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Abstract

Olfactory learning and conditioning in the fruit fly is typically modelled by
correlation-based associative synaptic plasticity. It was shown that the conditioning
of an odor-evoked response by a shock depends on the connections from Kenyon
cells (KC) to mushroom body output neurons (MBONs). Although on the behav-
ioral level conditioning is recognized to be predictive, it remains unclear how MBONs
form predictions of aversive or appetitive values (valences) of odors on the circuit
level. We present behavioral experiments that are not well explained by associa-
tive plasticity between conditioned and unconditioned stimuli, and we suggest two
alternative models for how predictions can be formed. In error-driven predictive
plasticity, dopaminergic neurons (DANs) represent the error between the predictive
odor value and the shock strength. In target-driven predictive plasticity, the DANs
represent the target for the predictive MBON activity. Predictive plasticity in KC-
to-MBON synapses can also explain trace-conditioning, the valence-dependent sign
switch in plasticity, and the observed novelty-familiarity representation. The model
offer a framework to dissect MBON circuits and interpret DAN activity during ol-
factory learning.

Introduction

Predicting the future from sensory input is fundamental for survival. Co-appearing stim-
uli can be used for improving a prediction, or for predicting important events themselves,
as observed in classical conditioning. In fruit fly odor conditioning, an odor that will
become the conditioned stimulus (CS), is paired with the unconditioned stimulus (US),
here an electroshock, that triggers an avoidance behavior and in internal representation
of a negative value (valence). After conditioning, and the negative value representation
– although not the full unconditioned response – previously elicited by the electroshock
will be reproduced by the odor itself. Classical conditioning theories posit that through-
out learning the odor becomes predictive for the electroshock [1, 2, 3]. During learning,
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the prediction error decreases, and learning stops when the predictive odor value matches
the strength of the electroshock.

Predicitve olfactory learning in fruit flies is a widely recognised concept in the ex-
perimental literature [4, 5], and dopaminergic neurons (DANs) in the mushroom body
(MB) have been suggested to predict punishment or reward [6, 7, 8]. Yet, despite the
acknowledgment of its predictive nature, computational models on fruit fly conditioning
are mostly guided by the formation of associations, a notion that relates more to mem-
ories rather than predictions (for a recent outline of this controversy see [9]). Similarly,
the concept of predictive learning is well recognized for olfactory conditioning in insects
in general, but to our knowledge, synaptic plasticity models are not formulated in terms
of explicit predictions, but rather in terms associations and correlations, with plasticity
being driven by two or three factors, each representing a temporal nonlinear function of
the pre- or postsynaptic activities or of a modulatory signal, sometimes combined with
homeostatic plasticity. This type of associative models are exist for fruit flies [10, 11],
locusts [12, 13] or honey bees [14, 15]. They differ from target learning, where the un-
conditioned stimulus sets a target that is learned to be reproduced by the conditioned
stimulus. Target learning becomes predictive learning when including a temporal com-
ponent. It involves a difference operation, and learning stops when the target is reached.
The stop-learning feature is difficult to be reproduced by purely correlation-based asso-
ciative learning, while a purely predictive model intrinsically captures also associative
properties.

Associative learning was suggested to be implemented through spike- or stimulus-
timing dependent plasticity (STDP) that would underlay conditioning. STDP strength-
ens or weakens a synapse based on the temporal correlation between the US (elec-
troshock) and the CS (odor), both on the neuronal time scale of 10’s of milliseconds [13]
and on the behavioral time scale of 10’s of seconds [16, 17, 7]. Whether an association
is strengthened by just repeating the pairing until the behavioral saturation is reached
[18], or the association saturates due to a faithful prediction, however, has not been
investigated in the fruit fly so far (Figure 1). Here we show that olfactory conditioning
in Drosophila is better captured as predictive plasticity that stops when a US-imposed
target is reached, rather than by correlation-based plasticity, such as STDP, that does
not operate with an explicit error or a target. According to our scheme, it is only the
aversive/appetitive value of the US that is predicted by the CS after faithful learning,
not the US itself. Based on the common value representation in the mushroom body
output neurons (MBONs, Figure 1), the corresponding avoidance/approach reaction as
one aspect of the unconditioned response is elicited by the CS alone.

