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Abstract 

Background: Variant detection from high-throughput sequencing data remains an important, unresolved yet 

often overlooked problem. Long-read sequencing technologies, such as Oxford Nanopore and PacBio 

sequencing, present unique advantages to detect SNPs and small indels in genomic regions that short-read 

sequencing cannot reliably examine (for example, only ~80% of genomic regions are marked as "high-

confidence region” to have SNP/indel calls in the Genome In A Bottle project). However, existing software 

tools for short-read data perform poorly on long-read data; instead, several recent studies showed promising 

results in variant detection on long-read data by deep learning. 

Methods: Here we present NanoCaller, a computational method that integrates haplotype structure in deep 

convolutional neural network for the detection of SNPs/indels from long-read sequencing data. NanoCaller 

uses long-range information to generate predictions for each candidate variant site by considering pileup 

information of other candidate sites sharing reads. Subsequently, it performs read phasing and carries out 

local realignment on each set of phased reads to call indels. 

Results: We evaluate NanoCaller on multiple human genomes (NA12878/HG001, NA24385/HG002, 

NA24149/HG003, NA24143/HG004 and HX1), by cross-genome, cross-chromosome, cross-reference 

genome, and cross-platform benchmarking tests. Our results demonstrate that NanoCaller performs 

competitively against other long-read variant callers. In particular, NanoCaller can generate SNP/indel calls in 

complex genomic regions that are removed from variant calling by other software tools.  

Conclusions: In summary, NanoCaller enables the detection of genetic variants from genomic regions that are 

previously inaccessible to genome sequencing, and may facilitate the use of long-read sequencing in finding 

disease variants in human genetic studies.  
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Introduction 

Single-nucleotide polymorphisms (SNPs) and small insertions/deletions (indels) are two common types 

of genetic variants in human genomes. They contribute to genetic diversity and critically influence 

phenotypic differences, including susceptibility to human diseases. The detection (i.e. “calling”) of SNPs 

and indels are thus a fundamentally important problem in using the new generations of high-throughput 

sequencing data to study genome variation and genome function. A number of methods have been 

designed to call SNPs and small indels on Illumina short-read sequencing data. Short reads are usually 

100-150 bp long and have per-base error rate less than 1%. Variant calling methods on short reads, such 

as GATK [1] and FreeBayes [2], achieved excellent performance to detect SNPs and small indels in 

genomic regions marked as “high-confidence regions” in various benchmarking tests[3-5]. However, 

since these methods were developed for short-read sequencing data with low per-base error rates and 

low insertion/deletion errors, they do not work well with long-read sequencing data. Additionally, due 

to inherent technical limitations of short-read sequencing, the data cannot be used to call SNPs and 

indels in complex or repetitive genomic regions; for example, only ~80% of genomic regions are marked as 

“high-confidence region” to have SNP/indel calls in the Genome In A Bottle (GIAB) project, suggesting that 

~20% of the human genome is inaccessible to conventional short-read sequencing technologies to find 

variants reliably. 

Oxford Nanopore [6] and Pacific Biosciences (PacBio) [7] technologies are two leading long-read 

sequencing platforms, which have been rapidly developed in recent years with continuously decreased 

costs and continuously improved read length, in comparison to Illumina short-read sequencing 

technologies. Long-read sequencing techniques can overcome several challenging issues that cannot be 

solved using short-read sequencing, such as calling long-range haplotypes, identifying variants in 

complex genomic regions, identifying variants in coding regions for genes with many pseudogenes, 

sequencing across repetitive regions, phasing of distant alleles and distinguishing highly homologous 

regions [8]. To date, long-read sequencing techniques have been successfully used to sequence 

genomes for many species to powerfully resolve various challenging biological problems such as de novo 

genome assembly [9-13] and SV detection [14-19]. However, the per-base accuracy of long reads is 

much lower with base calling errors of 3-15% [20] compared with short-read data. The high error rate 

challenges widely-used variant calling methods (such as GATK [1] and FreeBayes [2]), which were 

previously designed for Illumina short reads and cannot handle reads with higher error rates. As more 
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and more long-read sequencing data become available, there is an urgent need to detect SNPs and small 

indels to take the most advantage of long-read data. 

Several recent works aimed to design accurate SNP/indel callers on long-read sequencing data using 

machine learning methods, especially deep learning-based algorithms. DeepVariant [21] is among the 

first successful endeavors to develop a deep learning variant caller for SNPs and indels across different 

sequencing platforms (i.e. Illumina, PacBio and Nanopore sequencing platforms). In DeepVariant, local 

regions of reads aligned against a variant candidate site were transformed into an image representation, 

and then a deep learning framework was trained to distinguish true variants from false variants that 

were generated due to noisy base calls. DeepVariant achieved excellent performance on short reads as 

previous variant calling methods did. Later on, Clairvoyante [22] and its successor Clair [23] 

implemented variant calling methods using deep learning, where the summary of aligned reads around 

putative candidate sites were used as input of deep learning framework. The three deep learning-based 

methods can work well on both short-read and long-read data, but haplotype structure is not 

incorporated in variant calling yet, and the published version of DeepVariant and Clairvoyante have limited 

ability to identify multiallelic variants where two different alternative alleles are present simultaneously. 

