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Abstract

In spite of a large investment in the development of methodologies for analysis of single-
cell RNA-seq data, there is still little agreement on how to best normalize such data, i.e.
how to quantify gene expression states of single cells from such data. Starting from a few
basic requirements such as that inferred expression states should correct for both intrinsic
biological fluctuations and measurement noise, and that changes in expression state should
be measured in terms of fold-changes rather than changes in absolute levels, we here derive
a unique Bayesian procedure for normalizing single-cell RNA-seq data from first principles.
Our implementation of this normalization procedure, called Sanity (SAmpling Noise cor-
rected Inference of Transcription activitY), estimates log expression values and associated
errors bars directly from raw UMI counts without any tunable parameters.

Comparison of Sanity with other recent normalization methods on a selection of scRNA-
seq datasets shows that Sanity outperforms other methods on basic downstream processing
tasks such as clustering cells into subtypes and identification of differentially expressed genes.
More importantly, we show that all other normalization methods present severely distorted
pictures of the data. By failing to account for biological and technical Poisson noise, many
methods systematically predict the lowest expressed genes to be most variable in expression,
whereas in reality these genes provide least evidence of true biological variability. In addi-
tion, by confounding noise removal with lower-dimensional representation of the data, many
methods introduce strong spurious correlations of expression levels with the total UMI count
of each cell as well as spurious co-expression of genes.

Introduction

In the past decade much effort has been invested in adapting methods for quantifying transcrip-
tome and epigenome state on a genome-wide scale to the single-cell level. This has led to a
large number of new methods that are starting to make it possible to track the states of single
cells across tissues and embryos as they are developing, measuring transcriptomes, chromatin
state, chromatin conformation, and cell lineages, sometimes in parallel [1–22]. Many in the
field believe that these single-cell methods will revolutionize our understanding of the ways in
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which cell fate, cell identity and developmental processes are regulated, and major consortia are
starting to form that aim to comprehensively map single-cells in model organisms [23,24].

In order to fullfil the promise of these single-cell measurement technologies, it will be crucial
that computational methods are available that unambiguously extract what the raw measure-
ments say about the state of the single cells in terms of concrete physical quantities. We not only
want to be able to integrate results of single-cell RNA-seq (scRNA-seq) measurements, which
we will focus on in this work, from different labs using different protocols, but also across mea-
surements from entirely different measurement technologies such as FISH (e.g. [25]). In order
to make that possible, the expression values that we extract from scRNA-seq data should corre-
spond to physically meaningful quantities that can be directly compared with measurements of
the same quantities made with other experimental methods. In addition, the estimated values
of the concrete physical quantities should follow directly from the experimental data together
with as small a number of additional assumptions as possible, and not depend on arbitrary pa-
rameters that the user can set at will. Moreover, in order to be able to determine when different
measurements are mutually consistent, all estimates should be accompanied by meaningful error
bars.

However, although there has been a veritable explosion of scRNA-seq analysis tools in recent
years, there has been almost no attention given to satisfying these objectives. Instead of there
being a small number of transparent methods that provide unambiguous estimates of quanti-
ties with clear physical interpretation, we find a large number of ad hoc methods that apply
highly complex transformations to the data to perform combinations of tasks including imputa-
tion/normalization, clustering, dimensionality reduction, pseudo-time and trajectory inference,
and visualization. These methods typically have many tunable parameters, produce outputs in
highly abstract spaces that lack clear biological meaning, and are often even stochastic, such
that different runs on the same data with the same parameters result in different output. For
example, probably the most popular tools for visualizing scRNA-seq data are t-SNE [26] and
UMAP [27], which are both stochastic, involve several parameters, and position cells in a lower
dimensional space whose dimensions lack biological interpretation.

We here focus on the relatively basic task of normalization/imputation of single-cell gene
expression states from raw scRNA-seq transcript counts. Using only minimal assumptions we
derive from first principles a Bayesian method that corrects not only for the finite sampling
associated with the capture and sequencing of mRNAs, but also for the Poisson noise inherent in
the gene expression process itself. Our method, which we call Sanity (SAmpling Noise corrected
Inference of Transcription activitY) is deterministic, has zero tunable parameters, and provides
error-bars for all its estimates.

After motivating and explaining our method, we compare Sanity with a selection of popular
methods for imputation/normalization from the recent literature and show that only Sanity
can meaningfully remove Poisson sampling fluctuations and infer the true variation in gene
expression intensity of each gene across cells. In addition, we show that all other methods we
tested introduce severe distortions of the data such as inducing strong correlations between
expression estimates and total UMI count of cells, or inferring strong co-expression between
large numbers of genes when none is evident in the data. In addition, we show that Sanity’s
estimated expression levels outcompete those of other methods on both downstream clustering
and differential expression tasks.
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Methods

A Bayesian method for inferring gene expression states from count data

We first motivate and explain how we represent gene expression states of single cells, and what
concrete physical quantities these gene expression states correspond to. After that, we introduce
our method’s probabilistic model of a scRNA-seq experiment, calculating how the expression
state of the cell determines the probabilities of obtaining particular raw transcript counts, and
then discuss how we solve the Bayesian model and the outputs that the method provides.

Defining gene expression states

For any given cell c, we want to represent its ‘gene expression state’ by a vector ~ec, whose
components egc quantify how strongly each gene g is expressed in the cell. We want these gene
expression states to satisfy two basic criteria. First, these gene expression states should have
concrete physical interpretation. Second, for downstream processing we want that the differences
egc− egc′ meaningfully reflect the change in expression of gene g between cells c and c′ such that

the Euclidean distance dcc′ =
√∑

g(egc − egc′)2 between two cells c and c′ meaningfully reflects

the difference in their gene expression states.
One might think that we could simply take the vector ~mc of the actual number of mRNAs mgc

that exist in cell c for each gene g as the gene epression state of the cell. However, even for cells
in the same gene expression state, the number of mRNAs will exhibit stochastic fluctuations.
Imagine a gene that is transcribed at a constant rate λ in every cell, and with a constant rate
of mRNA decay µ in every cell. The actual number of mRNAs m across cells will then follow
a Poisson distribution with mean a = λ/µ which we call its ‘transcription activity’. That is,
the probability to find m mRNAs is Pm = ame−a/m! which has mean 〈m〉 = a and variance
var(m) = a. Thus, instead of assuming any change in mRNA number m reflects a change in
gene expression state, it makes more sense to identify changes in gene expression state with
changes in the transcription activity a.

Note that mRNA numbers will show Poisson fluctuations in much more general situations
than constant rates of transcription and decay [28]. Imagine that, in a particular cell c, both the
rate of transcription and mRNA decay of a given gene g has fluctuated in some arbitrary way
in time, with λgc(t) the transcription rate a time t in the past, and µgc(t) the mRNA decay rate
a time t in the past. The expected number of mRNAs 〈mgc〉 is then given by the transcription
activity

〈mgc〉 =

∫ ∞
0

λgc(t) exp

[
−
∫ t

0
µgc(s)ds

]
dt ≡ agc, (1)

which is a weighted average of the transcription rate of the gene in the recent past, i.e. on
the time-scale that its mRNAs have turned over. Given this expected mRNA number agc the
distribution of the actual number of mRNAs mgc is still Poisson. That is the probability to
obtain mgc mRNAs is

P (mgc|agc) =
(agc)

mgc

mgc!
e−agc . (2)
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We thus propose that we should use changes in vectors of transcription activity ~ac to represent
changes in gene expression state.

In addition, we propose to characterize the gene expression state of a cell not by the vector
~ac of absolute transcription activities agc, but by the vector ~αc of relative transcription activities,
with

αgc =
agc∑
g′ ag′c

, (3)

which we will refer to as transcription quotients. First, it has been shown that, as cell volume
increases, cells globally upregulate transcription to maintain approximately constant mRNA
concentration [29] so that transcriptional activities agc of all genes are generally expected to scale
with cell volume. We argue that a global change in transcriptional activities by a common factor
c, i.e. agc → cagc for all genes, does not correspond to a change in gene expression state, but just
to a change in cell size. Second, it is well known that, in current scRNA-seq protocols, the rate of
capture and sequencing of mRNAs varies significantly across cells [30,31] so that there is only a
weak quantitative relationship between the total number of sequenced mRNA molecules and the
true total mRNA content of cells. Although it is possible to estimate capture and sequencing
efficiencies, at least to some extent, using RNA spike-in controls [30, 32], most experiments
are performed without such controls. Therefore, for most scRNA-seq datasets it is unclear to
what extent variations in total sequenced mRNAs across cells represent biological variability, as
opposed to technical variability. Consequently, transcription quotients can generally be much
more accurately estimated than absolute transcription activities, because they do not directly
depend on capture efficiency. Note that quantifying gene expression by quotients, i.e. transcripts
per million transcripts, is also the standard approach in bulk RNA-seq experiments.

