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Abstract

Understanding the relationship between trial-to-trial variability in neural responses
of sensory areas and behavioral choices is fundamental to elucidate the mech-
anisms of perceptual decision-making. In two-choice tasks, activity-choice co-
variations have traditionally been quantified with choice probabilities (CP). It has
been so far commonly assumed that choice-related neural signals are separable
from stimulus-driven responses, which has led to characterizing activity-choice
covariations only with a single CP value estimated combining trials from all stim-
ulus levels. In this work we provide theoretical and experimental evidence for the
stimulus dependence of the relationship between neural responses and behavioral
choices. We derived a general analytical CP expression for this dependency un-
der the general assumption that a decision threshold converts an internal stimulus
estimate into a binary choice. This expression predicts a stereotyped threshold-
induced CP modulation by the stimulus information content. We reanalyzed data
from Britten et al. (1996) and found evidence of this modulation in the responses
of macaque MT cells during a random dot discrimination task. Moreover, we
developed new methods of analysis that allowed us to further identify a richer
structure of cell-specific CP stimulus dependencies. Finally, we capitalised on this
progress to develop new generalized linear models (GLMs) with stimulus-choice
interaction terms, which show a higher predictive power and lead to a more precise
assessment of how much each neuron is stimulus- or choice-driven, hence allow-
ing a more accurate comparison across areas or cell types. Our work suggests that
characterizing the patterns of stimulus dependence of choice-related signals is es-
sential to properly determine how neurons in different areas contribute to linking
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1 Introduction
How perceptual decisions depend on responses of sensory neurons is a funda-
mental question in systems neuroscience (Parker and Newsome, 1998; Gold and
Shadlen, 2001; Romo and Salinas, 2003; Gold and Shadlen, 2007; Siegel et al.,
2015; van Vugt et al., 2018; O’Connell et al., 2018; Steinmetz et al., 2019). The
seminal work of Britten et al. (1996) showed that responses from single cells in
area MT of monkeys during the performance of a random dot discrimination task
covaried with behavioral choices. Similar activity-choice covariations have been
found in multiple sensory areas and for a variety of two-choice tasks, including
both discrimination and detection tasks (see Nienborg et al., 2012; Cumming and
Nienborg, 2016, for a review). Identifying the location of cells whose activity en-
codes choice and how and when choice information is encoded in neural activity
is essential to understand how the brain generates appropriate behaviors based on
sensory information.

In the context of two-choice tasks, Choice Probabilities (CP) have been the
most prominent measure (Britten et al., 1996; Parker and Newsome, 1998; Nien-
borg et al., 2012) used to quantify activity-choice covariations. Most commonly,
it is assumed that choice-related neural signals are independent of and separable
from stimulus-driven responses, and a single CP value is calculated per cell, which
quantifies the global strength of activity-choice covariations (so-called grand CP
(Britten et al., 1996)). This assumption was originally motivated by the work
of Britten et al. (1996), who found no significant dependence of CPs on the co-
herence level of the random dots presented in the discrimination task. Similarly,
when activity-choice covariations are not quantified alone as in the CP, but mod-
eled jointly with other covariates of the neural responses using Generalized Linear
Models (GLMs) (Truccolo et al., 2005), the stimulus level and the choice value
are also usually used as separate predictors of the responses (Park et al., 2014;
Runyan et al., 2017).

Theoretically, the interpretation of choice-related signals has been guided by
computational and analytical results derived from a model of decision making
in which a continuous internal estimate of the stimulus is converted by a thresh-
old mechanism into a behavioral choice (Shadlen et al., 1996; Cohen and New-
some, 2009). Based on this feedforward model, Haefner et al. (2013) derived an
analytical expression of the CP measure which explains the role originating the
activity-choice covariations of the read-out weights and of correlated trial-to-trial
variability across the population of sensory neurons. However, this expression
was derived only for non-informative stimuli and hence does not address how the
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stimulus content can modulate choice-related signals when the choice is estimated
from sensory responses through a threshold mechanism. Furthermore, while this
model provides an interpretation of the CP based on feedforward mechanisms, it
remains an unresolved question to determine to which degree feedforward or feed-
back signals account for activity-choice covariations in different areas and stages
of the perceptual decision making process (Cumming and Nienborg, 2016). In
particular, the structure of decision-related feedback signals (Bondy et al., 2018)
is expected to induce cell-specific modulations of choice-related signals by the
stimulus content.

The interaction between stimulus and choice signals in neural activity has
largely been unexplored. However, if the assumption that these signals are in-
dependent and separable is incorrect, then previously reported quantifications of
whether, and how much, each area is stimulus- or choice-driven may need to be
re-evaluated. In this work, we reassess the existence of stimulus dependencies in
activity-choice covariations by making progress both with models and with neural
data analysis tools.

First, we extended the analytical model of CP of Haefner et al. (2013) to the
general case of informative stimuli and including both a feedforward or feedback
origin of the covariation between the choice and each cell. This generalized model
predicts a stimulus dependence of CP induced by the decision threshold, consist-
ing in a symmetric increase of the magnitude of the CP for more informative
stimuli. This increase is multiplicative and of opposite sign for cells with opposite
choice preferences, which indicates that an analysis of CP-stimulus dependen-
cies at the population level (Britten et al., 1996) may not detect it. Second, we
developed new analytical methods that increase the power to detect CP-stimulus
dependencies analyzing within-cell patterns of dependence. Traditionally, grand
CPs are estimated pooling trials from all stimulus levels, after discounting the
estimated stimulus-driven component from the responses to informative stimuli
(Nienborg and Cumming, 2009; Kang and Maunsell, 2012). On the other hand,
our new methods offer a solution to the methodological challenge posed by the
fact that highly informative stimuli lead to fewer samples of responses for the
error choice, and allow characterizing a profile of CP values as a function of stim-
ulus levels.

We applied to the MT cells dataset of Britten et al. (1996) our combination of
model-driven analyses and finer methods to unravel stimulus dependencies of CPs
previously overlooked by traditional analyses of the same dataset. The patterns
of CP-stimulus dependencies that we found provide evidence for the symmetric
threshold-induced dependence predicted by our CP model, but also reveal a richer
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structure of dependencies. The main features of this structure consist in the exis-
tence of asymmetric patterns with higher CPs for stimuli eliciting higher activity
and a coupling between the average CP strength and the degree of pattern asym-
metry. We show that these features are consistent with the effect of excitability
fluctuations (Goris et al., 2014) in the responses of the sensory neurons contribut-
ing to the perceptual decision.

Moreover, we also demonstrate the utility of introducing new stimulus-choice
interaction terms in Generalized Linear Models (GLMs). GLMs containing inter-
action terms improve the fitting of the responses of the MT cells and, importantly,
affect the quantification of how stimulus-driven versus choice-driven each cell is.
Because the importance of these terms depends itself on cell-specific properties,
incorporating them is expected to refine population-level comparisons, e.g. across
cell types, areas, or tuning properties. Together, our advances lay down the basis
for a better understanding of the distribution of stimulus and choice signals within
each neuron and across brain areas and neural populations.

2 Results
We will first present the theoretical analysis of choice probabilities, followed by
the analysis of the data from Britten et al. (1996) applying our new methods to
quantify stimulus-dependent activity-choice covariations with CPs and GLMs.

2.1 Choice probabilities with informative stimuli
Decision-related signals, independent of their origin, lead to activity-choice co-
variations between the neural response of a cell i, ri, and the psychophysical
choice D. For tasks involving two choices (both discrimination and detection
tasks), this covariation is captured by the difference between the neural response
distributions conditioned on the behavioral choice, p(r|D = −1) and p(r|D = 1).
The choice probability (Britten et al., 1996) quantifies the difference between
these two distributions:

CPi ≡
∫ ∞
−∞

dri p(ri|D = 1)

∫ ri

−∞
dr′i p(r

′
i|D = −1). (1)

Intuitively, the CP is defined as the probability that a random sample from the
distribution for choice 1 trials is larger than a random sample from the distribution
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for choice −1 trials (Britten et al., 1996; Parker and Newsome, 1998; Nienborg
et al., 2012). It is 0.5 if both distributions are identical and goes to 0 or 1 as they are
more and more separated. While the CP quantifies the activity-choice covariations
without any assumption about the decision-making mechanisms (Fig. 1A), the in-
terpretation of CP values has been informed by the conceptualization of threshold
models (Shadlen et al., 1996) in which a decision variable d, corresponding to
an internal estimate of the stimulus, determines the choice by comparing d to a
threshold θ. The internal estimate is usually modeled as a weighted sum of the
neural responses. Based on this model, Haefner et al. (2013) derived a CP ex-
pression for the case of a purely feedforward threshold model and uninformative
stimuli.

We here extended the derivation in Haefner et al. (2013) to obtain a general
expression of the CP to analyze the effect of informative stimuli regardless of the
feedforward or feedback origin of the dependencies between the neural responses
and the decision variable (Fig. 1B). The exact solution of this model is described
in the Methods section (Eq. 14). Here we focus on a linear approximation derived
from the new general solution, which is accurate for a very wide range of infor-
mative stimuli (see Methods) and captures the threshold-induced dependence of
the CP on the stimulus content. In particular, the linear approximation expresses
the CPi of neuron i as

CPi ≈
1

2
+

1

2
√
π

CTAi√
var ri

. (2)

where var ri is the variance of the responses of cell i and CTAi is its Choice-
Triggered Average, defined as the difference between the mean response for trials
of each choice (Haefner, 2015; Chicharro et al., 2017)

CTAi ≡ 〈ri〉D=1 − 〈ri〉D=−1. (3)

The CTA generically quantifies the linear dependencies between the responses
and choice, and hence the approximation of the CP does not depend on their feed-
forward or feedback origin (Fig. 1A).

In the threshold model, the mediating continuous decision variable d allows
breaking down the covariance cov(ri, D) in terms of the relationships between r
and d, and between d andD, respectively (Fig. 1B). The correlation coefficient be-
tween activity and choice is factorized such that corr(ri, D) = corr(ri, d)corr(d,D).
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Figure 1: Models of choice probabilities. Arrows indicate causal influences.
Undirected edges indicate a relationship that may be due to feedforward and/or
feedback signals. a) A model agnostic to the causal origin of the choice–response
covariation: Sensory neurons encode a stimulus s and activity covaries with
choice D. b) Threshold model with a continuous decision variable d that me-
diates between responses and the choice. The decision is made comparing d with
a threshold θ. c) Signature of the threshold mechanism into activity-choice co-
variations. The threshold mechanism (vertical dashed black line) dichotomizes
the space of d, resulting in a difference between the mean of the conditional dis-
tributions associated with D = ±1 (red and blue vertical top bars, respectively).
This difference is quantified by CTAd (horizontal thick black line) and propagates
to the Choice-Triggered Average (CTAi) of the responses when some correlation
CCi exists between d and ri.
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Furthermore, given the binary nature of choiceD, the CTA is directly proportional
to the covariance of the responses and the choice: CTAi = 2cov(ri, D)p(D =
1)p(D = −1) 1. Accordingly,

CTAi = CCi

√
var ri√
var d

CTAd , CCi ≡ corr(ri, d) =
cov(ri, d)

√
var ri

√
var d

. (4)

Here CCi is the correlation coefficient between the sensory responses and the de-
cision variable, termed choice correlation (Pitkow et al., 2015). CTAd is the differ-
ence of the means of the (unobserved) decision variable for the two choices. Eq. 4
describes how activity-choice covariations appear in the threshold model (Fig.
1C): the threshold mechanism dichotomizes the space of the decision variable,
resulting in a different mean of d for each choice, which is quantified in CTAd.
The CTAd is reflected for each cell into a specific CTAi, depending on the cor-
relation CCi between its activity ri and the decision variable d. The dependence
between the responses and d is quantified in CCi, while the dependence between
the internal decision variable and the choice D is captured in CTAd/

√
var d.