Recently, LongShot [24] was published where pair-Hidden Markov Model (pair-HMM) was used to call 

and phase SNPs on long-read data, with excellent performance in the benchmarking tests. However, 

Longshot cannot identify indels. It is also worth noting that (1) HiFi reads after circular consensus 

sequencing on PacBio long-read sequencing [25] or similar methods on the Nanopore platform can 

potentially improve the detection of SNPs/indels by adapting existing short-read variant callers, due to 

its much lower per-base error rates. However, HiFi reads would substantially increase sequencing cost 

given the same base output, so it is more suitable for specific scenarios such as capture-based 

sequencing; (2) the Oxford Nanopore company also recently released a SNP/indel caller, i.e. medaka 

[26], using deep learning on long-read data; however, the details on medaka are not yet available. In 

summary, although several methods for variant detection on long-read sequencing data have become 

available, there may be room in further improving these approaches. We believe that improved 

SNP/indel detection on long read data will enable widespread research and clinical applications of long-

read sequencing techniques. 

In this study, we propose a deep learning framework, NanoCaller, which integrates haplotype structure 

in deep convolutional neural network to improve the detection of SNPs and small indels on long-read 

sequencing data. In NanoCaller, candidate SNP sites are defined according to observed reference and 
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alternative alleles as well as allele frequency, and then pileup of a candidate site is built with its tens of 

neighboring heterogeneous candidate sites with shared long reads, and then fed into a deep 

convolutional neural network for SNP calling. For indel calling, multiple sequencing alignment of a group 

of long reads aligned against a candidate indel site is performed to categorize long reads into two 

groups, and then indel calling is performed from the consensus of long reads from each group. We 

evaluate NanoCaller on several human genomes, such as NA12878 (HG001), NA24385 (HG002), 

NA24149 (HG003), NA24143 (HG004) and HX1 with both Nanopore and PacBio long-read data. Our 

preliminary evaluation demonstrated competitive performance of NanoCaller against existing tools, 

especially in generating SNP/indel calls in complex genomic regions that are removed from variant 

calling by other software tools. 

 

Methods 

Datasets 

Long-read data 

Five long-read data sets for human genomes are used for the evaluation of NanoCaller. The first genome 

is NA12878, whose Oxford Nanopore Technology (ONT) rel6 FASTQ files were downloaded from WGS 

consortium database[9], and aligned to the GRCh38 reference genome using minimap2 [27]; PacBio 

alignment files for NA12878 were downloaded from the GIAB database [28, 29]. The second genome is 

NA24385 (HG002) whose alignment files for both ONT and PacBio data were downloaded from the GIAB 

database [28, 29]. The third and fourth genome are NA24143 (HG004) and NA24149 (HG003), mother 

and father of NA24385, whose ONT FASTQ files were downloaded from the GIAB database [28, 29] and 

aligned to the GRCh38 reference genome using minimap2. PacBio alignments files for these two 

genomes were also downloaded from the GIAB database [28, 29]. The fifth genome is HX1 which was 

sequenced by us using PacBio [10] and Nanopore sequencing [30]. The long-read data was aligned to the 

GRCh38 reference genome using minimap2. Table 1 shows the statistics of mapped reads in the five 

genomes. Coverage shown is defined as number of mapped bases divided by the reference genome 

length. 

Benchmark variant calls 
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The benchmark set of SNPs and indels (version 3.3.2) for the first four genomes (NA12878, NA24385, 

NA24149 and NA24143) were download from the Genome in a Bottle (GIAB) Consortium [28] together 

with high-confidence regions for each genome. There are 3,004,071, 3,079,462, 2,927,639, and 

2,953,590 SNPs for NA12878, NA24385, NA24149 and NA24143 respectively, and 483,630, 475,332, 

471,156, and 481,114 indels for them, as shown in Table 2. Benchmark variant calls for HX1 were 

generated by using GATK on Illumina 300X reads sequenced by us [10] (Table 2). 

Variant Calling 

The procedures of NanoCaller for variant calling is shown in Figure 1 where candidate sites of SNPs and 

indels are defined according to the input alignment file and reference file. Then, pileups are generated 

for each candidate site and fed into a convolutional neural network with haplotype structure for SNP 

calling. To call indels, local multiple sequence alignment of phased reads from called SNPs is used to 

generate consensus sequence for indels. The details are described below. 

