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Abstract 
 

Different learning strategies are thought to fall along a continuum that ranges from 
simple, inflexible, and fast “model-free” strategies, to more complex, flexible, and 
deliberative “model-based strategies”. Here we show that, contrary to this proposal, 
strategies at both ends of this continuum can be equally flexible, effective, and time-
intensive. We analyzed behavior of adult human subjects performing a canonical learning 
task used to distinguish between model-free and model-based strategies. Subjects using 
either strategy showed similarly high information complexity, a measure of strategic 
flexibility, and comparable accuracy and response times. This similarity was apparent 
despite the generally higher computational complexity of model-based algorithms and 
fundamental differences in how each strategy learned: model-free learning was driven 
primarily by observed past responses, whereas model-based learning was driven 
primarily by inferences about latent task features. Thus, model-free and model-based 
learning differ in the information they use to learn but can support comparably flexible 
behavior. 
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Statement of Relevance 
 

The distinction between model-free and model-based learning is an influential 
framework that has been used extensively to understand individual- and task-dependent 
differences in learning by both healthy and clinical populations. A common interpretation 
of this distinction that model-based strategies are more complex and therefore more 
flexible than model-free strategies. However, this interpretation conflates computational 
complexity, which relates to processing resources and generally higher for model-based 
algorithms, with information complexity, which reflects flexibility but has rarely been 
measured. Here we use a metric of information complexity to demonstrate that, contrary 
to this interpretation, model-free and model-based strategies can be equally flexible, 
effective, and time-intensive and are better distinguished by the nature of the information 
from which they learn. Our results counter common interpretations of model-free versus 
model-based learning and demonstrate the general usefulness of information complexity 
for assessing different forms of strategic flexibility.  
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Introduction 
 

Humans can adopt a broad range of flexible strategies that learn from past 
observations to make accurate predictions about the future (Filipowicz, Anderson, & 
Danckert, 2016; Nassar, Wilson, Heasly, & Gold, 2010; O’Reilly, 2013; Stöttinger, 
Filipowicz, Danckert, & Anderson, 2014; Tenenbaum, Kemp, Griffiths, & Goodman, 
2011). A prominent framework for capturing some of this range of strategies in humans 
is based on a distinction between model-free and model-based reinforcement learning 
(Daw, Niv, & Dayan, 2005; Decker, Otto, Daw, & Hartley, 2016; Eppinger, Walter, 
Heekeren, & Li, 2013; Gläscher, Daw, Dayan, & O’Doherty, 2010; Kool, Cushman, & 
Gershman, 2016; Pauli, Cockburn, Pool, Pérez, & O’Doherty, 2018; Sutton & Barto, 
1998). Model-free strategies learn action policies that aim to maximize reward using only 
past stimulus-action outcomes. In contrast, model-based strategies learn action policies 
using both past stimulus-action outcomes and explicit representations of learned, latent 
statistical properties of the environment (e.g., transition probabilities between different 
states). Tendencies towards either strategy have been used as measures of individual 
learning traits. Tendencies towards model-free strategies have been equated with 
propensities towards low-level habit formation and are often interpreted as relatively 
automatic, habitual and strategically inflexible. Conversely, tendencies towards model-
based strategies have been equated with more deliberate, goal-directed, and flexible 
learning abilities (Daw et al., 2005; Gillan, Otto, Phelps, & Daw, 2015; Gläscher et al., 
2010; Kool, Gershman, & Cushman, 2017, 2018; Pauli et al., 2018).  In general, people 
tend to use a mix of model-free and model-based strategies, which can depend on the 
specific task conditions (Kim, Park, O’Doherty, & Lee, 2018; Kool et al., 2017) and 
individual differences in age (Decker et al., 2016; Eppinger et al., 2013) and psychiatric 
symptoms (Sebold et al., 2014; Voon et al., 2015). 

 
The idea that model-based strategies are more flexible than model-free strategies 

seems to have arisen from the observation that, in general, model-based strategies are 
more computationally complex than model-free strategies. Computational complexity 
corresponds to the computational resources (e.g., computational time, memory) required 
to implement an algorithm, and how these resources scale with increased input. Resource 
demands depend on the algorithm used to implement a specific learning strategy and can 
be computed in different ways (Bossaerts & Murawski, 2017; Bossaerts, Yadav, & 
Murawski, 2019; Kool et al., 2018; Polonio, Di Guida, & Coricelli, 2015). These resource 
demands are generally lower for model-free algorithms, which track only stimulus-action 
outcome mappings, than for model-based algorithms, which must also learn, update, and 
use representations of other task-relevant variables. As such, this language has begun 
to permeate the human model-based and model-free decision-making literature, such that 
model-based strategies are often described as having more strategic ‘sophistication’ or 
‘complexity’ than model-free strategies, which is equated with more flexible behavior 
(Decker et al., 2016; Doll, Simon, & Daw, 2012; Kim et al., 2018; Kool et al., 2018).  