Both of these factors of the CTAi can be stimulus dependent. The Choice
correlation CCi may change with the stimulus due to stimulus-dependent noise
correlations (Ponce-Alvarez et al., 2013) or stimulus-dependent feedback (Bondy
et al., 2018), which are cell specific. Conversely, for the CTAd the stimulus de-
pendence is intrinsic to the effect of the threshold. This is because, analogously
to the CTAi, also CTAd = 2cov(d,D)p(D = 1)p(D = −1). The stimulus infor-
mation alters p(D = 1)p(D = −1), and hence changes CTAd. In more detail, an
informative stimulus s will shift the mean of d, thus altering the dichotomization
of d produced by the threshold θ (Fig. 1C). The exact form of CTAd depends on
the distribution of the decision variable p(d). However, since the decision variable
is determined by the responses of a whole population of neurons, its distribution
is expected to be well approximated by a Gaussian distribution, even if the dis-
tribution of neural responses for any single neuron is not Gaussian. With this
Gaussian approximation, the dichotomization of the space of d is specified by the
probability of choosing choice 1, pCR ≡ p(D = 1) = p(d > θ), which determines
the ratio of the choices, i.e., the rate of each choice over trials (‘choice ratio’ or
‘choice rate’, respectively) and we can express CTAd/

√
var d in terms of pCR. In

1This relation holds for the covariance between any variable x and a binary variable D, and
independently of the convention adopted for the values of D: the factor 2 has to be replaced by
a− b in general for D = a, b instead of D = 1,−1.
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particular, we define a factor h(pCR) as the ratio between CTAd/
√

var d for each
pCR with respect to its value for the uninformative stimulus (pCR = 0.5). Under
gaussianity

h(pCR) =

√
2πφ(Φ−1(pCR))

4pCR(1− pCR)
, (5)

where φ(x) is the density function of a zero-mean, unit variance, Gaussian dis-
tribution, and Φ−1 is the corresponding inverse cumulative density function. By
construction, h(pCR) = 1 for pCR = 0.5. Finally, combining Eq. 5 with Eqs. 2 and
4, the CP is expressed as

CPi(pCR) ≈ 1

2
+

√
2

π
h(pCR) CCi(pCR). (6)

For an uninformative stimulus this CP expression corresponds to the linear ap-
proximation derived in Haefner et al. (2013). For different stimulus levels, the CP
can change in two ways. First, the choice correlation CCi itself can be stimulus
dependent. Second, the multiplicative factor h(pCR) modulates the CP because dif-
ferent stimulus levels change the ratio of choices (Eq. 5). The factor h(pCR) only
captures the covariation between d and D, and hence is common to all cells, that
is, the CPi depends on the specific response properties of cell i only through CCi.
Furthermore, h(pCR) affects the CPi independently of the source of the covariation
cov(ri, d), which can be due to feedforward or feedback signals.

We now examine in more detail the shape of h(pCR). Fig. 2A shows CPs as a
function of pCR. To characterize the shape of h(pCR), we set the CC to be invariant
with the ratio of choices (i.e. stimulus-independent). Therefore, the CP directly
reflects the dependence of h(pCR) on pCR. For pCR 6= 0.5, h(pCR) > 1 and the
CP increases symmetrically with pCR departing from 0.5. This can be understood
for example considering feedforward contributions of neural responses to the de-
cision variable. A highly informative stimulus induces signal-dominated neural
responses, so that d most likely lies on the side of the threshold compatible with
the sensory stimulus presented (e.g. D = 1) and leads to a pCR = p(D = 1) close
to 1. This means that p(ri|D = 1) is similar to p(ri). On the other hand, the oppo-
site choice is made only for trials with a substantial and contradictory departure of
the neural responses from the signal-driven mean response. Accordingly, the dis-
tribution p(ri|D = −1) contains responses that lie in the tail of p(ri). Hence, as
pCR approaches 1, the mean of p(ri|D = 1) converges to the unconditional mean,
while the departure of the mean of p(ri|D = −1) from the unconditional mean
becomes increasingly large, resulting in an increasing difference between the two
(Fig. 1C, and Eq. 17 in Methods).
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p(choice = 1) 

Relations between the different 
measures of activity-choice   

covariation   

C
P

 

pCR ≡ p(choice = 1)  

   exact CP 
  linear CP 

C
P

 

CC 

   pCR= 0.9 
  pCR= 0.5 

a b 

Figure 2: Choice probabilities calculated from the threshold model in the presence
of informative stimuli. a) CP as a function of pCR. Results are shown for three
values of a stimulus-independent choice correlation CCi. Solid lines represent
the exact solution of the CP obtained from our model (see Methods, Eq. 14) and
dashed lines its linear approximation (Eq. 6). b) Comparison of the exact solution
of the CP (solid) and its linear approximation (dashed), as a function of the choice
correlation. Results are shown for two values of pCR, 0.5 and 0.9. c) Summary
of the relationships between the choice probability CPi, choice-triggered aver-
age CTAi, and choice correlation CCi. The picture of how these measures are
interconnected is provided by Eqs. 2-6.
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Several predictions can be derived from the shape of h(pCR) to experimentally
test this threshold-related stimulus dependence of the CP. First, since the influence
of h(pCR) is multiplicative, the absolute differences in the CP across different stim-
ulus levels will be higher for cells with a higher CP. Furthermore, the dependence
on h(pCR) is fairly flat for a wide range of pCR (Fig. 2A), which means that only if
including highly informative stimuli in the analysis, leading to pCR close to 0 or 1,
this dependence will be detectable. For those extreme pCR values, CP estimates are
less reliable, because for few trials the choice is expected to be inconsistent with
the sensory information. This means that, given the number of trials commonly
recorded, we expect that only when averaging the CP(pCR) profile across cells we
would be able to detect the modulation of h(pCR). Averaging can also help to aver-
age out other cell-specific stimulus dependencies of the choice correlation CC, to
isolate the stereotypical factor h(pCR) associated with the threshold effect. More-
over, because h(pCR) multiplies the CC and not the CP, the induced modulation is
reversed for negative choice correlations, leading to CPs further decreasing from
0.5 for informative stimulus.

In Fig. 2A we also compare the linear approximation of the CP in terms of the
CTA with the exact solution of the extended threshold model (Eq. 14 in Meth-
ods). Although derived for weak activity-choice covariations, the approximation
is good for a wide range of CP values (see section S1 in the Suppl. Material for
further explanations of this goodness). Fig. 2B further compares, as a function of
the choice correlation CC, the exact and approximated solutions of the CP. For
both the case of an uninformative stimulus (pCR = 0.5) and a highly informative
stimulus (pCR = 0.9) the approximation is accurate for the range of CP values usu-
ally found experimentally (0.2− 0.8). A summary of the overall relation between
the CPs, CTAs, and CCs is depicted in Figure 2C.

The multiplicative nature of h(pCR) indicates that the produced stimulus depen-
dence of the activity-choice covariations cannot be eliminated by subtracting an
additive stimulus-driven component of the responses, as it is a standard procedure
to isolate choice-related signals (Britten et al., 1996; Nienborg and Cumming,
2009; Kang and Maunsell, 2012) when calculating a unique CP combining all
stimulus levels. Fortunately, the modulation of the CP due to h(pCR) is relatively
small. This implies that the pooling of stimulus-corrected responses is approxi-
mately correct and is not expected to introduce major confounds in the estimation
of the grand CP when h(pCR) is the only source of activity-choice covariation
stimulus dependencies. However, if stimulus dependencies also exist through a
stimulus-dependent correlation CCi(pCR), a grand CP calculated as an average
across stimulus levels will reflect its cell-specific modulation. As we show in
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section S2 of the Supplementary Material, the grand CP calculated with the pool-
ing of stimulus-corrected responses (Kang and Maunsell, 2012) corresponds to a
weighted average of CPs

Grand CPi ≈
∑
j

wjCPi(sj), (7)

where the weights take the particular formwj = [p(sj|D = 1)+p(sj|D = −1)]/2.
This means that reducing the profile of CPi(s) to a single average may introduce
potential confounds when grand CP values are compared across cells with differ-
ent tuning properties, or across recordings from different areas or from different
tasks. For example, a high grand CPi for a certain cell i, compared to others
cells, may simply reflect that the sampled stimuli and their weights are such that
there is a particularly high CPi(sj∗) predominant in the weighted average. Con-
versely, a low grand CP may be due to CPi(sj) − 0.5 values of opposite sign for
different stimuli, which cancel out. In both cases, the high CP for a specific stim-
ulus sj∗ or the asymmetric CP values, are expected to reflect the tuning properties
of the cell and its role in the encoding mechanisms, e. g. in the presence of cell-
specific stimulus-dependent decision-related feedback (Bondy et al., 2018; Lange
and Haefner, 2017). Accordingly, apart from testing the presence of the predicted
threshold-induced CP modulation h(pCR), it is also our aim to determine whether
our new methods can also identify more cell-specific stimulus dependencies of the
activity-choice covariations.

2.2 Stimulus dependencies of choice-related signals in the re-
sponses of MT cells

We reanalyzed the data from Britten et al. (1996) with new refined methods devel-
oped based on the expected properties of the theoretically predicted h(pCR) mod-
ulation. We tested for this particular threshold-induced CP stimulus dependence
and then more generally characterized the CP(pCR) patterns found in the data using
clustering analysis.

2.2.1 Testing the presence of a threshold-induced CP stimulus dependence

The properties of h(pCR) determine how to examine this CP stimulus dependence.
First, because of its multiplicative modulation of the choice correlation, for highly
informative stimuli h(pCR) leads to an increase of the CP for cells with positive
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choice correlation (CPs higher than 0.5) and to a decrease of the CP for cells with
negative choice correlation (CPs lower than 0.5). This means that cells with aver-
age CP higher and lower than 0.5 should be treated separately or the dependence
through h(pCR) would cancel out or reflect the percentage of cells with average CPs
higher or lower than 0.5 in the data set. Second, because the effect is strongest
for highly informative stimuli, we have to deal with CP estimates with high ex-
pected estimation errors, since only in a small percentage of trials will choices
be contradictory to the highly informative stimuli. The standard error of ĈP can
be approximated as SEM(ĈP) ≈ 1/

√
12KpCR(1− pCR) (Bamber, 1975; Hanley

and McNeil, 1982, see Methods), where K is the number of trials. In the data
set the number of trials varies for different stimulus levels, and most frequently
K = 30 for highly informative stimuli. In that case, for pCR = 0.9, only 3 trials
for choice D = −1 are expected, and SEM(ĈP) ≈ 0.18. As can be seen from
Fig. 2, this error surpasses the order of magnitude of the CP modulations expected
from h(pCR). Therefore, we need to average the CP(pCR) profiles across cells not
only to balance out other potential cell-specific CP stimulus dependencies, but
also to reduce the standard error. This average should take into account a third
property of the h(pCR) modulation, namely that its effect is relative to the value
of CP(pCR = 0.5). Therefore, the average across cells should only include cells
for which a CP(pCR) can be calculated for each value of pCR in the range under
consideration. Otherwise, the shape across pCR values of the CP average across
cells would mostly reflect the changes in the distribution of CP(pCR = 0.5) val-
ues among the particular subset of cells contributing to the CP average for each
particular pCR value.

Given these points, we analyzed the CP(pCR) dependencies as follows. First,
for each cell and each stimulus coherence level we calculated a CP estimate if at
least 4 trials were available for each decision. We then binned the range of pCR into
five bins, [0− 0.3, 0.3− (0.5− ε), (0.5− ε)− (0.5 + ε), (0.5 + ε)− 0.7, 0.7− 1].
The value of ε was chosen such that only trials with the uninformative (zero co-
herence) stimulus were comprised in the central bin. Wider bins were selected
at the extremes of the range to compensate for higher ĈP standard errors. The
following results are robust to the selection of the minimum number of trials and
the binning intervals. CPs estimated at different coherence levels were assigned to
the bins according to the psychometric function, and a weighted average CP per
bin was calculated. The weights were assigned as inversely proportional to the
standard error of the estimates. This type of weighted average is used throughout
our analysis when combining CP values across stimulus levels or cells (see Meth-
ods for details). This procedure should produce for each cell a CP(pCR) curve with
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five dots, one per bin. However, for many cells in the data set this curve could not
be completed because the requirement on a minimum number of trials precluded
from estimating a CP value for some of the bins. We obtained a complete curve
for N = 107 cells. If not stated otherwise, subsequent analyses focus on this sub-
set of cells. Average CP(pCR) profiles across these cells were calculated separately
for cells with an average CP across pCR higher or lower than 0.5.

Fig. 3A shows the averaged CP(pCR) profiles. To assess the statistical signif-
icance of the observed CP dependencies on pCR we developed a new method to
construct surrogate data. These surrogates allow testing whether a pattern con-
sistent with the predicted CP increase for informative stimuli could appear under
the null hypothesis that the CP has a constant value independent of pCR (see Meth-
ods for details). For the cells with average CP higher than 0.5, we found that
the modulation of the CP was significant, in agreement with the model. For cells
with average CP lower than 0.5 the modulation was not significant. This differ-
ence could be explained by the following reasons. First, from a statistical point
of view, the fact that from the N = 107 cells included in this analysis 74 had a
CP higher than 0.5 and 33 lower, means that the estimation error of the average
is bigger for the average of the cells with CP < 0.5. Second, if the modulation
is multiplicative as predicted by h(pCR), its impact is expected to be smaller when
the magnitude of the activity-choice covariations is smaller. Indeed, CP values on
average are closer to 0.5 for the cells with CP < 0.5 (see Fig. 3A, consistently
with the results in Figure 5 of Britten et al. (1996)). We further confirmed the
robustness of the CP modulation in a wider set of cells. For this purpose, we re-
peated the analysis forming subsets separately including cells with a calculable
CP for the three bins with pCR lower or equal 0.5, and the three with pCR higher or
equal than 0.5. Also in this case the observed CP(pCR) pattern was robust for cells
with average CP higher than 0.5 (Fig. 3B, N = 171).