Finally, we note that if we were to use differences in transcription quotients of mRNAs
αgc − αgc′ to quantify the change in expression of gene g between cells c and c′, then this
change would be proportional to overall expression level of the gene. That is, a change from
20 to 40 transcripts per million would be considered ten times as large as a change from 2
to 4 transcripts per million. Since the early days of transcriptomics it has been observed [33]
that, as would be expected from the multiplicative effects of fluctuations in rates of various
biochemical reactions [34], the relative expression levels of genes in a sample follows a roughly
log-normal distribution that covers several orders of magnitude. Consequently, if we were to
quantify expression changes directly by the changes αgc − αgc′ , the expression changes between
two cells would be completely dominated by those of the highest expressed genes. Therefore, it
has long become standard to instead use logarithms of the expression levels. Thus, we propose
to quantify the gene expression state of a cell by the logarithms of the transcription quotients
(LTQs) log(αgc) so that a x-fold change in quotient αgc → αgc′ = xαgc corresponds to the same
additive change log(αgc) → log(αgc) + log(x) in LTQ, independent of the absolute value of the
quotient αgc. In summary, we propose to characterize the gene expression state of a cell c by a
vector of LTQs log(αgc).

A probabilistic model for a scRNA-seq experiment

The initial steps of scRNA-seq analysis involve basic processing of the raw sequencing reads
such as quality control of the reads, identification of the various barcodes that identify the
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library, the individual cell, the unique mRNA molecule (if available), and mapping each read
to the corresponding genome or transcriptome. The methods used in these steps are similar to
methods used for bulk RNA-seq and ChIP-seq and have matured to the point that there are
accepted methods and little variability in the results from commonly used tools, e.g. [35–38].

The introduction of unique molecule identifiers (UMIs) [39] was an important development in
scRNA-seq technology in that it avoids noise in expression measurements due to fluctuations in
PCR amplification, and determineds the number of unique mRNA molecules that were captured
for each mRNA. Since only protocols that incorporate UMIs allow for a realistic modeling of the
statistics of the measurement noise, we will here focus on scRNA-seq protocols that use UMIs.

After the basic processing of the raw data has been performed, the data will consist of a
matrix of integers ngc giving the number of captured mRNA molecules for each gene g in each
cell c. The key assumption of our probabilistic model is that, in a scRNA-seq experiment, each
mRNA molecule in a given cell c has a probability pc to be captured and sequenced. This
capture probability pc, which varies from cell to cell, has been estimated to be in the range of
10 to 15% [40] and up to 30% with the most recent protocols [41]. Under this assumption, the
probability of the observed UMI counts ngc in cell c given the transcription quotients αgc is still
given by a product of Poisson distributions (see Supplementary Methods)

P ({nc}|{αc}) =
∏
g

[
(Ncαgc)

ngc

ngc!
e−Ncαgc

]
, (4)

where {nc} is the set of UMI counts in cell c, {αc} the set of transcription quotients in cell c, and
Nc the total number of UMIs in cell c. Crucially, we see that the convolution of the biological
Poisson noise and the sampling noise introduced by the scRNA-seq measurement together still
lead to a simple Poisson distribution in terms of the transcription quotients αgc.

Prior probabilities and the Bayesian solution

In order to estimate the log(αgc) from the observed UMI counts ngc a final ingredient that we
need is to define a prior distribution over these LTQs. As we aim to minimize the number
of assumptions that our inference makes, our model will not assume any dependence structure
between the LTQs of different genes, i.e. we will not assume that the gene expression data derives
from a low-dimensional manifold. We will also not assume that the LTQs follow a particular
distribution. The only thing we will assume is that, for each gene, the prior distribution of LTQs
log(αgc) can be characterized by its mean µg and variance vg. We rewrite the transcription
quotients αgc in terms of an average quotient αg and a cell-specific log fold-change δgc, i.e.
αgc = αge

δgc . With that reparametrization, the mean µg equals log(αg) and the δgc derive from
a prior probability distribution with mean zero and variance vg. Given that we only specify the
variance of the distribution of the δgc to be vg, we choose the maximum entropy distribution [42]
consistent with this constraint, which is a Gaussian distribution. Importantly, this does not
mean that we assume that the log fold-changes δgc follow a Gaussian distribution. It just
assumes that, before seeing any of the data, we assume the δgc are taken from the broadest,
least assuming distribution consistent with some (unknown) variance vg.

In the Supplementary Methods we derive in detail how this model can be solved to estimate,
for each gene g:
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1. The mean LTQ µg and its error-bar δµg.

2. The estimated variance vg of the changes in LTQs δgc across cells.

3. For each cell c, the estimated LTQ δ∗gc and an error-bar εgc on this LTQ.

Note that the LTQs δ∗gc provide estimates for how much the transcription and decay rates
of each gene g in cell c differ from their average rates, and thus correct for both the intrinsic
biological Poisson fluctuations as well as the finite sampling fluctuations inherent in the scRNA-
seq measurement.

Alternative methods for scRNA-seq normalization

To assess the performance of Sanity we will compare it with a number of other methods for
normalization/imputation from scRNA-seq data. Apart from a number of other tools from the
recent literature, we also include two basic normalization procedures that are widely used. First,
the simplest approach to estimating gene expression levels egc from scRNA-seq data is to simply
log-transform the observed number of UMIs ngc after adding a pseudocount p in order to avoid
problems with zero counts ngc = 0, i.e.

egc = log(ngc + p). (5)

A typical choice for the pseudo-count is p = 1, because it attenuates fluctuations in ngc on the
order of magnitude corresponding to the resolution of the experimental measurements. We will
refer to this normalization, with p = 1, as the RawCounts normalization, since it essentially just
log-transforms the raw counts.

However, the total number Nc of mRNAs captured and sequenced from an individual cell c
can vary substantially due to fluctuations in capture efficiency and sequencing depth, as well as
changes in cell size. Consequently, the RawCounts procedure introduces artificial correlations
between the expression levels egc and the total number of UMIs Nc that were sequenced in the
cell c. Thus, the most commonly used normalization approach is to first divide the rawcounts ngc
by the total counts Nc and then multiply by a typical total count N before adding a pseudocount
and log transforming, i.e.:

egc = log

[
ngc
Nc

N + 1

]
, (6)

where we will take for the typical total count N the median of the counts Nc across all cells. In
a slight abuse of terminology, we will call this normalization the TPM normalization because of
its close connection to the transcripts per million normalization used in bulk RNA-seq (which
corresponds to setting N = 106).

Beyond these two simple normalization methods, we compare Sanity’s performance with that
of the following recently published tools:

1. DCA [43], which uses a deep learning based autoenconder.

2. MAGIC [44], which uses diffusion of measured gene expression states between cells with
similar expression profiles.
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3. SAVER [45], which assumes negative binomial counts distributions ngc and models the
underlying rates using Poisson LASSO regression with the expression levels of other genes.

4. scImpute [46], which focuses mainly on correcting ‘dropouts’, i.e. datapoints for which
ngc = 0.

5. scVI [47], which uses a deep neural network based autoencoder.

Note that, with the exception of scImpute, all these methods seek to normalize the expression
levels for the total UMI count per cell, and seek to remove noise by using lower dimensional
representations of the input counts ngc.

We used default parameters for all these methods and, since all methods report expression
values in linear space, we log-transformed all expression values. MAGIC sometimes reports 0
or negative values and, as suggested by the authors, we first set all negative values to 0 and
then add a pseudocount of 1 to all expression values (including the nonzero ones) before log-
transforming. Similarly, scImpute reports some zero values and we added a pseudocount of 1 to
all these.

Test datasets

To comprehensively assess the performance of the different methods we used a collection of
datasets for which annotation of the sequenced cell types was available. The datasets we used
were (labelled by the first author of the publication):

1. Grün : 160 mouse embryonic stem cells and 160 corresponding aliquots consisting of, 80
cells from culture in 2i medium, 80 cells from culture in serum, and 80 aliquots for each
condition that were created by pooling cells together, and then splitting the pool into
single-cell mRNA equivalents [30].

2. Zeisel : 3’005 cells from the somatosensory cortex and from the CA1 region of the mouse
hippocampus, annotated into 7 cell types [48].

3. Baron: 1’937 human pancreatic cells annotated into 14 cell types [49].

4. Chen: 14,437 adult mouse hypothalamus cells annotated into 15 clusters [50].

5. Three datasets from LaManno [51]:

(a) LaManno/Embryo: 1’977 ventral mid-brain cells from human embryo annotated into
25 classes.

(b) LaManno/ES : 1’715 human embryonic stem cells annotated into 17 classes.

(c) LaManno/MouseEmbryo: 1’907 ventral mid-brain cells from mouse embryo anno-
tated into 26 classes.