 
However, computational complexity is not an appropriate measure of strategic 

flexibility. Strategic flexibility concerns the relationship between inputs (observations from 
the environment) and outputs (behavioral responses). In general, the more forms that this 
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relationship can take, the more flexible the behavior. Computational complexity does not 
explicitly measure this type of flexibility. For example, the exact same strategy, with the 
same relationship between input and output, can be implemented by different algorithms 
that use different computational resources more or less efficiently (which is a focus of the 
field of optimization in computer science; Cormen, Leiserson, Rivest, & Stein, 2009). 
Instead, strategic flexibility is better measured by statistical or information complexity 
(Bialek, Nemenman, & Tishby, 2001; Grünwald & Rissanen, 2007; Myung, 
Balasubramanian, & Pitt, 2000). Unlike computational complexity, statistical complexity 
depends directly on the relationship between input and output, reflecting how flexibly a 
model or algorithm changes its behavior (output) when trained on different patterns of 
data (input). This form of complexity can be estimated in decision-making tasks using a 
method inspired by the information-bottleneck, which measures the amount of past 
information subjects use to make decisions (Tishby, Pereira, & Bialek, 2000). In general, 
strategies that incorporate more past information are regarded as being more flexible, 
because this increased information indicates a greater diversity in how past observations 
influence current behavior (Filipowicz, Glaze, Kable, & Gold, 2020; Gilad-Bachrach, 
Navot, & Tishby, 2003; Glaze, Filipowicz, Kable, Balasubramanian, & Gold, 2018). Thus, 
while model-based learning strategies may be more computationally complex, this does 
not guarantee that they are more information complex, and therefore does not also 
guarantee that they are more flexible. 

 
The goal of this study was to measure the strategic flexibility of model-based 

versus model-free learning in terms of their information complexity. To achieve this goal, 
we estimated information complexity from behavioral choice data of human subjects 
performing a canonical task used to distinguish these strategies (Daw, Gershman, 
Seymour, Dayan, & Dolan, 2011). We used an information-based measure that was 
applied directly to each subject’s choice data and did not require explicit knowledge of the 
strategy they used to generate those choices. Contrary to common descriptions of model-
based strategies as more complex and more flexible, we show that both model-based 
and model-free strategies can show similar degrees of information complexity on this 
task, with comparable levels of accuracy and response times (RTs). We further show that 
this information-based approach identifies a more fundamental distinction between these 
types of strategies, which is the nature of the feature spaces over which they perform 
inference: observable features for model-free learning and latent features for model-
based learning.  
 
Methods 
 

Participants and behavioral task. We assessed information complexity from 
behavioral data of human subjects performing the two-step task (Daw et al., 2011), which 
is commonly used to measure model-based and model-free learning. The data were 
obtained from a publicly available dataset consisting of 197 subjects, recruited on 
Amazon Mechanical Turk, who performed the two-step task that Kool and colleagues 
describe as the “Daw two-step task” (see Kool et al., 2016 for full task and subject details; 
data available at https://github.com/wkool/tradeoffs). For this task, subjects choose one 
of two first-step actions that each lead stochastically to one of two second-step states. 
Each first-step action leads distinctly to one of the two possible second-step states with 
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0.7 probability (common transition) and to the other state with 0.3 probability (rare 
transition; Fig. 1a). Subjects then choose between two additional actions in this second 
state, which lead stochastically to a reward. Reward probabilities for each second-step 
action drift independently according to a Gaussian random walk (μ=0, 𝜎=0.025) with 
reflecting boundaries at 0.25 and 0.75 (Fig. 1b). A subject’s goal in this task is to 
accumulate as much reward as possible.  

 
This task was designed to identify propensities towards more model-based or 

model-free strategies (Daw et al., 2011; Kool et al., 2016). Purely model-free strategies 
rely solely on the observed stimulus-action mappings without attempting to learn or use 
latent information about the transition between the first and second steps. As a result, 
model-free strategies tend to repeat first-step actions that lead to second-step reward, 
regardless of whether the first to second-step transition was rare or common. This 
tendency can be measured behaviorally as a main effect of reward on the probability of 
repeating a previous first-step action (Fig. 1c). In contrast, model-based strategies 
account for the latent transition structure of the task environment and therefore select 
first-step actions that maximize the chance of returning to a rewarding second-step state. 
This tendency can be measured behaviorally by the interaction of reward and transition 
type (rare or common) on the probability of repeating a first-step action (Fig. 1c).  

 
All available data were used for our analyses without any additional exclusions. As 

outlined in the original article, the original study was approved by the Harvard Committee 
on the Use of Human Subjects and all subjects gave informed consent. 
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Figure 1. Description of the two-step task. (a) The subject makes a first-step choice 
between two alternatives (L or R) that lead probabilistically to one of two second-step 
states (filled or open rectangles). Subjects then make a second choice that leads 
probabilistically to a reward. (b) Example reward probabilities for each second-step 
option, which drift independently according to a Gaussian random walk. (c) Examples of 
response patterns for model-free and model-based strategies. Model-free strategies tend 
to repeat first-step choices that lead to a reward, ignoring the transition structure of the 
environment. A behavioral signature of these strategies is a main effect of reward on the 
probability of repeating the same first-step choice as the previous trial. Model-based 
strategies use the transition structure of the environment to make choices. A behavioral 
signature of model-based strategies is an interaction between reward and previous 
transition type (common or rare) on the probability of repeating the same first-step choice 
as the previous trial. 
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Measures of information complexity and predictive accuracy. We computed 
the information complexity and predictive accuracy of each subject using a method 
inspired by the information-bottleneck (Tishby et al., 2000). This method assumes that 
subjects form an internal belief or model 𝑀 from past task observations (𝑋!"#$) to predict 
some future aspect(s) of the task (𝑋%&$&'(). The amount of information 𝑀 encodes from 
𝑋!"#$ is measured by their mutual information; i.e., 𝐼!"#$ = 𝐼(𝑋!"#$;𝑀). Larger values of 
𝐼!"#$ correspond to models with higher information complexity (Filipowicz et al., 2020; 
Gilad-Bachrach et al., 2003; Glaze et al., 2018). Predictive accuracy was measured as 
the mutual information between the model and future observations; i.e., 𝐼%&$&'( =
𝐼(𝑀;𝑋%&$&'(). Larger values of 𝐼%&$&'( correspond to models with high predictive accuracy 
(Gilad-Bachrach et al., 2003; Palmer, Marre, Berry, & Bialek, 2015; Tishby et al., 2000). 
The main strength of this information-based measure is that it quantifies information 
complexity without requiring any explicit knowledge of the strategy producing the 
behavior. 