These results provide evidence supporting an increase of the CP for informa-
tive stimuli. However, the dependence found for cells with CP > 0.5 only par-
tially corresponds to the shape predicted by h(pCR). In particular, the CP increase
appears to be higher for pCR > 0.5. The finding of this asymmetry is consistent
with results reported in Britten et al. (1996), who found a significant but mod-
est effect of coherence direction on the CP (see their Figure 3). By experimental
design, the direction of the dots corresponding to choice D = 1 was tuned for
each cell separately to coincide with their most responsive direction. This means
that this asymmetry indicates that CPs tend to increase more when the stimulus
provides evidence for the direction eliciting a higher response. However, Britten
et al. (1996) found no significant relation between the magnitude of the firing rate
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Figure 3: Choice probability as a function of the ratio of choices for MT cells
during a random dots discrimination task (Britten et al., 1996). a) Average CP for
five bins spanning the range of pCR ≡ p(D = 1) (see main text). N = 107 cells
were preselected based on the criterion that CP values could be estimated for all
bins. The average was calculated separately for cells with average CP higher or
lower than 0.5. Dotted lines reflect the relationship predicted by the factor h(pCR)
(Eq. 5). Significance of the stimulus dependencies was evaluated against the null
hypothesis of a constant CP value using surrogate data (see Methods). b) Same
analysis but with a less demanding criterion of inclusion that separately averages
across cells with CP values available for bins corresponding to pCR values lower
or higher than pCR = 0.5. c) CP(pCR) profile for four example cells with average
CP lower and higher than 0.5, respectively. d) Standard error of the estimated CP
for the example cells as a function of pCR.
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and the CP (see their Figure 3), and we confirmed this lack of relation specifically
for the subset of N = 107 cells (result not shown). This eliminates the possibility
that higher CPs for high pCR > 0.5 values are due only to the higher responses, and
suggests a richer underlying structure of CP(pCR) patterns. Given that our refined
methods are designed to better characterize the within-cell CP(pCR) profiles, we
next combined them with nonparametric clustering to characterize any structure
beyond the specific threshold-induced predicted modulation.

2.2.2 Characterizing the patterns of CP stimulus dependencies with cluster
analysis

Beyond the evidence obtained from the average CPs of the presence of a CP de-
pendence on the stimulus level, screening CP(pCR) profiles for individual cells
shows substantial heterogeneity across cells (Fig. 3C). Across cells, the modula-
tion predicted by h(pCR) did not account for more variance than a model assuming
that the CP was constant. In particular, the coefficient of determination R2, quan-
tifying the difference in accounted variance across pCR values between the model
using h(pCR) and a model assuming a constant CP value, was on average -0.07
and -0.008 for cells with average CP lower and higher than 0.5, respectively. The
CP(pCR) profiles of individual cells vary with respect to h(pCR) (Fig. 3C). How-
ever, these low R2 values are not incompatible with the significant modulation
of the average shown in Fig. 3A, B, since the variability across cells is averaged
out at the population level. This diversity across cells suggests that together with
a stereotypical modulation h(pCR), other cell-specific sources of stimulus depen-
dence may exist. This cell-specific dependencies could be caused, for example,
by changes in the strength of feedback choice-related signals depending on the es-
timate of the stimulus (Bondy et al., 2018; Lange and Haefner, 2017). However,
given the high ĈP standard errors for the single cells (Fig. 3D), a substantial part
of this variability may also not reflect any underlying computational mechanisms.

To further assess the existence of CP stimulus dependencies, we carried out
unsupervised k-mean clustering (Bishop, 2006) to examine the patterns of CP(pCR)
without a priori assumptions about a modulation h(pCR) associated with the thresh-
old effect. Clustering was performed considering the profile of CP(pCR)− 0.5 for
each cell as a vector in a 5-dimensional space, where 5 is the number of bins, as
described above. To consider both the shape and sign of the modulation, distances
were calculated with the cosine distance (one minus the cosine of the angle be-
tween the vectors), and clustering was repeated for a range of pre-specified num-
ber of clusters. With two clusters the distinction between cells with CP higher or
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Figure 4: Symmetric and asymmetric dependencies of choice probability as a
function of pCR. a-b) CP as a function of pCR for clusters of the MT cells deter-
mined by k-means clustering. Each CP(pCR) profile corresponds to the center of
a cluster. Significance of the modulation was quantified as in Figure 3. a) Two
clusters (Nc = 2) for all cells. b) Further subclustering of cells with average
CP > 0.5 into two subclusters. c-d) Representation of the CP(pCR) profiles in
a two-dimensional space spanned by the cluster means. The horizontal axis is
defined by clusters 1 and 2 and closely aligned with CP− 0.5. c) Vertical axis is
defined as perpendicular to horizontal axis in the plane defined by the subcluster
means. Colors correspond to the clusters of panel b, with blue & cyan further
indicating subclusters of cells with average CP < 0.5 (see Fig. 7A in Supple-
mentary Material). d) Space defined by projection onto two templates: a constant
(x-axis) representing CP magnitude, and identity (y-axis) representing CP asym-
metry. Colors correspond to the clusters of panel b and numbers to the examples
of Figure 3C.
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lower than 0.5 is naturally recovered (Fig. 4A). Significance was again assessed
constructing surrogate CP(pCR) profiles and repeating the clustering analysis on
these surrogates. Again a significant dependence of the CP on pCR was found only
for the cluster associated with CP higher than 0.5.

To further separate CP(pCR) patterns, we iterated the clustering procedure to
divide each of the two clusters into subclusters. In the following, results are shown
for the case in which this procedure is applied separately to cells with average
CP higher and lower than 0.5, given that only for the former the modulation is
found significant. Average CP(pCR) profiles for the two subclusters of cells with
CP > 0.5 are shown in Fig. 4B. For both subclusters the CP(pCR) dependence
is significant. The larger cluster has a more symmetric shape of dependence on
pCR, with an increase of CP in both directions when the stimulus is informative.
Conversely, for the smaller cluster the dependence is asymmetric, with an increase
when the stimulus information content is consistent with the preferred direction
of the cells and a decrease in the opposite direction.

Introducing a second cluster allows us to represent each vector of CP(pCR) in
a two dimensional space (Fig. 4C). The horizontal axis corresponds to the sepa-
ration between the two initial clusters, and is closely aligned to the departure of
the average CP from 0.5. The vertical axis is defined by the vectors correspond-
ing to the centers of the two subclusters and is determined separately for the cells
with average CP higher and lower than 0.5 (see Methods for details). For cells
with CP > 0.5 this second axis can be associated with the degree to which the
CP(pCR) dependence is symmetric or asymmetric with respect to pCR = 0.5. Cells
for which the CP increases consistently with its preferred coherence lie on the
positive plane. To further support this interpretation of the axis, we repeated the
clustering procedure replacing the nonparametric k-mean procedure with a para-
metric procedure selecting a priori a symmetric and an asymmetric template for
the subclusters. As can be seen from the comparison of Fig. 4C-D, the space ob-
tained with template clustering reproduces well the representation in the space
obtained nonparametrically. For the cells with CP < 0.5, the separation between
the two subclusters has a less clear interpretation, consistently with the lack of sig-
nificance of the CP(pCR) dependence (see Fig. 7A in Supplementary Materials).

Similar results are obtained when increasing the number of clusters keeping all
cells together, instead of separating cells with average CP higher and lower than
0.5. Introducing a third cluster for all cells leaves almost unaltered the cluster of
cells with CP lower than 0.5 (Fig. 7B in Supplementary Material). The cluster of
cells with CP higher than 0.5 splits in two subclusters analogous to the ones found
from cells with CP higher than 0.5 alone. The distinction between cells with more
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symmetric and asymmetric CP(pCR) dependencies is robust to the selection of a
larger number of clusters, i.e. clusters with this type of dependencies remain large
when allowing for the discrimination of more patterns (Fig 7C in Supplementary
Materials).

This clustering analysis confirms the presence of stimulus-dependent choice-
related signals, and further indicates that these dependencies have a structure be-
yond the stereotypical dependence h(pCR). While the stimulus dependence h(pCR)
is generic for the threshold model, other CP stimulus dependencies through the
choice correlation CC will depend on the source of choice-related signals. The
structure of CP stimulus dependencies could reflect, for example, the structure of
noise correlations or of feedback projections. A more complete characterization
of the structure of these stimulus dependencies would require a data set system-
atically tiling the space of receptive fields and is beyond the scope of this work.
Alternatively, we here show that some main features of the patterns observed in
Fig. 4 can be captured with still a generic threshold model without a comprehen-
sive specification of the properties of connectivity and noise correlations.

In particular, we focus on two main features of these CP(pCR) dependencies
observed for the MT cells. First, the existence of asymmetric CP stimulus depen-
dencies. Second, that the average magnitude of the CP and the degree of asym-
metry of CP(pCR) negatively covary, as seen when comparing the more symmetric
(red) and asymmetric (green) profiles in Fig. 4B. To capture these two features
with a simple model, we studied a linear threshold model (Shadlen et al., 1996;
Haefner et al., 2013) in which the sensory neurons are subjected to global fluctu-
ations in their excitability (see Methods for details). Goris et al. (2014) showed
that this source of variability can account for a substantial amount of the vari-
ance of individual cells in visual sensory areas. In particular, they estimated that
a 75% of the variability in the responses in monkeys MT cells when presented
with drifting gratings could be explained by gain fluctuations. We applied their
method to estimate the strength of gain fluctuations in the data set of Britten et al.
(1996) and found that approximately half of the variance could be attributed to
gain fluctuations. It is thus pertinent to examine how these fluctuations can affect
activity-choice covariations.

We now show that a model accounting for gain fluctuations produces asym-
metric CP(pCR) patterns and a link between the magnitude of the CP and the shape
of CP(pCR) profiles. Fluctuations introduce a component of the noise covariance
matrix Σ proportional to the tuning curves (∝ f(s)fT (s), see Methods). This com-
ponent renders the covariance matrix stimulus dependent, i. e. Σ(s), which alters
the activity-choice covariation cov(ri, d) and the variance var ri of the responses

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 28, 2019. ; https://doi.org/10.1101/2019.12.27.889550doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.27.889550
http://creativecommons.org/licenses/by-nc-nd/4.0/


for each stimulus level. This stimulus dependence is inherited by the choice cor-
relation (Eq. 4) and hence by the CP. The strength σ2

G of the gain fluctuations
determines the strength of this cell-specific stimulus dependence. Furthermore,
the strength of the gain also affects the magnitude of the CP, by adding variability
to the responses unrelated to the choice. Therefore, the strength of the gain in-
troduces a covariation between the CP magnitude and its stimulus dependencies.
In more detail, we analyzed a purely feedforward threshold model with optimal
read-out weights (Haefner et al., 2013; Pitkow et al., 2015) and considered the
effect of gain fluctuations (see Methods and section S4 in the Suppl. Material).
For this model, we obtained the following stimulus dependencies:

CPi(pCR) ≈ 1

2
+

√
2

π
h(pCR)

[
CCi(pCR = 0.5) + σGλi(1− CC2

i (pCR = 0.5))Φ−1(pCR)
]

(8a)

CCi(pCR = 0.5) =
√

1− λ2iCCi0(pCR = 0.5). (8b)

Here λ2i ≡ σ2
rig

(pCR = 0.5)/σ2
ri

(pCR = 0.5) is the portion of the responses variance
of cell i caused by the gain fluctuations. The variance due to gain fluctuations is
σ2
rig

= σ2
Gf

2
i (Eq. 22). CCi0(pCR = 0.5) is the choice correlation that cell i would

have if there were no gain fluctuations (σ2
G = 0).