In addition to these real datasets we also constructed one simulated dataset as described in
the Supplementary Methods. The parameters of the simulation were chosen so as to mimic the
statistics of the Baron dataset (see Fig. S11).
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Results

Sanity accurately corrects for Poisson fluctuations to identify true variance in
gene expression

A key aim of Sanity’s normalization is to correct for both biological and technical sampling
fluctuations in order to quantify the true biological variation in expression of each gene across
cells. Testing this is challenging because the true expression variability of each gene is generally
unknown. To address this we used a simulated dataset for which the true expression variability
of each gene is known, on the one hand, and analyzed a carefully designed study of mouse
embryonic stem cells (ESCs) from Grün et al [30] on the other hand. In this study, mouse ESCs
were culured in both 2i and serum conditions and apart from scRNA-seq measurements on these
cells, the same measurement protocol was applied to single-cell equivalent aliquots from pooled
RNA of multiple cells. Since all aliquots were sampled from the same pool, there is no biological
expression variation in this dataset at all, and the expression variation in these aliquots derives
solely from technical sampling noise. In addition, the ESCs are highly homogeneous so that
also little true expression variation is expected for ESCs in the same condition, and the main
expression differences are expected between cells in the 2 different culture conditions.

The amount of expression variability of a gene across a set of cells can be quantified by
its coefficient of variation CV, i.e. the ratio of the standard-deviation and the mean of its
expression levels. Figure 1A shows box-whisker plots of the distribution of CVs, for each of
the 4 datasets, as calculated from the (non log-transformed) expression estimates of each of the
normalization methods. Ideally the methods should infer that there is no true variability at
all for the aliquots, and relatively little variability for the ESCs. In addition, it is known that
variability in 2i conditions is smaller than in serum [30], so that we expect larger CVs in serum.
Although, with the exception of scVI, all methods infer that the CVs are larger in serum than in
2i, and smaller for the aliquots than for the cells, the CVs that Sanity infers are at least twofold
lower than those of all other methods, and only Sanity infers that the CV is less than 10% for the
large majority of the aliquots. Of the other methods, MAGIC and SAVER show distributions of
CVs that, while generally larger, are closest to those inferred by Sanity. All other methods show
distributions of CVs that are at odds with our prior information in one way or another. For
example, due to the Poisson noise, the simple RawCounts, TPM, and scImpute methods infer
CVs of at least 0.5 for the large majority of genes in both cells and aliquots. DCA infers very
similar distributions of CVs for the ESCs and aliquots and, finally, scVI shows unrealistically
high CVs for all genes in both ESCs and aliquots.

The ability for methods to correct for sampling noise can be assessed most clearly by plotting
the CV of each gene as a function of its mean expression (Fig. 1B). As is well appreciated in
the scRNA-seq literature, e.g. [32], because the variance of a Poisson distribution is equal to its
mean, Poisson sampling fluctuations add a term 1/

√
mean to the CV. Because most genes have

low absolute expression values, the CV is dominated by this term for most genes, leading to a
strong negative correlation between mean expression and CV. Indeed, the simple RawCounts and
TPM methods show an almost perfect negative correlation between CV and mean, showing that
sampling noise dominates the observed variability for all but the highest expressed genes. Ideally,
the normalization would correct for the Poisson contribution to the CV, and in principle we would
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Figure 1: A: Box-whisker plots showing the medium (circle) as well as the 5th, 25th, 75th, and 95th quantiles
of the distribution of gene expression levels for each of the 4 datasets (see legend) as inferred by each of the
normalization methods. B Scatter plots of CV (standard-deviation divided by mean) for all genes in each of
the 4 datasets (colors as in panel A) as inferred by each of the normalization methods. The Pearson correlation
coefficient between logCV and log mean is shown on top of each plot. The axis are shown on a logarithmic scale
and are kept similar across panels, except for scVI where the mean expression values are on a very different scale
from those of the other methods.
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not expect to see a systematic correlation between mean expression and the normalized CV.
Indeed, for Sanity the normalized data does not exhibit any correlation between CV and mean.
However, with the exception of MAGIC and scVI, a strong negative correlation between CV
and mean remains for all other methods, showing that even after normalization the expression
variability is dominated by Poisson noise for many genes. We also note that scVI exhibits rather
unnatural distributions of CV and mean, with consistently high CV and strongly varying means
across datasets. These observations do not only apply to the dataset of [30], but are observed
for all test datasets we considered (Suppl. Fig. S1).

We next constructed a simulated dataset (see Supplementary Methods) in which the total
number of UMI per cell and mean expression levels where chosen to match those of the dataset of
Baron et al. [49]. Each gene was assigned a random true variance in log gene expression, its true
expression values were sampled from a Gaussian distribution with corresponding variance, and
finally Poisson noise was added to these true expression values. Since, for this simulated dataset,
we know exactly the true variability in gene expression for each gene, we directly compared the
inferred CV with the true CV used in the simulation (Fig. 2). For the simple TPM and
RawCounts methods, there is actually a good correlation between true CV and inferred CV
for very highly expressed genes, confirming that for the highest expressed genes the observed
CV in the data matches the true CV. However, for the large majority of genes, the Poisson
noise causes the inferred CV to be much higher than the true CV, so that there is ultimately
almost no correlation between true and observed CVs across the entire set of genes. For most of
the other methods, there is very little relation between the true and inferred CVs. MAGIC and
DCA predict much lower CVs than the true CVs, scVI predicts consistently high CVs, and there
is no correlation between the true and predicted CVs for any of these methods. Only Sanity
and SAVER show a good match between the true and inferred CVs across most of the genes.
Notably, Sanity accurately estimates CVs for all highly expressed or highly variable genes. For
low expressed genes, where there is not sufficient data to reliably detect the true expression
variability of a gene, Sanity conservatively infers that the true expression variability is low and
these genes will therefore not significantly contribute to any downstream analysis of expression
variability across cells. Although SAVER’s inferred CVs are reasonable for most genes, they are
clearly less accurate than Sanity’s predictions, and for a subset of low expression genes SAVER
strongly overestimates the CV.

In summary, these results show that Sanity is the only normalization method that can reliably
correct for the Poisson sampling noise to quantify the true expression variability of each gene.

Many normalization methods introduce spurious correlations with library size

Due to variations in cell size, mRNA capture efficiency, and sequencing depth, the total num-
ber of captured UMIs can fluctuate significantly from cell to cell. Therefore, most scRNA-seq
processing methods involve normalize the expression levels of genes in a given cell for the total
number of mRNAs (i.e. UMIs) that were sequenced for that cell. For example, whereas the
simple RawCounts procedure does not correct for total UMI counts per cell, the simple TPM
procedure normalizes for total UMI count by dividing the observed counts for each gene by
this total count. With the exception of scImpute, all other methods also include methods to
normalize for total UMI count.
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Figure 2: Comparison of the true CVs and those inferred by each of the normalization methods on the simulated
dataset. Each panel shows a scatter plot of the true CV (horizontal axis) the CV as inferred by the normalization
method (vertical axis) across genes. The color of each datapoint shows the mean expression level of the gene
(total UMI in the dataset, see colorbar). The Pearson correlation between the inferred CVs and the true CVs is
shown on top of each panel.
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To investigate the effects of the normalization for total UMI count we calculated, for each
method and each gene, the Pearson correlation between the inferred log expression levels and
the logarithm of the total UMI count across cells. Using the Zeisel dataset as an example, Fig. 3
shows the distribution of Pearson correlations for each of the methods as well as the raw scatters
of the normalized expression levels as a function of log total UMI count for one example gene
(Zbed3 ). Starting with the simple RawCounts method we see, as expected from the fact that
this method does not normalize for total UMI count, that for most genes there is a positive
correlation between total UMI count of a cell and the expression level of the gene in that cell.
The scImpute method shows similar correlations with total UMI count which is consistent with
the fact that this method does not normalize for total UMI count either. In contrast both
the simple TPM method, and especially Sanity, remove this correlation, confirming that these
methods successfully normalize for the fluctuations in total UMI count across cells.
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Figure 3: A: Scatter plots of the normalized log expression level of the example gene (Zbed3 ) versus the logarithm
of the total UMI count log(Nc) across cells for each of the methods. The Pearson correlation of the dependence
is shown above each panel. B: Violin plots of the distribution of correlation coefficients between the inferred
log expression levels of genes and the log of total UMI count per cell, for the Zeisel dataset. Different colors
correspond to the different methods, which are indicated below.

We were very surprised to see that for all other methods, rather than removing correlations
with total UMI count, the normalized expression levels show even stronger correlations with
total UMI count. DCA, SAVER, and MAGIC show a very wide distribution of correlation
coefficients with predominantly negative correlations for DCA and SAVER, and predominantly
positive correlations for MAGIC. The situation is even more dramatic for scVI which infers that
the expression levels of essentially all genes are highly correlated with total UMI count. The
scatters with the predicted gene expression levels for the gene Zbed3 as a function of log total
UMI count log(Nc) illustrate how dramatically the various normalization methods transform the
input data. The RawCounts show that this gene is fairly low expressed, with either 0 or 1 UMI
observed in most cells, and that there is a slightly higher chance to observe one or two UMIs
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when the total UMI count Nc is larger. However, DCA, MAGIC, SAVER, and scVI completely
transform this input data into a scatter of continuously varying expression levels that either
correlate strongly negatively (DCA, SAVER) or strongly positively (MAGIC, scVI) with total
UMI count. These observations again generalize to all other datasets as shown in Suppl. Fig.
S2. In conclusion, only TPM and Sanity reliably normalize for variations in total UMI count,
and most other methods introduce strong spurious correlations with total UMI count.

