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Abstract  
Learning  from  experience  depends  at  least  in  part  on  changes  in  neuronal  connections.  We                            
present  the  largest  map  of  connectivity  to  date  between  cortical  neurons  of  a  defined  type  (L2/3                                
pyramidal  cells),  which  was  enabled  by  automated  analysis  of  serial  section  electron                        
microscopy  images  with  improved  handling  of  image  defects.  We  used  the  map  to  identify                            
constraints  on  the  learning  algorithms  employed  by  the  cortex.  Previous  cortical  studies                        
modeled  a  continuum  of  synapse  sizes (Arellano et  al. ,  2007)  by  a  log-normal  distribution                            
(Loewenstein,  Kuras  and  Rumpel,  2011;  de  Vivo et  al. ,  2017;  Santuy et  al. ,  2018) .  A  continuum                                
is  consistent  with  most  neural  network  models  of  learning,  in  which  synaptic  strength  is  a                              
continuously  graded  analog  variable.  Here  we  show  that  synapse  size,  when  restricted  to                          
synapses  between  L2/3  pyramidal  cells,  is  well-modeled  by  the  sum  of  a  binary  variable  and  an                                
analog  variable  drawn  from  a  log-normal  distribution.  Two  synapses  sharing  the  same                        
presynaptic  and  postsynaptic  cells  are  known  to  be  correlated  in  size (Sorra  and  Harris,  1993;                              
Koester  and  Johnston,  2005;  Bartol et  al. ,  2015;  Kasthuri et  al. ,  2015;  Dvorkin  and  Ziv,  2016;                                
Bloss et  al. ,  2018;  Motta et  al. ,  2019) .  We  show  that  the  binary  variables  of  the  two  synapses                                    
are  highly  correlated,  while  the  analog  variables  are  not.  Binary  variation  could  be  the  outcome                              
of  a  Hebbian  or  other  synaptic  plasticity  rule  depending  on  activity  signals  that  are  relatively                              
uniform  across  neuronal  arbors,  while  analog  variation  may  be  dominated  by  other  influences.                          
We   discuss   the   implications   for   the   stability-plasticity   dilemma.    
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Introduction  
Synapses  between  excitatory  neurons  in  the  cortex  and  hippocampus  are  typically  made  onto                          
spines,  tiny  thorn-like  protrusions  from  dendrites (Yuste,  2010) .  In  the  2000s,  long-term in  vivo                            
microscopy  studies  showed  that  dendritic  spines  change  in  shape  and  size,  and  can  appear  and                              
disappear (Bhatt,  Zhang  and  Gan,  2009;  Holtmaat  and  Svoboda,  2009) .  Spine  dynamics  were                          
interpreted  as  synaptic  plasticity,  because  spine  volume  is  well-correlated  with  physiological                      
strength  of  a  synapse (Matsuzaki et  al. ,  2001;  Noguchi et  al. ,  2011;  Holler-Rickauer,  Koestinger                            
and  Martin,  2019) .  The  plasticity  was  thought  to  be  in  part  activity-dependent,  because  spine                            
volume  increases  with  long-term  potentiation (Matsuzaki et  al. ,  2004;  Kopec et  al. ,  2006;                          
Noguchi et  al. ,  2019) .  Given  that  the  sizes  of  other  synaptic  structures  (postsynaptic  density,                            
presynaptic  active  zone,  and  so  on)  are  well-correlated  with  spine  volume  and  with  each  other                              
(Harris  and  Stevens,  1989) ,  we  use  the  catch-all  term  “synapse  size”  to  refer  to  the  size  of  any                                    
synaptic   structure,   and   “synapse   strength”   as   a   synonym.  
 
In  the  2000s,  some  hypothesized  that  long-term  plasticity  involves  discrete  transitions  of                        
synapses  between  two  structural  states (Kasai et  al. ,  2003;  Bourne  and  Harris,  2007) .                          
Quantitative  studies  of  cortical  synapses,  however,  found  no  evidence  for  discreteness (Arellano                        
et  al. ,  2007;  Loewenstein,  Kuras  and  Rumpel,  2011;  Loewenstein,  Yanover  and  Rumpel,  2015;                          
de  Vivo et  al. ,  2017;  Santuy et  al. ,  2018) .  Whether  in  theoretical  neuroscience  or  artificial                              
intelligence,  it  is  common  for  the  synaptic  strengths  in  a  neural  network  model  to  be                              
continuously  variable,  enabling  learning  to  proceed  by  the  accumulation  of  arbitrarily  small                        
synaptic   changes   over   time.   
 
Here  we  reexamine  the  discrete  versus  continuous  dichotomy  using  a  wiring  diagram  between                          
334  layer  2/3  pyramidal  cells  (L2/3  PyCs)  reconstructed  from  serial  section  electron  microscopy                          
(ssEM)  images  of  mouse  primary  visual  cortex.  We  show  that  synapses  between  L2/3  PyCs  are                              
well-modeled  as  a  binary  mixture  of  log-normal  distributions.  If  we  further  restrict  consideration                          
to  dual  connections,  two  synapses  sharing  the  same  presynaptic  and  postsynaptic  cells,  the                          
binary  mixture  exhibits  a  statistically  significant  bimodality.  It  is  therefore  plausible  that  the  binary                            
mixture  reflects  two  underlying  structural  states,  and  is  more  than  merely  an  improvement  in                            
curve   fitting.   
 
According  to  our  best  fitting  mixture  model,  synapse  size  is  the  sum  of  a  binary  variable  and  a                                    
log-normal  continuous  variable.  To  probe  whether  these  variables  are  modified  by  synaptic                        
plasticity,  we  again  examine  dual  connections.  It  was  previously  shown  that  synapse  pairs  at                            
dual  connections  are  correlated  in  size,  and  the  correlations  have  been  attributed  to                          
activity-dependent  plasticity (Sorra  and  Harris,  1993;  Koester  and  Johnston,  2005;  Bartol et  al. ,                          
2015;  Kasthuri et  al. ,  2015;  Dvorkin  and  Ziv,  2016;  Bloss et  al. ,  2018;  Motta et  al. ,  2019) .  We                                    
find  that  the  binary  variables  are  highly  correlated,  while  the  continuous  variables  are  not.  This                              
suggests  that  binary  variation  is  the  outcome  of  a  Hebbian  or  other  synaptic  plasticity  rule  driven                                
by  activity  signals  that  are  relatively  uniform  across  neuronal  arbors,  while  analog  variation  is                            
dominated   by   other   factors.  
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Figure   1:   Reconstructing   cortical   circuits   in   spite   of   ssEM   image   defects  

(a) Ideally,   imaging   serial   sections   followed   by   computational   alignment   would   create   an   image   stack   that  
reflects   the   original   state   of   the   tissue   (left).   In   practice,   image   stacks   end   up   with   missing   sections   (blue)  
and   misalignments   (green).   Both   kinds   of   defects   are   easily   simulated   when   training   a   convolutional   net   to  
detect   neuronal   boundaries.   Small   subvolumes   are   depicted   rather   than   the   entire   stack,   and   image   defects  
are   typically   local   rather   than   extending   over   an   entire   section.   

(b) The   resulting   net   can   trace   more   accurately,   even   in   images   not   previously   seen   during   training.    Here   a  
series   of   five   sections   contains   a   missing   section   (blue   frame)   and   a   misalignment   (green).   The   net  
“imagines”   the   neurites   through   the   missing   section,   and   traces   correctly   in   spite   of   the   misalignment.   

(c) 3D   reconstructions   of   the   neurites   exhibit   discontinuities   at   the   misalignment,   but   are   correctly   traced.  
(d) All   364   pyramidal   cells   with   somas   in   the   volume   (gray),   cut   away   to   reveal   a   few   examples   (colors).   
(e) L2/3   pyramidal   cell   reconstructed   from   ssEM   images   of   mouse   visual   cortex.   

Scale   bars:   300   nm   ( b )    
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Our  findings  require  the  specificity  of  our  synaptic  population.  If  we  expand  the  analysis  to                              
include  a  broader  population  of  cortical  synapses,  bimodality  is  no  longer  observed.  This  likely                            
explains  why  previous  studies  have  supported  the  continuum  idea  of  cortical  synapses (Arellano                          
et   al. ,   2007;   Loewenstein,   Kuras   and   Rumpel,   2011;   de   Vivo    et   al. ,   2017;   Santuy    et   al. ,   2018) .   
 
The  specificity  of  our  synaptic  population  was  made  possible  because  each  of  the  334  neurons                              
taking  part  in  the  1736  connections  in  our  cortical  wiring  diagram  could  be  identified  as  a  L2/3                                  
PyC  based  on  a  soma  and  sufficient  dendrite  and  axon  contained  in  the  ssEM  volume.  The                                
closest  precedents  for  wiring  diagrams  between  cortical  neurons  of  a  defined  type  had  29                            
connections  between  43  L2/3  PyCs  in  mouse  visual  cortex (Lee et  al. ,  2016) ,  63  connections                              
between  22  L2  excitatory  neurons  in  mouse  medial  entorhinal  cortex (Schmidt et  al. ,  2017) ,  and                              
32   connections   between   89   L4   neurons   in   mouse   somatosensory   cortex    (Motta    et   al. ,   2019) .  
 
Our  cortical  reconstruction  will  be  made  available  for  programmatic  as  well  as  3D  interactive                            
access  upon  or  before  publication  of  this  work.  The  code  that  generated  the  reconstruction  is                              
already   freely   available   (Data   and   Code   Availability).   
 
Handling   of   ssEM   image   defects  
We  acquired  a  250×140×90  μm 3  ssEM  dataset  (Extended  Data  Fig.  1)  from  L2/3  primary  visual                              
cortex  of  a  P36  male  mouse.  When  we  aligned  a  pilot  subvolume  and  applied  state-of-the-art                              
convolutional  nets,  we  found  many  reconstruction  errors,  mainly  due  to  misaligned  images  and                          
damaged  or  incompletely  imaged  sections.  This  was  disappointing  given  reports  that                      
convolutional  nets  can  approach  human-level  performance  on  one  benchmark  ssEM  image                      
dataset (Beier et  al. ,  2017;  Zeng,  Wu  and  Ji,  2017) .  The  high  error  rate  could  be  explained  by                                    
the  fact  that  image  defects  are  difficult  to  escape  in  large  volumes,  though  they  may  be  rare  in                                    
small   (<1000   μm 3 )   benchmark   datasets.   
 
Indeed,  ssEM  images  were  historically  considered  problematic  for  automated  analysis                    
(Briggman  and  Bock,  2012;  Lee et  al. ,  2019)  because  they  were  difficult  to  align,  contained                              
defects  caused  by  lost  or  damaged  serial  sections,  and  had  inferior  axial  resolution (Knott et  al. ,                                
2008) .  These  difficulties  were  the  motivation  for  developing  block  face  electron  microscopy                        
(bfEM)  as  an  alternative  to  ssEM (Denk  and  Horstmann,  2004) .  Most  large-scale  ssEM                          
reconstructions  have  been  completely  manual,  while  many  large-scale  bfEM  reconstructions                    
have  been  semiautomated  (19/20  and  5/10  in  Table  1  of (Kornfeld  and  Denk,  2018) ).  On  the                                
other  hand,  the  higher  imaging  throughput  of  ssEM (Nickell  and  Zeidler,  2019;  Yin et  al. ,  2019)                                
makes  it  suitable  for  scaling  up  to  volumes  that  are  large  enough  to  encompass  the  arbors  of                                  
mammalian   neurons.  
 
We  supplemented  existing  algorithms  for  aligning  ssEM  images (Saalfeld et  al. ,  2012)  with                          
human-in-the-loop  capabilities.  After  manual  intervention  by  a  human  expert,  large                    
misalignments  were  resolved  but  small  ones  still  remained  near  damaged  locations  and  near                          
the  borders  of  the  volume.  Therefore  we  augmented  the  training  data  for  our  convolutional  net                              
with   simulated   misalignments   and   missing   sections   (Fig.   1a,   Extended   Data   Fig.   2).   The   
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Figure   2:   Wiring   diagram   for   cortical   neurons   including   multisynaptic   connections  

(a) Wiring   diagram   of   364   L2/3   pyramidal   cells   as   a   directed   graph.   Two   orthogonal   views   with   nodes   at   3D  
locations   of   cell   bodies.   Single   (gray),   dual   (blue),   and   triple,   quadruple,   quintuple   (red)   connections.  

(b) Dual   connection   from   a   presynaptic   cell   (orange)   to   a   postsynaptic   cell   (gray).   Ultrastructure   of   both  
synapses   can   be   seen   in   closeups   from   the   EM   images.   The   euclidean   distance   between   the   synapses   is  
64.3   μm.   