 
To compute 𝐼!"#$, we first identified the four observed and latent variables that in 

principle could be used to perform the task: 1) the first-step response (𝑅1; a directly 
observed quantity), 2) the second-step transition (𝑆2; a directly observed quantity), 3) the 
reward after second-step response (𝑅𝑤; a directly observed quantity), and 4) the first-
step response that would maximize the chance of obtaining a reward (𝑅1∗; a latent 
quantity). These four variables were combined for each trial to form past trial “features” 
(𝐹), which could take 16 unique possible values. Information complexity was computed 
for each subject by measuring the mutual information between the features from the 
previous trial	𝐹*+ and the first-step responses on the current trial 𝑅1,: 

 
 Information Complexity = 𝐼(𝐹*+; 𝑅1,) =

∑ ∑ 𝑝(𝑓, 𝑟) log- 8
!(%,')
!(%)!(')

9'∈2+!%∈3"#  
(1) 

 
Predictive accuracy was computed for each subject as the mutual information 

between subject first-step responses (𝑅1,) and the aspect of the task they were 
attempting to predict, 𝑅1,∗ , which corresponds to the best action to take, given the current 
task contingencies, to maximize reward (Fig. 2a): 

 
 Predictive Accuracy  = 𝐼(𝑅1,; 𝑅1,∗) =

∑ ∑ 𝑝(𝑟, 𝑟∗) log- 8
!(','∗)
!(')!('∗)

9'∗∈2+!∗'∈2+!  
(2) 

 
This measure of predictive accuracy captures the effectiveness of first-step responses; 
i.e., how well subjects are making responses that will most likely lead them to the best 
second-step states. 
 

Given the Markovian nature of both the process generating the stimuli and the 
processes guiding the models that are generally used to capture subject strategies in this 
task, past features included only elements of the previous trial and did not extend further 
in the past. Similar to previous applications of this method to experimental data, we also 
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assumed that subjects treated the task in a Markovian manner, by including the latent 
variable 𝑅1*+∗  in the past-feature vector as a proxy for the history of previously observed 
transitions (Filipowicz et al., 2020; Glaze et al., 2018). We also omitted the second-step 
response from the past-feature vector, because the information provided by this past 
element does not inform the first-step responses in simulations beyond the information 
provided by the combination of the second-step transition (S2) and the reward (Rw), and 
including this element in the past-feature vector did not improve our ability to distinguish 
between simulations of model-based and model-free agents. Omitting the second-step 
response also helps estimate mutual information more accurately, by reducing the size 
of the joint distribution between the past features and first-step responses (𝑝(𝐹*+, 𝑅1,) 
and thus limiting misestimates due to the “curse of dimensionality” (Bellman, 1961). 

 
Complexity and accuracy can also be computed with respect to second-step 

responses (𝑅2) and best second-step choices (𝑅2∗). However, the response policies 
governing these choices are generally assumed to be identical across strategies. 
Moreover, previous analyses have primarily concentrated on first-step responses, 
because these responses provide the clearest distinction between model-free and model-
based strategies. Therefore, because of the dimensionality issues highlighted above, we 
chose to omit these features from our analyses. 
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Figure 2. Calculation of information complexity. (a) Full information complexity was 
measured as the mutual information between task features one trial in the past (F-1, 
including first-step responses, R1-1, second-step transitions, S2-1, reward received, Rw-1, 
and best first responses, R1*-1) and current responses (R10). Predictive accuracy was 
measured as the mutual information between R10 and R1*0. (b) Reduced information 
complexity was measured as the mutual information between all except one element from 
the previous trial and subject responses (R10). This example shows the calculation of 
reduced complexity when omitting past first-step responses. 
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Behavioral metrics of model-based and model-free learning. A common 
behavioral metric of model-based and model-free learning is to measure each subject’s 
main effect of reward and reward-by-transition-type interaction (Fig. 1c). Each subject’s 
main effect of reward was computed as the proportion of trials on which the subject 
repeated the same first-step response as the previous trial after receiving a reward minus 
the proportion of repeated first-step responses when no reward was received 
(independent of second-step transition). Each subject’s reward-by-transition-type 
interaction was computed as the proportion of trials on which the subject repeated first-
step responses after reward/no reward on previous common/rare transitions, 
respectively, minus the proportion of repeated first-step responses after no reward/reward 
on previous common/rare transitions, respectively (Kool et al., 2016). 