Candidate site selection 

Candidate sites of SNPs and indels are defined according to the depth and alternative allele frequency 

for a specific genomic position. In NanoCaller, SAMtools mpileup [31] is used to generate aligned bases 

against each genomic positions. The alternative allele frequency for a specific genomic position is 

calculated as the fraction of reads supporting the base. A genomic position is considered as a candidate 

site if the total read depth, and the allele frequency for some alternative allele are both above certain 

thresholds. Both minimum alternative allele frequency and minimum read depth can vary for different 

datasets and can be specified by the user depending on coverage and base calling error rate of the 

genome sequencing data. By default, candidate sites with alternative allele frequency between 30% and 

70%, denoted by V, are designated as highly likely heterozygous SNP sites, and are used to create input 

images for candidate sites. 

Image input of candidate site for convolutional neural network 

The image of each candidate site is generated using the procedures below as shown in Figure 2. For a 

candidate site 𝑏: 

1. We select sites from the set V  that share at least one read with 𝑏 and are at most 20,000bp 

away from 𝑏. 
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2. In each direction, upstream or downstream, of the site 𝑏, we choose the closest 20 sites to the 

candidate site 𝑏. If there are less than 20 such sites, we just append the final image with zeros. 

We denote the set of these potential heterozygous SNP sites nearby 𝑏 (including 𝑏) by Z. An 

example is shown in Figure 2 (a). 

3. The set of reads covering 𝑏 is divided into four groups, R𝐵  = {reads that support base B at b}, 

B ∈  {A, G, T, C}. Reads that do not support any base at 𝑏 are not used. 

4. For each read group in R𝐵 with supporting base B, we count the number (CBD
t ) of supporting 

reads for site t ∈ Z with base D ∈  {A, G, T, C} (As shown in Figure 2(b)).  Then, we normalize the 

number of supporting reads using  

FBD
t =

CBD
t

CB
t  ∙  𝑔(D) where g(D)=1 if D is not the reference base at site t, and -1 otherwise,  and  

CB
t = ∑ CBD

t
D ∈ {A,G,T,C } =  𝑟𝑒𝑎𝑑𝑠 𝑠𝑢𝑝𝑜𝑟𝑡𝑖𝑛𝑔 𝑏𝑎𝑠𝑒 𝐵 𝑎𝑡 𝑠𝑖𝑡𝑒 𝑏 𝑎𝑛𝑑 𝑠𝑜𝑚𝑒 𝑏𝑎𝑠𝑒 𝑎𝑡 𝑠𝑖𝑡𝑒 𝑡

An example is shown in Figure 2(c). 

5. We obtain a 4x41x4 matrix M with entries [FBD
t ]B,t,D (as shown Figure 2(d)) where the first 

dimension corresponds to base B at site b, second dimension corresponds to site t, and the third 

dimension corresponds to base D at site t. Our image has read groups as rows, columns as 

various base positions, and has 4 channels, each recording frequencies of different bases in the 

given read group at the given site. 

6. We add another channel to our image which is a 4x41 matrix [QB
t ]B,t where QB

t = 1 if B is the 

reference base at site b and 0 otherwise (as shown in (as shown Figure 2(d)). In this channel, we 

have a row of ones for reference base at b and rows of zeroes for other bases. 

7. We add another row to the image which encodes reference bases of site in Z, and the final 

image is illustrated in as shown Figure 2(e).  

 

Convolutional neural network architecture 

In NanoCaller, a convolutional neural network [32] takes pileup images as input and estimates four 

independent probability estimates for the presence of each base type at a specific reference position. 

NanoCaller uses three convolutional layers with Scaled Exponential Linear Unit (SELU) activation units 

followed by two different full connection layers for SNP calling as shown in Figure 3. In NanoCaller, the 

first layer uses kernels of three different dimensions and combines the convolved features into one a 

single output: one capture local information from a row, another from a column and the other from a 
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2D local region. The second and third layers use kernels of size 2x3. The output from third layer is 

flattened and used as input of fully connected layer of 48 nodes with dropout (using 0.5 drop date). 

After this layer, on one hand, we use another fully connected layer with 16 nodes to estimate 

probability estimates for each base type at a specific position; on the other hand, we use another fully 

connected layer feeds into 16 nodes together with the estimated probability of each base type to make 

probability estimates for zygosity, which is used only in the training phase to propagate errors 

backwards for incorrect zygosity predictions. 

This model has 107,122 parameters, a significantly lower number than Clairvoyante[23]  (1,631,496) and 

DeepVariant (23,885,392), all of which are initiated by Xavier’s method [33]. We also apply L2-norm 

regularization, with coefficient 0.001, to prevent overfitting of the model.  