Distribution   of   Euclidean   distances   between   synapse   pairs   of   dual   connections.   Median   distance   is   46.5   μm.   
Scale   bars:   10   μm   ( a ),   500   nm   ( b )     
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resulting  net  was  better  able  to  trace  neurites  through  such  image  defects  (Fig.  1b,                            
quantification  in  Supplementary  Information  1).  Other  methods  for  handling  ssEM  image  defects                        
are  being  proposed (Li et  al. ,  2019) ,  and  we  can  look  forward  to  further  gains  in  automated                                  
reconstruction   accuracy   in   the   future.  
 
Wiring   diagram   between   L2/3   pyramidal   cells  
After  alignment  and  automatic  segmentation  (Methods),  we  manually  identified  364  pyramidal                      
cells  (PyCs)  with  somas  in  the  volume  based  on  morphological  characteristics  (Fig.  1d,  e,                            
Methods).  Remaining  errors  in  the  segmentation  of  these  PyCs  were  corrected  using  an                          
interactive   system   that   enabled   human   experts   to   split   and   merge   objects.   
 
Overall,  the  PyC  reconstructions  were  corrected  through  ~1,300  hours  of  human  proofreading  to                          
yield  670  mm  cable  length  (axon:  100  mm,  dendrite:  520  mm,  perisomatic:  40  mm,  Extended                              
Data  Fig.  2).  We  examined  12  randomly  sampled  axons  and  conservatively  estimated  0.28                          
merge  errors  per  millimeter  remain  after  proofreading  (see  Methods  for  other  estimates).  The                          
dendrites  of  the  364  PyCs  receive  one  quarter  of  the  synapses  (~8.96x10 5  of  3.24x10 6 )  that                              
were  automatically  detected  in  the  volume  (Methods, (Turner et  al. ,  2019) ).  However,  the                          
synapses  onto  PyC  dendrites  are  almost  all  from  “orphan”  axons,  defined  as  those  axonal                            
fragments  that  belong  to  somas  of  unknown  location  outside  the  volume.  Using  these                          
automatically  detected  synapses  as  a  starting  point,  we  mapped  all  connections  between  the                          
L2/3  PyCs  (Methods).  The  end  result  was  a  wiring  diagram  of  1,961  synapses  from  1,736                              
connections  between  334  of  the  364  L2/3  PyCs  in  the  dataset  (Fig.  2a).  Note  that  some                                
connections  are  multisynaptic,  i.e.,  they  are  mediated  by  multiple  synapses  sharing  the  same                          
presynaptic  and  postsynaptic  cells  (Fig.  2b,  Extended  Data  Fig.  3,  see  Supplementary                        
Information   7   for   a   tabular   overview   of   these   statistics).   
 
For  clarity,  we  emphasize  that  our  usage  of  the  term  “multisynaptic”  refers  to  multiple  synapses                              
in  parallel  rather  than  in  series.  A  connection  usually  (89.1%)  contains  one  synapse,  but  can                              
contain  up  to  five  synapses  (2:  9.22%,  3:  1.38%,  4:  0.17%,  5:  0.12%).  The  dimensions  of  our                                  1

reconstruction  allowed  us  to  not  only  observe  dual  connections  with  synapses  up  to  10  μm  apart                                
(Bartol et  al. ,  2015;  Kasthuri et  al. ,  2015;  Bloss et  al. ,  2018)  but  also  dual  connections  with  two                                    
synapses   more   than   100   μm   apart   (Fig.   2b,c)    (Lee    et   al. ,   2016) .  
 
Binary   latent   states  
Previous  studies  of  cortical  synapses  have  found  a  continuum  of  synapse  sizes (Arellano et  al. ,                              
2007)  that  is  well-modeled  by  a  log-normal  distribution (Loewenstein,  Kuras  and  Rumpel,  2011;                          
de  Vivo et  al. ,  2017;  Santuy et  al. ,  2018) .  Even  researchers  who  report  bimodally  distributed                              
synapse  size  in  hippocampus (Spano et  al. ,  2019)  still  find  log-normally  distributed  synapse  size                            
in   neocortex    (de   Vivo    et   al. ,   2017)    by   the   same   methods.   
 

1These   numbers   should   be   taken   with   the   caveat   that   the   observed   number   of   synapses   for   a   connection  
is   a   lower   bound   for   the   true   number   of   synapses,   because   two   PyCs   with   cell   bodies   in   our   EM   volume  
could   synapse   with   each   other   outside   the   bounds   of   the   volume.    
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Figure   3:   Modeling   spine   head   volume   with   a   mixture   of   two   log-normal   distributions.   

(a) Dendritic   spine   heads   (yellow)   and   clefts   (red)   of   dual   connections   between   L2/3   PyCs.   The   associated   EM  
cutout   shows   a   2D   slice   through   the   synapse.   The   synapses   are   centered   in   the   EM   images.  

(b) Skewed   histogram   of   spine   volume   for   all   1961   recurrent   synapses   between   L2/3   PyCs,   with   a   long   tail   of  
large   spines.  

(c) Histogram   of   the   spine   volumes   in   ( b ),   logarithmic   scale.   A   mixture   (red,   solid)   of   two   log-normal   distributions  
(red,   dashed)   fits   better   (likelihood   ratio   test,   p<1e-39,   n=1961)   than   a   single   normal   (blue).   

(d) Spine   volumes   belonging   to   dual   connections   between   L2/3   PyCs,   modeled   by   a   mixture   (red,   solid)   of   two  
log-normal   distributions   (red,   dashed).  

(e) Dual   connections   between   L2/3   PyCs,   each   summarized   by   the   geometric   mean   of   two   spine   volumes,  
modeled   by   a   mixture   (red,   solid)   of   two   log-normal   distributions   (red,   dashed).  

(f) Mixture   of   two   normal   distributions   as   a   probabilistic   latent   variable   model.   Each   synapse   is   described   by   a  
latent   state    H    that   takes   on   values   “S”   and   “L”   according   to   the   toss   of   a   biased   coin.   Spine   volume    V    is  
drawn   from   a   log-normal   distribution   with   mean   and   variance   determined   by   latent   state.   The   curves   shown  
here   represent   the   best   fit   to   the   data   in   ( d ).   Heights   are   scaled   by   the   probability   distribution   of   the   biased  
coin,   known   as   the   mixture   weights.  

(g) Comparison   of   spine   volumes   for   single   (black)   and   dual   (red)   connections.  
(h) Probability   of   the   “L”   state   (mixture   weight)   versus   number   of   synapses   in   the   connection.  

Error   bars   are   standard   deviations   estimated   by   bootstrap   sampling.   Scale   bar:   500   nm   ( a ).   Error   bars   are  
  of   the   model   fit   ( c ,    d ,    e )   and   standard   deviation   from   bootstrapping   ( h ). ± √n    
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We  quantified  the  size  of  each  synapse  by  the  volume  of  the  spine  head  (Fig.  2b,  3a) .  In  the                                      2

following,  “spine  volume”  will  serve  as  a  synonym  for  spine  head  volume.  The  distribution  of                              
spine  volumes  is  highly  skewed,  with  a  long  tail  of  large  spines  (Fig.  3b)  as  observed  before                                  
(Loewenstein,  Kuras  and  Rumpel,  2011;  Santuy et  al. ,  2018) .  Because  of  the  skew,  it  is  helpful                                
to  visualize  the  distribution  using  a  logarithmic  scale  for  spine  volume (Loewenstein,  Kuras  and                            
Rumpel,  2011;  Bartol et  al. ,  2015) .  We  were  surprised  to  find  that  the  distribution  deviated  from                                
normality,  due  to  a  “knee”  on  the  right  side  of  the  histogram  (Fig.  3c).  A  mixture  of  two  normal                                      
distributions  was  a  better  fit  than  a  single  normal  distribution  when  accounting  for  the  number  of                                
free   parameters   (likelihood   ratio   test:   p<1e-39,   n=1961,   Methods).   
 
We  next  restricted  our  consideration  to  the  320  synapses  belonging  to  160  dual  connections                            
between  the  PyCs.  Again,  a  binary  mixture  of  normal  distributions  was  a  better  fit  (Fig.  3d)  than                                  
a  single  normal  distribution  (normal  fit  not  shown,  likelihood  ratio  test:  p<1e-7,  n=320).  Next,  we                              
made  use  of  the  fact  that  synapses  from  dual  connections  are  paired.  For  each  pair,  we                                
computed  the  geometric  mean  (i.e.  mean  in  log-space)  of  spine  volumes  and  found  that  this                              
quantity  is  also  well-modeled  by  a  binary  mixture  of  normal  distributions  (Fig.  3e,  see                            
Supplementary  Information  3  for  the  arithmetic  mean,  Supplementary  Information  5  for                      
histograms   without   model   fits   and   Supplementary   Information   8   for   fit   results).  
 
A  binary  mixture  model  might  merely  be  a  convenient  way  of  approximating  deviations  from                            
normality.  We  would  like  to  know  whether  the  components  of  our  binary  mixture  really  have  a                                
biological  basis,  i.e.,  whether  they  correspond  to  two  structural  states  of  synapses.  A  mixture  of                              
two  normal  distributions  can  be  unimodal  or  bimodal,  depending  on  the  model  parameter                          3

(Robertson  and  Fryer,  1969) .  When  comparing  best  fit  unimodal  and  bimodal  mixtures  we  found                            
that  a  bimodal  model  yields  a  significantly  superior  fit  for  spine  volume  and  geometric  mean  of                                
spine  volume (Holzmann  and  Vollmer,  2008)  (Extended  Data  Fig.  4).  This  bimodality  makes  it                            
plausible  that  the  mixture  components  correspond  to  biological  states  of  synapses.  According  to                          
this  interpretation,  synapses  are  drawn  from  two  latent  states  (Fig.  3f).  In  “S”  and  “L”  states,                                
spine  volumes  are  drawn  from  log-normal  distributions  with  small  and  large  means,  respectively.                          
It  should  be  noted  that  there  is  some  overlap  between  mixture  components  (Fig.  3f),  so  that  an                                  
S   synapse   can   be   larger   than   an   L   synapse.   
 
To  validate  this  finding,  we  quantified  synaptic  cleft  size  as  the  number  of  voxels  labeled  by  the                                  
output  of  our  automated  cleft  detector  (Supplementary  Information  4).  We  found  a  close                          
relationship  between  spine  volume  and  cleft  size  in  our  data  (Extended  Data  Fig.  6a),  in  accord                                
with  previous  studies (Harris  and  Stevens,  1989;  Arellano et  al. ,  2007;  Bartol et  al. ,  2015) .  When                                
spine  volume  is  replaced  by  cleft  size  in  the  preceding  analysis,  we  obtain  similar  results                              
(Extended   Data   Fig.   6).   
 

2Spine   head   volume   excludes   the   spine   neck,   which   is   at   most   only   weakly   correlated   in   size   with   other  
synaptic   structures   (Arellano   et   al.   2007).   
3  For   example,   if   the   two   normal   distributions   have   the   same   weight   and   standard   deviation,   then   the  
mixture   is   unimodal   if   and   only   if   the   separation   between   the   means   is   twice   the   standard   deviation.   
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Figure   4:   Latent   state   correlations   between   spines   at   dual   connections  
(a) Scatter   plot   of   spine   volumes   (black,   lexicographic   ordering)   for   dual   connections.   Data   points   are   mirrored  

across   the   diagonal   (gray).   The   joint   distribution   is   fit   by   a   mixture   model   (orange)   like   that   of   Fig.   3f,   but   with  
latent   states   correlated   as   in   ( e ).   

(b) Projecting   the   points   onto   the   vertical   axis   yields   a   histogram   of   spine   volumes   for   dual   connections   (cf.   Fig.  
3d).   Model   is   derived   from   the   joint   distribution.  

(c) Projecting   onto   the   x=y   diagonal   yields   a   histogram   of   the   geometric   mean   of   spine   volumes   (cf.   Fig.   3e).  
Model   is   derived   from   the   joint   distribution.  

