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Figure 6. Information complexity for simulated model-free and model-based (either the 
stochastic-transition model in a or the deterministic-transition model in b) agents 
performing the two-step task. The simulations mixed model-free and model-based 
strategies using a strategy-mixing coefficient (𝑤), with 𝑤 = 1 indicating a fully model-
based strategy. Information complexity was measured between all of the past features 
and simulated responses (green circle), along with reduced information complexity 
measured by omitting either the best first-step response, actual first-step response, 
second-step transition, or reward on the previous trial  (purple circles, from darker to 
lighter fill, respectively; note that information values computed when omitting the previous 
best response are nearly entirely under the values of information complexity computed 
with all past features). Points indicate mean information values across 100 simulations 
for each value of 𝑤. SEM is smaller than size of the dots in all cases. 
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Consistent with these simulations and further refuting claims that strategic flexibility 
increases along a continuum from model-free to model-based learning, fits of these 
models to behavior did not show systematic, monotonic relationships with information 
complexity. Specifically, we fit to each subject’s behavioral choices a learning model that 
mixed both the model-free algorithm and the model-based algorithm (either the 
stochastic-transition model or the deterministic-transition model, which produced roughly 
equivalent fits: median BIC [interquartile range] across subjects for the stochastic-
transition model=292 [241–337], and for the deterministic-transition model=292 [240–
337]; Wilcoxon signed-rank test for H0: median BIC difference=0, p=0.687), using the 
same strategy-mixing coefficient (𝑤) as in the simulations above. Using the fits from these 
models, we found no correlation between the best-fitting value of 𝑤 and information 
complexity in either the fits provided by the stochastic transition model (Fig. 7a) or the 
deterministic transition model (Fig. 7c). Additionally, we found no correlation between 𝑤 
from either model and predictive accuracy across subjects, suggesting that neither model-
based nor model-free strategy type provided a distinct advantage for this task, which is 
consistent with previous reports that found no correlations between 𝑤 and overall 
accumulated reward (Kool et al., 2016; Fig. 7a,c). We additionally found no correlation 
between the strategy-mixing coefficient from either model and RT (Fig. 7b,d).  

 
Thus, although we do not know the exact algorithms human subjects used to 

perform the two-step task, these simulations and fits yielded two useful insights that 
support our behavioral findings. The first is that both model-free and model-based agents 
can, depending on their formulation, have relatively high information complexity. This 
result further dissociates computational complexity (which is higher in the model-based 
algorithm) from information complexity. The second is that information complexity 
depends critically on the specific task features each strategy uses to learn from the past 
and guide future choices, which for the model-free agent tended to be the observed first-
step responses and for the model-based agent tended to be the latent transition 
probabilities between first-step responses and second-step states. 
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Figure 7. Comparison of the per-subject (circles) proportion model-based (MB) responses 
(best-fitting w parameter in the stochastic and deterministic mixture models) and: (a,c) 
information complexity (green) or predictive accuracy (orange), and (b,d) RTs. rho 
indicates Spearman’s correlation coefficient; p-values are for H0: rho=0. 
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Discussion 
 

We measured differences in complexity between model-based and model-free 
learning strategies for a canonical learning task and report four main findings. First, 
human subject tendencies towards either model-free or model-based strategies were 
both associated with higher information complexity, a measure of the flexibility with which 
different patterns of past observations were used to guide choices. Second, while these 
increases in information complexity did not affect average reward obtained, they were 
associated with choices that had higher predictive accuracy of subsequent task features. 
Third, these increases in information complexity were associated with longer RTs, 
irrespective of whether the source of increased information complexity was based on a 
model-free or model-based strategy. Fourth, these similarities were apparent despite the 
two strategy types using very different task features to drive learning: subjects using more 
model-free strategies tended to learn by associating past first responses with reward, 
whereas subjects using more model-based strategies tended to use the inferred, latent 
transition probabilities between the first and second states. 

 
Our results highlight the importance of distinguishing different forms of complexity, 

in particular distinguishing computational complexity, which measures resource 
demands, from information complexity, which measures strategic flexibility. These two 
forms of complexity covary under some, but not all, conditions. For example, increasing 
computational complexity by providing more computational resources can, in principle, 
support increased flexibility in how information is processed and therefore higher 
information complexity if these computations are used to expand the feature space over 
which inference is performed (Feldman & Crutchfield, 1998; Griffiths & Tenenbaum, 
2003). However, as we showed, this relationship does not always hold: a standard model-
free learning algorithm, although less computationally complex, can be equally or more 
information complex relative to a standard model-based learning algorithm.  