Generating variant calls 

In NanoCaller, four base probabilities P(A), P(G), P(T) and P(C) are predicted to determine zygosity of the 

candidate sites. If a candidate site has two bases with probabilities exceeding 0.5, it is considered to be 

heterozygous. For heterozygous sites, two bases with highest probabilities are chosen with a 

heterozygous variant call. For homozygous sites, only the highest probability base is chosen: if that base 

is not the reference allele, a homozygous variant call is made, otherwise, it is homozygous reference. 

Each of called variants is also assigned with a quality score which is calculated by 

−10 log10 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑛𝑜 𝑣𝑎𝑟𝑖𝑎𝑛𝑡) and recorded as a float in QUAL field of the VCF file to indicate 

the chance of false positive prediction: the larger the score is, the less likely that the prediction is wrong. 

Haplotyping and SNP refinement 

To refine our SNP calls, if the number of SNP calls in a 2,000bp region centered at a given variant call 

exceeds a fixed threshold we discard that variant call (while the default value is 25, these parameters 

were chosen arbitrarily but are user-adjustable parameters based on the characteristics of the long-read 

sequencing data set). This step eliminates clusters of false positive calls arising from poorly aligned 

reads: a cluster of variant calls that has a high correlation between variants and the reads supporting 

them but may not be true variants. Afterwards we use Whatshap [34] to phase variants, allowing the 

algorithm to re-genotype variants. In the phasing step, all variant calls made by NanoCaller, both in high-

confidence regions and outside confidence regions are used. Any candidate site whose genotype 
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changes to homozygous reference is considered as non-variant call. As a final step we remove variants 

with quality score less than or equal to a certain threshold (default is 5). 

Local realignment and indel calling 

To call indels, we use Whatshap to phase reads using the predicted SNPs in NanoCaller, and then infer 

indels. In this phasing step, we use all variant calls made by NanoCaller, both in high-confidence regions 

and outside confidence regions. Long reads aligned against an indel candidate site usually are grouped 

into two clusters, each corresponding to a haplotype. For each haplotype, we call indels using the steps 

below, and then merge haploid indel calls from both haplotypes to issue a diploid call. 

Given an indel candidate site b, (i) if there is a mononucleotide sequence of length four in reference 

sequence in the 11 bp window centered at b then pass; Otherwise, calculate insertion frequency at b as 

the proportion of reads with an insertion beginning right after b, and calculate deletion frequency at b 

as the proportion of reads with a deletion beginning right after b or a deletion at b. (ii) If insertion 

frequency or deletion frequency are above certain thresholds, we consider b as a candidate site. We use 

a higher threshold for deletion to account for high deletion errors in Nanopore reads. (iii) After 

extracting sequences that span a window of fixed size around b from each read in the haplotype, we use 

MUSCLE [35] multiple sequence alignment algorithm for DNA sequences on the extracted sequences. 

(iv) We then obtain consensus sequence of the realigned sequences by choosing the symbol from the 

set with highest frequency at each base position. We subtract 0.2 from frequency of deletion, which is 

the random noise found when we calculate frequency of deletion after multiple sequence alignment at 

sites with no indels. (v) Then, we use BioPython’s pairwise2 local alignment algorithm with affine gap 

penalty to compare the consensus sequence with reference sequence around the site b. We obtain the 

alternative allele by observing any sequence insertion in consensus sequence or deletion in the 

reference sequence after pairwise alignment. (vi) if an indel is called at b, no other variant calls will be 

made in the region less than 10bp ahead of b. 

Performance measurement 

The performance of SNP/indel calling by a variant caller is evaluted against the benchmark variant tests. 

Several measurements of performance evaluation are used, such as precision (p), recall (r) and F1 score 

as defined below.  
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𝑝 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹1 =
2 ∗ 𝑝 ∗ 𝑟

𝑝 + 𝑟

 

where 𝑇𝑃 is the number of benchmark variants correctly predicted by a variant caller, and 𝐹𝑃 is the 

number of miscalled variants which are not in benchmark variant sets, 𝐹𝑁 is the number of benchmark 

variants which cannot be called by a variant caller. 𝐹1 is the weighted average of 𝑝 and 𝑟, a harmonic 

measurement of precision and recall. The range of the three measurements is [0, 1]: the larger, the 

better. 

 

Results  

Overview of NanoCaller 

NanoCaller takes an alignment file of a sequencing data set as input and generates a VCF file for called 

SNPs and indels. There are several steps in NanoCaller (Figure 1). First, candidate sites of SNPs and 

indels are generated according to the minimum coverage and minimum frequency of alternative alleles. 