Most normalization methods spuriously infer co-expression between many
pairs of genes

One of the most common downstream analyses that are applied to transcriptome data is the
identification of co-expressed genes, for example for identifying co-regulated pathways or regu-
latory modules. In order to perform such co-expression analysis, it is crucial that the pairwise
correlations of the normalized expression profiles across genes accurately reflect the co-expression
evidence in the data. In order to compare co-expression information across methods we calcu-
lated, for each method and for every pair of genes, the Pearson correlation of their normalized
expression levels. We then compared these pairwise correlation coefficients across the various
methods.

Using the Baron dataset as an example, Fig. 4A shows a scatter of the pairwise correlations
as inferred by Sanity and the simple TPM method for all pairs of genes. We see that the inferred
pairwise correlations by-and-large agree between the two methods, i.e. most points fall along the
diagonal, and there are almost no pairs where the two methods strongly disagree on the strength
of the correlation. As shown in Suppl. Fig. S3, this also holds for the comparison of Sanity’s
pairwise correlations with those of RawCounts and scImpute. However, a very different pattern
is observed for the comparison of Sanity with MAGIC (Fig. 4C). For many of the pairs of genes
for which Sanity infers no co-expression, i.e. zero correlation, MAGIC infers a broad range
of correlations running from almost perfect anti-correlation, to perfect correlation. To assess
whether the raw data are more consistent with Sanity’s or MAGIC’s pairwise correlations,
we first focused on a subset of 4360 pairs of genes within the red rectangle of Fig. 4C, for
which MAGIC predicts nearly perfect correlation (r > 0.975) whereas Sanity predicted none
(−0.03 < r < 0.005). Summing across all 4360 pairs and all cells, we counted the total number
of times ni,j for which i UMIs were observed for the first gene and j for the second. Strikingly,
there was not a single example for which both i and j are larger than zero (Fig. 4D). That is,
although MAGIC infers that these 4360 pairs of genes are almost perfectly co-expressed, none
of them are ever observed to be present at the same time in any cell. In contrast, for the small
set of pairs for which Sanity infers significant co-expression whereas MAGIC does not (magenta
box in Fig. 4C), we do generally find evidence of co-expression (Fig. 4E). As shown in Suppl.
Fig. S3, the same pattern is observed for the comparisons of Sanity’s pairwise correlations
with those of DCA and SAVER. That is, MAGIC, DCA, and SAVER all infer large numbers
of highly correlated or anti-correlated pairs of genes, whereas there is no evidence at all in the
raw data that these pairs of genes are co-expressed. The pairwise correlations predicted by scVI
show even more pathological behavior, i.e. scVI predicts that all pairs of genes are significantly
co-expressed (Fig. 4B).

These observations are confirmed by the overall distributions of pairwise correlations that
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Figure 4: A: Density plot of Pearson correlations for all pairs of genes as inferred by Sanity (x-axis) against the
correlations inferred by TPM (y-axis). The color scale shows the density in log10 number of gene pairs and values
log10(0) are shown in white. B: Density plot as in panel A, but now comparing the correlations inferred by Sanity
and scVI. C: Density plot as in panel A but now comparing the correlations inferred by Sanity and MAGIC.
The red and the magenta rectangles indicate the pairs of genes analyzed in panels D and E. The red rectangle
contains all pairs of genes with correlation above 0.975 for MAGIC and between -0.03 and 0.005 for Sanity. The
magenta rectangle contains all pairs of genes with correlation between -0.3 and 0.3 for MAGIC and between 0.6
and 0.93 for Sanity. D: 2-dimensional histogram of counts per cell summed over the 4360 pairs of genes from the
red rectangle in panel C. The height of the histogram is shown in log10 as a color and values log10(0) are shown
in white. E: 2-dimensional histogram of counts per cell summed over the 105 pairs of genes from the magenta
rectangle in panel C.
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each of the methods predicts on each of the datasets (Suppl. Fig. S4). The results are highly
consistent across datasets and show three main behaviors. First, Sanity, TPM, RawCounts,
and scImpute have distributions of pairwise correlations that are highly peaked around zero,
i.e. these methods predict that most pairs are not co-expressed. Second, instead of a peak at
zero, DCA and MAGIC have almost uniform distributions of pairwise correlations. SAVER’s
distribution of pairwise correlations is somewhat in between these two behaviors, i.e. a very
broad distribution with a moderate peak at zero. Third, scVI’s pairwise correlations are highly
peaked near almost perfect correlation of r ∼ 1. Notably, even on the simulated dataset that
contains no expression correlations at all, MAGIC and DCA also show broad distributions of
pairwise correlations, and scVI again predicts almost all pairs to be perfectly co-expressed. This
further supports that the correlations that these methods predict are artefactual.

Sanity outperforms other methods on clustering cells into subtypes

One of the main applications of scRNA-seq is to identify (novel) cell types and this is generally
done by clustering single cell gene expression patterns using a measure of pairwise distances
between cells. Since the pairwise distances between cells will depend on the normalization
method, we expect different methods to differ in their ability to recover subpopulations of cells.
For six of our test datasets, the corresponding study explicitly reported an annotation of cell
types present in the dataset, that was typically obtained using a combination of automated
clustering, analysis of marker gene expression, and hand curation. To test the performance of
the different normalization methods on cell type identification we investigated to what extent the
reported cell type annotations could be recovered by application of simple clustering algorithms
to the normalized gene expression data.

Taking the Zeisel dataset as an example, we first obtained a simplified visual indication
of the clustering structure implied by the different methods by applying the popular t-SNE
algorithm [26] (with the default 50 principal components and a perplexity equal to the average
number of cells per annotated cluster) to the normalized expression values of each method,
and colored the cells according to the annotation of [48] (Fig. 5A). Although it is well-known
that it is difficult to interpret these visualizations beyond the fact that neighboring cells in the
visualization are typically also neighboring in the full gene expression space, the visualization
does suggest that there is considerable disparity across the normalization methods. For example,
it appears that TPM, DCA, Sanity, and SAVER separate the cell types more reliably than
MAGIC, and scVI. Similar qualitative observations can be made on the other datasets (Suppl.
Fig. S5 - S9).

To quantify the performance of the different normalization methods we applied, for each
dataset and each normalization method, simple hierarchical clustering using Ward’s method [52].
That is, starting with each cell as its own cluster, at each step two clusters are fused so as to
minimize the sum of the variances across all clusters. This is iterated until the number of clusters
equalled the number of annotated cell types. We then calculated, for each method and dataset,
the similarity between the annotated clusters and the inferred clusters using the normalized
mutual information as a similarity measure (see Supplementary Methods). As shown in Fig. 5B,
Sanity outperforms all other methods on all datasets except the Zeisel dataset, where the TPM
method obtains slightly higher similarity with the annotated clusters. The TPM normalization
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Figure 5: A: Each panel shows a t-SNE visualization of the Zeisel dataset using the normalized gene expression
values of the method indicated at the top of the panel. Each point represents a cell and is colored according to
the cell type annotation given in [48]. B: Similarity between the annotated clusters and the clusters inferred by
applying hierarchical Ward clustering on the normalized expression values of the different methods. Normalized
mutual information, which ranges from 0 (no similarity) to 1 (perfect match) was used as a similarity measure.
Each group of bars shows the results for a particular dataset as indicated below it, and the bars are colored
according to the normalization method, as indicated in the legend. The last group of bars shows the average
similarity per method across all datasets. For ease of viewing, the methods are sorted from left to right according
to their average similarity.
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generally has second best performance, followed by DCA and then SAVER. We also note that
MAGIC and scVI generally perform least well. Very similar results are observed when using
a different similarity metric such as the rand index (Supplementary Methods) or a different
clustering algorithm such as k-means (Suppl. Fig. S10).

Thus, although the performance differences are not large, Sanity’s normalized expression
estimates generally outperform the other methods in identifying subtypes of cells.