 
Computational models. We fit the model-based and model-free learning 

algorithms used in (Kool et al., 2016) to each subject’s choice data. The model-free 
algorithm is based on a SARSA(λ) temporal-difference learning algorithm that updates Q-
values (𝑄43) of stimulus-action pairs (𝑠5,6 , 𝑎5,6), where i indicates the step (1 or 2) and j 
denotes the state (used only for second-step states after 𝑎+ in 𝑠+ is taken, given that there 
is only one first-step state). The Q-values at the first-step are updated according to: 

 
 𝑄43(𝑠+, 𝑎+) = 𝑄43(𝑠+, 𝑎+) + 𝛼?𝑄43@𝑠-,6 , 𝑎-,6A − 𝑄43(𝑠+, 𝑎+)C (3) 

 
where 𝛼 corresponds to a fixed learning rate that determines the extent to which current 
values are modified by the reward prediction error, which at the first step is driven by the 
difference between the value of the action taken at the second step and the action taken 
at the first step 𝑄43@𝑠-,6 , 𝑎-,6A − 𝑄43(𝑠+, 𝑎+). When outcomes are observed at the second 
step, the Q-value for the second-step action is updated using the observed reward (𝑟-): 

 
 𝑄43@𝑠-,6 , 𝑎-,6A = 𝑄43@𝑠-,6 , 𝑎-,6A + 𝛼𝛿- (4) 

where 
 𝛿- = 𝑟- − 𝑄43(𝑠-,6 , 𝑎-,6). (5) 

 
The first level Q-values are then updated again as a function of the second-step prediction 
error weighted by an eligibility trace decay parameter 𝜆 such that when 𝜆 = 0, only the 
values of second steps get updated: 

 
 𝑄43@𝑠+,, 𝑎+A = 𝑄43(𝑠+, 𝑎+) + 𝛼𝛿-𝜆. (6) 

 
The model-based algorithm uses the transition probability structure of the task to 

select actions. First-step model-based Q-values (𝑄47) are calculated using Bellman’s 
equation, which uses the expected values of second-step actions and the transition 
structure of the environment to determine expected values for each of the first-step 
actions: 
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 𝑄47@𝑠+, 𝑎+,8A = 𝑝@𝑠-,9H𝑠+, 𝑎+,8A max
"%,'∈{"%,',#,"%,',%}

𝑄43@𝑠-,9, 𝑎-,9A

+ 𝑝(𝑠-,7|𝑠+, 𝑎+,8) max
"%,(∈{"%,(,#,"%,(,%}

𝑄43(𝑠-,7 , 𝑎-,7) 

(7) 

   
which is performed for the k possible first-step actions. Q-values at the second step are 
updated in the same manner as the model-free algorithm. Therefore, these strategies 
differ only in the computations they use to determine their first-step action values. 
 

We simulated two different model-based agents to measure the influence of 
different past task features on information complexity. The first, “stochastic” model-based 
agent knew and used the actual transition probabilities between first-step actions and 
each second-step state (0.70 for common and 0.30 for rare). The second, “deterministic” 
model-based agent treated the transitions between first-step actions and second-step 
states as deterministic, believing that each first-level action always transitioned to distinct 
second-step states. 

 
To measure the degree to which subjects mixed model-based and model-free 

action policies, a strategy-mixing coefficient (𝑤) was added to the model, the value of 
which varies from 0 (a fully model-free strategy) to 1 (a fully model-based strategy): 

 
 𝑄<5=(𝑠+, 𝑎+) = 𝑤𝑄47(𝑠+, 𝑎+) + (1 − 𝑤)𝑄43(𝑠+, 𝑎+) (8) 

 
For all models, Q-values at each step were converted into action probabilities by applying 
a softmax function: 

 
 

𝑝(𝑎5|𝑠5) =
exp	[𝛽𝑄<5=(𝑠5 , 𝑎5)]

∑ exp	[𝛽𝑄<5=(𝑠5 , 𝑎5>)]")>
 

(9) 

 
where 𝛽 corresponds to an inverse temperature parameter that controls the randomness 
of the choice as a function of the Q-values (i.e., as 𝛽 → 0 action probabilities tends to 
become uniform, and as 𝛽 → ∞ the probability of choosing the action with the highest Q-
value tends towards 1). 
 

Similar to Kool and colleagues (2016), the models we fit to subject data were 
identical to the mixture model outline above, with two parameters added to the first-step 
softmax decision rule: 

𝑝(𝑎5|𝑠+) =
exp	[𝛽𝑄<5=(𝑠+, 𝑎5) + 𝜋 ∙ 𝑟𝑒𝑝(𝑎5) + 𝜌 ∙ 𝑟𝑒𝑠𝑝(𝑎5)]

∑ exp	[𝛽𝑄<5=(𝑠+, 𝑎5>) + 𝜋 ∙ 𝑟𝑒𝑝(𝑎′5) + 𝜌 ∙ 𝑟𝑒𝑠𝑝(𝑎′5)]")>
 

(10) 

 
where 𝜋 indicates the degree of perseveration, or ‘stickiness’, towards repeating the same 
motor action as on the previous trial (with 𝜋 > 0 indicating perseveration), and 𝜌 indicates 
perseveration towards the same first-step option (i.e., the fractal that was selected). 
Perseveration for first-step actions and choices could be distinguished because the action 
required to select each option was randomly chosen on each trial. Models were fit using 
the same model fitting procedures outlined by Kool and colleagues (2016). Briefly, we 
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used the mfit toolbox (Gershman, 2016) to obtain maximum a posterior parameter 
estimates obtained by gradient decent using the same weakly informative priors used by 
Kool and colleagues. 
 