Then, a set of heterogeneous candidate variants are used to build a pileup for a candidate site with a 

normalization process (Figure 2). After that, a deep convolutional network (Figure 3) is used to 

distinguish true variants from false candidate sites with a refined and phased process. The predicted 

SNPs are then used to phased long reads for indel calling. On each of two sets of phased long reads, 

multiple sequencing alignment for a local region around a candidate indel site are used to call sequences 

which are deletions or insertions.  

SNP detection performance on 5 human genomes 

We evaluate NanoCaller under several strategies for SNP calling: cross-genome testing, cross-

chromosome testing, cross-reference genome testing, and cross-platform testing. In the evaluation, 

NanoCaller is evaluated on the GRCh38 reference genome by default, and evaluation is performed for 

“gold standard” variants on high-confidence regions unless stated otherwise. RTG tools (the vcfeval 

submodule) [36] is used to calculate various evaluation measurements, such as precision, recall and F1. 
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For each variant calling method, we obtain the thresholds of quality scores with the best performance 

on different genomes, and then report the performance with the averaged threshold of quality scores.  

Cross-genome testing strategy 

Cross-genome testing means that a model is trained on a genome and then tested on different 

genomes. This testing strategy demonstrates how a well-trained model works on various genomes 

which are not used for training, and the performance under this strategy is a good measurement when a 

variant calling tool is used in real-world scenario. In this study, we present performance of three 

NanoCaller models trained on whole genome sequencing data with benchmark variant sets on HG001 

(Nanopore reads), HG002 (Nanopore reads) and HG003 (PacBio reads),  and then tested on other 

genomes. The SNP performance results on Nanopore reads under this strategy are shown in Figure 4(a), 

(b), (c), together with the performance of the other existing methods including medaka, Longshot and 

Clairvoyante. Figure 4 (e), (f) and (g) show SNP performance results on PacBio reads, together with 

performance of Longshot and Clairvoyante. It is clearly shown from Figure 4(a) and (e) that all methods 

have excellent precision with greater than 95% for majority of the methods and datasets (excluding HX1 

where the precision is not calculated for high-confidence regions), while the recall ranges from 90% to 

97%. In Figure 4(c) and (g), NanoCaller demonstrates better or competitive performance on HG002, 

HG003 and HG004 against all other methods. Since HX1 is not part of GIAB and a “high confidence” 

region list is not available from GIAB, we created high confidence regions for HX1 by removing low 

complexity regions [37] from the GRCh38 reference genome. 

Cross-chromosome testing strategy 

Cross-chromosome testing indicates that the data from a chromosome is excluded from training a 

model but used for testing the performance of the trained model. In this study, chromosome 1 is used 

for testing and the other chromosomes from the same genome are used for training. The results under 

this strategy is shown in Figure 4 (a), (b) and (c) where the performance of “NanoCaller 1” on HG001 and 

of “NanoCaller 2” on HG002 is based on cross-chromosome testing evaluation.  Comparison with cross-

genome performance of “NanoCaller 1” and “NanoCaller 2” suggests that cross-genome testing appears 

to have better performance, potentially indicating less overfitting in NanoCaller. 

Cross-reference genome testing strategy 
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Cross-reference genome testing means that a model is trained on a genome with a specific reference 

genome but tested on another genome mapped to a different reference genome. In this study, we train 

NanoCaller on HG001 mapped to the GRCh38 reference genome, but test the NanoCaller model on 

HG002 mapped to the GRCh37 reference genome. The performance is shown in Figure 4 (d) where the 

cross-reference genome has slightly lower performance, but the overall performance is still excellent. 

This indicates that NanoCaller could be used on alignment files generated by mapping to different 

reference genomes. 

Cross-platform testing strategy 

In cross-platform testing, NanoCaller is trained on a sequencing platform such as Nanopore, but tested 

on a different sequencing platform such as PacBio, or vice versa. In Figure 4 (e), (f) and (g), we compared 

the performances of a NanoCaller model trained on HG001 Nanopore reads and another NanoCaller 

model trained on HG003 PacBio reads. Both models show similar results and perform better than 

Clairvoyante on each genome, and competitively against Longshot. 