Sanity outperforms other methods on identification of differentially expressed
genes

As a final example of downstream analysis we consider the ability of the normalized expression
values to identify genes that are upregulated in particular subtypes of cells. That is, we aim to
identify genes whose average expression in a given subtype of cells is significanlty higher than
its average in all other cells. A simple and standard statistic for comparing the averages of
populations is the t-statistic and we used this to identify upregulated genes for each cell type in
a given dataset. In particular, for each gene g and each cell type k annotated in a given dataset,
we calculated a t-statistic

tgk =
µgk − µgk̄√

σ2
gk/nk + σ2

gk̄
/nk̄

, (7)

where µgk is the average of the normalized expression values of gene g in cells of type k, µgk̄ is

the average in all other cells, σ2
gk and σ2

gk̄
the corresponding variances in normalized expression

levels, and nk and nk̄ the number of cells in type k and the number of all other cells. The
t-statistic tgk quantifies that statistical evidence that gene g’s average expression in cell type k
is higher than in the other cells. To predict a set of upregulated genes, one would then pick a
cut-off in t-statistic corresponding to a particular rate of false discovery (FDR), e.g. a 5% FDR.
By applying this procedure to the normalized expression values of each method we derived, for
each method, a set of upregulated genes for each cell type k of a given dataset of interest.

To test the performance of these predicted sets of upregulated genes we compared these
lists with similar lists of predicted upregulated genes from the original publications. For 3 of
our test datasets, i.e. the Zeisel and two LaManno datasets, the authors published, for each
identified cell type, a list of genes that had higher average expression in the cell type compared
to the other types of cells [48, 51]. These lists were obtained using a fairly complex regression
procedure and it is of course debatable whether these published lists can be treated as a gold
standard. However, since they were obtained using a method that is very different from our
simple t-statistic, we reasoned that the match to these reference lists can still be used to assess
the relative performance of the different normalization methods.

For each normalization method we calculated a precision-recall curve by producing one sorted
list of the t-statistics tgc for all genes in all subtypes and, as a function of a cut-off on t, compared
the predicted set of significantly upregulated genes, with the reference lists published in the
original study. Figure 6 shows the precision-recall curves obtained for each of the methods
on each of the 3 datasets for which reference lists were available. The colored dots indicate
the sensitivity and positive predictive values (PPV) that are obtained for each method when
using a t-statistic cut-off corresponding to a 5% FDR. We see that, for each dataset, Sanity
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Figure 6: Precision recall curves showing the positive predictive value, i.e. the fraction of predicted upregulated
genes that correspond to upregulated genes in the corresponding reference list, as a function of sensitivity, i.e.
fraction of all genes in the reference lists that were predicted, as obtained using the t-statistics for each of the
normalization methods (colors) for the Zeisel (panel A) and two LaManno datasets (panels B and C). The dots
show the values that are obtained when using a cut-off on the t-statistic corresponding to a false discovery rate
of 5%.
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achieves the highest accuracy of predictions, i.e. a higher PPV at a given sensitivity than all
other methods. The simple TPM method achieves the next best performance, MAGIC and scVI
perform hardly better than random, and all other methods are somewhere in between. Note
that, at a 5% FDR, the more complex DCA, MAGIC, and scVI methods all predict very large
numbers of upregulated genes which leads to low PPVs. In summary, these results suggest that
Sanity’s normalized expression levels also achieve highest accuracy for downstream identification
of differentially regulated genes.

The Sanity software

Sanity was implemented in C and is freely available for download at https://github.com/

jmbreda/Sanity. The raw UMI count tables for each of the scRNA-seq datasets, as well as
all the normalized expression values as inferred by each of the methods are available from this
website as well.

Discussion

Recent technologies for quantitatively measuring the epigenetic states of single cells are promis-
ing to revolutionize our understanding of the mechanisms by which cell fate and identity are
regulated in animals, and there has been a surge in the use of these methods. However, even for
the most popular scRNA-seq method, there is so far little agreement within the community as
to how such single-cell expression data should be processed and normalized. In particular, it has
so far been challenging to define a normalization procedure that, on the one hand, deals with
the specific artefacts and noise introduced by the scRNA-seq measurement process while, on the
other hand, providing quantification of the expression states of cells that have direct biological
interpretation. In particular, only when the normalized expression methods provide quantities
with a concrete biological interpretation will it be possible to integrate results of scRNA-seq
experiments from different protocols employed by different labs with expression data from other
experimental techniques. So far, such normalization methods have been lacking.

Here we developed a Bayesian normalization procedure that achieves these objectives, and
is derived from first principles using only two basic assumptions. First, we characterize a cell’s
gene expression state by the vector of log transcription quotients (LTQs) across genes, i.e. the
logarithms of the expected fractions of the transcript pool for each gene. Second, estimating
these LTQs within a Bayesian setting requires choosing a prior distribution and we chose to
characterize the distribution of LTQs of each gene by just its mean and variance across cells.
Given only these two assumptions the entire procedure follows from first principles, determin-
istically, and without any tunable parameters. Given a table of UMI counts for each gene (or
transcript) across cells, our Sanity method returns estimates of LTQs and their error bars across
all genes and cells. Importantly, these estimates correct both for the Poisson noise that is inher-
ent in the process of transcription, as well as the sampling noise associated with the scRNA-seq
measurements, so that the variance in normalized expression levels across cells reflects changes
in rates of transcription and mRNA decay rather than biological or technical sampling noise.

Although our normalization method makes only a minimal number of assumptions, one may
ask how arbitrary these assumptions are. If one accepts that biological and technical sampling
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noise do not reflect changes in gene expression state, that expression changes should be measured
in terms of fold-changes rather than absolute changes, and that an overall ‘cell size’ rescaling
of the expression levels of all genes by the same amount does not reflect a change in expression
state, then LTQs are the most general representation of a cell’s expression state. Similarly, our
prior distribution over LTQs for a gene is the least assuming, i.e. maximum entropy, distribution
that is consistent with only a given mean and variance. This prior thus also aims to minimize
the strength of the assumptions that the method makes. In this sense, we think that our
method makes the most conservative assumptions that are consistent with current knowledge.
To improve on these assumptions we would have to supply specific biological information to
determine more informative priors on the gene expression states that cells can take on.

Our comparison of Sanity with other normalization methods showed that the Sanity’s nor-
malized expression values outperform other methods on basic downstream processing tasks such
as clustering cells into subtypes and identifying differentially expressed genes. More importantly,
however, we showed that all other methods produce a representation of the data that is severely
distorted in one or more respects. Of all alternative methods that we evaluated, the simple TPM
method produces the most reasonable representation of the data and it also performs second
best on the downstream processing tasks. The main problem with the TPM method is that
the variations in normalized expression levels are dominated by Poisson fluctuations. This not
only causes there to be a complete lack of correlation between true biological variability of genes
and the variability of the normalized expression values, it also causes low expressed genes to
be predicted to be most variable, whereas in reality low expressed have least evidence of true
variation in gene expression. The simple RawCounts method, and also the scImpute method
that produces results highly similar to those of the RawCounts method, both suffer from this
same problem, and additionally have the problem of not correcting for variation in total UMI
count across cells.

More striking, however, are the severe problems with the normalized expression values pro-
duced by the more sophisticated SAVER, DCA, MAGIC, and scVI algorithms. In particular,
these methods produce not only strong artefactual correlations of the normalized expression val-
ues with the total UMI count in each cell, they also predict very large numbers of co-expressed
genes when there is no evidence for co-expression at all in the raw data. The fact that this
even occurs on synthetic data where there are no co-expressed genes at all confirms that such
spurious correlations are inherently introduced by these normalization procedures.

We believe that these spurious correlations are introduced because all these methods con-
found noise removal with fitting the data to a lower-dimensional representation. Although it rea-
sonable to assume that the possible states that cells can take on is much lower-dimensional than
the full dimensionality of the transcriptome data, the problem of finding such lower-dimensional
representations should be clearly distinguished from the problem of correcting for the biological
and technical noise. Not only does this noise affect all genes almost independently, but because
Poisson sampling noise scales with absolute expression level, different genes are affected by such
noise to different extends and this may be erroneously mistaken for ‘structure’ in the data. In-
deed, even though methods such as SAVER, DCA, MAGIC, and scVI specifically normalize for
the total UMI count per cell, their normalized expression levels show strong correlations (and
anti-correlations) with total UMI count. Thus, unless the process of noise removal and nor-
malization is carefully separated from fitting of the data to lower-dimensional representations,
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artefactual correlations are likely to be introduced.
This is not to say that searching for lower-dimensional representations of the transcriptome

data is not an important problem. Indeed, finding biologically meaningful lower-dimensional
representations of genome-wide gene expression states is a key challenge in this field. However,
we believe that this is a very hard problem in general, and it is currently not clear whether
this problem is even solvable in principle, i.e. we are not aware of mathematical results that
show under what conditions a lower-dimensional manifold embedded in a very high dimensional
space can be reliably reconstructed from a limited number of noisy measurements. Our belief is
that, rather than black box procedures for dimensionality reduction, progresss in understanding
the genome-wide structure of expression data will crucially depend on connecting transcriptome
data to the underlying molecular mechanisms, e.g. the folding of the chromosome, chromatin
accessibility at enhancers and promoters, and the binding and unbinding of transcription factors.

