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Epigenetic regulation involves changes in gene expression independent of12	  
DNA sequence variation that are inherited through cell division (Holliday,13	  
2006). In addition to a fundamental role in cell differentiation, some epigenetic14	  
changes can also be transmitted transgenerationally through meiosis (Heard15	  
and Martienssen, 2014). Epigenetic alterations (“epimutations”) could thus16	  
contribute to heritable variation within populations and be subject to17	  
evolutionary processes such as natural selection and drift (Burggren, 2016).18	  
However, this suggestion is controversial, partly because unlike classical19	  
mutations involving DNA sequence changes, key parameters such as the rate20	  
at which epimutations arise and their persistence are unknown. Here, we21	  
perform the first genome-wide study of epimutations in a metazoan organism.22	  
We use experimental evolution to characterise the rate, spectrum and stability23	  
of epimutations driven by small silencing RNAs in the model nematode C.24	  
elegans. We show that epimutations arise spontaneously at a rate ~25 times25	  
greater than DNA sequence changes and typically have short half-lives of 2-326	  
generations. Nevertheless, some epimutations last at least 10 generations.27	  
Epimutations thus may contribute to evolutionary processes over a short28	  
timescale but are unlikely to bring about long-term divergence without further29	  
DNA sequence changes.30	  

In the nematode Caenorhabditis elegans, an epigenetic memory of gene silencing31	  
can be transmitted transgenerationally for multiple generations. This extremely32	  
stable form of silencing is initiated by Piwi-interacting small RNAs (piRNAs), leading33	  
to the formation of secondary small RNAs known as 22G-RNAs by RNA-dependent34	  
RNA polymerase (RdRP) activity (Ashe et al., 2012; Luteijn et al., 2012; Shirayama35	  
et al., 2012). 22G-RNAs and their associated Argonaute HRDE-1 are transmitted36	  
through gametes, and are required for the maintenance of silencing each generation37	  
(Buckley et al., 2012), where 22G-RNA amplification can continue independently of38	  
the initial trigger (Sapetschnig et al., 2015).39	  
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So far, mechanistic investigation of transgenerational epigenetic inheritance of 22G-40	  
RNAs has largely been confined to transgenes and artificial induction of RNAi from41	  
exogenous sources (Ashe et al., 2012; Buckley et al., 2012; Luteijn et al., 2012;42	  
Shirayama et al., 2012). The transgenerational dynamics of small RNA populations43	  
targeting endogenous genes are, in contrast, very poorly understood (de44	  
Albuquerque et al., 2015; Phillips et al., 2015). In particular, whether epigenetic45	  
inheritance can provide an additional layer of heritable biological variation for46	  
evolutionary forces to act on remains obscure. This idea is controversial, since key47	  
parameters regarding the stability of epigenetic states across generations are48	  
unknown.49	  

To investigate whether 22G-RNA-mediated epimutations occur at endogenous50	  
genes in C. elegans, we used a mutation accumulation (MA) approach. Mutation51	  
accumulation lines are used in classical evolutionary biology in order to provide52	  
unbiased estimates of mutation rates (Katju and Bergthorsson, 2019). In the MA53	  
approach, multiple lines are propagated independently from a common ancestor for54	  
several generations. Crucially, the population is repeatedly passed through55	  
bottlenecks containing very few individual organisms. Since C. elegans is a56	  
hermaphrodite, the minimal bottleneck size is a single individual. This approach57	  
strongly reduces the ability of natural selection to eliminate deleterious mutations,58	  
thus enabling an unbiased estimate of the true spectrum of mutations to be made59	  
(Katju and Bergthorsson, 2019). We employed C. elegans MA lines grown at a60	  
population size of 1 over multiple generations (Katju et al., 2018; Konrad et al., 2018)61	  
to investigate epimutations (Fig. 1a). We reasoned that loci subject to epimutations62	  
would show alterations in 22G-RNA levels relative to the parental line. Such changes63	  
could arise in individual lines as a result of stochastic processes such as64	  
environmental fluctuations, developmental noise, or intrinsic noise in the pathways of65	  
epigenetic regulation. Crucially, since the lines were maintained under identical66	  
conditions (Katju et al., 2018; Konrad et al., 2018), long term maintenance of 22G-67	  
RNA alterations within lines over multiple generations might indicate epigenetic68	  
transmission.69	  

We used high throughput small RNA sequencing to map candidate epimutations in70	  
11 MA lines after 25 and 100 MA generations (MA25 and MA100 respectively). We71	  
were able to robustly identify genes with significantly larger changes in 22G-RNA72	  
levels than expected given their mean 22G-RNA level (FDR<10-4, Methods; 73	  
examples in Fig. 1b and Fig. 1c). We detected a total of 422 genes with significant74	  
changes in 22G-RNAs in at least one MA line. These events are candidates for75	  
epimutations as they may be inherited across generations. On average, we detected76	  
around 70 candidate epimutations in each line, and the overall number of candidate77	  
epimutations was similar in MA25 and MA100 lines (Fig. 1d,e, Supp. Fig. 1). Notably,78	  
over 25 generations, the expected number of fixed point mutations and small indels79	  
is ~4.61 according to the estimated mutation rate from the same lines (Konrad et al.,80	  
2019). In addition, only a tiny fraction of mutations detected after 400 generations81	  
(Konrad et al., 2019) overlapped with epimutations (Supp. Fig. 2a-c). The majority of82	  
changes in 22G-RNAs are therefore unlikely to be due to genetic differences.83	  
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Genes subject to changes in 22G-RNAs overlapped significantly with piRNA (Tang et84	  
al., 2016), HRDE-1 (Shirayama et al., 2012) and WAGO-1 (Gu et al., 2009) target85	  
genes, but not with genes targeted by CSR-1 (Claycomb et al., 2009), which has86	  
been proposed to oppose the silencing activity of other germline RNAi pathways87	  
(Seth et al., 2013; Wedeles et al., 2013) (Fig. 1f).  We also detected several changes88	  
in 22G-RNAs at transposable elements (TEs), and indeed TEs were enriched for89	  
these alterations (Supp. Fig. 9a,b). Together, this suggests that stochastic changes90	  
in small RNAs at individual genes and repetitive elements occur frequently during C.91	  
elegans propagation under minimal population size.92	  