Model simulations. For our simulations, we performed 100 simulations of 10,000 
trials for values of 𝑤 (from eq. 8) that varied between 0 and 1 in increments of 0.1. 
Information metrics for each value of 𝑤 were averaged across all 100 simulations. Apart 
from differences in the 𝑤 mixing parameter, all other parameters were kept constant in 
each simulation, consistent with the values used by Kool and colleagues (𝛼 = 1, 𝛽 = 5, 
𝜆 = 0.5). Although the specific information values fluctuated with different parameter 
values, all of the trends reported in the manuscript held for a wide range of 𝛼 and 𝛽 values, 
except when 𝛼 → 0 (no learning occurs) or 𝛽 → 0 (behavior is random). 

 
 
Results 
 
Model-free and model-based strategies are similarly flexible and effective 
 

As was reported previously, individual subjects performing the two-step-task 
differed considerably in their propensity to use more model-free or model-based 
strategies (Kool et al., 2016). To quantify this propensity, we computed each subject’s 
main effect of reward on the probability of repeating the same first-step action as the 
previous trial (a metric of model-free tendencies), and the interaction between reward and 
transition type (rare or common; a metric of model-based tendencies; Fig. 1c). We then 
compared these data-driven metrics of model-free and model-based tendencies to each 
subject’s strategic complexity using our method inspired by the information-bottleneck 
(Filipowicz et al., 2020; Gilad-Bachrach et al., 2003; Glaze et al., 2018; Tishby et al., 2000; 
Fig 2a), which also is data-driven and thus did not require any explicit assumptions about 
the specific strategy each subject used to perform the task. Because the main effect and 
interaction terms were negatively correlated with each other (Spearman’s rho=-0.26, 
p=0.0002), we computed semi-partial Spearman correlations between complexity and 
each variable (main effect and interaction), while accounting for the other variable.  

 
Subjects with either higher main effects (i.e., greater model-free tendencies) or 

higher interactions (i.e., greater model-based tendencies) tended to have higher 
information complexity (Fig. 3). Therefore, subjects with choices that were more 
consistent with either model-based or model-free strategies had relatively high 
information complexity. 
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Figure 3. Information complexity was correlated positively with the size of both (a) main 
effect (a measure of the tendency to use a model-free strategy) and (b) interaction (a 
measure of the tendency to use a model-based strategy) values (see Fig. 1c) from 
individual subjects (points). rho values are semi-partial Spearman correlation coefficients 
of per-subject information complexity versus main effect (a) or interaction (b) values while 
accounting for the other value; p-values are for H0: rho=0. Plotted points represent 
residuals after accounting for interaction (a) and main effect (b) values. Lines are least-
squares linear fits. 
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Consistent with the trends observed by Kool and colleagues (2016), increases in 
information complexity did not necessarily improve subject outcomes on the task: 
subjects using more information complex strategies did not show reliable increases in 
obtained reward (Fig. 4a). Likewise, increased tendencies towards model-free or model-
based learning strategies, as measured by main effect and interaction values 
respectively, were not associated with increases in reward (Fig. 4d,g). 

 
In contrast, subjects with higher information complexity tended to have higher 

predictive accuracy, which implies that more-complex subjects made responses that were 
better tuned to the first-step response that would maximize their chances of obtaining a 
reward (Fig. 4b). This discrepancy with average reward can be explained by the relatively 
low information shared between the most rewarding first-step action and the actual 
probability of being rewarded for taking this action. For example, consider an extreme 
case in which one second-step state includes an option that offers the maximum possible 
0.75 reward probability. In this case, a subject that consistently makes the best first-step 
response will have a reward probability of only 0.53 (i.e., the transition probability of 0.7 
times the reward probability of 0.75). Thus, for this task using strategies higher in 
information complexity did not provide any advantages in terms of reward obtained but 
did improve predictive accuracy. This relationship was not driven by a particular tendency 
to use a model-free or model-based strategy, neither of which was related strongly with 
predictive accuracy (Fig. 4e,h). 

 
There were, however, similar across-subject relationships between response 

times (RTs) and either information complexity, a tendency to use a model-free strategy 
(main effect), or a tendency to use a model-based-strategy (interaction). Overall, mean 
log RT, measured for each subject across all trials, tended to increase systematically as 
a function of the information complexity of a subject’s strategy (Fig. 4c), the main effect 
(Fig. 4f), and the interaction term (Fig. 4i). The relationship with model-free tendencies 
was particularly striking, given that model-free strategies are commonly framed as 
automatic, habitual type responses, which should predict shorter RTs for subjects using 
more model-free strategies. Instead, we found that increased use of either model-free or 
model-based strategies was associated with a systematic increase in RTs. 
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Figure 4. Increasing information complexity for individual subjects (points) did not 
correspond to increases in average reward (a) but did correspond to increases in 
predictive accuracy (b) and longer RTs (c). Increased model-free behavior (i.e., higher 
main effects) corresponded with similar tendencies (d-f), and increased model-based 
behavior (i.e., higher interactions) corresponded to increases in RTs, but not average 
reward or predictive accuracy (g-i). Correlation values for main effect and interaction 
values indicate semi-partial Spearman correlation coefficients while accounting for the 
other value, respectively. Plotted main effect and interaction values in (d–i) correspond to 
residuals after accounting for interaction and main effect values, respectively. Lines are 
linear least-squares fits and plotted for Spearman correlations with p<.05. 
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Model-free and model-based strategies learn from different task features 
 

