the initial 
on target model based on the GFP screen data, we evaluate a set of 15 defined features (Supplementary 
Table 1) along-side with one-hot encoded positional nucleotide information and GC content. These 15 
features were defined based on their positive or negative correlation to the observed response value during 
the data exploration (see also Supplementary Note 1). We iteratively reduced the numbers of features from 
15 to 6 for the RFGFP model and monitored the model performance as described above. At each iteration, 
the Random Forest model performed slightly better than any other learning approach. Reducing the features 
to fewer than the selected 6 features (RFminimal = RFGFP) reduced the model performance. For the combined 
on-target model, we did not iteratively reduce the set of 35 selected features. We compared the RFGFP model 
to an SVM+L1 model similar to one of the first CRISPR-Cas9 on-target model. Specifically, we used one-
hot encoding for all 35 nucleotide positions considered (27 guide RNA positions and 8 additional positions 
with 4 upstream and 4 downstream nucleotides). Considering all positions, the feature space contained 140 
single nucleotide features, 544 di-nucleotide features and the GC-content (685 non-all-zero features). Here, 
we used tuning (see table below for parameters) to increase model performance for SVM+L1 specifically. 
Here, but also for the combined model, one-hot encoded features did not lead to high Spearman correlation 
coefficient rs to the held-out data. 
 
For further evaluation of the random forest models we used 10-fold cross-validation by randomly 
partitioning the data into 10 equally-sized partitions ensuring even contribution from each screen to each 
partition. We trained the model 10 times on 90% of the data and predicted the held-out 10%. For each data 
point, we assigned the known guide RNA efficacy quartile based on the log2FC enrichment and compared 
it the predicted efficacy quartiles in the held-out data. We also assessed the predicted guide score by 
calculating the median predicted guide score for the top and bottom ranked crRNAs in the 10% held-out 
data based on the known log2FC-rank for all 10 cross-validation folds (top/bottom N = 2, 4, 8, 16, 32, 64, 
128 or 256 guide RNAs). To compute the null distribution, we calculated the median predicted guides 
scores of randomly selected guide RNAs across 1000 samplings for each N. For the leave-one-out cross-
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validation we trained on all data from three tiling screens and performed Spearman rank correlation of the 
predicted the guide efficiency of the held-out fourth screen to the observed log2FC enrichments.  
To make the guide score more interpretable, we standardized the guide score to a [0, 1] interval preserving 
the distribution between 5th and 95th percentile. Normalized values exceeding the [0, 1] interval were set to 
0 or 1, respectively. The final RFGFP model was trained on all data points for perfect match guides using the 
six selected features with 1500 regression trees. The model explains 36.9% of the observed variance with 
a mean of squared residuals of 0.139. The table below shows the feature contribution for the RFGFP model. 
 

Feature %IncMSE IncNodePurify 
crRNA MFE 57.989 22.617 
Local A probability 30.542 7.529 
Local C probability 46.255 13.683 
Local G probability 38.557 9.256 
Local U probability 29.953 6.555 
upstream U probability 31.559 8.629 

 
Similarly, final RFcombined was trained on 2918 data points using 35 selected features. Tuning the number of 
trees (ntree) and number of splitting variables per node (mtry) led to insignificant insignificant 
performance improvements compared to default settings. The model (mtry = 12, ntree = 2000) explains 
47.16% of the observed variance, a mean of squared residuals of 0.168, and the feature contribution as 
indicated below ranked by importance: 
 

Feature %IncMSE IncNodePurity 
Local Gmax probability 86.6814 47.9987 
crRNA MFE 72.5480 69.6068 
Unpaired probability 72.1078 57.5635 
Local Cmin probability 56.9153 37.2137 
hybridization MFE nt 15-23 54.5793 94.9857 
Guide G nt probability 47.7324 29.2452 
Guide CA di-nt probability 47.6241 21.4664 
hybridization MFE nt 3-15 47.3083 46.7462 
Guide CG di-nt probability 44.0711 11.7069 
Guide AU di-nt probability 42.1128 15.6205 
Guide CU di-nt probability 40.6967 16.9172 
Guide A nt probability 39.7297 25.0736 
Local GCmax probability 39.7236 59.0805 
Local AUmin probability 38.8318 56.3599 
Local Umax  probability 38.7535 24.4657 
Guide GG di-nt probability 38.5896 22.2621 
Local Gmin probability 36.5244 19.6159 
Guide UC di-nt probability 36.3043 15.2075 
Guide AC di-nt probability 36.2901 14.2361 
Guide C nt probability 36.0901 16.8637 
Local Umin probability 35.6886 16.2571 
Guide AG di-nt probability 34.9534 14.6260 
Local Amin probability 34.6632 17.4928 
Local Amax probability 33.6557 16.1888 
Guide AA di-nt probability 33.2106 13.3830 
Guide GC di-nt probability 33.0670 13.3209 
Guide CC di-nt probability 32.2834 12.9797 
Guide UG di-nt probability 31.9188 13.1659 
Guide GU di-nt probability 31.8413 12.8934 
Guide GA di-nt probability 31.3837 13.1399 
Guide UA di-nt probability 30.6930 12.5052 
Local Cmax probability 29.8186 14.2189 
Local AUmax probability 22.4842 14.2585 
Predicted correctly folded DR 8.2669 4.0679 
Predicted G-quadruplex -3.0274 0.0219 
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RfxCas13d guide scoring 
We created a user-friendly R script that readily predicts RfxCas13d on-target guide scores. The only user-
provided argument is a single-entry FASTA file input of minimally 30nt that represents the target sequence, 
such as a transcript isoform sequence. The software first generates all possible 23mer guide RNAs and 
collects all required features and predicts guide RNA efficacies. The only filter applied removes guide 
RNAs with homopolymers of 5 or more Ts and 6 or more Vs (V = A, C, G). Such guide RNAs may trigger 
early transcript termination for PolIII transcription or cause difficulties during oligo synthesis. The software 
returns a FASTA file with guide RNA sequences ranked by the predicted standardized guide score. In 
addition, a csv file is created following providing additional information. Optionally, the script can be used 
to plot the guide score distribution along the provided target sequence for visualization. 
 