Changes in small RNAs in individual lines could reflect changes driven by93	  
environmental or developmental fluctuations lasting only one generation or could94	  
reflect epigenetic inheritance of changes that occurred in previous generations. To95	  
test whether long-term inheritance of changes in small RNAs occurs, we compared96	  
individual genes between MA25 and MA100 lines. Only a minority of changes in97	  
22G-RNA levels were retained (13±3% mean and 95% confidence intervals; Fig. 2a,98	  
Supp. Fig. 9c). Given the fast rate at which changes in small RNAs arose, the small99	  
percentage shared between the same MA25 and MA100 line may have arisen100	  
independently. Indeed, across the set of genes, alterations in 22G-RNAs were no101	  
more likely to be shared between the same MA25 and MA100 line than expected by102	  
chance (Fig. 2b,c). Similarly, there was no significant tendency for the variance in103	  
22G-RNA levels at either genes or TEs to be lower within lineages than between104	  
lineages (Fig. 2b,c; Supp. Fig. 9d). We therefore conclude that the alterations in105	  
22G-RNA levels have limited stability such that few survived over the course of 75106	  
generations (examples in Fig. 2d,e; Supp. Fig. 3a,b for the few examples reaching107	  
significance).108	  

Having established that long-lasting epimutations are rare in C. elegans, we sought109	  
to investigate the persistence of alterations in 22G-RNAs over shorter110	  
timescales. We propagated two MA lines for 13 generations, and sequenced small111	  
RNAs at each generation (Fig. 3a). We identified genes with significant (FDR<10-4) 112	  
changes in 22G-RNA levels between any two generations within each lineage.  The113	  
genes identified in this experiment overlapped significantly (35%) with the candidate114	  
epimutations in MA25 and MA100 lines, and with piRNA, HRDE-1 and WAGO-1115	  
targets, but not CSR-1 targets (Fig. 3b). Within this set of genes, the correlation116	  
coefficients between samples decreased with increasing distance in generations,117	  
suggesting that the level of 22G-RNAs targeting these genes is inherited118	  
transgenerationally (Fig. 3c).119	  

To characterise the rate and stability of alterations in 22G-RNAs we classified the120	  
count data across the two lineages into high and low small RNA level states121	  
(Methods, Fig. 3d, Fig. 3e). Based on this classification, we observed a median of122	  
23.5 newly arising changes in 22G-RNAs per generation (Fig. 3f). This figure can be123	  
compared directly with the rate of DNA sequence mutations. Single nucleotide124	  
substitution and small indel rate estimates range from 0.2 to 1 changes per genome125	  
per generation (Denver et al., 2004, 2009; Konrad et al., 2019; Meier et al., 2014).126	  
Similarly, the rate of larger genomic duplications and deletions has been estimated to127	  
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be of 6.5x10−3 per genome per generation (Konrad et al., 2018).  The rate at which 128	  
changes in 22G-RNAs arise is therefore at least 25 times greater.129	  

Crucially, Many changes in 22G-RNAs persist for several generations, marking them130	  
out as genuine epimutations that can be transmitted transgenerationally (examples131	  
in Fig. 3d, Fig. 3e, Fig. 3g).  We quantified the duration of epimutations using survival132	  
analysis, revealing a median survival of 2-3 generations considering all epimutations133	  
(Fig. 3h). Epimutations exhibiting increased 22G-RNAs (gains) had a median134	  
survival of 2 generations, while epimutations with decreased 22G-RNAs (losses) had135	  
a significantly greater median survival of 4 generations (p<1e-4 Mantel log-rank test,136	  
Fig. 3h). Interestingly, 42% of losses of 22G-RNAs remained stable after 12137	  
generations, in contrast to only 5% of gains of 22G-RNAs (Fig. 3h). Gains of 22G-138	  
RNAs affecting genes targeted by piRNAs, WAGO-1 or HRDE-1 tended to have139	  
increased stability, while the few occurring in CSR-1 targets were extremely unstable140	  
(Supp. Fig. 4), consistent with a protective role of CSR-1 against stochastic141	  
silencing(Seth et al., 2013; Wedeles et al., 2013).142	  

Interestingly, some epimutations showed a gradual change in 22G-RNAs (Fig. 3d),143	  
while others showed a clear shift between high and low small RNAs, indicating the144	  
possibility of bistability (Supp. Fig. 5a). To examine this across all epimutations, we145	  
examined the change in 22G-RNA levels across a 6-generation window centred on146	  
the generation in which the epimutation was identified (Supp. Fig. 5b,c). We147	  
identified three categories of epimutation. Most genes showed either fluctuating148	  
small RNA levels or evidence of bistable behaviour, while less than 10% (8/145)149	  
showed evidence of a gradual change in 22G-RNAs (Supp. Fig. 5d,e). Epimutable150	  
genes showing bistable and gradual changes were significantly enriched for piRNA151	  
targets (p<0.01, Fisher’s Exact Test), but not for HRDE-1 or WAGO-1 targets (Supp.152	  
Fig. 5f).  Bistable and gradual changes tended to last longer than epimutations at153	  
genes displaying fluctuating levels of 22G-RNAs (Supp. Fig. 5g).154	  