The stimulus dependence of CP(pCR) appears, like in the case without gain
fluctuations, through the factor h(pCR), common to all cells, which is symmetric.
Moreover, now an asymmetric dependence is also determined by Φ−1(pCR), which
maps the pCR to the associated stimulus s. The coefficient of this factor, βpCR ≡
σGλi(1 − CC2

i (pCR = 0.5)), is cell-specific. The choice correlation CCi(pCR =
0.5) also depends on the strength of the gain. The coefficient βCC ≡

√
1− λ2i

modulates CCi0(pCR = 0.5). The covariation between the magnitude of the CP
and the degree of asymmetry in CP(pCR) occurs as follows: when σ2

G increases,√
1− λ2i decreases, and thus CCi(pCR = 0.5) decreases. Conversely, the increase

of σ2
G increases both λi and 1 − CC2

i (pCR = 0.5), and thus the coefficient βpCR

increases, making the dependence of CP(pCR) on Φ−1(pCR) stronger. Therefore,
cells with CPi(pCR = 0.5) closer to 0.5 have a stronger asymmetric dependence
on pCR. Furthermore, a CPi(pCR = 0.5) closer to 0.5 leads to a smaller effect of the
multiplicative symmetric modulation h(pCR), further contributing to the negative
covariation between the magnitude and degree of asymmetry.

The covariation of the coefficients βpCR and βCC that modulate the strength
of the CP(pCR) dependence and the magnitude of CPi(pCR = 0.5), respectively,
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Figure 5: Modeling the influence of neuronal gain modulation on CP(pCR) pro-
files. a) Dependence of gain coefficients βCC and βpCR

(Eqs. 8 and S20) on the
strength of the gain fluctuations, σ2

G. βCC determines their effect on the choice cor-
relation CCi(s0) for the uninformative stimulus s0. βpCR

determines the degree of
asymmetry of the choice correlation dependence on the pCR. b) CP(pCR) profiles
for different combinations of CCi0(s0) and σ2

G. CCi0(s0) is the choice correlation
that would be obtained for s0 with no gain fluctuations. We display CP(pCR) for
four values of CCi0(s0) (lines vertically separated) and two values of σ2

G (solid
vs dashed). Each line represented by a symbol corresponds to a point in the two-
dimensional space defined by the symmetric and asymmetric templates introduced
in Fig. 4D. c) CP(pCR) profiles, represented in the same 2-D space, generated with
a uniform sampling of CCi0(s0) consistent with the observed average CPs of the
MT cells, and with a uniform sampling of the gain (σ2

G ∼ U(0, 0.1)). d) Analo-
gous to c, but with a nonuniform distribution in the 2-D space, reflecting structure
in the covariation of CCi0(s0) and σ2

G. e-f) CP(pCR) profiles corresponding to the
clusters centers obtained when sampling the space according to panels c and d,
respectively.
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is shown in Fig. 5A. To determine λ2i only in terms of the strength of the gain
we fixed the rate fi(pCR = 0.5) = 10 spike/s and considered the variance not
associated with the gain to be poissonian (σ2

ri
= fi), so that λ2i = 1/(1 + 0.1/σ2

G).
The range σ2

G = [0 − 0.5] corresponds to λ2i = [0 − 0.83]. Fig. 5B shows
CPs as a function of pCR for combinations of four values of CCi0(pCR = 0.5) and
two values of σ2

G. The other parameters of the cell responses are kept constant
as in Fig. 5A, so that σ2

G = 0.1 corresponds to λ2i = 0.5 and σ2
G = 0.01 to

λ2i = 0.09. The representation of these CP(pCR) profiles in the two dimensional
space defined by the same symmetric and asymmetric templates used in Fig. 4D
is also displayed. The model qualitatively reproduces the presence of symmetric
and asymmetric clusters, with a negative correlation between the magnitude and
the degree of asymmetry of the CP(pCR) profile. Fig. 5C-F further illustrate how
combinations of different CCi0(pCR = 0.5) and σ2

G populate the 2-D space of
CP(pCR) profiles. CP(pCR) profiles were simulated randomly sampling the average
CP values from the ones observed for the MT cells. For Fig. 5C,E, the fluctuation
gains were uniformly sampled from the interval σ2

G = [0 − 0.1], corresponding to
λ2i = [0 − 0.5]. For Fig. 5D,F, the 2-D space was not evenly sampled, simulating
a further dependence between CCi0(pCR = 0.5) and σ2

G values which determines
the exact balance between the symmetric and asymmetric dependencies observed
in the average profiles associated with each cluster.

This simple model provides a plausible explanation for two main features ob-
served in the CP(pCR) patterns of the MT cells, namely the existence of asymmet-
ric CP(pCR) dependencies and of a negative correlation with the CP magnitude.
The model does not require extra specifications of the properties of the tuning
functions or the connectivity and noise correlations structure. However, modeling
other aspects such as the fact that for the MT cells the CP(pCR) dependencies ob-
served are weaker for cells with average CP < 0.5 would demand further adding
a specific structure to the space of CP(pCR) profiles, namely such that λi was lower
for the cells with CP < 0.5. Heterogeneity in the proportion λi of variance ex-
plained by the gain is expected to be associated with the structure of connectivity
and noise correlations. In particular, while in the model we assumed that the
strength of the gain fluctuations was common to the whole population of sensory
neurons, the effective cell-specific impact of the fluctuations in the CP is expected
to depend on that structure, since the CP of a cell also depends on fluctuations
in the excitability of those cells with highly correlated activity, as determined by
the noise correlations (Haefner et al., 2013). Further characterizing the CP(pCR)
patterns of MT neurons in terms of the structure of the connectivity and noise cor-
relations would require data from simultaneous recordings systematically tiling
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the space of the cells response tuning functions.

2.3 Modeling stimulus-dependent choice-related signals with
GLMs

The analysis of CP stimulus dependencies in the data from Britten et al. (1996)
indicates that the stimulus modulates choice probabilities. Next we examine how
accounting for these stimulus dependencies can improve statistical models of
activity-choice covariations.

In particular, we study how stimulus-dependent choice-related signals affect
the fit of generalized linear models (GLMs) of neural responses (Truccolo et al.,
2005). Although CPs have been a traditional way to quantify the covariation of
neural responses with the choice, GLMs provide a more versatile framework in
which these covariations can be modeled jointly with the dependence on other
explanatory variables, such as the external stimulus, response memory, or inter-
actions across neurons (Park et al., 2014; Runyan et al., 2017). Typically, GLMs
are constructed in a modular way, such that each of these explanatory variables
contributes with a multiplicative factor that modulates the firing rate of a Pois-
son process. With this type of implementation, the choice modulates the rate as
a binary gain factor, with a different gain for each of the two choices. Its mul-
tiplicative nature already introduces some covariation between the impact of the
choice value on the rate and the one of the value of the other explanatory variables.
However, using a single coefficient (or kernel) to model the effect of the choice
on the neural responses may be insufficient if choice-related signals are stimulus
dependent in more complex ways, as suggested by the CP stimulus dependencies
that we observed.

To evaluate how accounting for stimulus dependencies of choice-related sig-
nals could improve the fitting of GLMs to the MT cells responses, we compared
the likelihood of three types of nested models. In the first type, the rate in each
trial is predicted only based on the external stimulus level. In a second type, the
effect of the choice is incorporated, but it contributes with a single predictor. In
a third type, multiple choice-related terms are introduced, with an indicator func-
tion that indicates which is the factor that is active for a certain subset of stimulus
levels. In more detail, the full model has the following form for the mean rate
µ(ri) of the responses of cell i:

log(µ(ri)) = Σ4
j=0ajs

j + ΣNc
j=1IPj(pCR)bjD. (9)
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The terms Σ4
j=0ajs

j model the stimulus influence with a fourth order polynomial,
and are the only constituents of the first type of model. The choice dependence is
modeled by ΣNc

j=1IPj(pCR)bjD, with Nc ∈ [1, 3] parameters. IPj(pCR) is an indica-
tor function which equals one if the pCR value belongs to the subset Pj associated
with the choice parameter bj , and is zero otherwise. For the second type of mod-
els Nc = 1 and hence the choice affects the predicted responses equally for all
stimulus levels. For the third type of model, when fitting multiple choice param-
eters, we determined the subsets of stimulus levels associated with each of those
parameters using the CP(pCR) profiles for a first characterization of the stimu-
lus dependencies (see Methods for further details). Like for the CP analysis, for
each cell we determined which coherence values could be included in the analysis
given a criterion requiring a minimum number of trials for each choice (at least
4). To avoid overfitting, we considered only models with Nc = 1, 2, 3. When
having multiple parameters instead of a single coefficient b, the vector b(pCR) with
components bj , j = 1, ..., Nc reflects stimulus dependencies analogously to the
CP(pCR) profile.

To compare the models, we separated the data into training and testing sets,
and calculated the average likelihood for each type of model using cross-validation
to account for overfitting. To quantify the increase in predictability when adding
the choice as a predictor we defined the likelihood relative increase (LRI) as
[L(choice, stimulus)−L(stimulus)]/[L(stimulus)−L0], where L0 is the like-
lihood of a model assuming a constant rate across all stimulus levels and no choice
modulation. That is, the LRI quantifies the relative increase of further adding the
choice as a predictor relative to the increase of previously adding the stimulus as a
predictor. This measure can be interpreted as an indicator of the relative influence
of the choice and the sensory input in the neural responses, hence expected to in-
crease from sensory to higher perceptual areas. Fig. 6A compares the LRI values
for models with a single choice parameter versus models that allow for multiple
choice parameters. LRIs are predominantly higher when allowing for multiple
parameters. We summarized these results in two ways: Fig. 6B shows the pro-
portion of cells in each cluster for which the LRI was higher than a ten per cent
and Fig. 6C shows the average LRI values. Both reflect the increase in LRIs when
using multiple choice parameters.

There are two reasons why accounting for stimulus-choice interaction terms
in GLMs can help to characterize the activity-choice covariations. First, the pat-
terns of b(pCR) parameters, similarly to CP(pCR) patterns, may be expected to have
a structure associated with specific cell properties and their role in the percep-
tual decision-making process. Second, even when the characterization of activity-
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Figure 6: Modeling stimulus-dependent choice-related signals with GLMs. a)
Raster plot of the cross-validated likelihood relative increase (LRI) of models
with a single choice parameter versus models with multiple choice parameters
associated with different stimulus levels. b) Proportion of cells with LRI> 0.1
for models with single and multiple choice parameters, grouped by the clusters as
in Fig. 4B. Cells not included in the set of 107 cells for which a CP value could
be estimated for each bin of pCR are labeled as ‘Others’. c) Average LRI values,
grouped as in b. d) CP(pCR) profiles of the three cells with the highest LRI in the
models with multiple parameters, as numbered in panel a.
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choice covariations is reduced to a single measure of strength, the use of GLMs
containing interaction terms will reassess the comparison across cells of how stim-
ulus driven versus choice driven different cells are, since these terms will improve
the fitting to a different degree for different cells, as a function of how stimulus
dependent the choice-related signals are.

To illustrate this, we can compare how adding the interaction terms affects the
ranking of the three cells with highest LRI when using multiple choice parameters
(Fig. 6A), which CP(pCR) profiles are shown in Fig. 6D. Although these cells also
have high LRI values with a single parameter, the rank of cell 1 and 2 flips because
of the higher CP(pCR) modulation of cell 2. Similarly, while the LRI with multi-
ple parameters for cell 1 and 3 are close, the LRI of cell 3 is substantially lower
with a single parameter, indicating that its pattern of stimulus dependence is less
well captured by a single parameter. The degree to which a model with interac-
tion terms improves the predictability will depend on the shape of the CP(pCR)
patterns, which themselves are expected to vary across areas or across cells with
different tuning properties. For example, we see in Fig. 6C that for the cluster
with an asymmetric CP(pCR) profile (cluster 3), the average LRI with only one
choice parameter suggests that this type of cells are not choice driven. This can be
understood because for the cells in this cluster the sign of the choice influence on
the rate is more stimulus dependent, and a single choice parameter gives a worse
prediction for choice influences of opposite sign at different stimulus levels. Over-
all, accounting for stimulus-choice interactions in GLMs is expected to provide a
more accurate comparison across neurons of the relative importance of stimulus
and choice influences in the responses.

3 Discussion
Our work makes several contributions to the understanding of how choice and
stimulus signals in neural activity are coupled. The first is that we analyzed a
general model of perceptual decision-making to analytically derive how the re-
lationship between sensory responses and choice depends on stimulus strength,
regardless of whether this relationship is due to feedforward or feedback choice
signals, when the choice is estimated from sensory responses through a threshold
mechanism. Second, we used the model insights to design a new, more sensitive,
methodology to measure the dependence of choice probabilities (CPs) on stimu-
lus strength. Third, we used this methodology to test our predictions using the
classic dataset by Britten et al. (1996). Interestingly, we found a richer structure
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in how CPs in MT neurons depend on stimulus strength than expected. In addi-
tion to a symmetric dependency predicted by the model, we found an asymmetric
dependency which we could explain by incorporating previously observed gain
fluctuations (Goris et al., 2014) into our model. Fourth, we showed that gener-
alized linear models (GLMs) that account for stimulus-choice interactions better
explain sensory responses in MT and allow for a more accurate characterization
of how stimulus-driven and how choice-driven a cell’s response is.