The Drosophila olfactory system represents a unique case for studying associative/predictive
learning, and the MB is known to be essential in olfactory learning [18, 19, 20, 21]. The
Kenyon cells (KCs) receive olfactory input from olfactory projection neurons and form
a sparse representation of an odor [14, 22, 23]. The parallel axons of the Kenyon cells
(KCs) project to the MB lobes [4, 24], along which the compartmentalized dendritic ar-
bors of the MB output neurons (MBONs) collect the input from a large number of KCs.
Reward or punishment activates specific clusters of DANs PAM and PPL1, respectively
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Figure 1: Associative versus error- or target-driven predictive plasticity. (A) Pairing
of an odor (CS) with a shock (US) is typically thought to induce correlation-based
synaptic strengthening of the synapses mediating the conditioned response, here from the
Kenyon cells (KCs) to the mushroom body output neurons (MBONs). Repeated pairing
always leads to a stronger association strength. (B) In predictive coding, plasticity
stops when the strength of the US is correctly predicted by the CS. (B1) Plasticity of
the KC-to-MBON synapses can be driven by the prediction error ‘US-CS’, formed by the
dopaminergic neurons (DANs) that calculate the difference between the internal shock
representation and the odor-evoked prediction by the MBONs. (B2) Synaptic plasticity
can also be driven by a target for the MBON activity, set to the desired aversive value of
the odor (i.e. the shock strength) and represented by the DAN activity. To extend the
memory life time of the odor value, the DANs may themselves be driven by the recurrent
MBON activity, and the MBON-to-DAN synapses may also be learned via target-driven
plasticity to predict the shock strength. Our experiments and models exclude A and
suggest further experiments to distinguish B1 and B2.
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which project to corresponding compartments of the MB lobes [25, 26, 27], modulating
the activity of the MBONs and the behavioral response [16, 28, 29, 30]. Recently, a
detailed mapping of the MB connectome has been accomplished for larvae and of the
vertical lobe for the adult Drosophila [31, 32]. Several studies show that not only the
feedforward modulation from DANs to MBONs, but also the feedback from MBONs to
DANs play an important role in olfactory learning [33, 34].

Previous studies have given insights into the possible cellular and subcellular mech-
anisms of olfactory conditioning. Yet, the suggested learning rules [14, 12, 10, 13, 17,
35, 11] remain correlation-based and miss the explicit predictive element postulated
by the classical conditioning theories [1, 2]. Here, we present distinctive conditioning
experiments showing that olfactory learning is best explained by predictive plasticity
(Figure 1). These experiments, in contrast, could not be reproduced by various types
of correlation-based associative learning rules. A mathematical model captures the new
and previous data on olfactory conditioning, including trace conditioning. The model
encompasses the odor/shock encoding and the learning of the aversive odor value with
the stochastic response. We further suggest how the predictive plasticity could be im-
plemented in the MB circuit, with MBONs encoding the value (‘valence’) of the odor
stimulus, and DANs calculating either the error or the target that drives the KC-to-
MBON plasticity. The predictive plasticity rule for the KC-to-MBON synapses is shown
to be consistent with the experimental results showing the involvement of these synapses
in the novelty-familiarity representation.

Results

Model of the shock representation and the unconditioned response

Aversive odor conditioning is about learning to evoke the avoidance behavior by the
conditioned odor alone, as it is evoked by the electroshock. Before describing the ac-
quisition of the conditioned behavior we characterize the unconditioned behavior of the
fruit flies.

Experiment In the minimal shock detection experiments, fruit flies in a testing cham-
ber had the choice between moving to either of two arms, with one arm being electrified
(with voltage strength S) and the other not. After 30s we counted the number of flies
in the electrified and non-electrified control arm, Nelectr and Nnonel, respectively (the
few remaining in the testing chamber not being counted). The empirical performance
index (PI) for the pure shock application without conditioning is defined as the relative
difference, PI = Nnonel−Nelectr

Nnonel+Nelectr
. This empirical PI can be approximated by a theoreti-

cal PI that is a function of the stimulus strength S. When the stimulus strength is
equal to the minimal strength S◦ that just elicits a behavioral response, the PI vanishes,
PI(S◦) = 0, and for increasing stimulus strength the PI asymptotically tends towards 1.
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We parametrize

PI(S) =
1−

(
S◦
S

)α
1 +

(
S◦
S

)α , S ≥ S◦ , (1)

with sensitivity parameter α telling how steeply PI(S) grows from 0 at S = S◦ towards
1 for large S. We experimentally estimated the size of the minimal shock intensity to
be S◦ ≈ 7V (Methods).

Shock representation To explain the behavior as emerging from a neuronal repre-
sentation we map the shock stimulus to hypothetical neuronal activities. Plasticity will
then also be described in terms of these internal activities.