The existence of different types of transgenerational dynamics in 22G-RNA levels155	  
prompted us to test the heritability of small RNA levels using an alternative method.156	  
We reasoned that transgenerational inheritance of 22G-RNA levels would result in157	  
reduced variance between consecutive generations (“intergenerational variance”)158	  
compared to the total variance (Supp. Fig. 6a). We identified 321 genes following this159	  
premise (permutation test FDR<0.1; Supp. Fig. 6b,c). Within these genes, we160	  
extracted the duration of runs of consecutive generations with low intergenerational161	  
variance (Supp. Fig. 6d), recovering a median duration of 2 generations. This162	  
analysis thus further supports the existence of heritable variation in 22G-RNA levels163	  
that lasts for ~2-3 generations on average (Supp. Fig. 6e).164	  

To examine the effect of small RNA-mediated epimutations on gene expression, we165	  
performed high-throughput RNA sequencing across the 12 generations, as well as166	  
MA25 and MA100 lines. Genes exhibiting epimutations were enriched for correlated167	  
changes in mRNA levels (Supp. Fig. 7a,c; simulation test p=0.036), and larger168	  
absolute changes in 22G-RNA levels were correlated with larger changes in mRNA169	  
levels (Supp. Fig. 7b). Changes in mRNA levels in the opposite direction to changes170	  
in 22G-RNAs were enriched (simulation test p=0.01, Supp. Fig 7c) but we also171	  
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observed changes in the same direction, indicating that epimutations sometimes, but 172	  
not always, correspond to gene silencing (Supp. Fig. 7d,e). It is possible that173	  
correlated increases in both small RNA and mRNA levels represent small RNA-174	  
mediated compensation for changes in expression level driven by other epigenetic175	  
changes. We find that the proportion of this class of epimutations is significantly176	  
higher in repressive chromatin regions (Evans et al., 2016) (Supp. Fig. 7f,g),177	  
suggesting that small RNAs might be responding to a loss of chromatin-mediated178	  
silencing.179	  

Given the limited duration of epimutations, we speculated that the epimutations that180	  
we identify might represent extreme examples of fluctuations in some classes of181	  
small RNA levels at a subset of genes. We used our sequencing data to estimate the182	  
variability in 22G-RNAs across lineages, and compared this value to an estimate of183	  
the technical noise (Fig. 4a). 22G-RNAs levels are clearly more variable than184	  
technical noise, validating our approach, and allowing us to define genes with185	  
hypervariable small RNAs (“HV22Gs”) (FDR<0.1 in MA25, FDR<0.01 in MA100, Fig.186	  
4a). No miRNAs and very few piRNAs showed increased variability, demonstrating187	  
that this effect is specific for 22G-RNAs (Supp. Fig 8a,b).  HRDE-1, WAGO-1, piRNA188	  
target genes and transposable elements showed higher variability in small RNA189	  
levels and were enriched for HV22Gs, while CSR-1 targets were depleted (Fig. 4b-f;190	  
Supp Fig. 9e,f). Almost all epimutable genes were recovered as HV22Gs in this191	  
analysis (Fig. 4c). Genes identified as epimutated exclusively in MA25 lines, but not192	  
in MA100 lines nevertheless showed increased variability in the MA100 lines, and193	  
vice versa (Supp. Fig. 8c,d).  This supports the hypothesis that epimutable genes194	  
show hypervariability in 22G-RNAs. HV22Gs did not show increased variability at the195	  
mRNA level (Supp. Fig. 8e,f). Interestingly, however, HV22Gs tended to exhibit196	  
reduced mRNA levels (Fig. 4g, Supp Fig. 8g-h). 22G-RNAs that are produced197	  
downstream of piRNA targeting establish a positive feedback loop by stimulating198	  
further production of 22G-RNAs through RNA dependent RNA polymerase199	  
(Sapetschnig et al., 2015), but also promote silencing of their targets, leading to a200	  
fine balance between silencing and maintenance of 22G-RNA populations. Coupled201	  
with low availability of templates for amplification, this might lead to fluctuations in202	  
small RNA levels at targets of silencing pathways. Since 22G-RNAs are heritable203	  
(Ashe et al., 2012; Buckley et al., 2012; Luteijn et al., 2012; Shirayama et al., 2012),204	  
we propose that these fluctuations manifest as epimutations that can exhibit205	  
bistability but last only a few generations (Fig. 4h). In contrast, CSR-1 targets have206	  
higher mRNA levels (Supp. Fig. 8i) thus they have more stable 22G-RNA levels and207	  
are less liable to epimutations.208	  