(d) Projecting   onto   the   x=−y   diagonal   yields   a   histogram   of   the   ratio   of   spine   volumes.  
(e) The   latent   states   of   synapses   in   a   dual   connection   ( H 1    and    H 2 )   are   more   likely   to   be   the   same   (SS   or   LL)  

than   different   (SL/LS),   as   shown   by   the   joint   probability   distribution.  
(f) When   conditioned   on   the   latent   states,   the   spine   volumes   ( V 1    and    V 2 )   are   statistically   independent,   as   shown  

in   this   dependency   diagram   of   the   model.   
(g) ,     (h)    Sampling   synapse   pairs   to   SS   and   LL   states   according   to   their   state   probabilities.   The   top   shows   a  

kernel   density   estimation   of   multiple   iterations   of   sampling.   The   bottom   shows   the   distribution   of   pearson-r  
correlations   across   many   sampling   rounds   (N=10,000).   
Error   bars   are     of   the   model   fit. ± √n    
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To  probe  possible  model  dependence  on  the  number  of  synapses  per  connection,  we  separated                            
our  synapses  into  populations  drawn  from  single,  dual  and  triple  connections,  and  fit  an                            
independent  binary  mixture  model  to  each  population.  The  parameters  of  the  mixture                        
components  for  dual  and  triple  connections  were  not  significantly  different  from  the  parameters                          
for  single  connections  (Supplementary  Information  2).  When  comparing  these  distributions  we                      
observed  an  overrepresentation  of  large  synapses  for  dual  connections  compared  to  single                        
connections  (Fig  3g).  We  wondered  if  the  previously  reported  mean  spine  volume  increase  with                            
number  of  synapses  per  connection  (Supplementary  Information  2, (Bloss et  al. ,  2018)  could  be                            
explained  with  a  synapse  redistribution  between  the  latent  states.  This  time,  we  only  fit  the                              
component  weights  to  single,  dual,  triple  connections  while  keeping  the  Gaussian  components                        
constant  (see  Methods).  We  found  a  linear  increase  in  fraction  of  synapses  in  the  “L”  state  with                                  
the   number   of   synapses   per   connections   (Fig.   3h).  4

 
Large  spines  have  been  reported  to  contain  an  intracellular  organelle  called  a  spine  apparatus                            
(SA),  which  is  a  specialized  form  of  smooth  endoplasmic  reticulum  (ER) (Peters  and                          
Kaiserman-Abramof,  1970;  Spacek,  1985;  Harris  and  Stevens,  1989) .  We  manually  annotated                      
SA  in  all  dendritic  spines  of  all  synapses  between  L2/3  PyCs,  and  confirmed  quantitatively  that                              
the  probability  of  a  spine  apparatus  increases  with  spine  volume  (Extended  Data  Fig.  5,                            
Methods).   
 
Correlations   at   dual   connections  
Positive  correlation  between  synapse  sizes  at  dual  connections  has  been  reported  previously  in                          
hippocampus (Sorra  and  Harris,  1993;  Bartol et  al. ,  2015;  Bloss et  al. ,  2018)  and  neocortex                              
(Kasthuri et  al. ,  2015;  Motta et  al. ,  2019) .  According  to  our  binary  mixture  model,  synapse  size                                
is  the  sum  of  a  binary  variable  and  a  log-normal  continuous  variable.  We  decided  to  quantify  the                                  
contributions   of   these   variables   to   synapse   size   correlations.  
 
The  dendritic  spines  for  all  dual  connections  between  L2/3  PyCs  are  rendered  in  Extended  Data                              
Fig.  3.  In  a  scatter  plot  of  spine  volumes  (Fig.  4a,  see  Supplementary  Information  6  for  an                                  
unoccluded  plot),  positive  correlations  are  evident  (Pearson’s r =0.418).  We  fit  the  joint                        
distribution  of  the  spine  volumes  by  a  mixture  model  like  Fig.  3f,  while  allowing  the  latent  states                                  
to  be  correlated  (Fig.  4a,  f,  see  Supplementary  Information  9  for  fit  results).  In  the  best-fitting                                
model,  SS  occurs  roughly  half  the  time,  LL  one  third  of  the  time,  and  the  mixed  states  (SL,  LS)                                      
occur  more  rarely  (Fig.  4e).  The  low  probability  of  the  mixed  states  can  be  seen  directly  in  the                                    
scarcity  of  points  in  the  upper  left  and  lower  right  corners  of  the  scatter  plot  (Fig.  4a).  Pearson’s                                    
phi  coefficient,  the  specialization  of  Pearson’s  correlation  coefficient  to  binary  variables,  is                        
0.637.   
 
Our  mixture  model  assumes  that  the  spine  volumes  are  independent  when  conditioned  on  the                            
latent  states.  To  visualize  whether  this  assumption  is  justified  by  the  data,  Fig.  4  shows  1D                                

4  This   relationship   was   found   for   the    observed    number   of   synapses.   On   average,   this   number   is   expected  
to   increase   with   the    true    number   of   synapses.   Therefore   mean   spine   volume   is   also   expected   to   increase  
with   the   true   number   of   synapses   per   connection.  
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projections  of  the  joint  distribution  onto  different  axes.  The  projection  onto  the  vertical  axis  (Fig.                              
4b)  is  the  marginal  distribution,  the  overall  size  distribution  for  all  synapses  that  belong  to  dual                                
connections  (same  as  Fig.  3d).  The  projection  onto  the x = y  diagonal  (Fig.  4c)  is  the  distribution                                
of  the  geometric  mean  of  spine  volume  for  each  dual  connection  (same  as  Fig.  3e).  The                                
projection  onto  the x =− y  diagonal  (Fig.  4d)  is  the  distribution  of  the  ratio  of  spine  volumes  for                                  
each  dual  connection.  For  all  three  projections,  the  good  fit  suggests  that  the  data  are                              
consistent  with  the  mixture  model’s  assumption  of  isotropic  normal  distributions  for  the  LL  and                            
SS   states.   5

 
For  a  quantitative  test  of  the  isotropy  assumption,  we  resampled  observed  data  points  with                            
weightings  computed  from  the  posterior  probabilities  of  the  SS  and  LL  states  (Fig.  4g,  h).  If  the                                  
model  were  consistent  with  the  data,  the  resampled  data  would  obey  an  isotropic  normal                            
distribution.  Indeed,  Pearson’s  correlation  for  the  resampled  data  is  not  significantly  different                        
from  zero  (Fig.  4g,  h).  Therefore  the  spine  volumes  in  a  dual  connection  are  approximately                              
uncorrelated   when   conditioned   on   the   latent   states.   
 
Specificity   of   latent   state   correlations  
Could  the  observed  correlations  between  synapses  in  dual  connections  be  caused  by  crosstalk                          
between  plasticity  of  neighboring  synapses  (<10  μm  separation),  which  has  been  reported                        
previously (Harvey  and  Svoboda,  2007;  Harvey et  al. ,  2008) ?  We  looked  for  dependence  of                            
latent  state  correlations  on  separation  by  splitting  dual  connections  into  two  groups,  those  with                            
synapses  nearer  or  farther  than  the  median  Euclidean  distance  of  46.5  μm.  Both  groups  were  fit                                
by  mixture  models  with  positive  correlations  between  latent  variables  (near:  𝜑=0.53,  far:                        
𝜑=0.75,  see  Methods,  Extended  Data  Fig.  8).  In  other  words,  for  dual  connections  involving                            
pairs   of   distant   synapses,   the   latent   state   correlations   are   still   strong.   
 
We  also  considered  the  possibility  of  correlations  in  pairs  of  synapses  sharing  the  same                            
presynaptic  cell  but  not  the  same  postsynaptic  cell,  or  pairs  of  synapses  sharing  the  same                              
postsynaptic  cell  but  not  the  same  presynaptic  cell (Bartol et  al. ,  2015;  Kasthuri et  al. ,  2015;                                
Dvorkin  and  Ziv,  2016;  Bloss et  al. ,  2018;  Motta et  al. ,  2019) .  We  randomly  drew  such  synapse                                  
pairs  from  the  set  of  synapses  that  belong  to  dual  connections  (and  hence  belong  to  PyCs  that                                  
participate  in  dual  connections).  Correlations  in  the  latent  state  or  synapse  size  were  negligible                            
(same  axon:  φ=  −0.11  ±  0.08  SD, r =  −0.06  ±  0.06  SD;  same  dendrite:  φ=  −0.06  ±  0.06  SD, r =                                            
−0.13  ±  0.05  SD;  Extended  Data  Fig.  9),  similar  to  previous  findings (Bloss et  al. ,  2018;  Motta et                                    
al. ,   2019) .  

5The    x = y    and   vertical   histograms   look   bimodal   because   they   are   different   projections   of   the   same   two  
“bumps”   in   the   joint   distribution.   If   the   probability   of   the   mixed   state   (LS/SL)   were   high,   there   would   be   two  
additional   off-diagonal   bumps   in   the   joint   distribution,   and   the    x = y    diagonal   histogram   would   acquire  
another   peak   in   the   middle.   In   reality   the   probability   of   the   mixed   state   is   low,   so   the    x = y    diagonal  
histogram   is   well-modeled   by   two   mixture   components.   The   widths   of   the   bumps   are   the   same   in   both  
projections,   but   the   distance   between   the   bumps   is   longer   in   the    x = y    diagonal   histogram   by   a   factor   of  
root   two.   This   explains   why   the   mixture   components   are   better   separated   in   the   distribution   of   geometric  
means   (Fig.   3e,   4e)   than   in   the   marginal   distribution   (Fig.   3d,   4d),   and   hence   why   the   statistical  
significance   of   bimodality   is   stronger   for   the   geometric   means.   

11  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 31, 2019. ; https://doi.org/10.1101/2019.12.29.890319doi: bioRxiv preprint 

https://paperpile.com/c/ahFaU5/zELv+FuAu
https://paperpile.com/c/ahFaU5/zELv+FuAu
https://paperpile.com/c/ahFaU5/zELv+FuAu
https://paperpile.com/c/ahFaU5/krzy+uQnn+trTV+Xdrb+Y1YB
https://paperpile.com/c/ahFaU5/krzy+uQnn+trTV+Xdrb+Y1YB
https://paperpile.com/c/ahFaU5/krzy+uQnn+trTV+Xdrb+Y1YB
https://paperpile.com/c/ahFaU5/krzy+uQnn+trTV+Xdrb+Y1YB
https://paperpile.com/c/ahFaU5/krzy+uQnn+trTV+Xdrb+Y1YB
https://paperpile.com/c/ahFaU5/krzy+uQnn+trTV+Xdrb+Y1YB
https://paperpile.com/c/ahFaU5/krzy+uQnn+trTV+Xdrb+Y1YB
https://paperpile.com/c/ahFaU5/krzy+uQnn+trTV+Xdrb+Y1YB
https://paperpile.com/c/ahFaU5/krzy+uQnn+trTV+Xdrb+Y1YB
https://paperpile.com/c/ahFaU5/krzy+uQnn+trTV+Xdrb+Y1YB
https://paperpile.com/c/ahFaU5/Xdrb+Y1YB
https://paperpile.com/c/ahFaU5/Xdrb+Y1YB
https://paperpile.com/c/ahFaU5/Xdrb+Y1YB
https://paperpile.com/c/ahFaU5/Xdrb+Y1YB
https://paperpile.com/c/ahFaU5/Xdrb+Y1YB
https://paperpile.com/c/ahFaU5/Xdrb+Y1YB
https://doi.org/10.1101/2019.12.29.890319
http://creativecommons.org/licenses/by-nd/4.0/


 

 
Discussion  
Our  synapse  size  correlations  are  specific  to  pairs  of  synapses  that  share  both  the  same                              
presynaptic  and  postsynaptic  L2/3  PyCs,  analogous  to  previous  findings (Sorra  and  Harris,                        
1993;  Koester  and  Johnston,  2005;  Bartol et  al. ,  2015;  Kasthuri et  al. ,  2015;  Dvorkin  and  Ziv,                                
2016;  Bloss et  al. ,  2018;  Motta et  al. ,  2019) .  We  have  further  demonstrated  that  the  correlations                                
exist  even  for  large  spatial  separations  between  synapses.  More  importantly,  we  have  shown                          
the  correlations  are  confined  to  the  binary  latent  variables  in  our  synapse  size  model;  the                              
log-normal   analog   variables   exhibit   little   or   no   correlation.  
 
The  correlations  in  the  binary  variables  could  arise  from  a  Hebbian  or  other  synaptic  plasticity                              
rule  driven  by  presynaptic  and  postsynaptic  activity  signals  that  are  relatively  uniform  across                          
neuronal  arbors.  Such  signals  are  shared  by  synapses  in  a  multisynaptic  connection (Sorra  and                            
Harris,  1993;  Koester  and  Johnston,  2005;  Bartol et  al. ,  2015;  Kasthuri et  al. ,  2015;  Dvorkin  and                                
Ziv,   2016;   Bloss    et   al. ,   2018;   Motta    et   al. ,   2019) .  
 
We  speculate  that  much  of  the  analog  variation  arises  from  the  spontaneous  dynamical                          
fluctuations  that  have  been  observed  at  single  dendritic  spines  through  time-lapse  imaging.                        
Computational  models  of  this  temporal  variance  suggest  that  it  can  account  for  much  of  the                              
population  variance (Yasumatsu et  al. ,  2008;  Loewenstein,  Kuras  and  Rumpel,  2011;  Statman et                          
al. ,  2014) .  Experiments  have  shown  that  large  dynamical  fluctuations  persist  even  after  activity                          
is  pharmacologically  blocked (Yasumatsu et  al. ,  2008;  Statman et  al. ,  2014) .  Another  possibility                          
is  that  the  analog  variation  arises  from  plasticity  driven  by  activity-related  signals  that  are  local                              
to   neighborhoods   within   neuronal   arbors.  
 