Previous work has demonstrated that solving analytically models of percep-
tual decision-making leads to important new insights on the interpretation of the
relationship between neural activity and choice (Bogacz et al., 2006; Gold and
Shadlen, 2007; Haefner et al., 2013). In particular, in previous work Haefner et al.
(2013) computed analytical CPs in a decision-making model in which sensory
responses give rise to choices through a decision threshold operating upon a feed-
forward linear read-out, when the two choices occur with equal probability. This
earlier work has been instrumental in better interpreting CPs, and in showing how
experimentally measured CPs relate to the read-out weights that the neurons have
in the stimulus internal decoder. Here we provided a general analytical solution
of CPs in a more general model, valid in the presence of both feedforward and
feedback choice signals. Moreover, our solution is valid when the stimulus is in-
formative and produces any ratio of choices, that is, when the rate of each choice
over trials is different. Accordingly, we derived the analytical dependency of CP
on the probability of one of the choices (pCR ≡ p(choice = 1)), which deter-
mines the ratio of choices and mediates the dependency of the CP on the stimulus
strength. Our model is therefore directly applicable to both discrimination and de-
tection tasks, for any stimulus strength that elicits both choices. As we illustrated,
these advances in the analytical solution of the decision-threshold model proved to
be very helpful to detect and interpret the stimulus dependency of choice-related
signals in neural activity.

One immediate practical outcome of the analytical solution of our model was
that it allowed us to understand some difficulties that have clouded previous at-
tempts to find stimulus dependencies of CPs in real neural data. Our model
showed that the predicted direction of the dependence of CP on pCR is different for
neurons with CP larger or smaller than chance (that is, neurons more responsive
for opposite choices). This opposite modulation would greatly reduce the mag-
nitude of the overall dependence of the CP on stimulus strength when averaging
over all neurons, as done in previous analyses (Britten et al., 1996). Furthermore,
the magnitude of the dependence of CPs on pCR also depends on how far is the
CP from chance level. This implies that neuron-specific dependencies should be
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characterized for each cell individually relative to the CP obtained with the unin-
formative stimulus. Only neurons for which a full individual CP profile can be es-
timated should be combined to determine stimulus dependencies at the population
level, or otherwise the overall profile of dependence will be dominated by vari-
ability associated with the different subsets of neurons contributing to the estimate
at each stimulus level. Informed by these insights we could derive more refined
methods with higher statistical power to characterize the within-cell dependencies
of choice-related signals on stimulus strength2. The application of these methods
to the classic neural data from MT neurons during a perceptual decision-making
task of Britten et al. (1996) allowed us to find stimulus dependencies of CPs, while
the simpler analysis pooling all neurons failed to find a significant effect.

Our understanding of how CP-stimulus dependencies may arise within the
decision-making process, and the resulting new methods to measure these depen-
dencies on data, should contribute to refine how CPs in neural populations are
measured and interpreted. Traditional analyses take grand averages across stim-
ulus levels and obtain a distribution of CPs, with a single CP value per neuron,
within a certain area or neural population. Areas or populations are then ranked in
terms of these grand-averaged CP values, to determine decision-making areas as
those areas which present a higher association between neural activity and choice.
In these calculations, it is a standard procedure to assume no effect of the stimu-
lus signal on the activity-choice covariation (e.g. Nienborg and Cumming, 2009;
Pitkow et al., 2015; Wimmer et al., 2015; Smolyanskaya et al., 2015) and to cal-
culate a single grand CP (Britten et al., 1996), combining trials from all stimulus
levels. This assumption has also been motivated by practical reasons, because
activity-choice covariations for single sensory neurons are small and pooling tri-
als across stimulus levels helps to obtain a better estimate of the average CP. The
grand CP is calculated directly as a weighted average of the CPs estimated for each
stimulus level, or, as most commonly, pooling the responses from trials of all stim-
ulus levels, after subtracting the stimulus-related component (Kang and Maunsell,
2012). We have used our theoretical CP analysis to show that the latter proce-
dure in fact corresponds to a specific type of weighted average, with the weights
determined by which stimuli are most frequent for each choice. Either way, in
the presence of a non-constant CP(pCR) profile, the weighted average may intro-
duce confounds in the assessment of the average strength. For example, CP(pCR)
patterns with different sign for different pCR values will result in lower average
CP values. The comparison of the average CP of a cell across tasks may mostly

2code will be available at Haefner Lab’s webpage
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reflect changes in the sampling of stimulus levels. Similarly, if the structure of
CP(pCR) patterns is related to the tuning properties, the comparison of the average
CP across cells with different tuning properties will mostly depend in the sam-
pling of stimulus levels. This limitation is not specific to average CP values, and
applies to other measures that consider choice-related and stimulus-driven compo-
nents of the response as separable, such as partial correlations (e. g. Zaidel et al.,
2017). Our work instead indicates that the shape of the CP(pCR) patterns can-
not be summarized in the average, and this shape may be more informative about
the role of the activity-choice covariations, when comparing across cells with dif-
ferent tuning properties, cells from different areas, or across task variations (e.g.
Romo and Salinas, 2003; Nienborg and Cumming, 2006; Nienborg et al., 2012;
Krug et al., 2016; Sanayei et al., 2018; Shushruth et al., 2018; Jasper et al., 2019;
Steinmetz et al., 2019). Our new methods allow individuating and quantifying
these CP patterns and hence a better characterization of the covariations between
neural activity and choice across neural populations.

Our work has also implications for improving generalized linear models of
neural activity, which are commonly used to describe neural responses in the pres-
ence of many explanatory variables that could predict the neuron’s firing rate, such
as the external stimulus, motor variables, autocorrelations or refractory periods,
and the interaction with other neurons (Truccolo et al., 2005; Park et al., 2014;
Runyan et al., 2017). While usually the stimulus and the choice are treated as sep-
arate explanatory variables, we extended the GLMs to include explicit interactions
between choice and stimulus. We showed that, consistently with the finding of
non-constant CP(pCR) patterns, these models improved the goodness of fit for the
responses of the MT cells. Importantly, properly accounting for stimulus-choice
interaction terms affected the quantification of how stimulus-driven or choice-
driven different cells are, quantified as the increased in predictive power when
further adding the choice as a predictor after the stimulus. This progress offers
a simple way to better evaluate which sets of neurons (e. g. across areas, or cell
types) have a higher association with the behavioral choice or the stimulus. Our
refined GLMs with multiple choice parameters associated with subsets of stimulus
levels allow characterizing the patterns in the vector of choice parameters analo-
gously to CP(pCR) patterns. Furthermore, our approach can be extended straight-
forwardly to GLMs that model stimulus dependencies of choice-related signals
across the time-course of the trials, using more complex kernels to account for the
effect of experimental covariates on the neural responses (Park et al., 2014). This
implies that GLMs with stimulus-choice interaction terms can also be applied to
experimental settings with multiple sensory cues presented at different times (e.g.
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Romo and Salinas, 2003; Sanayei et al., 2018) or a continuous time-dependent
stimulus (Nienborg and Cumming, 2009). Similarly, the interaction terms may
also help to model the influence of choice history in the processing of sensory
evidence in subsequent trials (Tsunada et al., 2019; Urai et al., 2019).

Theoretical and experimental evidence suggests that the patterns of stimulus
dependence of choice-related signals may be highly informative about the mech-
anisms of perceptual decision-making. Activity-choice covariations have been
characterized in terms of the structure of noise correlations and of feedforward
and feedback weights (Shadlen et al., 1996; Cohen and Newsome, 2009; Nien-
borg and Cumming, 2010; Haefner et al., 2013; Cumming and Nienborg, 2016).
Stimulus dependencies may be inherited from the dependence of noise correla-
tions on the stimulus (Kohn and Smith, 2005; Ponce-Alvarez et al., 2013), or
from decision-related feedback signals (Bondy et al., 2018). Experimental (Nien-
borg and Cumming, 2009; Cohen and Maunsell, 2009; Bondy et al., 2018), and
theoretical (Maunsell and Treue, 2006; Wimmer et al., 2015; Haefner et al., 2016;
Ecker et al., 2016) work indicates that top-down modulations of sensory responses
play an important role in the decision-making process. In particular, feedback sig-
nals are expected to show cell-specific stimulus dependencies associated with the
tuning properties (Lange and Haefner, 2017). Different coding theories attribute
different roles to the feedback signals, e. g. , conveying predictive errors (Rao and
Ballard, 1999) or prior information for probabilistic inference (Lee and Mumford,
2003; Fiser et al., 2010; Haefner et al., 2016; Tajima et al., 2016). Accordingly,
characterizing the patterns of stimulus dependence in activity-choice covariations
in association with the tuning properties of the cells is expected to provide insights
into the particular role of feedback signals and may help to discriminate between
alternative proposals. Such an analysis would require simultaneous recordings of
populations of neurons tiling the space of receptive fields, and the joint charac-
terization of noise correlations and tuning properties. Although this was beyond
the scope of this work, we have shown that our refined methods have a sufficient
statistical power to identify a nontrivial structure of stimulus-dependent choice-
related signals. The characterization of how the patterns of stimulus dependence
vary across brain areas, across cells with different tuning properties, or for differ-
ent types of sensory stimuli promises to provide further insights about the mech-
anisms of perceptual decision-making.

While we here analyzed single cell recordings, our conclusions hold for any
type of recordings used to study activity-choice covariations. This spans the range
from single units (Britten et al., 1996), multiunit activity (Sanayei et al., 2018),
and measurements resulting from different imaging techniques at different spatial
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scales like intrinsic imaging or fMRI (Choe et al., 2014; Thielscher and Pessoa,
2007; Runyan et al., 2017; Michelson et al., 2017). Given the increasing avail-
ability of population recordings, larger number of trials due to chronic recordings,
and the advent of stimulation techniques to help to discriminate the origin of the
choice-related signals (Cicmil et al., 2015; Tsunada et al., 2016; Yang et al., 2016;
Lakshminarasimhan et al., 2018; Fetsch et al., 2018; Yu and Gu, 2018), we expect
our tools to help gain new insights into the mechanisms of perceptual decision-
making.

4 Methods
We here describe the derivations of the CP analytical solutions, our new meth-
ods to analyze stimulus dependencies in choice-related responses, and describe
the data set from Britten et al. (1996) in which we test the existence of stimulus
dependencies.

4.1 An exact CP solution for the threshold model
We first derive our analytical CP expression valid in the presence of informative
stimuli, decision-related feedback, and top-down sources of activity-choice co-
variation, such as prior bias, trial-to-trial memory, or internal state fluctuations.
We follow Haefner et al. (2013) and assume a threshold model of decision mak-
ing, in which the choice D is triggered by comparing a decision variable d with a
threshold θ, so that if d > θ choice D = 1 is made, and D = −1 otherwise. The
identification of the binary choices as D = ±1 is arbitrary and an analogous ex-
pression would hold with another mapping of the categorical variable. The choice
probability (Britten et al., 1996) of cell i is defined as

CPi = p(ri|D=1 > ri|D=−1) =

∫ ∞
−∞

drip(ri|D = 1)

∫ ri

−∞
dr′ip(r

′
i|D = −1) (10)

and measures the separation between the two choice-specific response distribu-
tions p(ri|D = −1) and p(ri|D = 1). It quantifies the probability of responses to
choice D = 1 to be higher than responses to D = −1. If there is no dependence
between the choice and the responses this probability is CP = 0.5. To obtain an
exact solution of the CP we assume that the distribution p(ri, d) of the responses
ri of cell i and the decision variable d can be well approximated by a bivariate
Gaussian. Under this assumption, following Haefner et al. (2013) (see their Sup-
plementary Material) the probability of the responses for choice D = 1 follows
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the distribution

p(zi|D = 1) =
1

pCR

φ (zi; 0, 1) Φ

(
〈d〉+

σri,d
σri

zi − θ
σd|ri

; 0, 1

)
, (11)

where a more parsimonious expression is obtained using the z-score zi = (ri −
〈ri〉)/σri . This distribution is a skew-normal (Azzalini, 1985), where φ(·; 0, 1) is
the standard normal distribution with zero mean and unit variance, and Φ(·; 0, 1)
is its cumulative function. Furthermore, σri,d is the covariance of ri and d, σd|ri is
the conditional standard deviation of d given ri, and the probability of D = 1 is

pCR ≡ p(d > θ) = Φ

(
〈d〉 − θ
σd

)
, (12)

which determines the ratio of the choices or the rate of each choice over trials
(the choice ratio or choice rate, respectively). The choice D = −1 could equally
be taken as the choice of reference, resulting in an analogous formulation. Intu-
itively, pCR increases when the mean of the decision variable 〈d〉 is higher than
the threshold θ, and decreases when its standard deviation σd increases. Consis-
tently, for an uninformative stimulus, pCR = 0.5. Eq. 11 can be synthesized in
terms of pCR and the correlation coefficient ρrid, which was named by Pitkow et al.