However, whatever approach is taken to finding lower-dimensional representations of gene
expression states, a prerequisite is that the raw data are first carefully normalized and corrected
for both biological and technical sampling noise. The Sanity method that we presented here
aims to provide such normalization methodology.

Supplementary Methods

Sanity

We denote, for each cell c and each gene g, the transcription rate a time t in the past as λgc(t)
and the decay rate of its mRNAs a time t in the past as µgc(t). Given these time-dependent
transcription and decay rates, we define the transcription activity agc of gene g in cell c as the
expected number of mRNAs 〈mgc〉 which can be written as the following integral

agc = 〈mgc〉 =

∫ ∞
0

dtλgc(t) exp

[
−
∫ t

0
µgc(s)ds

]
. (8)

That is, the transcription activity agc is a weighted time average of the recent transcription
rates a time t in the past, with the weight equal to the expected fraction of surviving mRNAs
produced at time t.

Conditioned on the transcription activity agc, the distribution of the actual number of mR-
NAs mgc for gene g in cell c is given by a simple Poisson distribution

P (mgc|agc) =
(agc)

ngc

ngc!
e−agc . (9)

We now assume that, in the scRNA-seq measurement, each mRNA existing in cell c has
a probability pc to be captured and sequenced. Given this, the probability that precisely ngc
unique mRNAs will be sequenced for gene g in cell c is given by

P (ngc|agc, pc) =
∞∑

mgc=ngc

(
mgc

ngc

)
(pc)

ngc(1− pc)mgc−ngcP (mgc|agc) (10)

=
(pcagc)

ngc

ngc!
e−pcagc , (11)
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which is still a Poisson distribution.
Next, we define the transcription activity agc as a product of the total transcription activity

Ac =
∑

g agc in cell c and a transcription quotient αgc:

αgc =
agc∑
g′ ag′c

=
agc
Ac

, (12)

i.e. αgc is the expected fraction of all mRNAs in cell c that are mRNAs for gene g. If we also
define the cell dependent constant λc = pcAc, then we can rewrite this Poisson distribution as

P (ngc|αgc, λc) =
(λcαgc)

ngc

ngc!
e−λcαgc . (13)

The probability for the entire data-set in cell c has the form:

P ({nc}|{αc}, λc) =
∏
g

[
(λcαgc)

ngc

ngc!
e−λcαgc

]
, (14)

where the notation {nc} refers to all counts ngc for cell c, and {αc} refers to all transcription
quotients αgc for cell c. Next, we remove the dependence on the constant λc by setting it
to its maximum likelihood value. Noting that

∑
g αgc = 1 per definition, the dependence of

the likelihood P ({nc}|{αc}, λc) on λc has the form P ({nc}|{αc}, λc) ∝ λNc
c e−λc , with Nc =∑

g ngc the total number of sequenced mRNAs in cell c. Thus, the value of λc that maximizes
P ({nc}|{αc}, λc) is simply λc = Nc. Substituting this we obtain

P ({nc}|{αc}) =
∏
g

[
(Ncαgc)

ngc

ngc!
e−Ncαgc

]
. (15)

That is, the number of sequenced mRNAs ngc for each each gene g in cell c is still a Poisson
distribution with expectation value Ncαgc. The probability of the entire dataset of counts {n}
given all transcription quotients {α} is given by simply taking the product of this expression
over all cells, i.e

P ({n}|{α}) =
∏
c,g

[
(Ncαgc)

ngc

ngc!
e−Ncαgc

]
. (16)

Instead of trying to estimate the αgc for all genes at once, we will focus on one specific gene
g at a time, and infer how αgc varies across the cells c. Note that if we collect all the terms that
depend on the αgc of single gene g we obtain

P ({ng}|{αg}) =
∏
c

[
(Ncαgc)

ngc

ngc!
e−Ncαgc

]
, (17)

where {ng} is the set of counts for gene g and {αg} is the set of transcription quotients for gene
g.

Finally, without loss of generality, we will write the transcription quotients αgc in terms of
the average quotient of the gene αg and a log-fold change δgc in a given cell c, i.e.

αgc = αge
δgc . (18)
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In terms of these parameters we have

P ({ng}|αg, {δg}) =

(∏
c

N
ngc
c

ngc!

)
α
ng
g exp

[∑
c

ngcδgc − αg
∑
c

Nce
δgc

]
, (19)

where ng is the total number of sequenced mRNAs for gene g.

Marginalizing over the average transcription quotient αg

We now first focus on estimating the log fold-changes δgc. We return to estimating the overall
average transcription quotient αg once we have determined these. To marginalize expression
(19) over αg we use a simple uniform prior P (αg)dαg ∝ dαg. Integrating with this uniform prior
from 0 to ∞ we obtain

P ({ng}|{δg}) =

(∏
c

N
ngc
c

ngc!

)
Γ(ng + 1) exp

(∑
c

ngcδgc − (ng + 1) log

[∑
c

Nce
δgc

])
. (20)

Note that, because αg is a fraction, we should have really only integrated from 0 to 1, but as long
as each gene is only responsible for a small fraction of all UMIs in the cell, the only contribution
to the integral comes from values of αg much smaller than 1, and we can extend the range of

the integral to infinity without loss of accuracy. Note also that the factor
(∏

c
N

ngc
c
ngc!

)
Γ(ng + 1)

is determined entirely by the counts and does not depend on the δgc, and we will neglect this
prefactor from now on.

Including prior probabilities for the δgc

We next introduce prior probabilities over the log fold-changes δgc. Assuming only that the
δgc for gene g have a variance vg and mean zero, we use the maximum entropy distribution
consistent with these constraints, which is a Gaussian

P (δgc|vg) =
1√
2πvg

exp

[
−
δ2
gc

2vg

]
. (21)

Thus, the prior over the full set {δg} of log fold-changes for the C cells is given by

P ({δg}|vg) ∝ (vg)
−C/2 exp

(
− 1

2vg

C∑
c=1

δ2
gc

)
. (22)

Combining the prior with the likelihood we obtain

P ({ng}, {δg}|vg) = (vg)
−C/2 exp

(
− 1

2vg

∑
c

δ2
gc +

∑
c

ngcδgc − (ng + 1) log

[∑
c

Nce
δgc

])
,

(23)
up to a prefactor that does not depend on the parameters δgc and vg.
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Calculating P ({n}|vg) using the Laplace approximation

We next focus on calculating the probability P ({ng}|vg) of the data given only the variance vg.
To obtain the probability P ({ng}|vg), we need to integrate over all possible δgc. As the integral
is close to Gaussian in form, we will assume we can approximate the integral by the Laplace
approximation, i.e. by approximating the log-likelihood L({δg}, vg) = log [P ({ng}, {δg}|vg)] by
expanding it to second order around its maximum. The log-likelihood has the form

L({δg}, vg) = −C
2

log(vg)−
1

2vg

∑
c

δ2
gc +

∑
c

ngcδgc − (ng + 1) log

(∑
c

Nce
δgc

)
. (24)

Taking derivatives with respect to the δgc, the equations for the optimum become

− δgc
vg

+ ngc − (ng + 1)
Nce

δgc∑
c̃Nc̃eδgc̃

= 0 ∀c. (25)

To solve this equation we are going to multiply the equation by vg and then define the c-
independent quantity

eqg =
∑
c

Nce
δgc , (26)

the normalized quantities
fgc = e−qgNce

δgc , (27)

which sum to 1, i.e.
∑

c fgc = 1, and the c-dependent quantities

ygc = vgngc + log(Nc), (28)

which are directly determined by vg and the data.
In terms of these quantities the equations for the optimum become

log(fgc) + vg(ng + 1)fgc = −qg + ygc ∀c, (29)

whose solution is

fgc =
W [e−qg+ygcvg(ng + 1)]

vg(ng + 1)
, (30)

with W (x) the Lambert W-function (also called productlog). Note, however, that the solution
depends on qg, which itself depends on the fgc. However, since

∑
c fgc = 1 per definition, we

can sum equation (30) over c to obtain the following consistency equation for qg∑
c

W [e−qg+ygcvg(ng + 1)]

vg(ng + 1)
= 1. (31)

In the above equation, everything is determined either by the data (ngc, ng, and Nc) or the
variance vg, except for the unknown constant qg, which needs to be solved for numerically. We
can perform a binary search to find the value of qg for which equation (31) is satisfied. Note also
that the expression on the left hand side of equation (31) is a monotonically decreasing function
of qg, guaranteeing that there is only a single solution for qg.
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Once qg has been determined, we obtain the fgc from equation (30) and we obtain the optimal
δ∗gc as

δ∗gc = log(fgc)− log(Nc) + qg. (32)

Note that these optimal δ∗gc are functions of the variance vg, which we from now on will express
explicitly in our notation.