 

Illustrative examples of SNPs called by NanoCaller 

It is worth noting that NanoCaller is able to accurately call multiallelic SNPs and SNPs which are missed 

by other existing tools. An example of a multiallelic SNP with two different alternative alleles called by 

NanoCaller is shown in Figure 5. This multiallelic SNP at chr1:58128619 (T>A and T>G) in HG002 genome 

is in the benchmark variant set. When tested on ONT reads, this SNP was correctly called by NanoCaller 

(model trained on HG001) but was missed by every other tool. We examined this genomic position 

further: the reference base is T, and the two alternative alleles are A and G, while the reference base is 

the last base in a poly-T sequence of length 5 in the reference genome. As shown in Figure 5, there are 

55 reads in ONT data and the number of reads supporting each base are {𝑇: 22, 𝐴: 17,

𝐺: 14, 𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛: 2}, with allele frequencies {𝑇: 40%, 𝐴: 31%, 𝐺: 25%}. All of these reads are phased by 

Whatshap using SNP calls from NanoCaller, as shown in Figure 5 with both phased reads of Nanopore 

and PacBio long reads. In one set of phased reads, the numbers of reads supporting each base are 

{𝐺: 13, 𝑇: 12, 𝐴: 1}, whereas in the other set of phased reads, the numbers are {𝐴: 16, 𝑇: 10, 𝐺: 1,

𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛: 2}. NanoCaller was able to make a correct SNP call at this site, despite the high frequency of 

reference allele. High frequency of reference allele at the candidate site can be attributed to base calling 
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error due to poly-T sequence, and explains why other variant caller might have missed this SNP. 

Medaka’s call for this variant is a heterozygous SNP with two alternative alleles (T>TG and T>A); 

Clairvoyante’s calls for this variant is a heterozygous SNP with one alternative allele (T>G) and a 

homozygous deletion at chr1:58128618 (CT>C) since Clairvoyante does not support multiallelic calls. 

Clair’s call for this variant is a heterozygous SNP with one alternative allele (T>G). Longshot’s call for this 

variant is a heterozygous SNP with one alternative allele(T>A).  

Figure 6 shows a novel SNP called by NanoCaller, using both Nanopore and PacBio reads, which is not in 

the benchmark variant set from GIAB, and is outside the GIAB high confidence region. This novel SNP is 

at HG002 chr6:131901995 with reference allele C and alternative allele G. Medaka, Clair and 

Clairvoyante were also able to detect this SNP, however Longshot was unable to detect it. In Figure 6 (a), 

we show phased ONT and PacBio reads aligned around the SNP site in the range chr6:131901647-

131902127. We can see 13 other SNPs in phased reads with the novel SNP that are called by NanoCaller. 

However, GIAB’s ground truth calls for HG002 do not have any variant call in the region 

chr6:131901800-131902100. In Figure 6 (b), we show a zoomed in version of Figure 6 (a) spanning the 

region chr6:131901976-131902016. We can see three other SNPs: chr6:131901984 (ref: C; alt: T), 

chr6:131901994 (ref: A; alt: G) and chr6:131901997 (ref: C; alt: T), that are called by NanoCaller and are 

in the same haplotype as the novel SNP. In Figure 6 (c), we show phased ONT and PacBio reads of 

HG004, mother of HG002 for the same region as in (b). The four SNPs shown in (c), including the novel 

SNP site, are recorded as a haplotype in GIAB ground truth calls for HG004. This gives a strong piece of 

evidence that the novel SNP would be true, since we detect the same set of four SNPs forming a 

haplotype in HG002 calls by NanoCaller. We note that Longshot was able to call SNPs at chr6:131901984 

and chr6:131901994, but not at chr6:131901995 or chr6:131901997. 

Indel calling performance 

To call indels in a test genome, we use NanoCaller to detect SNPs no matter whether the SNPs are in 

high-confidence regions, and then the heterogeneous SNP calls are used to phased long reads for indel 

calling. To avoid overfitting, NanoCaller model trained on HG002 is used to detect SNPs for indel calling 

on HG001, and NanoCaller model trained on HG001 is used to detect SNPs for indel calling on the rest of 

the genomes. The indel performance, evaluated by RTG vcfeval, is shown in Figure 4 (h), (i) and (j) 

together with the performance of Medaka and Clairvoyante for benchmarking indels within GIAB high 

confidence regions. Compared with medaka, NanoCaller demonstrates better performance on HG002, 
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HG003 and HG004, but slight worse on HG001. On all genomes, NanoCaller achieves much better 

performance than Clairvoyante. Although NanoCaller shows superior overall performance, the 

performance on indels is still much lower than for SNPs and there may still be room for future 

improvements. 

 

Discussion 

In this study, we present NanoCaller, a deep learning framework to detect SNPs and small indels from 

long-read sequencing data. Depending on library preparation and sequencing techniques, long-read 

data usually have much higher error rates than short-read sequencing data, which substantially 

challenged precise variant calling and thus stimulated the development of error-tolerant deep learning 

methods for accurate variant calling. However, the benefits of much longer read length of long-read 

sequencing are not fully exploited for variant calling in previous studies. The NanoCaller tool that we 

present here integrates haplotype structure in deep convolutional neural network for the detection of 

SNPs/indels from long-read sequencing data, and uses multiple sequence alignment to re-align 

candidate sites for indels, to improve the performance of variant calling. Our results by cross-genome 

testing, cross-chromosome testing, cross-reference genome testing, and cross-platform testing 

demonstrate that NanoCaller performs competitively against other long-read variant callers.   

