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Abstract 
Colony-stimulating factor 1 receptor (CSF1R) inhibition has been proposed to specifically 
deplete microglia without affecting peripheral immune cells. Here, we show that CSF1R 
inhibition by PLX5622 causes changes in the myeloid and lymphoid compartments and long-
term functional impairment of bone marrow-derived macrophages by suppressing their IL-1β 
expression, phagocytosis, and M1, but not M2 phenotype. Thus, CSF1R inhibition with small 
molecule inhibitors is not restricted to microglia only, but rather causes strong effects on 
peripheral macrophages that perdure long after cessation of the treatment. These changes may 
have significant implications on the interpretation of relevant experimental data. 

\body 

 Colony stimulating factor 1 receptor (CSF1R) inhibition has been proposed as a specific 
microglia depletion method (1-3) that does not affect peripheral immune cells(2, 4-6). However, 
this argument has been solely based on cell count measurements of blood monocytes and 
evaluation of blood brain barrier rather than direct assessment of cellular subtypes and their 
function. Given that peripheral monocytes are known to participate in CNS disease(6-12) and in 
the repopulation of microglia following their depletion,(10, 12) it is important to definitively 
determine if CSF1R inhibition affects the function of peripheral immune cells(3, 5, 6, 12-15). 
 Here we show that, contrary to the accepted notion,(2, 3) PLX5622, a commonly used 
small molecule CSF1R inhibitor for microglia depletion,(3, 10, 12) leads to long-term changes in 
the myeloid and lymphoid compartments of the bone marrow and spleen by suppressing CCR2+ 
monocyte progenitor cells, CX3CR1+ bone marrow-derived macrophages (BMDM), CD117+ (C-
KIT+) hematopoietic progenitor cells, and CD34+ hematopoietic stem cells, and Ly6G neutrophils  
(fig. 1 A-G). Most importantly, these cell populations do not recover or rebound after cessation 
of CSF1R inhibition, with the exception of CD45+ CD11b+ cells (fig. 1 A-G). 
CSF1R inhibition also suppresses bone marrow-derived lymphoid CD3+, CD4+, and CD8+ cells 
(fig. 1 G), and upregulates CD19+ cells (fig. 1 G). Cessation of CSF1R inhibition causes rebound 
of some but not all lymphoid cells (fig. 1 G).  
 CSF1R inhibition also affects splenic CX3CR1+ cells and these changes persist for at least 
3 weeks after cessation of the inhibitor (fig. 1 H). In addition, splenic CD3+ T cells (primarily 
CD8+) are suppressed with CSF1R inhibitor whereas CD19+ B cells are not affected (fig. 1 H). 
 CSF1R inhibition also suppresses the proliferation of bone marrow and spleen 
macrophages (fig. 2 A-D), and impairs the inflammatory response of BMDMs to endotoxin by 
suppressing IL-1β expression (fig. 2 E, F), reducing phagocytic capacity (fig. 2 G) and 
suppressing M1-like but not M2- like phenotype (fig. 2 H-K). The latter finding is consistent 
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with a previous study that showed recombinant CSF1-Fc protein to induce M1-like macrophage 
phenotype, but not M2(16, 17). 
 In conclusion, this study provides compelling evidence that CSF1R inhibition by PLX5622 
does not simply deplete microglial cells, but also affects the myeloid and lymphoid 
compartments and causes functional impairment in BMDMs. Considering the role of peripheral 
monocytes in CNS disease,(9, 10) this work suggests that microglia depletion studies with small 
molecule inhibitors are not specific to microglia but additionally affect the number and function 
of peripheral macrophages, and these effects perdure long after cessation of the treatment and 
may have significant implications on the interpretation of relevant experimental data. 

Materials and Methods 
Mouse model: All animal experiments were performed in accordance with the Association for 
Research in Vision and Ophthalmology Statement for the Use of Animals in Ophthalmic and 
Vision Research, and the National Institutes of Health (NIH) Guidance for the Care and Use of 
Laboratory Animals. This study was approved by the Mass. Eye and Ear Animal Care 
Committee. Mice at 6-12 months old were used: C57BL/6J (Stock#: 000664), B6.129(Cg)-
Ccr2tm2.1lfc/J (Stock#: 017586) and B6.129P- Cx3cr1tm1Litt/J (Stock#: 005582) Jackson 
Laboratory. CCR2RFP/+::CX3CR1EGFP/+ generated by crossing B6.129(Cg)-Ccr2tm2.1lfc/J with 
B6.129P- Cx3cr1tm1Litt/J. CX3CR1EGFP/+ generated by crossing male B6.129P- Cx3cr1tm1Litt/
J with female C57BL/6J. Mice were bred in house. Microglia depletion was performed by chow 
administration for 3 weeks of PLX5622 (Plexxikon Inc., Berkeley, CA). Flow cytometry, and ex 

vivo BMDM evaluation was performed as previously described(10, 12).  