 
More generally, our analyses of information complexity oppose the notion that 

model-free decision strategies are necessarily more automatic, inflexible, and habitual 
than model-based strategies, at least for human subjects performing the two-step task 
(Daw et al., 2011; Decker et al., 2016; Eppinger et al., 2013; Gläscher et al., 2010; Pauli 
et al., 2018). Both model-based and model-free strategies were associated with increases 
in information complexity, even if the specific information being encoded differed. 
Moreover, increases in information complexity for both model-free or model-based 
strategies were accompanied by similar increases in mean RT. Given that shorter RTs 
have been associated with habitual, automatic processing, such as for certain forms of 
statistical learning (Filipowicz, Anderson, & Danckert, 2014; Jabar, Filipowicz, & 
Anderson, 2017a, 2017b; Nissen & Bullemer, 1987; Robertson, 2007; Turk-Browne, 
Jungé, & Scholl, 2005), these results imply that the primary difference between model-
free versus model-based strategies is not automaticity versus flexibility. Instead, both 
strategies can make flexible use of past task features to guide future behavior, but model-
free strategies focus more on observed task features (e.g., responses, rewards, stimuli), 
whereas model-based strategies focus more on latent task features (e.g., transition 
structures). 
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Our results also highlight the usefulness of information-based metrics for 
assessing the nature of the strategy used by individual subjects. Although these metrics 
do not require an explicit model of the underlying strategy, we showed that they can be 
used to identify specific task features that drive learning. As predicted by a model-free 
algorithm, subjects with strong model-free tendencies tended to rely on their previous 
first-level choice. Conversely, subjects with strong model-based tendencies tended to rely 
on the inferred transition between the first and second states. However, those subjects 
also relied on the previous first-level choices to a degree that was not predicted by 
standard model-based algorithms. This discrepancy likely reflects a high diversity of 
model-based strategies used by participants for this task, which can appear similarly 
model-based even if they differ substantially from the common model-based algorithm 
used to fit their responses (Akam et al., 2015; da Silva & Hare, 2020). Moreover, there 
are likely substantial individual differences in the exact nature of these strategies, making 
it even more difficult to assess their computational complexity (da Silva & Hare, 2020). A 
more extensive information-based analysis of the features used by subjects on these 
kinds of tasks to drive learning might help inform our understanding of the specific model-
based strategies they use. 

 
Moreover, our results highlight potential future uses of the information bottleneck 

for assessing performance optimality across a range of strategies (Tavoni, 
Balasubramanian, & Gold, 2019). A strong feature of the information bottleneck method 
is that it can in principle compute an upper bound on the maximum achievable predictive 
accuracy for any given level of information complexity, and this without requiring explicit 
knowledge of the strategy itself (Gilad-Bachrach et al., 2003; Palmer et al., 2015; Tishby 
et al., 2000). This approach differs from previous approaches that assessed optimality for 
this task in terms of average payouts but do not take into account the nature and amount 
of information used by subjects to achieve those payouts (Kool et al., 2016). However, 
this upper bound can be difficult to compute, particularly for tasks such as the two-step 
task in which observations depend on subject responses.  Nevertheless, future work 
should aim to better understand relationships between information complexity, predictive 
accuracy, and optimality, including how their balance is controlled by different individuals 
under different task conditions. New insights are likely to come from the kinds of 
information-bottleneck analyses that have been used previously to evaluate complexity-
optimality tradeoffs in machine learning (Gilad-Bachrach et al., 2003; Tishby & Zaslavsky, 
2015) and biological systems (Palmer et al., 2015). Moreover, this kind of analysis 
provides a strong framework in which to study notions of bounded rationality (Gigerenzer 
& Gaissmaier, 2011; Simon, 1955) and resource rational decision-making (Lieder & 
Griffiths, 2019; Tavoni, Doi, Pizzica, Balasubramanian, & Gold, 2019) that are becoming 
more prominent in assessing the rationality of human decision-making.  

 
In summary, our results show that model-free and model-based learning 

strategies, often described as representing different ends of a continuum of information-
processing flexibility, instead can be quite similar in terms of how much, how effectively, 
and how quickly they process information to perform a canonical learning task. These 
results imply that rather than distinguishing the flexibility of different learning processes, 
akin to the distinctions between automatic and deliberative or habitual and goal-directed 
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processing that are often ascribed to these strategies, tasks such as the two-step task 
may instead distinguish between strategies that are equally complex but learn from 
different task features. A better understanding of these distinctions will help understand 
how and when these processes should be expected to vary across different healthy and 
psychiatric populations. 
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