Taken together, our results provide the first demonstration that small RNA-mediated209	  
epimutations arise during experimental evolution in a metazoan organism. We210	  
measure their rate, spectrum, and stability and provide a plausible mechanism for211	  
their formation and disappearance. Our results suggest that epigenetic inheritance212	  
carried by small RNAs and traditional genetic inheritance carried by DNA sequence213	  
alterations exist at opposite ends of a spectrum: epimutations arise rapidly but have214	  
limited stability, while mutations arise at a lower rate but are stably215	  
inherited. Epigenetic inheritance thus offers the potential to stimulate adaptation over216	  
short timescales, but is unlikely to contribute to long-term inheritance without217	  
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contribution from DNA sequence changes. Interestingly, the short-term nature of218	  
epimutations driven by small RNAs in C. elegans also characterizes epimutations219	  
due to DNA methylation in plants (Becker et al., 2011; van der Graaf et al., 2015;220	  
Hagmann et al., 2015; Schmitz et al., 2011), and indeed C. elegans possesses221	  
mechanisms that limit the duration of RNAi silencing (Lev et al., 2017; Perales et al.,222	  
2018). 223	  
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Figure legends322	  

Figure 1. Identification of small RNA-mediated epimutations in C. elegans323	  
mutation accumulation lines.324	  

a. Experimental design. 11 lineages of C. elegans nematodes were grown at a325	  
population size of 1 individual, for 100 generations. Small RNA sequencing was326	  
carried out for each lineage at 25 and 100 generations, as well as the parental strain327	  
before epimutation accumulation (PeMA).328	  

b. Identification of epimutations. Epimutable genes are defined as genes with large329	  
fold changes in 22G levels in at least one pairwise comparison, compared to genes330	  
of similar 22G abundance (FDR<1e-4).  K-means clustering was applied on the331	  
normalised count data to define groups of samples with high and low small RNA332	  
levels.333	  

c. 22G signal profiles for representative examples of epimutations. The top panel334	  
shows an epimutation affecting two nearby genes.335	  

d. Dot plots depicting the distribution of Pearson correlation coefficients between336	  
lines as a function of the distance in number of generations. Significance was tested337	  
using a two-sided Wilcoxon rank sum test.338	  

e. Number of epimutations detected after 25 and 100 generations.339	  

f. Overlap of epimutated genes with previously annotated small RNA pathway target340	  
genes. The significance of the overlap is indicated by the colour of the heatmap.341	  

342	  

Figure 2. Absence of evidence for long-term inheritance of epimutations.343	  

a. Unique and shared epimutation totals in MA25 and MA100 lines, showing that344	  
only a small fraction of epimutations is maintained.345	  

b. Test for long-term epigenetic inheritance. The number of matching states in pairs346	  
of MA25 and MA100 lines of the same lineage was calculated, and compared to the347	  
expected number of matches when randomly pairing MA25 and MA100 lines (epi-348	  
states test; see methods). Similarly, the variance in pairs of MA25 and MA100 lines349	  
of the same lineage was calculated and compared to the expected variance in350	  
random pairs (variance test; see methods).351	  

c. Histograms of p-values and Benjamini-Hochberg False Discovery Rate-corrected352	  
p-values of both tests, showing that virtually no cases remain significant after353	  
multiple testing correction.354	  

d-e. Genome browser windows showing examples of unstable epimutations mapped355	  
onto the C. elegans genome (ce11).356	  
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357	  

Figure 3. Characterisation of the short term dynamics of epimutations.358	  

a. Experimental design. Two 13-generation lineages were grown, by picking a single359	  
L4 stage worm as a founder for the next generation. For each generation, the360	  
remaining worm populations were synchronised using hypochlorite treatment and361	  
grown to adulthood to obtain RNA.362	  

b. Overlap of epimutated genes with small RNA pathway target genes.363	  

c. Correlation coefficients between samples in the consecutive generation364	  
experiment, as a function of separation in number of generations.365	  

d-e. Example of an epimutation lasting 5 generations.366	  

f. Dot plot showing the distribution of the number of newly arising epimutations in367	  
each of the generations of lineages A and B.368	  

g. Distribution of epimutation duration. Epimutations were split in two groups369	  
according to whether they revert within the lineage (complete), or whether they370	  
remain stable until the end of the observation window (incomplete, censored).371	  

h. Survival curves for epimutations consisting of a gain or a loss of small RNAs.372	  

373	  

Figure 4. Silencing small RNA pathways show hypervariability in 22G-RNA374	  
levels.375	  

a. Identification of genes with highly variable 22Gs (HV22Gs). The squared376	  
coefficients of variation in 22G-RNA levels are plotted against the mean. The377	  
technical noise fit is shown in pink, dashed lines represent 95% confidence intervals378	  
for the fit. Genes showing increased variability compared to technical noise are379	  
highlighted in red.380	  

b. Overlap of HV22Gs with small RNA pathway target genes.  The significance of the381	  
overlap is represented by the colour of the heatmap.382	  

c. Overlap of HV22Gs with epimutable genes.383	  

d. Comparison of variability in 22G-RNA levels for different small RNA pathway gene384	  
targets.385	  

e-f. Quantification of variability in 22G-RNA levels for different small RNA pathway386	  
gene targets. E shows Z-score distributions calculated on the basis of the distribution387	  
of technical noise for each of the gene classes. F shows the distribution of Fano388	  
factors for each of the gene classes. Box plot shows interquartile range with a line at389	  
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median, and whiskers extend to the greatest point no more than 1.5 times the 390	  
interquartile range.391	  

g. Comparison of mRNA abundance of HV22Gs and non-HV22Gs for all genes, and392	  
within small RNA pathway gene targets. Genes with >20 normalised 22G counts393	  
were considered for this analysis. Box plot shows interquartile range with a line at394	  
median, and whiskers extend to the greatest point no more than 1.5 times the395	  
interquartile range396	  

h. Model for the emergence of epimutations. CSR-1 target genes do not undergo397	  
epimutations due to (1) high mRNA abundance and (2) the protective role of CSR-1398	  
from silencing activities. In contrast, silencing small RNA pathway targets show a399	  
high level of variability in 22G-RNAs. This arises due to a combination of (1) low400	  
mRNA abundance, and (2) the ability of 22G-RNA populations to self-sustain,401	  
establishing a positive feedback for 22G-RNA amplification. Epimutations are an402	  
extreme example of this process, leading to heritable epigenetic variation.403	  