Flow cytometry markers: Bone marrow and spleen cells from CX3CR1+/GFP and  CX3CR1+/

EGFP::CCR2+/RFP reporter mice were blocked with CD16/32 (Clone: 2.4G2), analyzed with IL-1β 
(Clone: NJTEN3) eBiosciences (San Diego, CA); CD45 (Clone: 104), CD11b (Clone: M1/70), 
CD11c (Clone: N418), CD3 (Clone: 17A2), CD4 (Clone: GK1.5), CD8 (Clone: 53-5.8), CD19 
(Clone: 6D5), CD117 (Clone:2B8), CD34 (Clone: HM34), CD115 (Clone: AFS98), Ly6C 
(Clone: HK1.4), Ly6G (Clone:1A8), CD68 (Clone: FA-11), CD206 (Clone: C068C2), 
CCR2(Clone: SA203G11), BrdU(Clone: Bu20a) BioLegend (San Diego, CA). Intracellular 
staining was performed by fixing cells in Paraformaldehyde-based Fixation buffer (BioLegend) 
followed by permeabilization with Perm/Wash buffer (BioLegend). Cells were analyzed on a BD 
LSR II cytometer (BD Biosciences, San Jose, CA, USA) using FlowJo software (Tree Star, 
Ashland, OR, USA). 

LPS stimulation assay: BMDM were primed with 150U/mL interferon-γ (IFNγ) for 6 hours 
followed by LPS at final concentration of 10ng/mL (Sigma-Aldrich, St. Louis, MO) added into 
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culture medium for 20 hours. Brefeldin A 5µg/mL (BD Pharmingen, Bedford, MA) was added 4 
hours before cell harvest and flow cytometry. 

Phagocytosis Assay: The pHrodoTM Red BioParticles® Conjugates for Phargocytosis (P35364) 
(Molecular Probes, Eugene, OR) kit was used. Six days after cell plating with mCSF, and one 
day prior to the assay, BMDMs were recovered from culture and seeded. Cells were stimulated 
with IFNγ for 4 hours and then culture medium was replaced with reconstituted red Zymosan A 
BioParticles. Cells were incubated at 37°C for 2 hours, trypsinized, and evaluated with flow 
cytometry.  

Statistical analysis: Data were analyzed with GraphPad (Prism 2.8.1, San Diego, CA) using 
two-tailed unpaired t-test and ordinary one-way ANOVA with Dunnet’s correction for multiple 
comparisons. Statistical significance was determined at P < 0.05. 

Author contributions: FL designed experiments, acquired data and analyzed data; NC, CZ 
analyzed data; DGV wrote and reviewed the manuscript; JC reviewed the manuscript; EIP 
designed experiments, analyzed data, and wrote the manuscript. 
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Figure Legends 
Fig. 1. CSF1R inhibition by PLX5622 affects the myeloid and lymphoid compartments of 
the bone marrow and spleen.  
Flow cytometric analysis of bone marrow cells isolated from CCR2+/RFP::CX3CR1+/GFP mice 
immediately, after 3-week treatment with CSF1R inhibitor (PLX5622), and at different 
timepoints after cessation of the CSF1R inhibitor. (A - F) CSF1R inhibition suppresses CCR2+, 
CX3CR1+, CD117+, and CD34+ cells. One week after cessation of CSF1R inhibitor, only 
macrophages recover in number, although with a lower expression of CX3CR1. (G) CSF1R 
inhibition does not affect CD45+, CD11b+ and Ly6C+ bone marrow myeloid cell populations, but 
does suppress CD11c+ dendritic cells, CD4+ and CD8+ T lymphocytes, as well as, CD115+, 
CD117+ and CD34+ hematopoietic subsets, and upregulates CD19+ B cells. Three weeks after 
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cessation of CSF1R inhibition, CX3CR1+, CCR2+, Ly6C+ CD3+ and CD8+ sub-populations 
rebound; Ly6G+ granulocytes, CD115+, and CD117+ cells remain suppressed; CD4+ T cells and 
CD34+ cells recover; and CD19+ B cells remain upregulated. (H) Effects of CSF1R inhibition on 
the spleen’s myeloid and lymphoid populations. Only CD19+ B cells remain unaffected. n=5 per 
group, mean±SD, One-way analysis of variance with Dunnett's correction for multiple 
comparisons, * P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001.  

Fig. 2. CSF1R inhibition by PLX5622 affects the function of peripheral macrophages. 
(A-D) ex vivo evaluation of the function of bone marrow-derived macrophage (BMDM) from 
CX3CR1+/GFP mice 3 weeks after cessation of CSF1R inhibitor. Macrophages from the bone 
marrow or spleen exhibit reduced proliferation 3 weeks after cessation of CSF1R inhibition. (E-
G) CSF1R inhibition suppresses IL-1β expression and phagocytosis of bone marrow-derived 
macrophage following exposure to lipopolysaccharide. (H-K) These changes are associated with 
suppression of CD68+ M1-like but not CD206+ M2-like phenotype. n=5 per group, mean±SD, 
Independent t-test, ** P<0.01, **** P<0.0001. 
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