We assume an internal representation, s, of the electroshock following Weber-Fechner’s
law [36],

s(t) = α log
S(t)

S◦
, S(t) ≥ S◦ , (2)

where S◦ and α are as introduced in Equation 1. For S < S◦ we set s = 0. Equation
2 yields a re-interpretation of the behavioral parameters S◦ and α that characterize the
PI in terms of sensory ‘perception’: S◦ is the just detectable stimulus strength and α
becomes the linear scaling of the sensory activity.

Unconditioned response To describe the unconditioned response out of the internal
representation, we consider the probability pus(s) of escaping from the shock stimulus
(the US) given s. We first note that the PI can be expressed in the form PI = 2pus − 1,
with pus = Nnonel/(Nnonel + Nelectr) being the empirical frequency for an individual
fruit fly to move to the non-electrified versus the electrified arm. With the avoidance
probability of the form pus(s) = 1

1+e−s , the PI becomes a function of the internal shock
representation s, PI(s) = 2pus(s)−1. This is consistent with the definition of PI(S) from
Equation 1 as can be checked by substituting the expression for s given in Equation 2
(the performance index as a function of s is PI = (1− e−s)/(1 + e−s)).

As an aside, one may also consider other mappings of the shock strength S to the
internal representation s as this is not constrained enough by the data. For instance,
one may argue that fruit flies perceive electric shocks following Steven’s power law, as
it was originally measured in humans [37]. Steven’s law postulates that the internal
representation would have the form s = (S/S◦)

α instead of the logarithmic Weber-
Fechner law. From this representation the original behavioral response pus(s) is obtained
when the readout from the state is of the form pus(s) = 1/(1 + s−1). The PI is then
calculated according to PI(S) = PI(s) = 2pus(s)− 1 = (1− s−1)/(1 + s−1).

Odor conditioning depends on the temporal shock distribution

We next turn to the odor conditioning. It was previously investigated how the associative
strength of the conditioned odor increases with the strength of the paired electroshock
and the number of pairings, while saturating at some level, with respect to both the
shock strength and the paring repetition [18]. We asked whether these saturation effects
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originate from behavioral limitations, or whether they originate from a quick and faithful
learning of the intrinsic value of the electroshock strengths.

To address this question, we differently packaged the total of 100V into 1*100V,
2*50V, 4*25V and 8*12.5V electroshocks and asked whether the repeated smaller shock
strengths (8*12.5V) would lead to premature saturation that would then not be caused
by behavioural limitations but rather by some dedicated learning behavior. We dis-
tributed these shock packages across the 60 s odor presentation time (Figure 2A, Meth-
ods), and let the fruit flies choose during 120 s between a conditioned and neutral odor.
The learning index (LI) that characterizes the conditioned response is defined analo-
gously to the PI by the relative number of fruit flies that choose the unconditioned
control odor (NCS−, more precisely, the odor that was conditioned with zero shock
strength) versus the conditioned odor (NCS+), i.e.

LI =
NCS− −NCS+

NCS− +NCS+
. (3)

The LIs gradually decreased with decreasing electroshock strength if the shocks were
applied towards the end of the odor presentation time, and the additional repetitions
of the weaker electroshocks could not revert this trend (Figure 2B1). Yet, when the
same shocks were distributed towards the beginning of the odor presentation time, the
LIs remained small, with a tendency to increase with decreasing electroshock strength
(Figure 2B2).

The avoidance behavior depends in a complicated way on the shock strengths and the
shock timings. To explain these behaviors we next formalize the value representation,
the decision making, and two different types of plasticity models.

From internal value representation to stochastic responses

The basic observation of conditioning is that, after long enough conditioning time, the
conditioned behavior eventually mimics the unconditioned behavior. In our model this
implies that the learning index LI converges to the performance index PI (Equation 1).
We assume that at any moment in time, a presented odor elicits some activity o in the
KCs that reflects the odor intensity. In the experiments, an odor was either present
or absent, and hence o(t) = 1 or 0. The considered MBON activities are assumed to
represent the aversive value (v) of the odor. As MBONs are driven by KC, we postulate
that the MBON activity takes the form

v = w o , (4)

where w is the synaptic strength (weight) from the KCs to the MBONs.