We used this software to predict guide scores for all transcripts (including all biotypes: protein_coding, 
nonsense_mediated_decay, non_stop_decay, IG_*_gene, TR_*_gene, polymorphic_ 
pseudogene) of protein coding genes annotated in GENCODE v19 (GRCh37) (n = 94,873 transcripts) 
and provide the top 10 ranked 5’UTR, coding sequence and 3’UTR annotating guide RNA sequences 
(Supplementary Data 8). We have made all guide score predictions available online 
(https://cas13design.nygenome.org). 
 
 
RfxCas13d guide scoring validation 
To validate our that our initial RFGFP model can readily separate between poorly and well-performing 
crRNAs, we performed several experiments.  
 
First, we chose two genes that encode for cell surface proteins that allow for quantitative assessment of 
their expression levels by FACS. For each gene we predicted crRNAs for the highest expressed transcript 
isoform in HEK293FT cells (CD46: ENST00000367042.1, CD71 [TFRC]: ENST00000360110.4). For 
each gene, we selected 3 guides present in the low scoring quartiles (Q1 and Q2) and 3 guides in the high 
scoring quartiles (Q3 and Q4). We selected the guides to be non-overlapping and to reside in 3 different 
regions of the target transcript.  
 
Then, we performed two essentiality screens with a dropout growth phenotype readout in HEK293FT and 
A375 cells, respectively. We designed two crRNA libraries targeting essential and control genes with a 
number of predicted low-scoring and high-scoring guide RNAs as described above (see Screen library 
design and pooled oligo cloning). For the HEK293FT cell screen, we compared the guide depletion of 
four groups of 30 guides (Essential gene targeted by high-scoring guide or by low-scoring guide, and control 
genes targeted by high-scoring guide or by low-scoring guide). We expected the greatest depletion for the 
30 high-scoring guide RNAs targeting essential genes. Similarly, we compared the relative guide depletion 
of the same four groups of guide RNAs in the A375 screen, with the expectation that the 20 high-scoring 
guides per essential gene would be the most depleted.  
 
For gene ranking based on guide depletion, we used robust rank aggregation (RRA) 38 to assign a p-value 
based on the consistency of log2FC-based rank-consistency of the most depleted N guide RNAs per gene 
(with N in {1, 5, 20}) across the two A375 screen replicates. The -log10 transformed p-values were then 
compared to other growth screens (RNAi and Cas9) using Spearman rank correlation. Specifically, we 
compared the RRA-derived log10 p-value to the log2FC from an RNAi-based DEMETER2 v5 repository 27 
and the merged STARS scores from a Cas9-based approach28. For the correlation we only used genes with 
value present in all scores (Essential genes: n = 35; Control genes: n = 15). 
 
Furthermore, we used the log2FC guide depletion values to compare the predictive value of the RFGFP and 
RFcombined models. Specifically, for both essentiality screens we used 10 essential genes (all in HEK293FT 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 28, 2019. ; https://doi.org/10.1101/2019.12.27.889089doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.27.889089


and the 10 most depleted in A375 cells) and correlated the predicted guide scores from both models to the 
observed log2FC guide depletion scores (normalized to 0-100% per gene) of all detected guide RNAs 
(HEK293FT: n = 60 with 6 guides per gene; A375: n = 398 with up to 40 guides per gene). We made the 
same comparison on a per-gene level using all 40 guide RNAs per gene in the A375 screen.  
 
Data representation 
In all boxplots, boxes indicate the median and interquartile ranges, with whiskers indicating either 1.5 times 
the interquartile range, or the most extreme data point outside the 1.5-fold interquartile. All transfection 
experiments show the mean of three replicate experiments with individual replicates plotted as points.  

Data availability statement 
Screen data are being deposited to GEO with an accession number pending. Code to reproduce our analyses 
and figures are available on our gitlab repository (https://gitlab.com/sanjanalab/cas13). We also have 
provided pre-computed guide RNA predictions for guide RNAs targeting all protein-coding transcripts in 
the human genome on our web-based repository (https://cas13design.nygenome.org).   
 
Code availability statement 
The predictive on-target model as well as all code for the analyses presented in the paper is available on 
our gitlab repository (https://gitlab.com/sanjanalab/cas13). 
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