404	  
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Supplementary Figure Legends 405	  

Supplementary Figure 1. Correlation analysis of the 22G-RNA counts dataset.406	  

Heatmap depicting all vs all correlation values calculated for the set of epimutated407	  
genes in MA25 and MA100 lines, after log2 transformation of the normalised counts408	  
matrix.409	  

Supplementary Figure 2. Minimal overlap of epimutations and genetic410	  
mutations across lineages.411	  

a. Overlap between genetic mutations detected by high throughput genome412	  
sequencing after 400 generations of selfing (MA400 lines, Konrad et. al., 2019), and413	  
epimutations detected in MA25 and MA100 lines.414	  

b. Representative examples of 22G-RNA counts across lines for epimutable genes415	  
with an overlapping mutation in any one line, regardless of their epimutation status.416	  
A mutation was considered to overlap with a gene if located within the gene or 1kb417	  
flanking regions. Lines with an overlapping mutation are shown in red.418	  

c. 22G-RNA counts in the two epimutations in lineage G overlapping with genetic419	  
mutations as in b.420	  

Supplementary Figure 3. Examples of long-lasting epimutations and genes421	  
with reduced within-lineage variation.422	  

a. 22G normalised counts across lines for genes showing low p-values in both the423	  
variance test (pvar) and the epistates test (pst). N indicates the number of matching424	  
states. The red line indicates the threshold separating high and low small RNA states425	  
according to k-means clustering.426	  

b. 22G signal profile for F52C9.1.2 in the parental line (PeMA), in lineage D427	  
(epimutated) and lineage F (no change in 22G-RNAs).428	  

Supplementary Figure 4: Comparison of methods for survival analysis of429	  
epimutations.430	  

a-b. Comparison of methods to estimate the duration of epimutations. Duration431	  
distributions are shown in A, and survival curves in B.432	  

c. Genomic features influencing the duration of epimutations. Survival curves433	  
estimated from either the k-means or the HMM datasets are shown, showing434	  
qualitatively similar trends.435	  

Supplementary Figure 5: Dynamics of transgenerational 22G-RNA changes436	  

a. Example of a gene displaying bistable 22G-RNA levels (compare with Fig. 3d).437	  
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b. Method to examine the transition in 22G-RNA levels around the epimutation. 438	  
Three generations before and after the transition were selected, and a linear model439	  
was fit to the data, recovering an r2 that represents the linearity of the change. 440	  

c. Histogram illustrating the distribution of r2 values obtained from the analysis in b 441	  
applied to all epimutations.442	  

d. Mean normalized small RNA levels within groups spanning different linearity in443	  
22G-RNA alterations.444	  

e. Classification into fluctuating, bistable and gradual changes in small RNAs. Grey445	  
lines show each individual epimutation and the mean across each group is shown as446	  
a thick coloured line.447	  

f. Association of different 22G-RNA dynamics with HRDE-1, piRNA and WAGO-1448	  
target genes. The p-value for a difference in proportion between targets and non-449	  
targets according to a Fisher’s exact test is shown above each plot.450	  

g. The duration of bistable and gradual changes is longer than fluctuating epimutable451	  
genes. The p-value for a difference in proportion between <=2 or >2 generations of452	  
epimutations is shown above the plot.453	  

Supplementary Figure 6: Direct identification of genes with heritable variation454	  
in 22G-RNA levels.455	  

a. Test for short-term inheritance. By comparing the intergenerational variance with456	  
the overall variance across the lineage, genes with heritable variation in 22G-RNA457	  
levels are identified.458	  

b. p-value and FDR histograms from the test for short-term inheritance, in lineages A459	  
and B.460	  

c. Overlap of genes with heritable 22G-RNA levels with small RNA pathway gene461	  
targets.462	  

d. Distribution duration of runs of consecutive generations with low intergenerational463	  
variance. These were defined as consecutive generations with a difference lower464	  
than 30% of the standard deviation in 22G-RNA levels across the lineage.465	  

e. Examples of 22G-RNA dynamics at genes with heritable variation in 22G-RNA466	  
levels in lineages A and B.467	  

Supplementary Figure 7. Integration of 22G-RNA and mRNA count data.468	  

a. Visualisation of changes in 22G-RNA levels against changes at the mRNA level.469	  
Genes with significantly different mRNA levels between the high and low small RNA470	  
states are shown in green.471	  
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b. Correlation between the absolute change in 22G-RNA and mRNA levels, for all 472	  
epimutations (top panel), and for genes with positively correlated (bottom left) and473	  
negatively correlated (bottom right) mRNA-22G changes.474	  

c. Genes with correlated changes in 22G-RNAs and mRNAs are marginally enriched475	  
in the epimutations set (blue line) compared to random subsets of genes with >10476	  
22G-RNA normalised counts. This enrichment is highest for cases where there is a477	  
negative correlation between 22G-RNA and mRNA levels.478	  

d-e. Example of gene with negatively correlated 22G-RNA and mRNA levels.479	  

f. Visualisation of changes in 22G-RNA levels against changes at the mRNA level for480	  
genes with significantly different mRNA levels between the high and low small RNA481	  
states, coloured by chromatin domain location.482	  

g. Comparison of the proportions of genes with positively and negatively correlated483	  
changes in 22G-RNAs and mRNAs in active and regulated chromatin domains.484	  