Model of stochastic action selection The conditioned response upon odor stimulus
appears to be stochastic for an individual fruit fly. It is therefore modeled in terms of
the avoidance probability that itself depends on the MBON activity. For simplicity we
postulate that this avoidance probability in response to the conditioned stimulus (CS,
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Figure 2: Temporal sequence conditioning is not fit by Hebbian plasticity. (A) Experimental
protocol as explained in the main text, with total shock strength of 100 V distributed in time
across the 60 s exposure to the conditioning odor (alignment towards the end, A1, and towards
the beginning, A2). The duration of an individual voltage shock (a magenta vertical bar) is 1.5 s.
(B) Experimental results showing the LI for the corresponding shock distributions in A1 and A2,
respectively. For shocks at the end, the LI decreases with decreasing individual shock strength.
Error bars represent the standard error of the mean (SEM). (C) Fit by the Hebbian plasticity,
Equation 6. For shocks at the end, a roughly constant LI is produced. For the optimized
parameters we extracted S◦ = 7 V from the minimal shock detection experiment (Figure 2-1),
τo = 15 s from trace conditioning experiments [28], and optimized the product αη = 0.0723.
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the odor), has the same form as the one to the unconditioned stimulus introduced above,
pus(s), but with s replaced by v,

pcs(v) =
1

1 + e−v
. (5)

As it is for the PI, the LI can be expressed in terms of this avoidance probability,
LI(v) = 2pcs(v) − 1. Remember that fruit flies may remain in the test tube (estimated
to be less than 5%) and that the LI is calculated based on the fruit flies that effectively
moved to one of the two chambers (Equation 3). Hence, the interpretation of pcs(v) on
the level of the individual fly is, strictly speaking, the conditional probability that, given
the fly ‘decides’ to move, it actually moves away from the conditioned odor.

The model postulates that the decision for each individual fruit fly is a stochastic
(Bernoulli) process that only depends on the current MBON activity v = wo, and in
particular does not depend on previous decisions. In fact, when re-testing the population
of fruit flies that escaped from the odor in a first test trial (a fraction pcs of the overall
test population), the same fraction pcs of this sub-population escaped again in a second
test trial, despite the putative extinction of memory caused by the first test (see the Test-
Retest experiment in [38]). Intriguingly, when waiting 24 h so that the first conditioning
was forgotten, conditioning the successfully escaped and the unsuccessfully non-escaped
flies from the first conditioning experiment separately again, the same LI was achieved
by both groups. This shows that not only a single response is stochastic, but also
the learning (see again [38], cross-checked by us for a 8 × 12.5V stimulation, results
not shown). A statistical evaluation of the model with the same number of flies (Nfly)
and trials (Ntrial) as in the experiment gives equal or smaller variance in the LI of the
model fruit flies as compared to the experiment (Figure 3A1). This implicitly quantifies
additional sources of stochasticity in the experimental setup or in the individual fruit fly
that have already been described in honeybees [39, 40] and that go beyond our 1-state
stochastic Markov model.

The model of stochastic action selection expressed by Eq. 5 assumes that there is
only one stimulus type present, either the odor (CS) or the shock (US), and the odor
triggers the avoidance reaction with probability pcs(v), and the shock with probability
pus(s). The experiment may also be setup such that in one arm of the test chamber the
CS and in the other the US is present, and the fruit fly can decide whether to move
at all or not, for instance, as studied in [41]. In this case the probability of moving
in neither of the two arms depends on the difference between the CS- and US-induced
value, pcs,us(v, s) = 1

1+e−|v−s| , and this probability may be represented downstream of

the MB, as also suggested in [41]. Alternatively, the DAN may represent the US and
the MBON may depend on both the CS and US, along the lines of the wiring scheme
for the target-driven predictive plasticity outlined below (Fig. 6B).

Associative learning models do not fit the conditioning data

Learning is suggested to arise from appropriately modifying the strength w of the KC-
to-MBON synapses. The synaptic modification affects the aversive value of the odor
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Figure 3: Predictive plasticity captures the sequence conditioning experiments. (A) In contrast
to the purely associative learning (Equation 6), the predictive plasticity (Equation 7) fits well the
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SEM for both data and model. In the model, stochasticity enters through the Bernoulli process
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number of trials, Ntrial, was used in the model as in the experiment. (B) Traces for odor (o),
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the shock-at-end (B1) and shock-at-beginning (B2) protocols. Note that between the shocks, w
decays towards 0 as the target for v = wo is s = 0 according to the predictive learning rule. The
weight does not change if the prediction matches the shock representation, w o = s, e.g. when
both are 0. The optimized parameters are: S◦ = 6.90 V, α = 0.79, τo = 14.25 s, ∆η = 0.057 ,
τη = 133.48 s, with mean square error MSE = 6.393× 10−4 across all experiments (including the
ones below).
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following the linear relation v = wo (Equation 4), and this determines the conditioned
response given by the escape probability pcs(v), see Equation 5.