(2015) choice correlation (CCi). In particular, defining α ≡ ρrid/
√

1− ρ2rid and

c ≡ Φ−1(pCR)/
√

1− ρ2rid

p(zi|D = 1) =
1

pCR

φ (zi; 0, 1) Φ (αzi + c; 0, 1) . (13)

The CP is completely determined by p(zi|D = −1) and p(zi|D = 1), and these
distributions depend only on pCR and the correlation coefficient ρrid. Plugging the
distribution of Eq. 13 into the definition of the CP (Eq. 10) an analytical solution
is obtained:

CPi =
1

2
+

T

(
Φ−1(pCR),

ρrid√
2−ρ2

rid

)
pCR(1− pCR)

, (14)

where T is the Owen’s T function (Owen, 1956). In section S1 of the Supplemen-
tary Material we provide further details of how this expression is derived. For an
uninformative stimulus (pCR = 0.5), the function T reduces to the arctangent and
the exact result obtained in Haefner et al. (2013) is recovered. The dependence on
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ρrid can be intuitively understood because under the Gaussian assumption the lin-
ear correlation captures all the dependence between the responses and the decision
variable d. The dependence on pCR reflects the influence of the threshold mecha-
nism, which maps the dependence of ri with d into a dependence with choice D
by partitioning the space of d in two regions.

While Eq. 14 provides an exact solution of the CP, in the Results section we
present and mostly focus on a linear approximation to understand how the stimu-
lus content modulates the choice probability. This approximation is derived (see
S1 in Suppl. Material) in the limit of a small ρrid, which leads to CPs close to
0.5 as usually measured in sensory areas (Nienborg et al., 2012). However, as we
show in the Results and further justify in the Suppl. Material this approximation is
robust for a wide range of ρrid values. The linear approximation relates the choice
probability to the Choice Triggered Average (CTA) (Haefner, 2015; Chicharro
et al., 2017), defined as the difference of the mean responses for each choice. The
mean response of cell i in trials where D = 1 is made is

〈ri〉D=1 =

∫ ∞
−∞

dri riP (ri|D = 1) =
1

pCR

∫ ∞
−∞

dzi[σrizi + 〈ri〉]φ(zi)Φ(αzi + c), (15)

where the last equality holds for P (ri|D = 1) having the form of Eq. 13. This
formula can be analytically solved to obtain a closed-form expression for the CTA

CTAi ≡ 〈ri〉D=1 − 〈ri〉D=−1 =
4h(pCR)√

2π
ρridσri =

4h(pCR)√
2πσd

σri,d. (16)

Furthermore, the fact that D is a binary variable, without any other assumption
about the distribution of the responses, implies that

〈ri〉D=1 = 〈ri〉+ (1− pCR)CTAi, (17)

and similarly for 〈ri〉D=−1 substituting 1−pCR by−pCR. That is, it is the conditional
mean of the less likely choice the one that departs more from 〈ri〉. The detailed
form of the linear approximation of the CP in terms of the CTA is described in the
Results section.

4.2 Neuronal data
To study stimulus dependencies in the relationship between the responses of sen-
sory neurons and the behavioral choice we analyzed the data from Britten et al.
(1996) publicly available in the Neural Signal Archive (www.neuralsignal.org).
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In particular, we analyzed data from file nsa2004.1, which contains single unit
responses of macaque MT cells during a random dot discrimination task. This file
contains 213 cells from three monkeys. We also used file nsa2004.2, which con-
tains paired single units recordings from 38 sites from one monkey. For the single
unit recordings, the direction tuning curve of each neuron was used to assign a
preferred-null axis of stimulus motion, such that opposite directions along the
axis yield a maximal difference in responsiveness (Bair et al., 2001). For paired
recordings, the direction of stimulus motion was selected based on the direction
tuning curve of the two neurons and the criterion used to assign it varied depend-
ing on the similarity between the tuning curves. For cells with similar tuning, a
compromise between the preferred directions of the two neurons was made. For
cells with different tuning, the axis were chosen to match the preference of the
most responsive cell. To minimize the influence in our analysis of the direction
of motion selection, we only analyzed the most responsive cell from each site.
Accordingly, our initial data set consisted in a total of 251 cells. The same qual-
itative results were obtained when limiting the analysis to data from nsa2004.1
alone. Further criteria regarding the number of trials per each stimulus level were
used to select the cells. As discussed below, if not indicated otherwise, we present
the results from 107 cells that fulfilled all the criteria required.

4.3 Analysis of stimulus-dependent choice probabilities
Our analysis of choice probabilities stimulus dependencies is based on examining
the patterns in the CP(pCR) profile as a function of the probability pCR ≡ p(D = 1).
We here describe how these profiles are constructed, the surrogates-based method
used to assess the significance of stimulus dependencies, and the clustering anal-
ysis used to identify different stimulus dependence patterns. Matlab functions
to calculate weighted average CPs, to obtain CP profiles, and to generate surro-
gates consistent with the null hypothesis of a constant CP are to be available at
http://www2.bcs.rochester.edu/sites/haefnerlab.

4.3.1 Profiles of CP as a function of the ratio of choices

We constructed CP(pCR) profiles instead of CP(s) profiles based on the prediction
from the theoretical threshold model of the modulatory factor h(pCR). We esti-
mated the pCR value associated with each random dots coherence level using the
psychophysical function for each monkey separately. For each coherence level,
we calculated a CP value if at least 15 trials were available in total, and at least 4
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for each choice. In the original analysis of Britten et al. (1996) stimulus dependen-
cies CP(s) were examined averaging across cells the CP at each coherence level.
This analysis did not separate the within-cell stimulus dependencies CP(s) from
variability due to changes in choice probabilities across cells. In particular, in the
data set the stimulus levels presented vary across cells, which means that for each
coherence level the average CP does not only reflect any potential stimulus de-
pendence of the CP but also which subset of cells contribute to the average at that
level. Therefore, we binned the range of pCR in a way that for each cell at least one
stimulus level mapped to each bin of pCR. We here present the results using five
bins defined as [0−0.3, 0.3−(0.5−ε), (0.5−ε)−(0.5+ε), (0.5+ε)−0.7, 0.7−1],
where ε was selected such that only trials with the uninformative (zero coherence)
stimulus were comprised in the central bin. Results are robust to the exact defi-
nition of the bins. We selected larger bins for highly informative stimulus levels
for two reasons. First, the stimulus levels used in the experimental design do not
uniformly cover the range of pCR, there are more stimulus levels corresponding
to pCR values close to pCR = 0.5. Second, the CP estimates are worse for highly
informative stimuli. In particular, the standard error of the CP estimates depends
on the magnitude of the CP itself (Bamber, 1975; Hanley and McNeil, 1982) but
for small |CP− 0.5| can be approximated as

SEM(ĈP) ≈ 1/
√

12KpCR(1− pCR), (18)

where K is the number of trials. The product pCR(1− pCR) is maximal at pCR = 0.5
and decreases quadratically when pCR approximates 0 or 1. Furthermore, in the
data set the number of trials K is higher for stimuli with low information, while
most frequently K = 30 for highly informative stimuli. We used these esti-
mates of the ĈP error to combine the CPs of Mk different stimulus levels as-
signed to the same bin k of pCR. The average CP(pCR,k) for bin k was calcu-
lated as CP(pCR,k) =

∑Mk

j wjCP(sjk) with normalized weights proportional to√
KjpCR,j(1− pCR,j). A full profile CP(pCR) could be constructed for 107 cells,

while for the rest a CP value could not be calculated for at least one of the bins
because of the criteria on the number of trials. Together with the profile CP(pCR)
we also obtained an estimate of its error as a weighted average of the errors, which
corresponds to

SEM(ĈP(pCR,k)) = 1/(
√

12Mk〈wU〉), (19)

where 〈wU〉 is the average of the unormalized weightswU,j ≡
√
KjpCR,j(1− pCR,j).

Following this procedure we can iteratively calculate weighted averages of the
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CPs across different sets. In particular, we used this same type of average to ob-
tain averaged CP(pCR) profiles across cells. Importantly, in contrast to the analysis
of Britten et al. (1996), we previously separated the cells into two groups, with a
positive or negative average CP−0.5 value, given that the effect of h(pCR) predicts
an inverse modulation by pCR.

4.3.2 Surrogates to test the significance of CP stimulus dependencies

Given a certain average profile CP(pCR), we want to assess whether the pattern
observed is compatible with the null hypothesis of a constant CP value for all pCR

values. In particular, because the error of the CP estimates is sensitive to the num-
ber of trials K and to pCR (Eq. 18), we want to discard that any structure observed
is only a consequence of changes ofK and pCR across the bins used to calculate the
CP(pCR) profiles. For this purpose, we developed a procedure to build surrogate
data sets compatible with the hypothesis of a flat CP(pCR) and that preserves at
each stimulus level the number of trials for each choice. The surrogates are built
shuffling the trials across stimulus levels to destroy any stimulus dependence of
the CP. However, because the responsiveness of the cell changes across levels ac-
cording to its direction tuning curve, responses need to be normalized before the
shuffling. Kang and Maunsell (2012) showed that, to avoid underestimating the
CPs, this normalization should take into account that mean responses at each level
are determined by the conditional mean response for each choice and also by the
ratio of choices. Under the assumption of a constant CP, they proposed an alter-
native z-scoring, which estimates the mean and standard deviation correcting for
the different contribution of trials corresponding to the two choices (see section
S2 in the Suppl. Materials for details of their method).

We applied the z-scoring of Kang and Maunsell (2012) to pool the responses
within an interval of stimulus levels with low information, preserving only the
separation of trials corresponding to each choice. We selected the interval from
−1.6% to 1.6% of coherence values, which comprises a third of the informative
coherence levels used in the experiments. Because these stimuli have low infor-
mation they lead to pCR values close to pCR = 0.5 and hence we can approximate
the CP as constant within this interval. The fact that the factor h(pCR) is almost
constant around pCR = 0.5 (see Figure 2A) further supports this approach. We
used this pool of neural responses to sample responses for all stimulus levels in
the surrogate data set. For each stimulus level of the surrogate data, the number
of trials for each choice was preserved as in the original data. In these surrogates,
apart from random fluctuations, any structure in the CP(pCR) profiles can only be
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produced by the changes in K and pCR across bins. To test the existence of sig-
nificant stimulus dependencies in the original CP(pCR) profiles we calculated the
differences ∆CPk = CP(pCR,k+1) − CP(pCR,k) for the bins k = 1, ..., 4. To test
for an asymmetric pattern with respect to pCR = 0.5 the average of ∆CPk across
bins was calculated. To test for a symmetric pattern the sign of the difference was
flipped for the bins corresponding to pCR < 0.5 before averaging. When testing
for a pattern consistent with the modulation predicted by the threshold model, the
shape was inverted for cells with average CP lower than 0.5. The same procedure
was applied to each surrogate CP(pCR) profile. We generated 8000 surrogates and
estimate the p-value as the number of surrogates for which the average ∆CP was
higher than for the original data.

4.3.3 Clustering analysis

We used nonparametric and parametric clustering analysis to examine the pat-
terns in the CP(pCR) profiles beyond the stereotyped shape h(pCR) predicted from
the threshold model. We first used nonparametric k-mean clustering for an ex-
ploratory analysis of which patterns are more common among the 107 cells for
which a complete CP(pCR) profile could be constructed. The clustering was im-
plemented calculating cosine distances between vectors defined as CP(pCR)−0.5.
The selection of this distance is consistent with the prediction of the threshold
model that a different pattern is expected for cells with a CP higher or lower than
0.5. We examined the patterns associated with the clusters as a function of the
number of clusters to identify robust patterns of dependence (see Figure S1B,C).
We then focused on a symmetric and an asymmetric pattern of CP(pCR) with re-
spect to pCR = 0.5. To better interpret these two clusters we complemented the
analysis with a parametric clustering approach in which a symmetric and asym-
metric template were a priori selected to cluster the CP(pCR) profiles. To assess the
significance of the CP(pCR) patterns we repeated the same clustering procedure for
surrogate data generated as described above. See section S3 in the Supplementary
Material for a more detailed description of the construction, visualization, and
significance assessment of the CP(pCR) patterns.