Substituting the optimal δ∗gc(vg) into equation (24) we obtain the optimal log-likelihood
L∗(vg). By expanding the log-likelihood to second order around its maximum, the probability
P ({ng}, {δg}|vg) can then be rewritten as

P ({ng}, {δg}|vg) = exp

L∗(vg)− 1

2

∑
c,c̃

(δgc − δ∗gc(vg))M
g
cc̃(δgc̃ − δ

∗
gc̃(vg))

 , (33)

where the matrix Mg is given by the second derivatives of the log-likelihood around its optimum,
i.e.

∂2L

∂δgc∂δgc̃
‖∗ = −Mg

cc̃. (34)

We find

Mg
cc̃ =

(
(ng + 1)f∗gc(vg) +

1

vg

)
δcc̃ − (ng + 1)f∗gc(vg)f

∗
gc̃(vg). (35)

The integral over the likelihood can now be easily written in terms of the determinant of the
matrix Mg, given us for the marginal probability of the data as a function of vg:

P ({ng}|vg) =

∫
P ({ng}, {δg}|vg)d{δg} =

eL∗(vg)√
det(Mg)

. (36)

Finally, given the relatively simple structure of the matrix Mg, we use the matrix determinant
lemma and write the determinant as

det(Mg) =

(
1−

∑
c

(ng + 1)(f∗gc(vg))
2

(ng + 1)f∗gc(vg) + 1
vg

)∏
c

(
(ng + 1)f∗gc(vg) +

1

vg

)
. (37)

Posterior P (vg|{n}) over variance vg

To obtain a posterior over the variance vg we need a prior over the variance vg, for which we will
use a scale prior, i.e. uniform in the logarithm of vg: P (vg)dvg ∝ d log(vg). Note, however, that
our solution of P ({n}|vg) involved a numerical determination of qg, so that we do not have an
analytical formula for P (vg|{n}). In order to approximate the full posterior P (vg|{n}) we pick a
range [vmin, vmax] within which we presume all vg fall, divide this range into B bins of equal size
in log(vg), and calculate P ({n}|vg) for each bin b. Per default we choose [vmin, vmax] = [0.01, 20]
since this covers the range of observed variances in the datasets we considered. Trading off speed
versus accuracy we chose B = 116 bins by default, so that the variance increase by about 5%
from one bin to the next. However, if desired these values can be changed by the user.
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Let vb denote the variance of bin b and Lb the log-likelihood log[P ({n}|vb)]. We then ap-
proximate the full posterior P (vb|{n}) by a distribution over a finite number of points:

P (vb|{n}) =
eLb∑B
b′=1 e

Lb′
. (38)

The posterior P ({δg}|{n}, vg) of log-fold changes given a variance vg

For a given value of the variance vg, the posterior distribution over the log fold-changes δgc is
given by a multi-variate Gaussian with means 〈δgc〉 = δ∗gc(vg) and a covariance matrix C given
by the inverse of the matrix Mg. In particular, the variances var(δgc) of the log fold-changes
across cells are given by the diagonal elements of the inverse of Mg. Fortunately, given the
relatively simple structure of the matrix Mg, we can also obtain analytical expressions for these
variances. In particular, the components (c, c) of the inverse of Mg are given by the ratio of the
minor [Mg](c,c) (the determinant of matrix Mg with the cth row and column removed) and the
determinant of the full matrix. We have

var(δgc̃) =
[Mg]c̃,c̃

det(Mg)
(39)

=

(
1−

∑
c 6=c̃

(ng+1)f∗gc
2

(ng+1)f∗gc+ 1
vg

)∏
c 6=c̃

(
(ng + 1)f∗gc + 1

vg

)
(

1−
∑

c
(ng+1)f∗gc

2

(ng+1)f∗gc+ 1
vg

)∏
c

(
(ng + 1)f∗gc + 1

vg

) (40)

=

(
1−

∑
c 6=c̃

(ng+a)f∗gc
2

(ng+1)f∗gc+ 1
vg

)
(

1−
∑

c
(ng+1)f∗gc

2

(ng+1)f∗gc+ 1
vg

)(
(ng + 1)f∗gc + 1

vg

) , (41)

where again it should be noted that the f∗gc are themselves functions of vg.
A technical complication arises in estimating the variance var(δgc) when the observed number

of UMIs is zero. That is, when ngc = 0 the log-likelihood L({δg}, vg) can be a highly asymmetric
function of δgc around its maximum δ∗gc(vg). In particular, whereas the fact that no UMIs were
observed, i.e. ngc = 0, ensures that the log-likelihood decreases quickly as δgc increases above
δ∗gc(vg), it drops only slowly with decreasing δgc. That is, when no UMI are observed, we
can give a reasonably tight upper bound on δgc, but ngc = 0 is consistent with very low δgc.
This asymmetry causes the variance var(δgc) to significantly overestimate the error-bar in δgc
toward larger values of δgc. To fix this problem, we directly set var(δgc) from its upper bound
for cases with ngc = 0. In particular, note that for a Gaussian distribution with mean µ
and variance σ2, the difference between the log-likelihood at the optimum µ and at µ + σ is
L(µ)−L(µ+ σ) = (µ+ σ−µ)2/(2σ2) = 1/2. We thus define the σgc =

√
var(δgc) such that the

difference between the log-likelihood at δ∗gc and δ∗gc + σgc is 1/2, i.e. the solution of

L(δ∗gc)− L(δ∗gc + σgc) =
σgc(2δ

∗
gc + σgc)

2vg
+ (ng + 1) log(1 + f∗gc(e

σgc − 1)) =
1

2
, (42)

which we determine numerically.
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Final estimates 〈δgc〉 and error-bars εgc

For each value of vg, we have determined the posterior probability P (vg|{n}) and given a variance
vg, we have a Gaussian posterior distribution P ({δg}|{n}, vg) over the log fold-changes, with
means δ∗gc(vg) and variances var(δgc)(vg). Using these, we can now calculate final estimates of
the fold changes δgc. In particular, the expectation value 〈δgc〉 is given by the integral

〈δgc〉 =

∫
dvgd{δg}δgcP ({δg}|{ng}, vg)P (vg|{n}) =

∫
dvgδ

∗
gc(vg)P (vg|{n}). (43)

Similarly, we find for the overall error-bar ε2gc

ε2gc = 〈(δgc)2〉 − 〈δgc〉2 (44)

=

∫
dvg

[
var(δgc)(vg) +

(
δ∗gc(vg)

)2]
P (vg|{n})− 〈δgc〉2 (45)

=

∫
dvg

(
var(δgc)(vg) +

(
δ∗gc(vg)− 〈δgc〉

)2)
P (vg|{n}) (46)

Sanity returns, for each gene g in each cell c, both the estimated log fold-change 〈δgc〉 and
its error-bar εgc.

Mean expression 〈log(αg)〉

Once we have fitted a set of δ∗gc(vg) for each vg, and determined the posterior P (vg|{ng}) we can
now easily estimate the mean log quotient µg = log(αg) of each gene. Returning to equation
(19), and marginalizing over the δgc we find that the posterior over αg is proportional to the
expression (19) in which the δgc have been set to δ∗gc(vg):

P (ᾱg|{ng}, vg) ∝ (αg)
ng exp

[
−αgeqg(vg)

]
, (47)

where ng is the total number of UMIs captured for gene g, eqg(vg) =
∑

cNce
δ∗gc(vg) as defined

above, and we have explicitly indicated that qg is a function of the variance vg.
Using (47) the expectation value of log(αg) at a given value of the variance vg is given by

〈log(αg)〉vg = ψ(ng + 1)− qg(vg), (48)

where ψ(x) is the digamma function, i.e. the derivative of the logarithm of the gamma function.
Note also that, since ng is an integer, we have ψ(ng + 1) is simply related to the Harmonic
numbers, i.e. ψ(ng + 1) = −γ +

∑ng

k=1 1/k, with γ ≈ 0.577 the Euler–Mascheroni constant.
To get a final estimate µg = 〈log(αg)〉 we obtain the weighted average over the variance vg,

i.e.

µg = ψ(ng + 1)−
∫
dvgqg(vg)P (vg|{n}) = ψ(ng + 1)− 〈qg〉. (49)
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Error bar on mean expression

Going back to equation (47) we find that the variance in log(αg), at a given value of the variance
vg, is given by the derivative of the digamma function:

var(log(αg))vg = ψ1(ng + 1), (50)

with ψ1(x) the derivative of the digamma function, which is also called the trigamma function.
Note that this variance is independent of vg.

The final error-bar δµg for log(αg + 1) is then given

(δµg)
2 = ψ1(ng + 1) +

∫
dvg (qg(vg)− 〈qg〉)2 P (vg|{ng}). (51)

Note that, as for the calculation of the log fold-changes, these integrals over vg are approximated
by sums over the same set of B bins.