Despite their strong similarities in information complexity, subjects using model-
free versus model-based strategies learned from different combinations of features to 
solve the task. To examine the influence of specific feature elements on individual subject 
strategies, we computed information complexity between subject responses and vectors 
of past features that omitted each one of the four past elements we considered (Fig. 2a). 
We then subtracted this ‘reduced’ information complexity from each subject’s full 
information complexity to assess the extent to which their complexity was driven by each 
individual element (Fig. 5a).  

 
The information provided by past first responses and past rewards was positively 

correlated with both main effect and interaction values, indicating that both of these 
elements contribute to the complexity of both model-free and model-based strategies 
(Fig. 5b). In contrast, the second-step state from the previous trial contributed more to the 
complexity of subjects with higher interaction values (i.e., that used more model-based 
strategies), but not main-effect values (i.e., that used more model-free strategies; Fig. 
5b). Thus, subjects using more model-based or more model-free strategies were complex 
for different reasons: model-free strategies focused primarily on previous rewards and 
first-step responses, whereas model-based strategies used those elements in addition to 
information from the previous second-step state. 
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Figure 5 Contribution of different past features to subject information complexity. (a) The 
contribution of each individual past element (first response, R1; second-step state, S2; 
best response, R1*; reward, Rw) to overall information complexity was measured by 
subtracting the information complexity computed with each element removed from the 
past-feature vector (F-1) from the full information complexity computed using all of the 
past elements. (b) This difference in complexity was correlated with the individual subject 
(points) main effect (grey) and interaction (red) values, with higher values on the ordinate 
indicating stronger contribution of each element to subject complexity. Abscissa main 
effect and interaction values represent residuals for individual subjects after accounting 
for interaction and main effect values respectively. Points are data from individual 
subjects. Lines are least-squares linear fits and plotted for semi-partial Spearman 
correlations with p<.05. 
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Model-free and model-based algorithms show similar tendencies 
 

To better understand how these complexity trends in the subjects’ behavior might 
relate to specific learning algorithms that have been proposed for model-based and 
model-free strategies, we measured the complexity of simulations using a commonly 
used computational model (Daw et al., 2011; Kool et al., 2016). This model assumes that 
agents use both model-based and model-free learning strategies that are mixed together 
with a coefficient 𝑤, where 𝑤 = 0 corresponds to a purely model-free strategy, and 𝑤 = 1 
corresponds to a purely model-based strategy. We examined two versions of the model 
that differ in how the model-based strategy treats the transition probabilities in the task 
when calculating first-step action values: 1) a “stochastic-transition model”, in which the 
transition probability between first-step responses and second-step states is assumed to 
be known (equal to 0.7/0.3 in the task analyzed here, eq. 7); and 2) a “deterministic-
transition model”, which acts as if the transitions between first-step actions and second-
step states is deterministic, even if the true transition probabilities in the task are 
stochastic (see methods, eq. 7). 

 
We first note that, consistent with the terminology used in computer science, the 

model-based algorithm is more computationally complex than the model-free algorithm. 
We defined computational complexity as the number of operations each algorithm uses 
to produce first-step actions values, because the purely model-based and model-free 
strategies differ only in the computation of these values. We chose a relatively 
conservative measure of computational complexity such that each use of addition, 
subtraction, multiplication, and argmax to derive a first-step action value counted as a 
single operation. Using this measure, a pure model-based strategy, which requires 10 
operations to derive first-stage action values, is more computationally complex than a 
pure model-free strategy, which requires 6 operations. Using other approaches that take 
into account different computational costs of each operation (e.g., multiplication and 
argmax might require more computations for the brain to perform than operations such 
as addition or subtraction; Eliasmith & Anderson, 2003) would tend to further amplify this 
difference, because the model-based algorithm would incur more of such costs. 

 
We next computed the information complexity for simulations that varied in the 

degree to which they were more model-based or model-free. Computing the information 
complexity for different values of 𝑤, we found that information complexity exhibited a non-
monotonic decrease as the mixture moved away from either a pure model-free or pure 
model-based strategy, with minimum at w=0.8 for the stochastic transition model (Fig. 6a, 
green circles) and w=0.4 for the deterministic transition model (Fig. 6b, green circles). 
Information complexity was also higher for pure model-free than pure model-based 
strategies, though this difference was larger in the stochastic transition model (mean 
information complexity: model-free=0.05 bits, model-based=0.02 bits; Wilcoxon rank-sum 
test comparing information complexity between purely model-free and purely model-
based simulations, p=2.5x10-34). The fact that these simulations, unlike the subject data, 
showed substantially lower information complexity for purely model-based strategies 
suggests that this computational model, and particularly the stochastic transition version 
which is typically used, does not capture the variety of model-based strategies that 
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subjects actually use in the task, a discrepancy that has been noted previously (Akam, 
Costa, & Dayan, 2015; da Silva & Hare, 2020).  