4.4 The effect of response gain fluctuations on choice probabil-
ities

Consider the classic feedforward encoding/decoding model (Fig. 1B, Shadlen
et al., 1996; Haefner et al., 2013) in which a population of sensory responses,
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r = (r1, ..., rn), is read out into a decision variable

d = w>r ≡
n∑
i=1

wiri, (20)

where w are the read-out weights. The categorical choiceD is made by comparing
d to a threshold θ. We model the responses as ri = fi(s)+ξi, with tuning functions
f(s) = (f1(s), ..., fn(s)) and a covariance structure Σ of the neuron’s intrinsic
variability ξi. The read-out weights w selected such that d represents an optimal
estimate ŝ of the sensory stimulus s are determined by the noise covariance matrix
and the tuning curves (Haefner et al., 2013; Pitkow et al., 2015; Moreno-Bote
et al., 2014). In particular, the decoder is optimal if the weights are optimized to
the structure of the covariance matrix at the decision boundary (uninformative)
stimulus s0:

w =
Σ−1(s0)f

′(s0)

f ′T (s0)Σ−1(s0)f
′(s0)

, (21)

where f ′(s0) and Σ(s0) are the derivative of the tuning curves and the noise co-
variance matrix, respectively, for s = s0.

While these read-out weights are optimized according to the noise structure
at the decision boundary, the variability and co-variability of neural responses
are stimulus dependent (Lee et al., 1998; Josić et al., 2009). Neural responses
with Poisson-like statistics have a variance proportional to the mean firing rate.
Furthermore, excitability gain fluctuations lead to a squared dependence of the
variance on the firing rate (Pillow and Scott, 2012; Goris et al., 2014; Ecker et al.,
2016). Goris et al. (2014) showed that in MT gain fluctuations can account for
more than 75% of the variance in the responses to sinusoidal gratings. These
excitability fluctuations appear if the tuning curve is modulated by trial-to-trial
fluctuations such that, for cell i in trial k, fik(s) = gkfi(s), where gk is a gain
modulatory factor. The covariance matrix can be partitioned as

Σ(s) = Σ̄(s) + σ2
Gf(s)f

T (s), (22)

where σ2
G is the variance of the gain g and Σ̄ is the covariance not associated with

the gain, which comprises the Poisson-like variability. For simplicity, we only
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considered the case in which a global gain fluctuation affects the response of the
whole population. More generally, the magnitude of the gain may vary across
cells, as well as the degree to which the gain co-fluctuates across cells. Further-
more, we also approximated Σ̄ as stimulus independent to focus on how gain fluc-
tuations produce choice probabilities stimulus dependencies. For this purpose, we
studied how the CP is affected when the optimal read-out weights of Eq. 21 are
used to construct the decision variable but the responses have a covariance struc-
ture Σ(s) different from Σ(s0), rendering the weights suboptimal for s 6= s0. We
used a linear approximation on s − s0 of the stimulus-dependent covariance ma-
trix in Eq. 22 and determined how these stimulus dependencies affect the CP (see
section S4 in the Suppl. Material for details). In the Results section we study the
relation between the strength of the gain fluctuations σ2

G, the magnitude of the CP,
and the CP dependence on pCR.

4.5 Generalized Linear Models modeling the interaction be-
tween stimulus and choice predictors

The existence of a stimulus dependence of the CP indicates that the activity-choice
covariation is modulated by the stimulus level. When modeling the neural re-
sponses with Generalized Linear Models (GLMs), it is common to treat the sen-
sory stimulus and the choice as separate predictors with no interaction, using a
single parameter (or kernel) to account for the effect of the choice (Park et al.,
2014). We examined the improvement in the fit of the neural responses when us-
ing a GLM model in which several parameters model the influence of the choice,
associated with different levels of the stimulus. In more detail, we fitted nested
Poisson GLM models to the spike counts of each trial, progressively increasing the
number of parameters. In the simplest model, a constant rate is assumed. We then
considered models with the stimulus level as a predictor. In particular, a fourth
order polynomial of the coherence level is used to model the firing rate. We sub-
sequently added the choice as a separate single predictor. Finally, we considered
models with multiple parameters (Nc = 2, 3) associated with the choice predictor,
each accounting for the influence of the choice in a certain range of pCR. The full
model has the form Eq. 9. For the models with multiple choice parameters, the
subsets of pCR associated with each choice-parameter level were determined based
on the CP(pCR) profile. In particular, for Nc > 1, the existence of nonmono-
tonic CP(pCR) profiles, such as the symmetric pattern around pCR = 0.5, indicated
that it would be suboptimal to tile the domain of pCR with Np bins and assign a
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different choice-parameter level to each bin. Accordingly, we first estimated the
CP(pCR) profile of each cell and then used k-mean clustering with an Euclidean
distance to cluster the components of CP(pCR), corresponding to the bins of pCR,
into Nc subsets. A different GLM choice-parameter bj was then assigned to each
choice-parameter level j = 1, ...Nc.

We compared the predictive power of the nested models using cross-validation.
To avoid that the choice-parameters fitted were affected by the ratio of trials with
each choice, we matched the number of trials of each choice used to fit the model
at each choice-parameter level. In more detail, we first merged in two pools, one
for each choice separately, the trials of all stimulus levels assigned to the same
choice-parameter level. We then determined the number of trials from each pool
to be included in the fitting set as an 80% of the trials available in the smallest pool,
hence matching the number of trials selected from each choice. The remaining
trials were left for the testing set. This procedure was repeated for each choice-
parameter level and a GLM model was fitted on the fitting set obtained combining
the selected trials for all levels. This random separation between fitting and testing
data sets was repeated 50 times and the average predictive power was calculated.
Performance was then quantified comparing the increase in the likelihood of the
data in the testing set with respect to the likelihood of the null model which as-
sumes a constant firing rate (L0). To determine if incorporating the choice as a pre-
dictor improved the prediction, we examined the likelihood relative increase (LRI)
defined as the ratio of the likelihood increase L(choice, stimulus)−L(stimulus)
and the increase L(stimulus)− L0. For the models allowing for multiple choice
parameters we selected the most predictive model from Nc = 2, 3. To evalu-
ate the improvement when considering stimulus-dependent choice influences we
compared the LRI obtained for the models with a single or multiple parameters.
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Supplementary Material

S1 The analytical expression of choice probability
We here provide details of how the CP analytical expression of Eq. 14 is obtained
from the definition of Choice Probability (Eq. 10) when the probability of the re-
sponses for each choice has the form of Eq. 13, derived from the threshold model.
Plugging the distribution of Eq. 13 into the definition of the CP we get

CPi =
1

2pCR(1− pCR)

1− α
∞∫
−∞

dxφ(αx+ c)Φ2(x)−

 ∞∫
−∞

dxφ(x)Φ(αx+ c)

2 .
(S1)

This expression is derived analogously to Eq. S1.2 in Haefner et al. (2013), and
generalizes the case examined there, which corresponds to c = 0. To solve this
expression we use some results involving integrals of normal distributions:∫ ∞

−∞
dxxqφ(x)Φn(αx+ c) =(1− q)Φ

(c
b

)
+ q

α

b
φ
(c
b

)
+ 2(1− n)T

(
c

b
,

1√
1 + 2α2

)
,

(S2)

where b =
√

1 + α2 and T is the Owen’s T function (Owen, 1956). The equality
above is valid for the cases q = 0, n = 1, 2, and q = 1, n = 1, which we used to
derive the expressions of the CP and CTA. Using the equality for q = 0, n = 1, 2
into Eq. S1 we obtain the CP expression of Eq. 14. On the other hand, the case
with q = 1, n = 1 allows deriving the expression of the CTA (Eq. 16) from Eq. 15.

The CP linear approximation of Eq. 2 is generically valid when the activity-
choice covariations are well captured by the linear dependence between the re-
sponses and the choice. We here only present a restricted derivation, specifically
from the exact CP solution resulting from the threshold model. It can be checked
that the same approximation follows for example from the exact solution of the
CP obtained when taking the conditional distributions p(ri|D) to be Gaussians
(Dayan and Abbot, 2001; Carnevale et al., 2013) and not skew normals (Eq. 13)
like for the threshold model. Expanding Eq. 14 in terms of ρrid we get a polyno-
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mial approximation

CPi =
1

2
+

√
2h(pCR)

π
ρrid +

∞∑
k=1

d2k

 exp

[
− (Φ−1(pCR))2

2
2

2−ρ2
rid

]
2πpCR(1−pCR)

√
2−ρ2

rid


dρ2krid

∣∣∣∣
ρrid=0

ρ2k+1
rid

(2k + 1)!
.

(S3)
This expansion contains only odd order terms, producing a symmetry of CP−0.5
with respect to the sign of ρrid. This explains why Haefner et al. (2013) found that
the linear approximation was accurate for a wide range of ρrid values, since the
choice correlation needs to be high so that the contribution of ρ3rid is relevant. Up
to order 3

CPi ≈
1

2
+

√
2h(pCR)

π

[
ρrid +

1− (Φ−1(pCR))2

12
ρ3rid

]
. (S4)

Since Φ−1(0.5) = 0, for pCR values for which |1−(Φ−1(pCR))2| < 1 the third order
term makes a smaller contribution than for the uninformative case. This is true for
Φ−1(pCR) ∈ (−

√
2,
√

2), which leads to pCR ∈ (0.08, 0.92). This means that the
linear approximation is expected to be an even better approximation in this range
than for pCR = 0.5. Furthermore, for (Φ−1(pCR))2 < 1 the third order contribution
is positive, so that for the pCR values fulfilling this constraint, pCR ∈ (0.16, 0.84),
the linear approximation is expected to underestimate the CP. The range of pCR

in which the linear approximation underestimates or overestimates the CP can be
seen in Figure 2 of the main article.

S2 The relation between the weighted average CP and the grand
CP of z-scored responses
We here review how z-scoring is used to calculate a grand CP (Britten et al., 1996)
pooling the responses across stimulus levels. Kang and Maunsell (2012) provided
a qualitative explanation of why the standard z-scoring of the responses leads to
an underestimation of the CP (see their Figure 1) and proposed a corrected z-
scoring to pool the responses across stimulus levels. We use the expression of
the CP in terms of the CTA (Eq. 2) to understand the connection between these
procedures and the calculation of a weighted average of the CP values across
stimulus levels. We show that the underestimation of the CP with standard z-
scoring is associated with an improper use of unormalized weights, while the
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corrected z-scoring corresponds to a particular choice of normalized weights. We
will use zs to refer to the standard z-scored responses and zc to refer to responses
with the corrected z-scoring. In more detail, for each stimulus level s, the standard
z-scoring corresponds to zs = (r − µr|s)/σr|s. The corrected z-scoring of Kang
and Maunsell (2012) balances the weight of the choice conditional means and
variances in the normalization and considers zc = (r − µ̃r|s)/σ̃r|s with

µ̃r|s ≡
µr|D=1,s + µr|D=−1,s

2
(S5)

and

σ̃r|s ≡

√
σ2
r|D=1,s + σ2

r|D=−1,s

2
+

∆µ2
r|D,s

4
, (S6)

where ∆µr|D,s is the CTA for the stimulus level s. As discussed in the Methods,
µr|D=1,s = µr|s+(1−pCR)∆µr|D,s (Eq. 17) and µr|D=−1,s = µr|s−pCR∆µr|D,s. Ac-
cordingly, µ̃r|s = µr|s+(1/2−pCR)∆µr|D,s. On the other hand, σ̃r|s only introduces
a second-order correction with respect to the standard normalization with σr|s. In
particular, given the skew-normal distributions (Eq. 13) resulting from the thresh-
old model, both ∆µ2

r|D,s and σ2
r|D=±1,s depend quadratically in the strength of the

activity-choice covariations, as determined by the choice correlation (Arnold and
Beaver, 2000; Azzalini, 2005). Accordingly, to understand the difference between
the standard and corrected z-scoring, we neglect the correction in σ̃r|s and focus
on how demeaning with µ̃r|s differs from using µr|s. Equivalently to Eq. 2, the
grand CP from the pooled z-scored responses can be approximated as

CPz ≈
1

2
+

1

2
√
π

∆µz|D
σz

, (S7)

where we drop the cell index i for simplicity. In relation to the main article,
we here use a different notation such that CTAzi = ∆µz|D and var zi = σz.
Furthermore, in this section we explicitly indicate which measures are calculated
for a fixed stimulus, while a CP or ∆µz|D without a stimulus subindex refers to
the grand measures. In the case of pCR, it is defined as pCR ≡ p(D = 1|s) as
before, although previously the dependence on the fixed stimulus was implicit. In
relation to the grand CP, the CTA is calculated from the distributions p(z|D = 1),
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p(z|D = −1), and σz from p(z). When the stimulus level is fixed, the same
linear approximation holds for CP(s) in terms of ∆µz|D,s and σz|s, calculated
from p(z|D = 1, s), p(z|D = −1, s), and p(z|s), respectively. Given that at all
stimulus levels σz|s = 1, also σz = 1, and hence the CP can be understood as
reflecting the CTA of the normalized responses.