It  has  been  argued  that  the  observed  structural  volatility  of  synapses  is  challenging  to  reconcile                              
with  the  stability  of  memory (Loewenstein,  Kuras  and  Rumpel,  2011) .  Our  findings  suggest  two                            
possible  resolutions  of  the  stability-plasticity  dilemma.  In  one  scenario,  synapses  only  appear                        
volatile  because  fluctuations  in  the  analog  variable  obscure  the  stability  of  the  binary  variable.                            
This  scenario  is  consistent  with  the  idea  that  synapses  behave  like  binary  switches  that  are                              
flipped  by  activity-dependent  plasticity.  Switch-like  behavior  could  arise  from  bistable  networks                      
of  molecular  interactions  at  synapses (Lisman,  1985) ,  has  been  observed  in  physiology                        
experiments  on  synaptic  plasticity (Petersen et  al. ,  1998;  O’Connor,  Wittenberg  and  Wang,                        
2005) ,  and  has  been  the  basis  of  a  number  of  computational  models  of  memory (Tsodyks,  1990;                                
Amit   and   Fusi,   1994;   Fusi,   Drew   and   Abbott,   2005) .   
 
In  a  second  scenario,  there  is  no  need  for  synapses  to  be  intrinsically  stable  as  learning  from                                  
experience  is  always  ongoing  in  a  sensory  cortical  area.  Activity-dependent  plasticity  causes                        
synapses  to  partition  into  two  clusters  located  at  upper  and  lower  bounds  for  synaptic  size                              
(Song,  Miller  and  Abbott,  2000;  Van  Rossum,  Bi  and  Turrigiano,  2000;  Rubin,  Lee  and                            
Sompolinsky,  2001) .  In  this  scenario,  synapses  are  intrinsically  continuous  and  volatile,  and  the                          
binary   mixture   is   an   outcome   of   ongoing   learning.  
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Bimodality  and  strong  correlations  were  found  for  a  restricted  ensemble  of  synapses,  those                          
belonging  to  dual  connections  between  L2/3  PyCs.  However,  bimodality  is  not  observed  for  the                            
ensemble  of  all  excitatory  synapses  onto  L2/3  PyCs,  including  those  from  orphan  axons                          
(Extended  Data  Fig.  10).  This  ensemble  is  similar  to  ones  studied  previously,  i.e.,  synapses  onto                              
L2/3  PyCs (Arellano et  al. ,  2007) ,  L4  neurons (Motta et  al. ,  2019)  or  L5  PyCs (Loewenstein,                                
Kuras  and  Rumpel,  2011) .  Bimodality  and  strong  correlations  are  also  not  observed  for  the                            
ensemble  of  all  dual  connections  received  by  L2/3  PyCs,  including  those  from  orphan  axons                            
(Extended  Data  Fig.  10).  Because  our  novel  findings  are  based  on  a  highly  specific  population                              
of  synapses,  they  are  not  inconsistent  with  previous  studies  that  failed  to  find  evidence  for                              
discreteness  of  cortical  synapses (Arellano et  al. ,  2007;  Loewenstein,  Kuras  and  Rumpel,  2011;                          
Loewenstein,   Yanover   and   Rumpel,   2015;   de   Vivo    et   al. ,   2017;   Santuy    et   al. ,   2018) .  
 
Bimodality  and  correlations  may  turn  out  to  be  heterogeneous  across  classes  of  neocortical                          
synapses.  Heterogeneity  in  the  hippocampus  has  been  demonstrated  by  the  finding  that  dual                          
connections  onto  granule  cell  dendrites  in  the  middle  molecular  layer  of  dentate  gyrus (Bromer                            
et  al. ,  2018)  do  not  exhibit  the  correlations  that  are  found  in  stratum  radiatum  of  CA1 (Bartol et                                    
al. ,   2015;   Bloss    et   al. ,   2018) .   
 
Since  the  physiological  strength  of  a  multisynaptic  connection  can  be  approximately  predicted                        
from  the  sum  of  synaptic  sizes (Holler-Rickauer,  Koestinger  and  Martin,  2019) ,  our  S  and  L                              
latent  states  and  their  correlations  have  implications  for  the  debate  over  whether  infrequent                          
strong  connections  play  a  disproportionate  role  in  cortical  computation (Song et  al. ,  2005;                          
Cossell    et   al. ,   2015;   Scholl    et   al. ,   2019) .  
 