One specific advantage of NanoCaller is that we generate pileup of candidate variants from haplotyped 

set of neighboring heterogeneous variants, each of which is shared by a long read with the candidate 

site. Given a long read with >20kb, there are on averagely >20 heterogeneous sites, and evidence of 

SNPs from the same long reads can thus improve SNP calling by deep learning. Evaluated on several 

human genomes with benchmarking variant sets, NanoCaller demonstrates competitive performance 

against existing variant calling methods on long reads and with phased SNPs. NanoCaller is also able to 

make accurate predictions cross sequencing platforms and cross reference genomes. In this study, we 

have tested NanoCaller models trained on Nanopore data for PacBio long-read data and achieved similar 

prediction performance. We also tested NanoCaller models trained on GRCh38 for GRCh37 and achieve 

the same level SNP calling performance. Furthermore, with the advantage of long-read data on 

repetitive regions, NanoCaller is also able to detect SNPs/indels outside high-confidence regions which 

cannot be reliably detected by short-read sequencing techniques, and thus provide more candidate 
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SNPs/indels sites for investigating causal variants on undiagnosed diseases where no disease-causal 

candidate variants were found by short-read sequencing. 

NanoCaller has also flexible design to call multi-allelic variants, which Clairvoyante and Longshot cannot 

handle. In NanoCaller, the probability of each nucleotide type is assessed separately, and it is allowed 

that the probability of 2 or 3 or 4 nucleotide type is larger than 0.5 or even close to 1.0 after 

normalization, and thus suggests strong evidence for a specific position with multiple bases in a test 

genome. Therefore, NanoCaller can easily generate multi-allelic variant calls, where both alternative 

alleles differ from the reference allele. Furthermore, NanoCaller can be easily configured to call variants 

for species with polyploidy or somatic mosaic variants when data are available to train an accurate 

model. Meanwhile, NanoCaller uses normalized statistics to generate pileup for a candidate site, and 

normalized statistics is independent on the coverage of a test genome, and thus, NanoCaller is able to 

handle a test data set with different coverage from the training data set, which might be a challenge for 

other long-read callers. That is, NanoCaller trained on a whole-genome data has less biases on other 

data sets with much lower or higher coverage, such as target-sequencing data with thousands folds of 

coverage. We also note that even with very accurate HiFi reads (<1% error rate) generated by PacBio, in 

principle, NanoCaller is likely to yield better variant calling performance over short-read based variant 

callers, because NanoCaller integrates haplotyped long-range information to improve variant calling. 

There are several limitations of NanoCaller that we wish to discuss here. First, NanoCaller relies on the 

accurate alignment and pileup of long-read sequencing data, but incorrect alignments in low-complexity 

regions might still occur, complicating the variant calling process. Both continuingly improved 

sequencing techniques and improved alignment tools can benefit NanoCaller with better performance. 

But if the data is targeted at very complicated regions or aligned with very poor mapping quality, the 

performance of NanoCaller would be affected. Another limitation of NanoCaller is that the indel 

detection from mononucleotide repeats might not be accurate, especially on Nanopore long-read data 

which has difficulty in the basecalling of homopolymers [38, 39]. In Nanopore long-read basecalling 

process, it is challenging to determine how many repeated nucleotides for a long consecutive array of 

similar Nanopore signals, potentially resulting in false indel calls at these regions, which can be post-

processed from the call set. 

In summary, we propose a deep-learning tool using long-range haplotype information and local multiple 

sequence alignments for accurate SNP/indel calling. Our evaluation on several human genome suggests 
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that NanoCaller performs competitively against other long-read variant callers, and can generate 

SNPs/indels calls in complex genomic regions that are removed from variant calling by other software 

tools. NanoCaller enables the detection of genetic variants from genomic regions that are previously 

inaccessible to genome sequencing, and may facilitate the use of long-read sequencing in finding 

disease variants in human genetic studies.  
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Tables 

Table 1. Whole genome statistics of five data sets on human genomes by Nanopore and PacBio sequencing. Each 

genome is aligned to the GRCh38 reference genome, and only the mapped reads were used to calculate the 

statistics. Total number of bases is calculated as the sum of length of all mapped reads, and coverage is defined 

as number of mapped bases divided by the reference genome length.  