 
Simulations further reinforced the behavioral analyses from Fig. 5 showing that 

model-free and model-based strategies rely on different past features to perform the task. 
Like for the behavioral analyses, we computed the information complexity of simulated 
choices while removing each one of the four elements of the past-feature vector (Fig. 6). 
Omitting the previous first-step response (𝑅1*+) resulted in a substantial decrease in 
information complexity that was particularly strong for more model-free agents (i.e., as 
𝑤 → 0; compare to the first row of Fig. 5b). This result reflects the fact that the model-free 
algorithm makes first-step choices according to action values that depend on whether the 
first action from the previous trial resulted in reward, regardless of whether this action led 
to a common or rare second-step transition. Conversely, omitting the second-step state 
(𝑆2*+) from the past-feature vector resulted in substantially reduced information 
complexity just for model-based agents (i.e., as 𝑤 → 1; compare to the second row of Fig. 
5b). Omitting the previous best first-step response (𝑅1*+∗ ) had little impact on model 
complexity regardless of the strategy (compare to the third row of Fig. 5b). Omitting the 
previous reward (Rw) reduced the complexity of both strategies (compare to the fourth 
row of Fig. 5b). These results indicate that the information complexity corresponding to a 
standard model-free algorithm is influenced heavily by the previous first response, 
whereas a standard model-based algorithm relies predominantly on information from the 
second-step transitions from the previous trial. The fact that subjects exhibiting model-
based tendencies showed a strong influence of the previous first response on information 
complexity (Fig. 5b), whereas this influence was not seen as strongly in model-based 
simulations, further supports the idea that people use a diversity of model-based 
strategies not necessarily captured by these standard models (Akam et al., 2015; da Silva 
& Hare, 2020). 
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Figure 6. Information complexity for simulated model-free and model-based (either the 
stochastic-transition model in a or the deterministic-transition model in b) agents 
performing the two-step task. The simulations mixed model-free and model-based 
strategies using a strategy-mixing coefficient (𝑤), with 𝑤 = 1 indicating a fully model-
based strategy. Information complexity was measured between all of the past features 
and simulated responses (green circle), along with reduced information complexity 
measured by omitting either the best first-step response, actual first-step response, 
second-step transition, or reward on the previous trial  (purple circles, from darker to 
lighter fill, respectively; note that information values computed when omitting the previous 
best response are nearly entirely under the values of information complexity computed 
with all past features). Points indicate mean information values across 100 simulations 
for each value of 𝑤. SEM is smaller than size of the dots in all cases. 
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Consistent with these simulations and further refuting claims that strategic flexibility 
increases along a continuum from model-free to model-based learning, fits of these 
models to behavior did not show systematic, monotonic relationships with information 
complexity. Specifically, we fit to each subject’s behavioral choices a learning model that 
mixed both the model-free algorithm and the model-based algorithm (either the 
stochastic-transition model or the deterministic-transition model, which produced roughly 
equivalent fits: median BIC [interquartile range] across subjects for the stochastic-
transition model=292 [241–337], and for the deterministic-transition model=292 [240–
337]; Wilcoxon signed-rank test for H0: median BIC difference=0, p=0.687), using the 
same strategy-mixing coefficient (𝑤) as in the simulations above. Using the fits from these 
models, we found no correlation between the best-fitting value of 𝑤 and information 
complexity in either the fits provided by the stochastic transition model (Fig. 7a) or the 
deterministic transition model (Fig. 7c). Additionally, we found no correlation between 𝑤 
from either model and predictive accuracy across subjects, suggesting that neither model-
based nor model-free strategy type provided a distinct advantage for this task, which is 
consistent with previous reports that found no correlations between 𝑤 and overall 
accumulated reward (Kool et al., 2016; Fig. 7a,c). We additionally found no correlation 
between the strategy-mixing coefficient from either model and RT (Fig. 7b,d).  

 
Thus, although we do not know the exact algorithms human subjects used to 

perform the two-step task, these simulations and fits yielded two useful insights that 
support our behavioral findings. The first is that both model-free and model-based agents 
can, depending on their formulation, have relatively high information complexity. This 
result further dissociates computational complexity (which is higher in the model-based 
algorithm) from information complexity. The second is that information complexity 
depends critically on the specific task features each strategy uses to learn from the past 
and guide future choices, which for the model-free agent tended to be the observed first-
step responses and for the model-based agent tended to be the latent transition 
probabilities between first-step responses and second-step states. 
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Figure 7. Comparison of the per-subject (circles) proportion model-based (MB) responses 
(best-fitting w parameter in the stochastic and deterministic mixture models) and: (a,c) 
information complexity (green) or predictive accuracy (orange), and (b,d) RTs. rho 
indicates Spearman’s correlation coefficient; p-values are for H0: rho=0. 
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Discussion 
 

We measured differences in complexity between model-based and model-free 
learning strategies for a canonical learning task and report four main findings. First, 
human subject tendencies towards either model-free or model-based strategies were 
both associated with higher information complexity, a measure of the flexibility with which 
different patterns of past observations were used to guide choices. Second, while these 
increases in information complexity did not affect average reward obtained, they were 
associated with choices that had higher predictive accuracy of subsequent task features. 
Third, these increases in information complexity were associated with longer RTs, 
irrespective of whether the source of increased information complexity was based on a 
model-free or model-based strategy. Fourth, these similarities were apparent despite the 
two strategy types using very different task features to drive learning: subjects using more 
model-free strategies tended to learn by associating past first responses with reward, 
whereas subjects using more model-based strategies tended to use the inferred, latent 
transition probabilities between the first and second states. 