Testing  the  generality  of  our  findings  would  be  facilitated  by  further  scale-up  of  connectomics,                            
which  in  turn  would  be  aided  by  additional  innovations  in  handling  of  ssEM  image  defects.  Our                                
experiences  with  ssEM  data  are  paralleled  by  other  efforts  to  transform  artificial  intelligence                          
research  into  real-world  systems.  For  example,  consider  that  self-driving  cars  may  perform                        
impressively  under  “normal”  conditions,  but  fail  in  the  so-called  “edge”  or  “corner”  cases                          
(Madrigal,  2018)  that  currently  stand  in  the  way  of  fully  autonomous  operation.  Similarly,                          
continued  progress  in  handling  image  defects  would  be  critical  for  processing  the  trillions  of                            
gigabytes  envisioned  by  a  bold  proposal  for  ssEM  imaging  of  an  entire  mouse  brain (Advisory                              
Committee   to   the   NIH   Director   BRAIN   Initiative   Working   Group   2.,   2019) .  
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Methods  
Mouse. All  procedures  were  in  accordance  with  the  Institutional  Animal  Care  and  Use                          
Committees   at   the   Baylor   College   of   Medicine   and   the   Allen   Institute   for   Brain   Science.   
Mouse  lin e.  Functional  imaging  was  performed  in  a  transgenic  mouse  expressing  fluorescent                        
GCaMP6f.  For  this  data  set,  the  mouse  we  used  was  a  triple-heterozygote  for  the  following                              
three  genes:  (1) Cre  driver:  CamKIIa-Cre  (Jax:  005359< https://www.jax.org/strain/005359 >),                
(2)  tTA  driver:  B6;CBA-Tg(Camk2a-tTA)1Mmay/J  (Jax:          
003010 < https://www.jax.org/strain/003010 >),   (3)    GCaMP6f   Reporter:   Ai93   (Allen   Institute).  
Cranial  window  surgery. Anesthesia  was  induced  with  3%  isoflurane  and  maintained  with                        
1.5%  to  2%  isoflurane  during  the  surgical  procedure.  Mice  were  injected  with  5-10  mg/kg                            
ketoprofen  subcutaneously  at  the  start  of  the  surgery.  Anesthetized  mice  were  placed  in  a                            
stereotaxic  head  holder  (Kopf  Instruments)  and  their  body  temperature  was  maintained  at  37℃                          
throughout  the  surgery  using  a  homeothermic  blanket  system  (Harvard  Instruments).  After                      
shaving  the  scalp,  bupivicane  (0.05  cc,  0.5%,  Marcaine)  was  applied  subcutaneously,  and  after                          
10-20  minutes  an  approximately  1  cm 2  area  of  skin  was  removed  above  the  skull  and  the                                
underlying  fascia  was  scraped  and  removed.  The  wound  margins  were  sealed  with  a  thin  layer                              
of  surgical  glue  (VetBond,  3M),  and  a  13mm  stainless-steel  washer  clamped  in  the  headbar  was                              
attached  with  dental  cement  (Dentsply  Grip  Cement).  At  this  point,  the  mouse  was  removed                            
from  the  stereotax  and  the  skull  was  held  stationary  on  a  small  platform  by  means  of  the  newly                                    
attached  headbar.  Using  a  surgical  drill  and  HP  1/2  burr,  a  3  mm  craniotomy  was  made                                
centered  on  the  primary  visual  cortex  (V1;  2.7mm  lateral  of  the  midline,  contacting  the  lambda                              
suture),  and  the  exposed  cortex  was  washed  with  ACSF  (125mM  NaCl,  5mM  KCl,  10mM                            
Glucose,  10mM  HEPES,  2mM  CaCl2,  2mM  MgSO4).  The  cortical  window  was  then  sealed  with                            
a  3  mm  coverslip  (Warner  Instruments),  using  cyanoacrylate  glue  (VetBond).  The  mouse  was                          
allowed  to  recover  for  1-2  hours  prior  to  the  imaging  session.  After  imaging,  the  washer  was                                
released   from   the   headbar   and   the   mouse   was   returned   to   the   home   cage.  
Widefield  imaging.  Prior  to  two-photon  imaging,  we  acquired  a  low-magnification  image  of  the                          
3mm   craniotomy   under   standard   illumination.  
Two-Photon  imaging .  Imaging  for  candidate  mice  was  performed  in  V1,  in  a  400  ✕  400  ✕  200                                  
µm  volume  with  the  superficial  surface  of  the  volume  at  the  border  of  L1  and  L2/3,                                
approximately  100um  below  the  pia.  Laser  excitation  was  at  920nm  at  25-45mW  depending  on                            
depth.  The  objective  used  was  a  25✕  Nikon  objective  with  a  numerical  aperture  of  1.1,  and  the                                  
imaging  point-spread  function  was  measured  with  500  nm  beads  and  was  approximately  0.5  ✕                            
0.5   ✕   3   µm 3    in   x,   y,   and   z.   Pixel   dimensions   of   each   imaging   frame   were   256   ✕   256.   
Tissue  preparation  and  staining. The  protocol  of  Hua  et  al. (Hua,  Laserstein  and                          
Helmstaedter,  2015)  was  combined  with  the  protocol  of  Tapia  et  al. (Tapia et  al. ,  2012)  to                                
accommodate  a  smaller  tissue  size  and  to  improve  TEM  contrast.  Mice  were  transcardially                          
perfused  with  2.5%  paraformaldehyde  and  1.25%  glutaraldehyde.  After  dissection,  200 𝜇m  thick                        
coronal  slices  were  cut  with  a  vibratome  and  post-fixed  for  12-48  h. Following  several  washes  in                                
CB  (0.1  M  cacodylate  buffer  pH  7.4),  the  slices  were  fixed  with  2%  osmium  tetroxide  in  CB  for                                    
90  min,  immersed  in  2.5%  potassium  ferricyanide  in  CB  for  90  min,  washed  with  deionized  (DI)                                
water  for  2  x  30  min,  and  treated  with  freshly  made  and  filtered  1%  aqueous  thiocarbohydrazide                                
at  40℃  for  10  min.  The  slices  were  washed  2  ✕  30  min  with  DI  water  and  treated  again  with  2%                                          
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osmium  tetroxide  in  water  for  30  min.  Double  washes  in  DI  water  for  30  min  each  were  followed                                    
by  immersion  in  1%  aqueous  uranyl  acetate  overnight  at  4°C.  The  next  morning,  the  slices  in                                
the  same  solution  were  placed  in  a  heat  block  to  raise  the  temperature  to  50°C  for  2  h.  The                                      
slices  were  washed  twice  in  DI  water  for  30  min  each,  and  then  incubated  in  Walton's  lead                                  
aspartate  pH  5.0  for  2  h  at  50°C  in  the  heat  block.  After  another  double  wash  in  DI  water  for  30                                          
min  each,  the  slices  were  dehydrated  in  an  ascending  ethanol  series  (50%,  70%,  90%,  100%  ✕                                
3)  10  minutes  each  and  two  transition  fluid  steps  of  100%  acetonitrile  for  20  min  each.                                
Infiltration  with  acetonitrile:resin  dilutions  (2p:1p,  1p:1p  and  2p:1p)  were  performed  on  a  gyratory                          
shaker  overnight  for  4  days.  Slices  were  placed  in  100%  resin  for  24  hours  followed  by                                
embedding  in  Hard  Plus  resin  (EMS,  Hatfield,  PA).  Slices  were  cured  in  a  60°C  oven  for  96  h.                                    
The   best   slice   based   on   tissue   quality   and   overlap   with   the   2p   region   was   selected.  
Sectioning  and  collection. A  Leica  EM  UC7  ultramicrotome  and  a  Diatome  35  degree                          
diamond  ultra-knife  were  used  for  sectioning  at  a  speed  of  0.3  mm/sec.  Eight  to  ten  serial                                
sections  were  cut  at  40  nm  thickness  to  form  a  ribbon,  after  which  the  microtome  thickness                                
setting  was  set  to  0  in  order  to  release  the  ribbon  from  the  knife.  Using  an  eyelash  probe,  pairs                                      
of   ribbons   were   collected   onto   copper   grids   covered   by   50   nm   thick   LUXEL   film.    
Transmission  electron  microscopy. We  made  several  custom  modifications  to  a                    
JEOL-1200EXII  120kV  transmission  electron  microscope (Yin et  al. ,  2019) .  A  column  extension                        
and  scintillator  magnified  the  nominal  field  of  view  by  tenfold  with  negligible  loss  of  resolution.  A                                
high-resolution,  large-format  camera  allowed  fields-of-view  as  large  as  (13  µm) 2  at  3.58  nm                          
resolution.  Magnification  reduced  the  electron  density  at  the  phosphor,  so  a  high-sensitivity                        
sCMOS  camera  was  selected  and  the  scintillator  composition  tuned  to  generate  high  quality  EM                            
images  with  exposure  times  of  90-200  ms.  Sections  were  acquired  as  a  grid  of  3840  x  3840  px                                    
images   (“tiles”)   with   15%   overlap.  
Alignment  in  two  blocks. The  dataset  was  divided  by  sections  into  two  blocks  (1216  &  970                                
sections),  with  the  first  block  containing  substantially  more  folds.  Initial  alignment  and                        
reconstruction  tests  proceeded  on  the  second  block  of  the  dataset.  After  achieving  satisfactory                          
results,  the  first  block  was  added,  and  the  whole  dataset  was  further  aligned  to  produce  the  final                                  
3D  image.  The  alignment  process  included  stitching  (assembling  all  tiles  into  a  single  image  per                              
section),  rough  alignment  (aligning  the  set  of  section  images  with  one  affine  per  section),  coarse                              
alignment  (nonlinear  alignment  on  lower  resolution  data),  and  fine  alignment  (nonlinear                      
alignment   on   higher   resolution   data).  
Alignment,  block  one. The  tiles  of  the  first  block  were  stitched  into  one  montaged  image  per                                
section  and  rough  aligned  using  a  set  of  customized  and  automated  modules  based  on  the                              
“TrakEM2”    (Cardona    et   al. ,   2012)    and   “Render”    (Zheng    et   al. ,   2018)    software   packages.   
Stitching. After  acquisition,  a  multiplicative  intensity  correction  based  on  average  pixel  intensity                        
was  applied  to  the  images  followed  by  a  lens  distortion  of  individual  tiles  using  non  linear                                
transformations (Kaynig et  al. ,  2010) .  Once  these  corrections  were  applied,  correspondences                      
between  tiles  within  a  section  were  computed  using  SIFT  features,  and  each  tile  was  modeled                              
with   a   rigid   transform.   
Rough  alignment.  Using  20x  downsampled  stitched  images,  neighboring  sections  were  roughly                      
aligned (Saalfeld et  al. ,  2012) .  Correspondences  were  again  computed  using  SIFT  features,  and                          
each  section  was  modeled  with  a  regularized  affine  transform  (90%  affine  +  10%  rigid),  and  all                                
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correspondences  and  constraints  were  used  to  generate  the  final  model  of  one  affine  transform                            
per  tile.  These  models  were  used  to  render  the  final  stitched  section  image  into  rough  alignment                                
with   block   two.  
Alignment,  block  two. The  second  block  was  stitched  and  aligned  using  the  methods  of                            
(Saalfeld    et   al. ,   2012)    as   implemented   in   Alembic    (Macrina   and   Ih,   no   date) .   
Stitching.  For  each  section,  tiles  containing  tissue  without  clear  image  defects  were  contrast                          
normalized  by  centering  the  intensities  at  the  same  location  in  each  tile,  stretching  the  overall                              
distribution  between  the  5th  &  95th  intensity  percentiles.  During  imaging,  a  20x  downsampled                          
overview  image  of  the  section  was  also  acquired.  Each  tile  was  first  placed  according  to  stage                                
coordinates,  approximately  translated  based  on  normalized  cross-correlation  (NCC)  with  the                    
overview  image,  and  then  finely  translated  based  on  NCC  with  neighboring  tiles.  Block  matching                            
was  performed  in  the  regions  of  overlap  between  tiles  using  NCC  with  140  px  block  radius,  400                                  
px  search  radius,  and  a  spacing  of  200  px.  Matches  were  manually  inspected  with  1x  coverage,                                
setting  per-tile-pair  thresholds  for  peak  of  match  correlogram,  distance  between  first  and  second                          
peaks  of  match  correlograms,  and  correlogram  covariance,  and  less  frequently,  targeted  match                        
removal.  A  graphical  user  interface  was  developed  to  allow  the  operator  to  fine-tune  parameters                            
on  a  section-by-section  basis,  so  that  a  skilled  operator  completed  inspection  in  40  hrs.  Each  tile                                
was  modeled  as  a  spring  mesh,  with  nodes  located  at  the  center  of  each  blockmatch  operation,                                
spring  constants  1/100th  of  the  constant  for  the  between-tile  springs,  and  the  energy  of  all                              
spring  meshes  within  a  section  were  minimized  to  a  fractional  tolerance  of  10 -8  using  nonlinear                              
conjugate  gradient.  The  final  render  used  a  piecewise  affine  model  defined  by  the  mesh  before                              
and   after   relaxation,   and   maximum-intensity   blending.  
Rough  alignment.  Using  20x  downsampled  images,  block  matching  between  neighboring                    
sections  proceeded  using  NCC  with  50  px  block  radius,  125  px  search  radius,  and  250  px                                
spacing.  Matches  were  computed  between  nearest  neighbor  section  pairs,  then  filtered                      
manually  in  8  hrs.  Correspondences  were  used  to  develop  a  regularized  affine  model  per                            
section   (90%   affine   +   10%   rigid),   which   was   rendered   at   full   image   resolution.   
Coarse  alignment.  Using  4x  downsampled  images,  NCC-based  block  matching  proceeded  300                      
px  block  radius,  200  px  search  radius,  and  500  px  spacing.  Matches  were  computed  between                              
nearest  and  next-nearest  section  pairs,  then  manually  filtered  by  a  skilled  operator  in  24  hrs.                              
Each  section  was  modeled  as  a  spring  mesh  with  spring  constants  1/10th  of  the  constant  for  the                                  
between-section  springs,  and  the  energy  of  all  spring  meshes  within  the  block  were  minimized                            
to  a  fractional  tolerance  of  10 -8  using  nonlinear  conjugate  gradient.  The  final  render  used  a                              
piecewise   affine   model   defined   by   the   mesh.  
Fine  alignment.  Using  2x  downsampled  images,  NCC-based  block  matching  proceeded  200  px                        
block  radius,  113  px  search  radius,  and  100  px  spacing.  Matches  were  computed  between                            
nearest  and  next-nearest  section  pairs,  then  manually  filtered  by  a  skilled  operator  in  24  hrs.                              
Modeling  and  rendering  proceeded  as  with  coarse  alignment,  using  spring  constants  were                        
1/20th   of   the   constant   for   the   between-section   springs.  
Alignment,  whole  dataset.  Blank  sections  were  inserted  manually  between  sections  where  the                        
cutting  thickness  appeared  larger  than  normal  (11).  The  alignment  of  the  whole  dataset  was                            
further  refined  using  the  methods  of (Saalfeld et  al. ,  2012)  as  implemented  in  Alembic (Macrina                              
and   Ih,   no   date) .   
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Coarse  alignment. Using  64x  downsampled  images,  NCC-based  block  matching  proceeded  128                      
px  block  radius,  512  px  search  radius,  and  128  px  spacing.  Matches  were  computed  between                              
neighboring  and  next  nearest  neighboring  sections,  as  well  as  24  manually  identified  section                          
pairs  with  greater  separation,  then  manually  inspected  in  70  hrs.  Section  spring  meshes  had                            
spring  constants  1/20th  of  the  constant  for  the  between-section  springs.  Mesh  relaxation  was                          
completed  in  blocks  of  15  sections,  5  of  which  were  overlapping  with  the  previous  block  (2                                
sections  fixed),  each  block  relaxing  to  a  fractional  tolerance  of  10 -8 .  Rendering  proceeded                          
similarly   as   before.  
Fine  alignment. Using  4x  downsampled  images,  NCC-based  block  matching  proceeded  128  px                        
block  radius,  512  px  search  radius,  and  128  px  spacing.  Matches  were  computed  between  the                              
same  section  pairs  as  in  coarse  alignment.  Matches  were  excluded  only  be  heuristics.  Modeling                            
and  rendering  proceeded  similar  to  coarse  alignment,  with  spring  constants  1/100th  the                        
constant  for  the  between-section  springs.  Rendered  image  intensities  were  linearly  rescaled  in                        
each   section   based   on   the   5th   and   95th   percentile   pixel   values.   
Image  volume  estimation .  The  imaged  tissue  has  a  trapezoidal  shape  in  the  sectioning  plane.                            
Landmark  points  were  placed  in  the  aligned  images  to  measure  this  shape.  We  report  cuboid                              
dimensions  for  simplicity  and  comparison  using  the  trapezoid  midsegment  length.  The  original                        
trapezoid  has  a  short  base  length  of  216.9μm,  long  base  length  of  286.2μm,  and  height                              
138.3μm.  The  imaged  data  has  2176  sections,  which  measures  87.04μm  with  a  40nm  slice                            
thickness.  
Image  defect  handling .  Cracks,  folds,  and  contaminants  were  manually  annotated  as  binary                        
masks  on  256x  downsampled  images,  dilated  by  2  px,  then  inverted  to  form  a  defect  mask.  A                                  
tissue  mask  was  created  using  nonzero  pixels  in  the  256x  downsampled  image,  then  eroded  by                              
2  px  to  exclude  misalignments  at  the  edge  of  the  image.  The  image  mask  is  the  union  of  the                                      
tissue  and  defect  masks,  and  it  was  upsampled  and  applied  during  the  final  render  to  set  pixels                                  
not  included  in  the  mask  to  zero.  We  created  a  segmentation  mask  by  excluding  voxels  that  had                                  
been  excluded  by  the  image  mask  for  three  consecutive  sections.  The  segmentation  mask  was                            
applied   after   affinity   prediction   to   set   affinities   not   included   in   the   mask   to   zero.   
Affinity  prediction. Human  experts  used VAST (Berger,  Seung  and  Lichtman,  2018)  to                        
manually  segment  multiple  subvolumes  from  the  current  dataset  and  a  similar  dataset  from                          
mouse   V1.   Annotated   voxels   totaled   1.29   billion   at   full   image   resolution.  
We  trained  a  3D  convolutional  network  to  generate  three  nearest  neighbor (Turaga et  al. ,  2010)                              
and  13  long-range  affinity  maps (Lee et  al. ,  2017) .  Each  long-range  affinity  map  was                            
constructed  by  comparing  an  equivalence  relation (Jain,  Sebastian  Seung  and  Turaga,  2010)  of                          
pairs  of  voxels  spanned  by  an  “offset”  edge  (to  preceding  voxels  at  distances  of  4,  8,  12,  and                                    
16  in  x  and  y,  and  2,  3,  4  in  z).  Only  the  nearest  neighbor  affinities  were  used  beyond  inference                                        
time;  long-range  affinities  were  used  solely  for  training.  The  network  architecture  was  modified                          
from  the  “Residual  Symmetric  U-Net”  of  Lee  et  al. (Lee et  al. ,  2017) .  We  trained  on  input                                  
patches  of  size  128×128×20  at  7.16×7.16×40  nm 3  resolution.  The  prediction  during  training  was                          
bilinearly   upsampled   to   full   image   resolution   before   calculating   the   loss.   
Training  utilized  synchronous  gradient  updates  computed  by  four  Nvidia  Titan  X  Pascal  GPUs                          
each  with  a  different  input  patch.  We  used  the  AMSGrad  variant (Reddi,  Kale  and  Kumar,  2019)                                
of  the  Adam  optimizer (Kingma  and  Ba,  2014) ,  with  PyTorch’s  default  settings  except  step  size                              
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parameter  α  =  0.001.  We  used  the  binary  cross-entropy  loss  with  “inverse  margin”  of  0.1 (Huang                                
and  Jain,  2013) ;  patch-wise  class  rebalancing (Lee et  al. ,  2017)  to  compensate  for  the  lower                              
frequency  of  boundary  voxels;  training  data  augmentation  including  flip/rotate  by  90°,  brightness                        
and  contrast  perturbations,  warping  distortions,  misalignment/missing  section  simulation,  and                  
out-of-focus  simulation (Lee et  al. ,  2017) ;  and  lastly  several  new  types  of  data  augmentation                            