Platform Genome # reads # bases N50 
Mean read 

length 

Median read 

length 
Coverage 

ONT HG001 15,666,888 132.9 Gb  13,630 8,485 5,387 43X 

ONT HG002 14,063,218 190.2 Gb 50,930 13,527 2,769 62X 

ONT HG003 22,079,048 250.1 Gb 43,745 11,325 1,974 81X 

ONT HG004 29,319,334 279.6 Gb 46,689 9,536 745 91X 

ONT HX1 20,497,769 271.8 Gb 22,273 13,261 10,123 88X 

PacBio HG002 21,511,145 179.0 Gb 11,264 8,323 7,500 58X 

PacBio HG003 10,564,465 85.3 Gb 10,943 8,078 7,251 28X 

PacBio HG004 10,369,228 83.4 Gb 10,869 8,040 7,137 27X 
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Table 2. Statistics of ground truth variants in chromosomes 1-22 of each genome aligned to the GRCh38 

reference genome. For genomes with GIAB ground truth calls, statistics within the high confidence regions are 

also given. Statistics for HG002 aligned to the reference genome GRCh37 (hg19) are shown in parenthesis. For 

HX1, high confidence regions are created by removing low complexity regions from the GRCh38 reference 

genome. 

 Whole genome (chr1-22) High confidence region (chr1-22) 

Genome SNPs 
Multiallelic 

SNPs 
Indels SNPs 

Multiallelic 
SNPs 

Indels Total Length 
% of 

genome 

HG001 3,004,071 867 516,524 2,961,527 825 483,630 2,329,784,734 81.03 

HG002 
3,079,462 

(3,100,749) 
958 

(945) 
518,055 

(509,449) 
3,030,495 

(3,048,869) 
900 

(904) 
475,332 

(464,463) 
2,353,170,731 

(2,358,060,765) 
81.85 

(81.85) 

HG003 2,927,639 872 510,622 2,883,686 829 471,156 2,261,821,224 78.67 

HG004 2,953,590 863 521,646 2,909,326 815 481,114 2,266,589,952 78.84 

HX1 3,282,242 1,125 687,501 2,980,737 858 205,591 2,356,619,870 76.31 
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Figures 

 

Figure 1. A simplified workflow of NanoCaller in generating SNP and indel calls. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 30, 2019. ; https://doi.org/10.1101/2019.12.29.890418doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.29.890418
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2．An example on how to construct image pileup for a candidate site. a) reference sequence and reads 

pileup at site b and sites in set Z, b) raw counts of bases at sites in Z in each read group, c) frequencies of bases 

at sites in Z with negative signs for reference bases, d) flattened pileup image with fifth channel and reference 

sequence row added, e) pileup image used as input for TensorFlow.  
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Figure 3. An illustration of the convolutional neural network architecture for NanoCaller. First convolutional 

layer uses 3 kernels of sizes 1x5, 5x1 and 5x5, whereas the second and third convolutional layers use kernels of 

size 2x3. Output of third convolutional layer is flattened and is fed to a fully connected layer with 48 nodes. 

Nodes in this fully connected layer are dropped with 50% probability. Output of this is split into two 

independent pathways, upper one calculating probabilities of each base and the lower one calculating zygosity 

probabilities. Zygosity probability is only used in the training process. 
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Figure 4. Performance of NanoCaller and other state-of-the-art variant callers on five whole-genome sequencing 

data sets. SNP performance results on ONT reads: a) SNP precision, b) SNP recall, c) SNP F1 score. d) HG002 

(ONT) SNP performance when aligned to GRCh38 vs GRCh37 while NanoCaller is trained on HG001 (ONT) with 

GRCh38.SNP performance results on PacBio reads: e) SNP precision, f) SNP recall, g) SNP F1 score. Indels 

performance results on ONT reads: h) Indels precision, i) Indels recall, j) Indels F1 score. NanoCaller 1, 

NanoCaller 2 and NanoCaller 3 mean NanoCaller models trained on HG001 (ONT), HG002 (ONT), and HG003 

(PacBio) respectively. If the genome for training and testing is the same, the chromosome 1 is excluded in 

training process and used for testing.  
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Figure 5. The Integrative Genomics Viewer screen shots for a true multiallelic SNP called by NanoCaller at 

chr1:58128619 (GRCh38) in HG002 genome. Upper panel shows Nanopore reads and the lower panel show 

PacBio reads at the SNP site. All the reads are phased by Whatshap using NanoCaller SNP calls. Allele A is shown 

in green color, and allele G is show in brown. 
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Figure 6. The Integrative Genomics Viewer screen shots for a novel SNP called by NanoCaller at a novel SNP 

chr6:131901995 (GRCh38) in the HG002 genome. a) shows 479bp around the novel SNP in HG002, with 13 other 

SNPs called by NanoCaller in the same haplotype in both ONT and PacBio reads. b) shows 41 bp around the 

novel SNP in HG002. c) shows ONT and PacBio reads for HG004 (mother) for the same region as b) with 4 SNPs 

from ground truth that form a haplotype. Reads were phased with Whatshap using NanoCaller SNP calls.  
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