We now use the decomposition of the mean as the average of the condi-
tional means across stimulus levels to express ∆µz|D in terms of ∆µz|D,s. Given
µr|D=1,s = µr|s+(1−pCR)∆µr|D,s, we obtain Ep(zs|D=1,s)[zs] = (1−pCR)∆µr|D,s/σr|s.
Given µr|D=−1,s = µr|s − pCR∆µr|D,s, Ep(zs|D=−1,s)[zs] = −pCR∆µr|D,s/σr|s. Ac-
cordingly, with the standard z-score

∆µzs|D =

∫
ds p(s|D = 1)µzs|D=1,s −

∫
ds p(s|D = −1)µzs|D=−1,s

=

∫
ds [p(s|D = 1)(1− pCR) + p(s|D = −1)pCR]

∆µr|D,s
σr|s

(S8)

Taking into account that ∆µr|D,s/σr|s corresponds in the linear approximation to
2
√
π(CPr|s − 1/2), Eq. S8 can be expressed for the CP as

CPzs ≈
1

2
+

∫
ds [p(s|D = 1)(1− pCR) + p(s|D = −1)pCR]

[
CPr|s −

1

2

]
(S9)

We can now understand why the standard z-scoring is inadequate to estimate the
grand CP. In particular, CPzs corresponds to a weighted average of the CP values
for each stimulus level, with weights defined as wzs(s) ≡ p(s|D = 1)(1− pCR) +
p(s|D = −1)pCR. However, these weights are not normalized, because

∫
wzsds 6=

1.
Oppositely, the grand CP calculated with the corrected z-scoring corresponds

to a weighted average with normalized weights. Following the same procedure to
decompose the mean as an average of conditional means, given Ep(zc|D=1,s)[zc] =
∆µr|D,s/(2σr|s) and Ep(zc|D=−1,s)[zc] = −∆µr|D,s/(2σr|s) we obtain

∆µzc|D =

∫
ds p(s|D = 1)µzc|D=1,s −

∫
ds p(s|D = −1)µzc|D=−1,s

=

∫
ds

1

2
[p(s|D = 1) + p(s|D = −1)]

∆µr|D,s
σr|s

(S10)
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and

CPzc ≈
1

2
+

∫
ds

1

2
[p(s|D = 1) + p(s|D = −1)]

[
CPr|s −

1

2

]
≈
∫

ds
1

2
[p(s|D = 1) + p(s|D = −1)] CPr|s

(S11)

where the weighted average has weights wzc(s) ≡ [p(s|D = 1) + p(s|D =
−1)]/2, which are properly normalized to

∫
wzcds = 1. If across all stimulus

levels the rate of the choices is balanced, i. e. if p(D = 1) = p(D = −1), then
the weights simplify to wzc(s) = p(s), that is, the CPs are averaged according to
the relative number of trials available for each stimulus level given the experimen-
tal settings and recording contingencies.

Kang and Maunsell (2012) already suggested to use an explicit weighted av-
erage of the CP values as an alternative to the grand average calculated with the
corrected z-scores. The analysis above shows that in fact the use of z-scores cor-
responds in the linear approximation to a specific weighted average, with weights
wzc . These weights can be reexpressed as

wzc(s) =
p(s|D = 1) + p(s|D = −1)

2
=
Ks[p(D = −1) pCR + p(D = 1) (1− pCR)]

2p(D = 1)p(D = −1)
∑

sKs
,

(S12)

where
∑

sKs is the total number of trials and Ks the trials with stimulus s. Be-
cause the denominator is common to all stimulus levels, the weights are propor-
tional to Ks[p(D = −1) pCR + p(D = 1) (1 − pCR)], in contrast to the weights
inversely proportional to the standard error of the CP estimates (Eq. 18), which
are proportional to

√
KspCR(1− pCR). This suggests that, although the corrected

z-scoring does not induce any systematic bias, the weighted average adapted to
the estimation errors may be preferable. For this reason, we used this latter type
of weighted average when combining CP values across stimulus levels or across
cells, and only use the pooling procedure to construct the surrogates for signifi-
cance testing. In that case, it is the CP variability across stimulus levels what is
evaluated, and the number of trials generated for each choice at each stimulus level
is preserved to avoid that the original and surrogate CPs differ due to estimation
issues.

S3 Clustering analysis
We here provide further details about the alternative procedures used to cluster the
CP(pCR) profiles, about the visualization of the clusters, and about how to assess
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the significance of the CP(pCR) patterns. As a first step, we implemented a non-
parametric k-mean clustering analysis to cluster the CP(pCR) profiles of the 107
cells for which a full profile could be constructed. We started usingC = 2 clusters
(Fig. 4A) and found that this nonparametric approach, when using the cosine dis-
tance, recovered qualitatively the same patterns obtained when separating a priori
the cells into cells with an average CP higher or lower than 0.5 (Fig. 3A). From
the patterns of the two clusters only the one of cells with an average CP higher
than 0.5 was found significant (see below for details on the significance analysis).
Given this difference in significance, we subsequently increased the number of
clusters in two alternative ways. In a first approach, we a priori separated the cells
with an average CP higher or lower than 0.5 and continued the clustering analysis
separately for these two groups. Fig. S1A shows the obtained subclusters with
C = 2 for the two groups separately. As a second approach, we increased the
number of clusters to C = 3 without any previous separation in two groups. The
resulting clusters (Fig. S1B) indicated that the separation of the two subclusters
for the cells with average CP higher than 0.5 naturally appears without enforcing
the separation. Increasing the number of clusters without any a priori separation
provided evidence that the two main patterns for cells with average CP higher than
0.5 are robust and still contain a substantial portion of the cells even for C = 6
(Fig. S1C). We therefore focused our posterior analysis in characterizing the fea-
tures of these symmetric and asymmetric patterns.

To evaluate the significance of the CP(pCR) patterns found with the clustering
analysis we repeated the same clustering procedure for the surrogate data gener-
ated as described in Methods. For each surrogate, each of the C clusters found
was associated with the most similar original pattern of the ones being tested. For
example, in Fig. 4B, when testing the significance of the symmetric and asymmet-
ric patterns for cells with average CP higher than 0.5, each of the two surrogate
cluster patterns was assigned to the most similar pattern among the symmetric
and asymmetric one. Subsequently, the average of ∆CPk across bins was cal-
culated for the original and surrogate profiles as explained in the Methods. The
p-value corresponding to each original pattern was calculated from the number of
surrogate patterns associated with it for which the average ∆CPk was higher.

To visualize the clusters in Figs. 4 and 5 we constructed orthonormal axes
using either the vectors corresponding to the center of the clusters or the selected
templates, for nonparametric and parametric clustering, respectively. In the case
of nonparametric clustering, the x-axis corresponds to the separation between the
two initial clusters, and is closely aligned to the departure of the average CP from
0.5. The y-axis was built as a projection orthogonal to the x-axis of the vector
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Figure S1: Subclustering of CP(pCR) dependencies. a) Analogous to Fig. 4B
but showing also the average profiles for the two subclusters obtained from cells
with average CP < 0.5. b) Nonparametric k-mean clustering with three clusters
determined from all cells. c) Nonparametric k-mean clustering with six clusters
determined from all cells. The clusters more similar to the ones of Fig. 4B are
correspondingly coloured.

connecting the center of the two subclusters. When templates were used, the x-
axis corresponds to the template with a constant CP and the y-axis was built as an
orthogonal projection of the template with an asymmetric profile (a vector with a
positive unit slope).

S4 The effect of gain fluctuations on the CP
We here derive the expression of the CP in terms of the strength of the gain fluc-
tuations σ2

G, as expressed in Eq. 8 in the main paper. Consider that the decoder
used is optimal for the uninformative stimulus at the decision boundary (Eq. 21)
and that the covariance matrix is stimulus dependent due to a component induced
by gain fluctuations (Eq. 22). Given the linear approximation

CPi(s) ≈
1

2
+

√
2h(pCR)

π
CCi(s) (S13)

the stimulus dependence of CPi(s) appears through the factor h(pCR) and also
through the stimulus dependence of the choice correlation CCi(s). For the thresh-
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old model, the choice correlation depends on the read-out weights and on the noise
covariance matrix as (Haefner et al., 2013)

CCi(s) =
(Σ(s)w)i√

w>Σ(s)w
√

Σii(s)
(S14)

where Σii = σri and σ2
d = w>Σ(s)w. When the stimulus presented is the unin-

formative s0, the covariance Σ(s0) is the one for which the decoder w has been
optimized. Using the optimal weights (Eq. 21) in Eq. S14 the choice correlation
has the form

CCi(s0) =
f ′i(s0)σd(s0)

σri(s0)
, (S15)

which is proportional to the ratio between the neural threshold of neuron i (∝
f ′i(s0)/σri(s0)) and the behavioral threshold (∝ 1/σd(s0)) (Pitkow et al., 2015).
The CCi depends on the sensitivity of cell i itself because the weights are opti-
mized to invert the noise correlations between the responses by Σ−1(s0). How-
ever, if Σ(s) is stimulus dependent as in the presence of gain fluctuations (Eq. 22),
this cancelation of the effect of the noise covariance only holds for the uninforma-
tive stimulus. In a first order approximation, the covariance matrix changes with
an stimulus change s− s0 as

Σ(s) = Σ(s0) + σ2
G[f(s0)f

′T (s0) + f ′(s0)f
T (s0)](s− s0) (S16)

and for this covariance the weights are not completely optimal. We used this
expression of Σ(s) to derive the form of the terms (Σ(s)w)i, w>Σ(s)w, and
Σii(s) which determine the CCi(s) in Eq. S14. Plugging Eq. S16 into Eq. S14,
and given the relation between the stimulus content and pCR (Eq. 12), the following
dependence of the choice correlation on pCR is obtained:

CCi(pCR) ≈ CCi(p0) + σG
σrig(p0)√

σ2
rig

(p0) + σ̄2
ri

[1− CCi(p0)
2]Φ−1(pCR), (S17)

where p0 corresponds to the uninformative stimulus s0, and σ2
rig

and σ̄2
ri

= Σ̄ii are
the part of the variance of cell i associated or not with the gain, respectively. That
is, σ2

rig
(s) = σ2

Gf
2
i (s) and σ2

ri
= σ2

rig
+ σ̄2

ri
.
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The expressions of CCi(s0) in Eq. S15 and of CCi(pCR) in Eq. S17 indicate
how the strength of gain fluctuations σ2

G determines the dependence of choice cor-
relation on pCR. The dependence of CCi(s0) on σ2

G appears through the standard
deviation of the cell σri(s0). Given the covariance matrix of Eq. 22

σri(s0) = σ̄ri

√
1 + σ2

rig
(s0)/σ̄2

ri
= σ̄ri

√
1 + σ2

Gf
2
i (s0)/σ̄2

ri
, (S18)

where σ̄2
ri

= Σ̄ii. A dependence could also appear through σd(s0) in Eq. S15,
but Ecker et al. (2016) have shown that in a model with biologically plausible
receptive fields (Maunsell and Treue, 2006) the information about the stimulus
(and hence σ2

d(s0)) is mostly unaffected by the magnitude of σ2
G given that the

tuning curves and their derivatives vary orthogonally. Accordingly, we considered
σ2
d(s0) invariant to σ2

G so that the dependence of the choice correlation CCi(s0)
on σ2

G is

CCi(s0) =
CCi0(s0)√

1 + σ2
Gf

2
i (s0)/σ̄2

ri

, (S19)

where CCi0(s0) is the choice correlation for the case of no gain fluctuations, σ2
G =

0. Combining Eqs. S17 and S19 we obtain the expressions of Eq. 8 in the main
paper, which show how overall the choice correlation depends on the strength of
the gain fluctuations σ2

G and on pCR:

CCi(p0) = βCCCCi0(p0), βCC(σ2G) ≡ 1√
1 + σ2Gf

2
i (s0)/σ̄2ri

.

CCi(pCR) ≈ CCi(p0) + βpCRΦ−1(pCR), βpCR(CCi(p0), σ
2
G) ≡

σ2Gfi(s0)

σri
[1− CCi(p0)

2].

(S20)
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