including   the   simulation   of   lost   section   and   co-occurrence   of   misalignment/missing/lost   section.    
Distributed  computation  of  affinity  maps  used  chunkflow (Wu et  al. ,  2019) .  The  computation  was                            
done  with  images  at  7.16×7.16×40  nm 3  resolution.  The  whole  volume  was  divided  into                          
1280×1280×140  chunks  overlapping  by  128×128×10,  and  each  chunk  was  processed  as  a  task.                          
The  tasks  were  injected  into  a  queue  (Amazon  Web  Service  Simple  Queue  Service).  For  2.5                              
days,  1000  workers  (Google  Cloud  n1-highmem-4  with  4  vCPUs  and  26  GB  RAM,  deployed  in                              
Docker  image  using  Kubernetes)  fetched  and  executed  tasks  from  the  queue  as  follows.  The                            
worker  read  the  corresponding  chunk  from  Google  Cloud  Storage  using  CloudVolume                      
(seung-lab,  no  date) ,  and  applied  previously  computed  masks  to  black  out  regions  with  image                            
defects.  The  chunk  was  divided  into  256×256×20  patches  with  50%  overlap.  Each  patch  was                            
processed  to  yield  an  affinity  map  using  PZNet,  a  CPU  inference  framework (Popovych et  al. ,                              
2020) .  The  overlapping  output  patches  were  multiplied  by  a  bump  function,  which  weights  the                            
voxels  according  to  the  distance  from  patch  center,  for  smooth  blending  and  then  summed.  The                              
result  was  cropped  to  1024×1024×120  vx  and  then  previously  computed  segmentation  masks                        
were   applied   (see   Image   defect   handling   above).  
Watershed  and  size-dependent  single  linkage  clustering. The  affinity  map  was  divided  into                        
514×514×130  chunks  that  overlapped  by  2  voxels  in  each  direction.  For  each  chunk  we  ran  a                                
watershed  and  clustering  algorithm (Zlateski  and  Seung,  2015)  with  special  handling  of  chunk                          
boundaries.  If  the  descending  flow  of  watershed  terminated  prematurely  at  a  chunk  boundary,                          
the  voxels  around  the  boundary  were  saved  to  disk  so  that  domain  construction  could  be                              
completed  later  on.  Decisions  about  merging  boundary  domains  were  delayed,  and  information                        
was  written  to  disk  so  decisions  could  be  made  later.  After  the  chunks  were  individually                              
processed,  they  were  stitched  together  in  a  hierarchical  fashion.  Each  level  of  the  hierarchy                            
processed  the  previously  delayed  domain  construction  and  clustering  decisions  in  chunk                      
interiors.  Upon  reaching  the  top  of  the  hierarchy,  the  chunk  encompassed  the  entire  volume,                            
and   all   previously   delayed   decisions   were   completed.  
Mean  affinity  agglomeration.  The  watershed  supervoxels  and  affinity  map  were  divided  into                        
513×513×129  chunks  that  overlapped  by  1  in  each  direction.  Each  chunk  was  processed  using                            
mean  affinity  agglomeration (Lee et  al. ,  2017;  Funke et  al. ,  2019) .  Agglomeration  decisions  at                            
chunk  boundaries  were  delayed,  and  information  about  the  decisions  was  saved  to  disk.  After                            
the  chunks  were  individually  processed,  they  were  combined  in  a  hierarchical  fashion  similar  to                            
the   watershed   process.  
Synaptic  cleft  detection. Synaptic  clefts  were  annotated  by  human  annotators  within  a                        
310.7μm 3  volume,  which  was  split  into  203.2μm 3  training,  53.7μm 3  validation,  and  53.7μm 3  test                          
sets.  We  trained  a  version  of  the  Residual  Symmetric  U-Net (Lee et  al. ,  2017)  with  3                                
downsampling  levels  instead  of  4,  90  feature  maps  at  the  3rd  downsampling  instead  of  64,  and                                
‘resize’  upsampling  rather  than  strided  transposed  convolution.  Images  and  labels  were                      
downsampled  to  7.16×7.16×40nm 3  image  resolution.  To  augment  the  training  data,  input                      
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patches  were  transformed  by  (1)  introducing  misalignments  of  up  to  17  pixels,  (2)  blacking  out                              
up  to  5  sections,  (3)  blurring  up  to  5  sections,  (4)  warping,  (5)  varying  brightness  and  contrast,                                  
and  (6)  flipping  and  rotating  by  multiples  of  90  degrees.  Training  used  PyTorch (Adam et  al. ,                                
2017) ,  and  the  Adam  optimizer (Kingma  and  Ba,  2014) .  The  learning  rate  started  from  10 −3 ,  and                                
was  manually  annealed  three  times  (505k  training  updates),  before  adding  67.2μm 3  of  extra                          
training  data  for  another  670k  updates.  The  extra  training  data  focused  on  false  positive                            
examples  from  the  network’s  predictions  at  505k  training  updates,  mostly  around  blood  vessels.                          
The  trained  network  achieved  93.0%  precision  and  90.9%  recall  in  detecting  clefts  of  the  test                              
set.  This  network  was  applied  to  the  entire  dataset  using  the  same  distributed  inference  setup                              
as  affinity  map  inference.  Connected  components  of  the  thresholded  network  output  that  were  at                            
least   50   voxels   at   7.16×7.16×40nm 3    resolution   were   retained   as   predicted   synaptic   clefts.  
Synaptic  partner  assignment. Presynaptic  and  postsynaptic  partners  were  annotated  for  387                      
clefts,  which  were  split  into  196,  100,  and  91  examples  for  training,  validation,  and  test  sets.  A                                  
network  was  trained  to  perform  synaptic  partner  assignment  via  a  voxel  association  task (Turner                            
et  al. ,  2019) .  Architecture  and  augmentations  were  the  same  as  for  the  synaptic  cleft  detector.                              
Test  set  accuracy  was  98.9%  after  710k  training  iterations.  The  volume  was  separated  into                            
non-overlapping  chunks  of  size  7.33μm  x  7.33μm  x  42.7μm  (1024  x  1024  x  1068  voxels),  and                                
the  net  was  applied  to  each  cleft  in  each  chunk.  This  yielded  a  single  prediction  for  interior                                  
clefts.  For  a  cleft  that  crossed  at  least  one  boundary,  we  chose  the  prediction  from  the  chunk                                  
which  contained  the  most  voxels  of  that  cleft.  Cleft  predictions  were  merged  if  they  connected                              
the  same  synaptic  partners  and  their  centers-of-mass  were  within  1  μm.  This  resulted  in                            
3,556,643   final   cleft   predictions.  
PyC  proofreading.  The  mean  affinity  graph  of  watershed  supervoxels  was  stored  in  our                          
PyChunkedGraph  backend,  which  uses  an  octree  to  provide  spatial  embedding  for  fast  updates                          
of  the  connected  component  sets  from  local  edits.  We  modified  the  Neuroglancer  frontend                          
(Maitin-Shepard,  2019)  to  interface  with  this  backend  so  users  directly  edit  the  agglomerations                          
by  adding  and  removing  edges  in  the  supervoxel  graph  (merge  and  split  agglomerations).                          
Connected  components  of  this  graph  are  meshed  in  chunks  of  supervoxels,  and  chunks                          
affected  by  edits  are  updated  in  real-time  so  users  can  always  see  a  3D  representation  of  the                                  
current  segmentation.  Using  a  keypoint  for  each  object  (e.g.  soma  centroid),  objects  are                          
assigned  the  unique  ID  of  the  connected  component  for  the  supervoxel  which  contains  that                            
location.   This   provides   a   means   to   update   the   object’s   ID   as   edits   are   made.  
Cell  bodies  in  the  EM  volume  were  manually  identified.  Pyramidal  cells  were  identified  by                            
morphological  features,  including  density  of  dendritic  spines,  presence  of  apical  and  basal                        
dendrites,  direction  of  main  axon  trunk,  and  cell  body  shape.  A  team  of  annotators  used  the                                
meshes  to  detect  errors  in  dendritic  trunks  and  axonal  arbors,  then  to  correct  those  errors  with                                
50,000  manual  edits  in  1,044  person-hours.  After  these  edits,  pyramidal  cells  were  skeletonized,                          
and  both  the  branch  and  end  points  of  these  skeletons  were  identified  automatically  (with  false                              
negative  rates  of  1.7%  and  1.4%,  as  estimated  by  annotators).  Human  annotators  reviewed                          
each  point  to  ensure  no  merge  errors  and  extend  split  errors  where  possible  (210                            
person-hours).  Putative  broken  spines  targeted  by  PyCs  were  identified  by  selecting  objects  that                          
received  one  or  two  synapses.  Annotators  reviewed,  and  attached  these  with  174  edits  in  24                              
person-hours.  Some  difficult  mergers  came  from  small  axonal  boutons  merged  to  dendrites.  We                          
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identified  these  cases  by  inspecting  any  predicted  presynaptic  site  that  resided  within  7.5  μm  of                              
a   postsynaptic   site   of   the   same   cell,   and   corrected   them   with   50   person-hours.  
Estimation  of  final  error  rates. After  proofreading  was  complete,  a  single  annotator  inspected                          
12  pyramidal  cells  and  spent  18  hrs  to  identify  all  remaining  errors  in  dendritic  trunks  and  axonal                                  
arbors.  The  PyC  proofreading  protocol  was  designed  to  correct  all  merge  errors,  though  not                            
necessarily  correct  split  errors  caused  by  a  masked  segmentation.  So  this  error  estimation                          
includes  all  merge  errors  identified  and  only  split  errors  caused  by  less  than  3  consecutive                              
sections  of  masked  segmentation.  For  18.7  mm  of  dendritic  path  length  inspected,  3  false  splits                              
(falsely  excluding  160  synapses)  and  3  false  merges  (falsely  including  117  synapses)  were                          
identified  (99%  precision  and  99%  recall  for  incoming  synapses).  For  3.6  mm  of  axonal  path                              
length  inspected,  2  false  splits  (falsely  excluding  4  synapses)  and  1  false  merge  (falsely                            
including  9  synapses)  were  identified  (98%  precision  and  99%  recall  for  outgoing  synapses).  We                            
also  sampled  four  dendritic  branches  with  a  collective  0.7  mm  of  path  length,  and  identified  126                                
false   negative   and   0   false   positive   spines   (88%   recall   of   spines).   
PyC-PyC  synapse  proofreading.  Synapses  between  PyC  were  extracted  from  the                    
automatically  detected  and  assigned  synapses.  We  reviewed  these  synapses  manually  with  2x                        
redundancy  (1972  correct  synapses  out  of  2433  putative  synapses).  2  predicted  synapses  out                          
of  these  were  “merged”  with  other  synaptic  clefts.  These  cases  were  excluded  from  further                            
analysis.  1  synapse  was  “split”  into  two  predictions,  and  these  predictions  were  merged  for                            
analysis.  We  were  not  able  to  calculate  spine  head  volumes  for  8  out  of  these  1969  synapses                                  
and   they   were   excluded   from   the   analysis.   This   left   1961   synapses   admitted   into   the   analysis.  
Synapses  from  other  excitatory  axons. We  randomly  sampled  synapses  onto  the  PyCs  and                          
evaluated  whether  they  are  excitatory  or  inhibitory  based  on  their  shape,  appearance  and                          
targeted  compartment  (n=881  single  excitatory  synapses).  We  randomly  sampled  connections                    
of  two  synapses  onto  PyCs  and  evaluated  whether  their  presynaptic  axon  is  excitatory  or                            
inhibitory  and  checked  for  reconstruction  errors.  Here,  we  manually  checked  that  the                        
automatically  reconstructed  path  between  the  two  synapses  along  the  3D  mesh  of  the  axon  was                              
error  free  (n=446  pairs  of  excitatory  synapses).  Those  axons  were  allowed  to  contain  errors                            
elsewhere   and   we   did   not   proofread   any   axons   to   obtain   these   pairs.  
Dendritic  spine  heads .  We  extracted  a  7.33  x  7.33  x  4  μm 3  cutout  around  the  centroid  of  each                                    
synapse.  The  postsynaptic  segment  within  that  cutout  was  skeletonized  using  kimimaro                      
( https://github.com/seung-lab/kimimaro ),  yielding  a  set  of  paths  traveling  from  a  root  node  to                        
each  leaf.  The  root  node  was  defined  as  the  node  furthest  from  the  synapse  coordinate.                              
Skeleton  nodes  participating  in  fewer  than  three  paths  were  labeled  as  “spine”  while  others  were                              
labeled  as  “shaft.”  The  shaft  labels  were  dilated  along  the  skeleton  until  either  (1)  the  distance  to                                  
the  segment  boundary  of  the  next  node  was  more  than  50  nm  less  than  that  of  the  closest                                    
(shaft)  branch  point,  or  (2)  dilation  went  200  nodes  beyond  the  branch  point.  Each  synapse  was                                
associated  with  its  closest  skeleton  node,  and  a  contiguous  set  of  "spine"  labeled  nodes.  We                              
finally  separated  spine  head  from  neck  by  analyzing  the  distance  to  the  segment  boundary  (DB)                              
moving  from  the  root  of  the  spine  to  the  tip.  After  segmenting  the  spine  from  the  rest  of  the                                      
segment,  we  chose  two  anchor  points:  (1)  the  point  with  minimum  DB  value  across  the  half  of                                  
the  spine  towards  the  dendritic  shaft,  and  (2)  the  point  with  maximum  DB  value  across  the  other                                  
half.  A  cut  point  was  defined  as  the  first  skeleton  node  moving  from  anchor  1  to  anchor  2  whose                                      
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DB  value  was  greater  than  ⅓  DB anchor1  +  ⅔  DB anchor2 .  Accounting  for  slight  fluctuations  in  the  DB                                  
value,  we  started  the  scan  for  the  cut  point  at  the  closest  node  to  anchor  2  that  had  DB  value                                        
less  than  ⅕  DB anchor1  +  ⅘  DB anchor2 .  The  skeleton  of  the  spine  head  was  defined  as  the  nodes                                    
beyond  this  cut  point  to  a  leaf  node,  and  the  spine  head  mesh  was  defined  as  all  spine  mesh                                      
vertices  which  were  closest  to  the  spine  head  skeleton.  The  mesh  of  each  head  was  identified                                
as  the  subset  of  the  postsynaptic  segment  mesh  whose  closest  skeleton  node  was  contained                            
within  the  nodes  labeled  as  spine  head.  We  then  estimated  the  volume  of  this  spine  head  by                                  
computationally   sealing   this   mesh   and   computing   its   volume.  
We  identified  poor  extractions  by  computing  the  distance  between  each  synapse  centroid  and                          
the  nearest  node  of  its  inferred  spine  head  mesh.  We  inspected  each  inferred  spine  head  for                                
which  this  distance  was  greater  than  35  nm,  and  corrected  the  mesh  estimates  of  mistakes  by                                
relabeling   mesh   vertices   using   a   3D   voronoi   tessellation   of   points   placed   by   a   human   annotator.  
Endoplasmic  reticulum.  We  manually  evaluated  all  spine  heads  between  PyCs  admitted  to  the                          
analysis  for  whether  they  contained  a  spine  apparatus  (SA),  endoplasmic  reticulum  that  is  not                            
an  SA  (ER)  or  none  (no  ER).  We  required  the  presence  of  at  least  two  (usually  parallel)                                  
membrane  saccules  for  SA.  Dense  plate/region  (synaptopodin  and  actin)  in  between  membrane                        
saccules  was  an  indicator.  We  found  SA  in  spine  heads  and  spine  necks.  We  considered  single                                
lumens  of  organelles  connecting  to  the  ER  network  in  the  shaft  as  ER.  We  required  that  every                                  
ER   could   be   traced   back   to   the   ER   network   in   the   dendritic   shaft.  
Mixture  and  hidden  Markov  models.  Spine  volumes  and  synapse  sizes  were                      
log 10 -transformed  before  statistical  modeling.  Maximum  likelihood  estimation  for  a  binary  mixture                      
of  normal  distributions  used  the  expectation-maximization  algorithm  as  implemented  by                    
Pomegranate (Schreiber,  2017) .  The  algorithm  was  initialized  using  the  k-means  algorithm  with                        
k=2.  For  cleft  size,  the  normal  distributions  were  truncated  at  a  lower  bound  of  log 10 (50)  voxels,                                
the  cutoff  used  in  cleft  detection.  The  truncation  was  implemented  by  modifications  to  the                            
source  code  of  Pomegranate.  (A  similar  truncation  was  used  when  fitting  a  single  normal                            
distribution  to  cleft  sizes.)  The  joint  distribution  at  dual  connections  was  fit  by  hidden  Markov                              
Models  (HMMs)  with  two  latent  states  and  emission  probabilities  given  by  normal  or  truncated                            
normal  distributions.  Hidden  Markov  models  are  trained  on  ordered  pairs,  yet  each  dataset  used                            
for   training   was   reflected   to   contain   both   orders   of   each   synapse   pair.  
Parametric  test  for  bimodality.  For  binary  mixtures  of  normal  distributions,  the  parameter                        
regimes  for  bimodal  and  unimodal  behaviors  are  known (Robertson  and  Fryer,  1969) .  The                          
likelihood  ratio  of  the  best-fitting  bimodal  and  unimodal  models  can  be  used  for  model  selection                              
(Holzmann  and  Vollmer,  2008) .  Mixture  models  were  fit  using  Sequential  Least  Squares                        
Programming  using  constraints  on  the  parameter  regimes  for  unimodal  fits.  We  computed                        
p -values  using  Chernoff’s  extension  to  boundary  points  of  hypothesis  sets (Chernoff,  1954)  of                          
Wilks’   theorem   governing   asymptotics   of   the   likelihood   ratio    (Wilks,   1938) .  
Correlation  analysis. We  assigned  state  probabilities  to  each  dual  synaptic  pair  using  the  best                            
fit  HMM.  The  following  was  done  for  SS  and  LL  states  independently.  In  each  sampling  iteration                                
(n=10,000)  we  assigned  individual  synapse  pairs  to  the  state  in  question  based  on  independent                            
biased  coin  flips  weighted  by  their  respective  state  probability.  For  every  such  obtained  sample                            
we  computed  the  pearson  correlation.  For  visualization  in  Fig.  4g,h  we  applied  a  kernel  density                              
estimation   (bw=0.15   in   log10-space).  
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Skeletonization. We  developed  a  skeletonization  algorithm  similar  to (Sato et  al. ,  2000)  that                          
operates  on  meshes.  For  each  connected  component  of  the  mesh  graph,  we  identify  a  root  and                                
find  the  shortest  path  to  the  farthest  node.  This  procedure  is  repeated  after  invalidating  all  mesh                                
nodes  within  the  proximity  of  the  visited  nodes  until  no  nodes  are  left  to  visit.  We  make  our                                    
implementation  available  through  our  package  MeshParty            
( https://github.com/sdorkenw/MeshParty ).  
Estimation  of  path  lengths.  We  skeletonized  all  PyCs  and  labeled  their  first  branch  points                            
close  to  the  soma  according  to  the  compartment  type  of  the  downstream  branches  (axon,                            
dendrite,  ambiguous).  If  no  branch  point  existed  in  close  proximity  a  point  at  similar  distance                              
was  placed.  All  skeleton  nodes  downstream  from  these  nodes  seen  from  the  soma  were  labeled                              
according  to  these  labels.  This  allowed  us  to  estimate  path  lengths  for  each  compartment  with                              
the  path  up  to  the  first  branch  point  labeled  as  perisomatic  (axon:  100  mm,  dendrite:  520  mm,                                  
perisomatic:  40  mm,  ambiguous:  10  mm).  We  estimated  that  our  skeletons  were  overestimated                          
by   11%   due   to   following   the   mesh   edges   and   corrected   all   reported   pathlengths   accordingly.    
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Data   availability  
The   raw   images,   segmentation,   and   synaptic   connectivity   will   be   made   available   upon   or   before  
publication.  