Supplementary Figure 8. Further analysis of variability in small RNA pathways485	  
and their target genes.486	  

a-b. Variability analysis of piRNAs (A) and miRNAs (B).487	  

c. Epimutations unique to MA100 lines are hypervariable in the MA25 dataset.488	  

d. Epimutations unique to MA25 lines are hypervariable in the MA100 dataset.489	  

e. Epimutations from MA25 lines do not show increased variation at the mRNA level.490	  

f. Epimutations from MA100 lines do not show increased variation at the mRNA491	  
level.492	  

g-h. Correlation analysis between mRNA abundance and variability in 22G-RNAs, for493	  
genes with >20 22G normalised counts, separating piRNA, HRDE-1 and WAGO-1494	  
targets (F) and CSR-1 targets (G).495	  

i. Epimutated CSR-1 targets show higher expression than the rest of epimutated496	  
genes, consistent with CSR-1 target status.497	  

Supplementary Figure 9. Epimutations at transposable elements and other498	  
repeats.499	  

a. Summary of epimutations at transposable elements (TEs) and other repeats. TEs500	  
are only moderately enriched in the epimutation sets from the MA25 and MA100501	  
lines, and are not enriched in the set of epimutations observed in the consecutive502	  
generation experiment.503	  

b. Repeat class annotations of epimutated TEs and other repeats.504	  
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c. Small RNA level states for epimutated TEs and other repeats in MA25 and MA100 505	  
lines, showing little correspondence between states.506	  

d. Distribution of variance test p-values for TEs and other repeats compared to the507	  
rest of genes. No TEs or other repeats had significantly reduced variance within508	  
lineages after multiple testing correction.509	  

e-f. Variability analysis of 22Gs mapping to TEs and other repeats in MA25 (e) and510	  
MA100 (f) lines, showing increased variability in comparison to CSR-1 targets.511	  
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Gen. 25-100 samples Consecutive gen. samples
-m 1* -M 1* -m 1* -M 1*

TEs/repeats with >10 22G normcounts 205/618 384/618 203/618 376/618
Total epimutations 422 633 145 178
Epimutated TEs/repeats 13 29 2 1
Hypergeometric test p-value 0.01 2.60E-04 0.42 0.928

* -m 1 (ignoring multiple mapping reads)
-M 1 (randomly assigning multiple mapping reads)

a
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LINE 1

DNA/Tc-Mar 3
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Methods 

Nematode culture 

Caenorhabditis elegans nematodes were grown in NGM plates seeded with OP50 E. 
coli at 20ºC. 25th generation and 100th generation lines were grown as described in 1. 
For the consecutive generation experiment, each lineage was founded by picking a 
single N2 L4 hermaphrodite worm (Day 1). On Day 4, a single L4 was bottlenecked 
into a new plate as a founder for the next generation. On Day 5, the rest of the 
worms were synchronised by hypochlorite treatment, and grown to the young adult 
stage in order to obtain RNA samples. This procedure was carried out for 13 
generations, with exception of generation 7 where the RNA sample collection was 
not carried out. 

Preparation of RNA samples and small RNA libraries 

Synchronised young adult hermaphrodites were washed off plates using M9, and 
collected into 15mL tubes. Worms were washed 3 additional times with M9, and 1mL 
Trizol was added for each 100µl of worms to proceed with Trizol-chloroform RNA 
extraction. RNA was precipitated overnight by adding 1µl glycogen and an equal 
volume of isopropanol. 

For small RNA library preparation, 1µg (lineage A and B samples) or 2µg (25th and 
100th generation samples) of RNA were incubated for 1h at 37ºC with 5’ RNA 
polyphosphatase (Epicentre) at a final concentration of 1U/µl, in a total volume of 
20ul, in order to convert 5’PPP 22G-RNAs into clonable 5’P 22G-RNAs. RNA was 
phenol-chloroform extracted and precipitated overnight with 1µl glycogen, 1/10 
volume 3M AcNA and 3 volumes 100% ethanol. Small RNA libraries were generated 
using the Illumina TruSeq Small RNA library preparation kit as per manufacturer’s 
instructions, and gel-purified to size select 21-23nt inserts. For mRNA-seq, 1µg of 
total RNA was spiked-in with 100ng of Schizosaccharomyces pombe total RNA, and 
the mix was subjected to poly-A selection using the NEBNext polyA Magnetic 
Isolation Module. RNA-seq libraries were prepared using the NEBNext Ultra II 
Directional RNA Library Prep Kit for Illumina. Both types of libraries were sequenced 
on an Illumina HiSeq2500 instrument. 

Processing of small RNA sequencing and RNA-seq data 

Small RNA libraries were trimmed using cutadapt v1.102, and reads >18nt and <35nt 
were mapped using Bowtie v0.1.23 with parameters -v -m1 to the WS252 C. elegans 
genome. 22G reads were mapped with the same parameters to a C. elegans 
transcriptome file including WS252 annotated mRNA transcripts, ncRNA transcripts, 
pseudogenic transcripts, and transposon transcripts. For genes with multiple RNA 
isoforms, the longest isoform was selected and the rest of isoforms were filtered out. 
Antisense 22G read counts were computed for each RNA in the reference 
transcriptome. To visualise the signal of 22G-RNAs across the genome, bam files 
were converted to a bigwig format using deeptools v3.1.24 bamCoverage  with 
parameters -bs 10 --smoothLength 30 --normalizeUsing CPM.  
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Additionally, we mapped the small RNA reads with parameters -v 0 -M 1 to randomly 
assign multiple mapping reads in order to capture changes in 22G-RNAs derived 
from repetitive regions of the transcriptome, and we analyzed the two datasets (-m 1 
and -M 1) in parallel. 