 
Our results highlight the importance of distinguishing different forms of complexity, 

in particular distinguishing computational complexity, which measures resource 
demands, from information complexity, which measures strategic flexibility. These two 
forms of complexity covary under some, but not all, conditions. For example, increasing 
computational complexity by providing more computational resources can, in principle, 
support increased flexibility in how information is processed and therefore higher 
information complexity if these computations are used to expand the feature space over 
which inference is performed (Feldman & Crutchfield, 1998; Griffiths & Tenenbaum, 
2003). However, as we showed, this relationship does not always hold: a standard model-
free learning algorithm, although less computationally complex, can be equally or more 
information complex relative to a standard model-based learning algorithm.  

 
More generally, our analyses of information complexity oppose the notion that 

model-free decision strategies are necessarily more automatic, inflexible, and habitual 
than model-based strategies, at least for human subjects performing the two-step task 
(Daw et al., 2011; Decker et al., 2016; Eppinger et al., 2013; Gläscher et al., 2010; Pauli 
et al., 2018). Both model-based and model-free strategies were associated with increases 
in information complexity, even if the specific information being encoded differed. 
Moreover, increases in information complexity for both model-free or model-based 
strategies were accompanied by similar increases in mean RT. Given that shorter RTs 
have been associated with habitual, automatic processing, such as for certain forms of 
statistical learning (Filipowicz, Anderson, & Danckert, 2014; Jabar, Filipowicz, & 
Anderson, 2017a, 2017b; Nissen & Bullemer, 1987; Robertson, 2007; Turk-Browne, 
Jungé, & Scholl, 2005), these results imply that the primary difference between model-
free versus model-based strategies is not automaticity versus flexibility. Instead, both 
strategies can make flexible use of past task features to guide future behavior, but model-
free strategies focus more on observed task features (e.g., responses, rewards, stimuli), 
whereas model-based strategies focus more on latent task features (e.g., transition 
structures). 
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Our results also highlight the usefulness of information-based metrics for 
assessing the nature of the strategy used by individual subjects. Although these metrics 
do not require an explicit model of the underlying strategy, we showed that they can be 
used to identify specific task features that drive learning. As predicted by a model-free 
algorithm, subjects with strong model-free tendencies tended to rely on their previous 
first-level choice. Conversely, subjects with strong model-based tendencies tended to rely 
on the inferred transition between the first and second states. However, those subjects 
also relied on the previous first-level choices to a degree that was not predicted by 
standard model-based algorithms. This discrepancy likely reflects a high diversity of 
model-based strategies used by participants for this task, which can appear similarly 
model-based even if they differ substantially from the common model-based algorithm 
used to fit their responses (Akam et al., 2015; da Silva & Hare, 2020). Moreover, there 
are likely substantial individual differences in the exact nature of these strategies, making 
it even more difficult to assess their computational complexity (da Silva & Hare, 2020). A 
more extensive information-based analysis of the features used by subjects on these 
kinds of tasks to drive learning might help inform our understanding of the specific model-
based strategies they use. 

 
Moreover, our results highlight potential future uses of the information bottleneck 

for assessing performance optimality across a range of strategies (Tavoni, 
Balasubramanian, & Gold, 2019). A strong feature of the information bottleneck method 
is that it can in principle compute an upper bound on the maximum achievable predictive 
accuracy for any given level of information complexity, and this without requiring explicit 
knowledge of the strategy itself (Gilad-Bachrach et al., 2003; Palmer et al., 2015; Tishby 
et al., 2000). This approach differs from previous approaches that assessed optimality for 
this task in terms of average payouts but do not take into account the nature and amount 
of information used by subjects to achieve those payouts (Kool et al., 2016). However, 
this upper bound can be difficult to compute, particularly for tasks such as the two-step 
task in which observations depend on subject responses.  Nevertheless, future work 
should aim to better understand relationships between information complexity, predictive 
accuracy, and optimality, including how their balance is controlled by different individuals 
under different task conditions. New insights are likely to come from the kinds of 
information-bottleneck analyses that have been used previously to evaluate complexity-
optimality tradeoffs in machine learning (Gilad-Bachrach et al., 2003; Tishby & Zaslavsky, 
2015) and biological systems (Palmer et al., 2015). Moreover, this kind of analysis 
provides a strong framework in which to study notions of bounded rationality (Gigerenzer 
& Gaissmaier, 2011; Simon, 1955) and resource rational decision-making (Lieder & 
Griffiths, 2019; Tavoni, Doi, Pizzica, Balasubramanian, & Gold, 2019) that are becoming 
more prominent in assessing the rationality of human decision-making.  

 
In summary, our results show that model-free and model-based learning 

strategies, often described as representing different ends of a continuum of information-
processing flexibility, instead can be quite similar in terms of how much, how effectively, 
and how quickly they process information to perform a canonical learning task. These 
results imply that rather than distinguishing the flexibility of different learning processes, 
akin to the distinctions between automatic and deliberative or habitual and goal-directed 
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processing that are often ascribed to these strategies, tasks such as the two-step task 
may instead distinguish between strategies that are equally complex but learn from 
different task features. A better understanding of these distinctions will help understand 
how and when these processes should be expected to vary across different healthy and 
psychiatric populations. 
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