Code   availability  
All   software   is   open   source   and   available   at    http://github.com/seung-lab    if   not   otherwise  
mentioned.  
 
Alembic:   Stitching   and   alignment.  
CloudVolume:   Reading   and   writing   volumetric   data,   meshes,   and   skeletons   to   and   from   the  
cloud  
Chunkflow:   Running   convolutional   nets   on   large   datasets  
DeepEM:   Training   convolutional   nets   to   detect   neuronal   boundaries.   
DynamicAnnotationFramework:   Proofreading   and   connectome   updates   (visit  
https://github.com/seung-lab/AnnotationPipelineOverview    for   repository   list)  
Igneous:   Coordinating   downsampling,   meshing,   and   data   management.   
MeshParty:   Interaction   with   meshes   and   mesh-based   skeletonization  
( https://github.com/sdorkenw/MeshParty )  
MMAAPP:   Watershed,   size-dependent   single   linkage   clustering,   and   mean   affinity  
agglomeration.  
PyTorchUtils:   Training   convolutional   nets   for   synapse   detection   and   partner   assignment  
( https://github.com/nicholasturner1/PyTorchUtils ).  
Synaptor:   Processing   output   of   the   convolutional   net   for   predicting   synaptic   clefts  
( https://github.com/nicholasturner1/Synaptor ).  
TinyBrain   and   zmesh:   Downsampling   and   meshing   (precursors   of   the   libraries   that   were   used).  
 
 
Supplementary   information  
Supplementary   information   is   available   for   this   paper.  
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Extended   Data   Figure   1 .    Reconstruction   of   connections   between   L2/3   pyramidal   cells .  
250×140×90   𝜇m 3    3D   image   stack   from   layer   2/3   of   mouse   primary   visual   cortex    

26  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 31, 2019. ; https://doi.org/10.1101/2019.12.29.890319doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.29.890319
http://creativecommons.org/licenses/by-nd/4.0/


 

Extended   Data   Figure   2.   Examples   of   reconstructed   neurites   near   image   defects  
(a) Illustration   of   a   possible   pair   of   neurites   that   pass   through   both   missing   section   (cyan)   and   misalignment  

(orange)   defects.  
(b) Illustration   of   a   naive   segmentation   of   the   pair   in   ( a ).  
(c) Same   examples   as   in   Fig.   1,   accompanied   by   affinity   map.   Scale   bar   300   nm.  
(d) Near   a   larger   misalignment,   the   displacement   is   larger   than   the   width   of   a   thin   neurite,   and   the   convolutional  

net   is   unable   to   trace   through   the   misalignment.   Scale   bar   300nm.  
(e) A   proofread   neuron   (gray)   with   segments   merged   during   proofreading.   Scale   bar   10   μm.  
(f) The   same   proofread   neuron   in   ( e )   with   pieces   split   during   proofreading.  
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Extended   Data   Figure   3.   Renderings   of   all   synapses   from   multisynaptic   connections   between   L2/3   pyramidal  
cells.    Dendritic   spines   (yellow)   and   synaptic   clefts   (red)   are   rendered   in   3D.   Most   are   dual   connections   (160),   but  
there   are   also   triples   (24),   quadruples   (3),   and   quintuples   (2).    
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Extended   Data   Figure   4.   Modeling   spine   volume   with   a   bimodal   versus   unimodal   mixture   of   two   normal  
distributions.  

(a) Spine   volumes   belonging   to   dual   connections   between   L2/3   pyramidal   cells.   A   bimodal   mixture   (red,   solid)   of  
two   normal   distributions   (red,   dashed)   is   a   better   fit   than   a   unimodal   mixture   (blue,   solid)   of   two   normal  
distributions   (blue,   dashed)   (likelihood   ratio   test,   p=0.0425,   n=320).   The   bimodal   mixture   weights   are   60:40.  

(b) Dual   connections   between   L2/3   pyramidal   cells,   each   summarized   by   the   geometric   mean   of   spine   volumes.  
A   bimodal   mixture   (red,   solid)   of   two   normal   distributions   (red,   dashed)   is   a   better   fit   than   a   unimodal   mixture  
(blue,   solid)   of   two   normal   distributions   (blue,   dashed)   (likelihood   ratio   test,   p=0.0059,   n=160).  
Error   bars   are     of   the   model   fit. ± √n  
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Extended   Data   Figure   5:   Relation   of   dendritic   spine   volume   to   spine   apparatus   

(a) Examples   of   spine   apparatus   (SA)   in   EM   images.   Scale   bar   300nm.  
(b) Spine   volume   distributions   of   synapses   with   no   ER   (blue),   smooth   ER   (yellow),   and   SA   (red)  
(c) Likelihood   of   SA   (red)   and   “L”   state   (black)   conditioned   on   spine   volume.  
(d) Spine   volume   distribution   conditioned   on   SA   (red)   compared   with   size   distribution   conditioned   on   “L”   state  

(black).   Inset:   Joint   probability   distribution   of   SA   within   dual   connections.  
Error   bars   are     of   the   model   fit. ± √n  
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Extended   Data   Figure   6.   Modeling   cleft   size   with   a   mixture   of   two   normal   distributions.  
(a) Spine   volume   vs.   cleft   size   for   all   L2/3   PyC   -   L2/3   PyC   synapses.  
(b) Histogram   of   same   spine   volumes,   logarithmic   scale.   A   mixture   (red,   solid)   of   two   normal   distributions   (red,  

dashed)   fits   better   (likelihood   ratio   test,   p<1e-63,   n=1961)   than   a   single   normal   (blue).   
(c) Cleft   sizes   belonging   to   dual   connections   between   L2/3   PyCs,   modeled   by   a   mixture   (red,   solid)   of   two  

normal   distributions   (red,   dashed,   likelihood   ratio   test,   p=0.02,   n=320).  
(d) Dual   connections   between   L2/3   PyCs,   each   summarized   by   the   geometric   mean   of   two   cleft   sizes,   modeled  

by   a   mixture   (red,   solid)   of   two   normal   distributions   (red,   dashed,   likelihood   ratio   test,   p=0.037,   n=160).  
(e) Comparison   of   cleft   sizes   for   single   (black)   and   dual   (red)   connections.  
(f) Probability   of   the   “L”   state   (mixture   weight)   versus   number   of   synapses   in   the   connection.  

Error   bars   are     of   the   model   fit. ± √n  
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Extended   Data   Figure   7.   Latent   state   correlations   between   clefts   at   dual   connections  
(a) The   latent   states   of   synapses   in   a   dual   connection   are   positively   correlated   with   each   other.   The   latent   states  

are   more   likely   to   be   the   same   (SS   or   LL)   rather   than   different   (SL   or   LS),   as   shown   by   the   joint   probability  
distribution.  

(b) Scatter   plot   of   cleft   sizes   (black,   lexicographic   ordering)   for   dual   connections   between   L2/3   pyramidal   cells.  
Scatter   plot   points   are   mirrored   across   the   diagonal   (gray).   The   joint   distribution   is   fit   by   a   mixture   model  
(orange)   like   that   of   Fig.   3f,   but   with   latent   states   that   are   correlated   as   described   below.   

(c) Projecting   the   points   onto   the   vertical   axis   yields   a   histogram   of   cleft   sizes   for   dual   connections,   the   same   as  
in   Fig.   3d.   Model   is   derived   from   the   joint   distribution.  