RNA-seq reads were mapped using Tophat v2.0.115 with parameters -i 30 -I 20000, 
to a combined reference index containing the WS252 C. elegans genome and the 
Schizosaccharomyces pombe genome (2018-06-01 PomBase release). C. elegans 
counts were recovered using htseq-count 0.9.16, and a gtf file including longest 
isoform RNA annotations as described above. S. pombe counts were recovered 
using htseq-count, and the corresponding gtf file from the 2018-06-01 PomBase 
release. 

Identification of epimutations 

RNA-seq and 22G-RNA counts were normalised using DEseq27. Epimutations 
between any two samples were identified using the 22G-RNA data. log2(fold 
changes) were plotted against the log2(mean counts) for each gene (MA-plot), and a 
loess smoothing curve was fitted to the scatterplot. For each data point, a Z-score 
was derived by calculating the difference of the observed fold change minus the 
average of the loess fit, divided by the standard deviation of the loess fit. P-values 
were derived using a normal distribution, and corrected for multiple testing using the 
Benjamini-Hochberg False Discovery Rate (FDR) method8. 

We defined epimutable genes in the 25th and 100th generation samples as those 
below an FDR threshold of 1e-4 in at least one pairwise comparison. Correlation 
analysis was done on this subset of genes, after log2 transforming the count 
matrix+1 pseudocount. This analysis revealed that C100, I100, K100 and L100 have 
accumulated large differences in 22G levels in a large number of genes and are 
outliers compared to all the rest of samples. On the basis of this observation, we 
performed the subsequent analyses both in the absence and presence of these 
samples separately. 

We defined epimutable genes in the consecutive generation samples as those with 
an FDR threshold of 1e-4 in at least one pairwise comparison. Correlation analysis 
was done on this subset of genes, after log2 transforming the count matrix+1 
pseudocount. This analysis revealed two groups of samples corresponding to early 
(1-8) and late (9-13) in the lineage. Since this effect likely corresponds to 
experimental variation, genes that showing systematically different levels of 22Gs 
between the two groups of samples as detected by DEseq2 (FDR<0.1) were 
excluded from the downstream analysis. Samples B1 and B4 behaved as outliers 
compared to the rest of samples, and, similarly, genes with different levels of 22Gs in 
these two samples were excluded from further analysis.  

For each gene, we used unsupervised k-means clustering on the normalised counts 
for all samples, including those from the consecutive generations experiment. This 
allowed us to classify the samples in high and low small RNA level groups. The total 
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number of epimutations between any two samples was calculated on the basis of the 
group assignations.  

Test for long-term epigenetic inheritance 

For each gene, we calculated the number of matches (N) in the small RNA level 
states (high or low) between generation 25 and their corresponding generation 100 
samples. We then randomised those states in both lineages 105 times in order to 
obtain a null distribution of N. A p-value was calculated as the fraction of cases in the 
null distribution where the simulated N equals or exceeds the observed N. In 
addition, in order to incorporate the quantitative range of the data into the test, we 
calculated for each gene the observed within-lineage variance (W) using the 
normalised count data, as the sum of the squared difference in 22G counts between 
samples of matching lineages, divided by the total number of lineages (11): 

𝑊 =
𝑥!"",! − 𝑥!",!

!

11

!!

!!!

 

We then randomised the count data in both lineages 105 times in order to obtain a 
null distribution of W. A p-value was calculated as the fraction of cases in the null 
distribution where the simulated W is equal or less than the observed N. In both 
tests, p-values were corrected for multiple testing using the FDR method. 

Test for short-term epigenetic inheritance 

For each gene, we calculated an intergenerational variance (I) considering only pairs 
of consecutive generations: 

𝐼 =
𝑥! − 𝑥!!! !

𝑁

!!!

!!!

 

We then randomised the order of the data points 105 times in order to obtain a null 
distribution of I, that reflects the overall variance across the lineage. A p-value was 
calculated as the fraction of cases in the null distribution where the simulated I is 
equal or less than the observed I. p-values were corrected for multiple testing using 
the FDR method.  

Using the set of genes with significantly low intergenerational variance, we defined 
pairs of consecutive generations as showing high levels of inheritance if the 
difference in small RNA levels was less than 30% of the standard deviation of the set 
of data points across the lineage. We then quantified the distribution of durations of 
runs of high inheritance across all genes. The median duration of high inheritance 
runs was derived using survival analysis, incorporating censoring information to 
reflect that fact that some runs reach the end of the lineage, such that their exact 
duration is unknown. 

Quantification of epimutation duration 
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We quantified epimutation duration using three different methods. Firstly, we used 
the high and low small RNA state assignations across the lineage for the set of 
epimutable genes. Secondly, we used depmixS49 to fit a 2-state Hidden Markov 
model to the count data across the lineage, in order to recover the trajectory of 
hidden states corresponding to high and low small RNA levels. The HMM fit was 
initialised by providing the mean of the high and low small RNA level states as initial 
guesses. Finally, in order to incorporate the continuous nature of the data more 
directly, we identified pairs of consecutive generations with a fold-change greater 
than 2 after adding 10 pseudocounts to the normalised 22G counts. For each of 
these, we calculated the number of generations for which the difference in small 
RNA levels remains equal or greater than 2-fold. We derived from these a 
distribution of epimutation duration, considering complete (finished within the 
lineage) and incomplete (reaching the end of the lineage) epimutations separately. 