Simulated dataset

Defining Ngene the number of genes, Ncell the number of cells, µg the mean LTQ of gene g, vg
the variance of the LTQs of gene g across cells, Nc the total number of sequenced mRNAs in cell
c, agc the transcription activity of gene g in cell c, and αgc the transcription quotient of gene g
in cell c, we simulated the UMI counts ngc as follows:

Ngene = 16′016

Ncell = 1′937

µg Taken from the measured mean LTQ per gene in the Baron dataset.

vg Sampled from a uniform distribution U(0, 6).

Nc = Taken from the observed total UMI counts per cell in the Baron dataset.

agc ∼ exp (N (µg, vg))

αgc =
agc∑
g agc

ngc ∼ Poisson(Ncαgc)

That is, the mean LTQs µg were taken from the mean LTQs measured on the Baron dataset.
The variances in LTQs were drawn from a Uniform distribution between 0 and 6. The total
number of UMIs per cell was chosen identical to the total number of UMIs per cell observed in
the Baron dataset. For each gene g, the transcription activity agc of each cell c was then drawn
from a log-normal with mean of log(agc) equal to µg and variance vg, and the transcription
quotients αgc were set by normalizing to the total transcription activity of each cell. Finally,
the observed UMI counts ngc were drawn from a Poisson with mean Ncαgc for each gene g in
each cell c.

Figure S11 shows the distributions of the total number of mRNAs per cell, the total number
of mRNAs per gene, and the variance in observed mRNA counts for both the Baron dataset and
the simulated data. Note that the distributions are highly similarly except for the variances,
which are more widely distributed in the simulated data.
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Clustering index

Let the sets {A} and {B} denote two cell classifications where Ai ∈ N+ and Bi ∈ N+ denote
the class numbers of cell i in the two classifications, and i = 1, ..., C, with C the number of cells
(i.e. the number of elements in sets {A} and {B}).

The distributions and the joint distribution of the two classifications are defined as the
frequencies

PA(a) =
|{Ai = a|1 ≤ i ≤ C}|

C
(52)

PB(b) =
|{Bi = b|1 ≤ i ≤ C}|

C
(53)

PAB(a, b) =
|{{Ai = a} ∩ {Bi = b}|1 ≤ i ≤ C}|

C
, (54)

where | · | denotes the cardinality of a set.
The entropy of the distributions and the joint distribution are defined

H(A) = −
∑
a∈N+

PA(a) logPA(a) (55)

H(B) = −
∑
b∈N+

PB(b) logPB(b) (56)

H(A,B) = −
∑

a,b∈N+

PAB(a, b) logPAB(a, b). (57)

The mutual information is defined

I(A;B) = H(A) +H(B)−H(A,B) (58)

=
∑

a∈A,b∈B
PAB(a, b) log

PAB(a, b)

PA(a)BB(b)
, (59)

representing the difference between the summed entropy of the 2 distributions and the entropy
of the joint distribution.

We compute the Normalized mutual information as

NMI(A;B) =
I(A;B)√
H(A)H(B)

. (60)

Alternatively, the confusion matrix being defined

Inferred classes

Reference Bi = Bj Bi 6= Bj
Ai = Aj TP FN

Ai 6= Aj FP TN

Table S1: Confusion matrix
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The Adjusted rand index is defined

ARI(A,B) = 2
TP · TN − FN · FP

(TP + FN)(FN + TN) + (TP + FP )(FP + TN)
(61)

Differential expression

Let egc the log-expression of gene g in cell c, C an ensemble of cells, and C̄ all other cells in
the dataset. The t-statistic tgC quantifies the statistical evidence that the average expression of
gene g in the set C differs from the average in all other cells:

tgC =
µgC − µgC̄√

σ2
gC/|C|+ σ2

gC̄
/|C̄|

(62)

µgC =
1

|C|
∑
c∈C

egc (63)

µgC̄ =
1

|C̄|
∑
c∈C̄

egc (64)

σ2
gC =

1

|C|
∑
c∈C

(egc − µgC)2 (65)

σ2
gC̄ =

1

|C̄|
∑
c∈C̄

(
egc − µgC̄

)2
, (66)

with |C| and |C̄| the number of cells in set C and its complement, respectively.
Given a t-statistic tgC , the p-value under a one-side t-test that the gene is over-expressed in

set C is given by

P (tgC) =
1

2
Erfc

(
tgC√

2

)
. (67)

Sorting all genes by the t-statistic tgC the list of over-expressed genes at a false discovery rate
of f is obtained by picking a cut-off tc such that average of P (tgC) for all genes with tgC > tc is
f .

The reference sets of differentially expressed genes are constructed using a negative binomial
generalized linear regression to obtain posterior probability distributions for the class-specific
contributions to each gene’s expression (also considering contribution of age and sex and a basal
expression per gene) (see [48], Supplementary Materials, Gene expression enrichment analysis).

Correlation matrix distance

Given 2 correlation matrix R1 and R2, the correlation matrix distance (CMD) [53] measures a
distance between R1 and R2, bound between 0 (equal) and 1 (most different) and is defined as

CMD(C1, C2) = 1− tr(R1R2)

|R1|f |R2|f
(68)

where | · |f denotes the frobenius norm, and tr(·) the trace.
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Supplementary figures

A

B

Figure S1: A Scatter plots of CV against mean gene expression level. Rows correspond to different scRNA-seq
data. Colors and columns correspond to the different methods used to normalize the data.The axis are kept
similar across panels, except for scVI for which the x-axis is different as the mean expression is on a very different
scale compared to the others. B Scatter plots of CV against mean gene expression level. The panels and colors
correspond to different methods used to normalize the data. The different methods and the correlation between
the inferred CV and the true CV is shown on top of each panel.The axis are kept similar across panels, except for
scVI for which the x-axis is different as the mean expression is on a very different scale compared to the others.
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Figure S2: Violin plots of the distribution of correlation coefficients between inferred log expression level of
genes and and log of total mRNA molecule count per cell. Rows correspond to different datasets, as indicated on
top of each panel. Columns correspond the different methods, as indicated on the x-axis.
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Figure S3: Density plot of the Pearson correlations of normalized expression values of all pairs of genes as
inferred by Sanity (x-axis) and the correponding correlation as inferred by TPM (A), RawCounts (D), DCA
(panel E), scImpute H, and SAVER (I)) on the y-axis for the Baron dataset. The color scale shows the density
in log10 of gene pairs and values log10(0) are shown in white. For panels A, E, and I, the red and magenta
rectangles show selections of gene pairs for which the two methods disagree most strongly on the correlation. For
each such set of pairs, we counted the number of ni,j across all pairs and all cells for which i UMI were observed
for the first gene and j UMI for the second gene. The panels B, C, F, G, J, and K show the corresponding
2-dimensional histograms ni,j for each selected set with the number of pairs indicated above the panel. The height
of the histogram is shown in log10 as a color and values log10(0) are shown in white.
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Figure S4: Distributions of the Pearson correlations of all pairs of genes, as inferred by each normalization
method. Each panel corresponds to one dataset (indicated at the top of the panel) and each color corresponds
to one of the normalization methods, as indicated in the legend. Note that the y-axis is shown on a logarithmic
scale.
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Figure S5: Each panel show a t-SNE visualization of the Baron dataset using the normalized gene expression
values of the method indicated at the top. Each point represent a cell and is colored by the cell type annotated
in the original publication.

Figure S6: Each panel show a t-SNE visualization of the Chen dataset using the normalized gene expression
values of the method indicated at the top. Each point represent a cell and is colored by the cell type annotated
in the original publication.
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Figure S7: Each panel show a t-SNE visualization of the LaManno/Embryo dataset using the normalized gene
expression values of the method indicated at the top. Each point represent a cell and is colored by the cell type
annotated in the original publication.
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Figure S8: Each panel show a t-SNE visualization of the LaManno/ES dataset using the normalized gene
expression values of the method indicated at the top. Each point represent a cell and is colored by the cell type
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Figure S9: Each panel show a t-SNE visualization of the LaManno/MouseEmbryo dataset using the normalized
gene expression values of the method indicated at the top. Each point represent a cell and is colored by the cell
type annotated in the original publication.
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Figure S10: Similarity between the reference clusters and the clusters inferred using the normalized gene
expression values of the different methods. Clustering was carried out using either hierarchical clustering with
Ward’s method (A) or using k-means clustering (B and C). The similarity measures used were the Adjusted
rand index (A and C) and the normalized mutual information (B). Both measures take values between 0 (no
similarity) and 1 (perfect similarity). Each group of bars shows the results for a particular dataset indicated
below) and colors indicate the different methods (see legend). The last group of bars shows the average similarity
per method across all datasets. Methods are sorted from left to right according to their average similarity.
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Figure S11: A Distribution of total mRNA captured per cell in the simulated dataset (blue) and the Baron
dataset (red). B Distribution of total mRNA captured per gene in the simulated dataset (blue) and the Baron
dataset (red). C Distribution of variance per gene calculated on the raw count matrix obtained from the simulated
dataset (blue) and the Baron dataset (red).
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