(d) Projecting   the   points   onto   the   x=y   diagonal   yields   a   histogram   of   the   geometric   mean   of   cleft   sizes   for   dual  
connections,   the   same   as   in   Fig.   3e.   Model   is   derived   from   the   joint   distribution.  

(e) Projecting   the   points   onto   the   x=−y   diagonal   yields   a   histogram   of   the   ratio   of   cleft   sizes   for   dual  
connections.   
Error   bars   are     of   the   model   fit. ± √n    
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Extended   Data   Figure   8.   Synapses   in   a   dual   connection:   near   vs.   far   pairs.   Spine   volumes   (left)   and   cleft  
sizes   (right)  

(a) Dual   connections   of   synapse   pairs   less   than   46.5   μm   apart   (phi=0.534)  
(b) Dual   connections   of   synapse   pairs   more   than   46.5   μm   apart   (phi=0.745)  
(c) Mixture   component   means   of   model   fits   as   a   function   of   the   minimum   distance   separating   synapse   pairs  
(d) Mixture   component   means   of   model   fits   as   a   function   of   the   maximum   distance   separating   synapse   pairs  

Error   bars   are     of   the   model   fit. ± √n  
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Extended   Data   Figure   9.   Dual   connection   correlations   are   not   a   result   of   axon   or   dendrite   biases.    Synapses  
are   shuffled   between   dual   connections   to   measure   the   correlations   between   synapses   that   have   the   same   axon   (red)  
or   the   same   dendrite   (blue)   against   a   fully   random   baseline   (black).   Shuffled   synapses   are   not   allowed   to   be   paired  
with   other   synapses   within   their   original   connection.   Each   shuffling   procedure   was   performed   on   a   subset   of   data  
where   at   least   one   valid   shuffling   exists   for   each   synapse   (e.g.   where   each   dendrite   receives   at   least   two   dual  
connections).   (a-c)   Joint   distributions   of   spine   head   volumes   in   the   dual   connections   used   for   shuffling.   Slope   of   linear  
fit   shows   Pearson’s   r   value.  

(a) Subset   of   data   used   for   random   shuffling   (all   160   synapse   pairs).   r=   0.42.  
(b) Subset   of   data   used   for   axon-preserved   shuffling   (141   pairs).   r=   0.45.  
(c) Subset   of   data   used   for   dendrite-preserved   shuffling   (89   pairs).   r=   0.51.  
(d) Example   shuffle   of   data   in   ( a ).   r=   0.00.  
(e) Example   shuffle   of   data   in   ( b ).   r=   -0.08.  
(f) Example   shuffle   of   data   in   ( c ).   r=   -0.11.  
(g) Diagram   of   a   possible   shuffle   of   two   dual   synaptic   connections   onto   the   same   dendrite.  
(h) Distribution   of   Pearson’s   r   correlation   for   paired   spine   head   volumes   after   shuffling   (100,000   shuffles   each).  

Dashed   lines   indicate   correlation   value   for   the   unshuffled   subset.  
(i) Distribution   of   Pearson’s   phi   correlation   for   paired   spine   head   volumes   after   shuffling  
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Extended   Data   Figure   10.   Removing   constraints   on   the   synaptic   population   eliminates   bimodality   and  
reduces   correlations .   Spine   volumes   (top)   and   cleft   sizes   (bottom)  

(a) Distribution   of   synapse   sizes   in   dual   connections   received   by   L2/3   pyramidal   cells,   including   those   from  
orphan   axons   (582   synapses).  

(b) Distribution   of   geometric   means   of   synapse   sizes   in   same   dual   connections   as   in   ( a )   (N=291).  
(c) Joint   distribution   of   synapse   sizes   in   dual   connections   received   by   L2/3   pyramidal   cells,   including   those   from  

orphan   axons   (291   pairs).  
(d) Distribution   of   synapse   sizes   for   excitatory   synapses   received   by   L2/3   pyramidal   cells,   including   those   from  

orphan   axons   (700   synapses).    
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Supplementary   Information   1.   Quantitative   evidence   for   the   effectiveness   of   training   data   augmentation.  
Robustness   of   three   boundary   detectors   trained   with   no   data   augmentation   (“baseline”,   blue),   simulated   missing  
section   (“missing   section”,   red),   and   simulated   misalignment   (“misalignment”,   yellow)   to   (a)   increasingly   large  
displacement   of   simulated   misalignment   and   (b)   increasing   number   of   simulated   consecutive   missing   sections.  
 
Methods.  
We   performed   preliminary   experiments   on   the   effect   of   training   data   augmentation   by   simulating   image   defects   on   the  
publicly   available   SNEMI3D   challenge   dataset   ( http://brainiac2.mit.edu/SNEMI3D ).   We   partitioned   the   SNEMI3D  
training   volume   of   1024   x   1024   x   100   voxels   into   the   center   crop   of   512   x   512   x   100   voxels   for   validation,   and   the   rest  
for   training.   Then   we   trained   three   convolutional   nets   to   detect   neuronal   boundaries,   one   without   any   data  
augmentation   (“baseline”),   and   the   other   two   with   simulated   missing   section   (“missing   section”)   and   simulated  
misalignment   (“misalignment”)   data   augmentation,   respectively.   After   training   the   three   nets,   we   measured   the  
robustness   of   each   net   to   varying   degrees   of   simulated   image   defects   on   the   validation   set.   In   the   first   measurement,  
we   simulated   a   misalignment   at   the   middle   of   the   validation   volume   with   varying   numbers   of   pixel   displacement.   In  
the   second   measurement,   we   introduced   varying   numbers   of   consecutive   missing   sections   at   the   middle   of   the  
validation   volume.   For   each   configuration   of   simulation,   we   ran   inference   pipeline   with   the   three   nets   to   produce  
respective   segmentations,   and   computed   the   Variation   of   Information   error   metric   to   measure   the   quality   of   the  
segmentations.   For   the   measurement   against   simulated   misalignment,   we   applied   connected   components   to  
recompute   the   ground   truth   segmentation   after   introducing   a   misalignment,   such   that   we   separated   a   single   object  
into   two   distinct   objects   if   the   object   is   completely   broken   by   the   misalignment   (e.g.   the   displacement   of   misalignment  
larger   than   the   diameter   of   neurite).  
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Supplementary   Information   2.   Synapse   size   by   connection   type.  
(a) Bottom:   Spine   head   volume   distribution   for   single   connections   (gray)   along   with   synapses   for   all   connections  

(black).   Top:   parameter   estimates   for   the   component   means   of   single  
connections,   as   well   as   dual   connections   (red),   and   triple   connections   (cyan)   and   all   connections   (black).  
Gray   line   indicates   90%   bootstrap   interval   over   the   single   connection   synapses   (1000   samples).   Points  
jittered   for   clarity.  

(b) Parameter   estimates   for   component   means   of   the   same   populations   in   ( a ).   Box   indicates   interquartile   range  
across   bootstrap   samples.   Whiskers   show   90%   bootstrap   interval.  

(c) Parameter   estimates   for   component   standard   deviations   of   the   same   populations   in   ( a ).  
(d) Second   component   mean   estimate   from   GMM   fits   on   samples   of   the   full   dataset   model.   Full   dataset   model  

used   for   sampling   had   component   weights   taken   from   single   connection   model,   dual   connection   model,   or  
triple   connection   model.   Points   show   parameter   estimate   from   the   original   GMM   fit   for   that   connection   type.  

(e) Spine   head   volume   by   the   number   of   synapses   in   a   connection.  
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Supplementary   Information   3.   Arithmetic   means.  

(a) Dual   connections   between   L2/3   PyCs,   each   summarized   by   the   arithmetic   mean   of   two   spine   volumes,  
modeled   by   a   mixture   (red,   solid)   of   two   normal   distributions   (red,   dashed).  

(b) Dual   connections   between   L2/3   PyCs,   each   summarized   by   the   arithmetic   mean   of   two   cleft   sizes,   modeled  
by   a   mixture   (red,   solid)   of   two   normal   distributions   (red,   dashed).  
Error   bars   are     of   the   model   fit. ± √n  
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Supplementary   Information   4.   Examples   of   synapses   between   L2/3   pyramidal   cells.    In   each   pair   of   images,   the  
left   shows   one   section   through   a   synapse,   and   the   right   adds   the   automatically   detected   cleft   as   an   overlay.   Note  
here   that   the   clefts   are   associated   with   postsynaptic   densities.  
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Supplementary   Information   5.   Fits   vs   raw   data   histograms.    Plots   are   analogous   to   Fig.   3   and   SI   3.  

(a) Histogram   of   same   spine   volumes,   logarithmic   scale.   A   mixture   (red,   solid)   of   two   log-normal   distributions  
(red,   dashed)   is   shown.  

(b) Spine   volumes   belonging   to   dual   connections   between   L2/3   PyCs,   modeled   by   a   mixture   (red,   solid)   of   two  
log-normal   distributions   (red,   dashed).  

(c) Dual   connections   between   L2/3   PyCs,   each   summarized   by   the   geometric   mean   of   two   spine   volumes,  
modeled   by   a   mixture   (red,   solid)   of   two   log-normal   distributions   (red,   dashed).  

(d) Dual   connections   between   L2/3   PyCs,   each   summarized   by   the   arithmetic   mean   of   two   spine   volumes,  
modeled   by   a   mixture   (red,   solid)   of   two   log-normal   distributions   (red,   dashed).  
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Supplementary   Information   6.   Fits   vs   raw   distributions.    Plots   are   analogous   to   Fig.   4   and   Ext.   Data   Fig.   8  

(a) Synapse   pairs   from   all   dual   connections  
(b) Dual   connections   of   synapse   pairs   less   than   the   median   distance   apart  
(c) Dual   connections   of   synapse   pairs   more   than   the   median   distance   apart    
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Number   of   L2/3   PyCs   in   dataset   364  

Number   of   L2/3   PyCs   connecting   to   any   other   L2/3   PyCs   334  

Number   of   inhibitory   cells   in   dataset   32  

Number   of   synapses   (automated)   in   the   dataset   3,239,275  

Number   of   synapses   (automated)   in   the   dataset   onto   L2/3   PyCs   895,680  

Number   of   synapses   (automated)   in   the   dataset   from   L2/3   PyCs   10,789  

Number   of   synapses   between   L2/3   PyCs   1,961  

Number   of   connections   between   L2/3   PyCs   1,736  

Number   of   connections   between   L2/3   PyCs   with   one   synapse   1,547  

Number   of   connections   between   L2/3   PyCs   with   two   synapses   160  

Number   of   connections   between   L2/3   PyCs   with   three   synapses   24  

Number   of   connections   between   L2/3   PyCs   with   four   synapses   3  

Number   of   connections   between   L2/3   PyCs   with   five   synapses   2  

 
Supplementary   Information   7.   Overview   of   number   of   data   points   obtained   in   this   study.     
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Subset   of   L2/3   -   L2/3   PyC  
synapses  

S   L  
N  mean   

(log10   µm 3 )  
std   

(log10   µm 3 )   weight   mean  
(log10   µm 3 )  

std   
(log10   µm 3 )   weight  

all   synapses   -1.443   0.223   0.708   -0.834   0.248   0.292   1,961  

single   synapses   -1.461   0.222   0.686   -0.912   0.284   0.314   1,547  

dual   synapses   -1.461   0.219   0.599   -0.812   0.232   0.401   320  

triple   synapses   -1.428   0.211   0.472   -0.782   0.262   0.528   72  

all   synapses   with   weights   
refitted   to   single   synapses   (-1.443)   (0.223)   0.751   (-0.834)   (0.248)   0.25   1,961   &   1,547  

all   synapses   with   weights   
refitted   to   dual   synapses   (-1.443)   (0.223)   0.603   (-0.834)   (0.248)   0.397   1,961   &   320  

all   synapses   with   weights   
refitted   to   triple   synapses   (-1.443)   (0.223)   0.457   (-0.834)   (0.248)   0.543   1,961   &   72  

geometric   mean   of   dual  
synapses   -1.448   0.159   0.561   -0.884   0.183   0.439   160  

arithmetic   mean   of   dual  
synapses   -1.436   0.158   0.523   -0.847   0.183   0.477   160  

 
Supplementary   Information   8.   Overview   of   results   from   lognormal   mixture   fits   for   different   synapse  
subpopulations    
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Subset   of   L2/3   -   L2/3  
PyC   dual   synaptic  
connections  

S   L   weights  
Pearson 

-Phi   N  mean   
(log10   µm 3 )  

std   
(log10   µm 3 )  

mean  
(log10   µm 3 )  

std   
(log10   µm 3 )   SS   SL+  

LS   LL  

all   connections   -1.470   0.216   -0.833   0.244   0.490   0.177   0.333   0.637   160  

dist   <   median   dist   -1.506   0.212   -0.861   0.243   0.427   0.232   0.342   0.534   80  

dist   >   median   dist   -1.449   0.207   -0.818   0.251   0.529   0.123   0.348   0.745   80  

 

Supplementary   Information   9.   Overview   of   results   from   HMM   lognormal   component   fits   for   different   dual  
synaptic   connection   subpopulations    
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