We used survival analysis to quantify the overall stability of epimutations, 
incorporating the duration of complete and incomplete epimutations, considering 
incomplete epimutations as censored observations. We tested the effect of 22G fold 
changes and mRNA fold changes on epimutation duration using a Cox proportional 
hazards model. We tested for differences in epimutation duration depending on small 
RNA pathway regulation using Kaplan-Meier estimators and a log-rank test. 

To investigate the dynamics of the transitions between different small RNA states at 
epimutated genes we extracted 3 generations either side of the largest difference 
between successive generations to give a time period of 6 generations in total.  Only 
genes where 3 generations either side of the transition could be extracted were 
considered.  We normalized to the mean across the 6 generations and used a linear 
model, log(x)=a.(t)+b where x is normalized 22G-RNAs, t is generations relative to 
the transition, i.e. -2<=t<= 3, and a and b are constants.  The r2 was extracted from 
the fit.  Qualitative examination of small RNA dynamics with different r2 values 
suggested three categories, which we labelled as fluctuating (r2 <0.4), bistable 
(0.4<= r2 <0.8) and gradual (r2 >=0.8), and these were used for further intersection 
with different categories of genes (see below for definition of gene classes).    

Integration of RNA-seq and small RNA sequencing data 

To analyze changes in mRNA expression associated with changes in 22G-RNA 
levels, we used a Wilcoxon rank sum test to compare the RNA-seq normalised 
counts between groups of samples with high and low small RNA levels, defined by k-
means clustering as described above. We applied this analysis to all epimutable 
genes, using the 25th and 100th generation samples, and the consecutive generation 
samples. Multiple testing correction was applied using the Benjamini-Hochberg FDR 
method. We examined the relationship between the absolute change in 22G- RNA 
levels and mRNA levels, showing significant positive correlations.  

To test whether genes with significant changes in mRNA levels between high and 
low small RNA level samples are enriched in the set of epimutable genes, we 
sampled 422 genes from the entire set of genes with >10 normalised counts times, 
calculated high and low 22G-RNA level groups, and determined the number of genes 
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from this set also showing significant changes in mRNA levels as described above. 
We repeated this analysis 10,000 times to generate a null distribution of the 
expected number of genes showing significant changes in mRNA levels, and 
compared it to the observed value in the set of epimutable genes. We examined all 
cases, and cases with positively and negative correlated 22G-RNA and mRNA levels 
separately. 

Variability analysis and identification of genes with hypervariable 22Gs (HV22Gs) 

We used the 25th and 100th generation samples to quantify the variation in 22G-RNA 
levels across lineages transcriptome-wide, and identify HV22Gs. To do this, we 
estimated the technical variance as the sum of squared differences between pairs 
𝑥! ,𝑦!  of technical duplicates of libraries, divided by 11 (the total number of pairs). 

𝑇𝑒𝑐ℎ =
𝑥! − 𝑦!,

!

11

!!

!!!

 

We plotted the technical coefficients of variation against the mean 22G levels in a 
logarithmic scale, showing a decreasing relationship as typically seen in mRNA 
sequencing data. We then fit a loess smoothing curve, and used this fit as a baseline 
to identify HV22Gs. 

We estimated the total observed variance as the sum of squared differences 
between all pairs of libraries, divided by the total number of comparisons: 

𝑇𝑜𝑡𝑎𝑙 =
𝑥! − 𝑥!

!
+ 𝑦! − 𝑦!

!

2 11
2

!!

!!!!!

!!

!!!

+
𝑥! − 𝑦!

!

11!
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!,!!!

 

We plotted the total coefficient of variation against the mean 22G levels in a 
logarithmic scale, together with the technical variation fit (mean and 95% confidence 
intervals). In order to identify HV22Gs, we calculated the residuals of the total 
variance data to the technical fit, and divided by the standard deviation of the 
technical fit to obtain a Z-score and a p-value based on a normal distribution. We 
corrected for multiple testing using the FDR method. 

To estimate the technical variation in mRNA-seq data, we used the counts from the 
S. pombe spiked-in total RNA. To remove variation due to spike-in ratios and 
sequencing depth, we downsampled each library to the minimum observed number 
of S. pombe and C. elegans total reads within (for the 25th and 100th generation data 
separately). We used two baselines to quantify mRNA variability, (1) the technical 
variation estimated from S. pombe counts, and (2) the overall variation observed 
from C. elegans counts. 

Definition of gene classes 
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We sourced publicly available small RNA sequencing data from IP experiments for 
HRDE-1 (GSM948684 and GSM984685), WAGO-1 (SRR030711 and SRR030712) 
and CSR-1 (SRR030720 and SRR030721), processed it as described above, and 
defined their target genes as genes with at least 10rpm in the IP sample, and a 1.5-
fold enrichment in the IP sample. piRNA targets were defined as genes exhibiting at 
least a two-fold decrease in 22Gs in a prg-1 background (SRR2140760 and 
SRR2140763), and 20rpm of 22Gs in the WT. Chromatin domain assignations were 
taken from Evans et. al., 2016 and lifted over to WS252. To annotate repetitive 
transcripts, we ran RepeatMasker v4.0.510 with parameters -nolow on the 
transcriptome file. Repetitive transcripts were defined as those with at least 80% of 
their length covered by RepeatMasker hits. 
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