The common conception of conditioning is that the associative strength, w, is changed
proportionally to some nonlinear functions of the pre- and postsynaptic activities, pos-
sibly modulated by a third factor. To exemplify the essence of associative learning,
although this may not do justice to the more complex cited models, we consider a sim-
plified version where the synaptic weight change is proportional to both the strengths
of the unconditioned and the conditioned response,

dw

dt
= η s õ , (6)

with proportionality factor η defining the learning rate (cf. Figure 1A). Here, õ is the
low-pass filtered odor o that follows the dynamics τo

dõ
dt = −õ+ o , with a time constant

τo being on the order of ten seconds. It can be interpreted as a presynaptic eligibility
trace that keeps the memory of the presynaptic activity, here the odor o, to be associated
with the postsynaptic quantity, here the shock representation s.

This simple Hebbian rule (Equation 6) is not able to fit the sequential conditioning
data. In fact, for the shocks at the end, the Hebbian model roughly shows the same LI
for the weak and strong stimuli, as it were the total stimulus strength that would count
(Figure 2C1). The concavity of the logarithmic shock representation by itself would
rather favor an increasing LI for the repeated weaker stimuli 8*12.5V as compared to
the 1*100V.

We considered a perhaps oversimplified Hebbian learning rule, ẇ ∝ sõ, as one exam-
ple of associative plasticity. To consider more sophisticated associative learning rules, we
define synaptic weight changes that are functions of the correlation between odor- and
shock-induced activity. We also tested these more general forms of associative learning
that are based on linear and nonlinear functions of CS-US correlations, such as stimulus-
timing dependent synaptic plasticity (STDP) of the form ẇ = η1sõ− η2os̃, with s̃ being
the low-pass filtered s and ηi arbitrary scaling factors. STDP, even after introducing
nonlinearities, and also the covariance rule of the form ẇ = η(s − s̃)(o − õ), did all
give roughly a 10 times worse fit (in terms of the MSE, Methods and Figure 3-1) than
predictive plasticity explained next.

Model of predictive plasticity

The failure of associative learning rules in reproducing our conditioning experiments can
be corrected by adding an anti-Hebbian term of the form −võ to the rule ẇ ∝ sõ, leading
to

dw

dt
= η s õ− η v õ = η (s− v) õ . (7)

We interpret this combined Hebbian / anti-Hebbian plasticity rule as error correcting,
with the difference between the shock and odor representation, s− v, as internal error.

This error-correction learning rule has a long history in the theory of neural networks
where it first appeared as Widrow-Hoff rule [42] that was extended to a temporal differ-
ence rule [43], and recently reinterpreted in terms of dendritic prediction of somatic firing
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Figure 4: Repetitive and ongoing conditioning is captured by the predictive plasticity. (A) The
repeated training consisted of 1, 2, 4 repetitions of a standard training block (dark red bar, as in
Figure 3, A&A1) composed of 4*25V shocks, followed by a break and a control period. Half of
a training block was considered with 2*25V shocks towards the end of the 60s odor presentation
(yellow bar). (B) The LI saturates after a full block (1 Repetition, gray), as also reproduced by
the predictive plasticity model (green). (C) The same protocol with the same number of shocks
as in (B), but with 50V instead of 25V shocks. A second training repetition did only slightly
increase the LI and for further repetitions it again remains constant. This is reproduced by the
predictive plasticity, but not by the various associative plasticity models (see Supplementary
Materials). (D) Protocol of ongoing odor-shock pairing, with voltages turned on during the full
odor presentation time of 10s, 15s, 30s, 45s, 90s and 120s, both for 25V and 50V. (E) The LI
for the time-continuous pairing saturates with a time constant of roughly 20s for the 50V and
30s for the 25V odor-voltage pairings. Predictive plasticity captures this saturation, with LI(v)
converging towards LI(s) (dashed lines, Equation 8), for both the 25V and the 50V pairings.
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[44, 45]. It also relates to the predictive rule of Rescorla-Wagner [1] previously applied
to explain various fruit fly conditioning experiments [46], although without considering
a time-continuous learning scenario and the related temporal aspects. According to this
rule, learning stops when the aversive value of the odor, v, predicts the internal repre-
sentation of the shock stimulus, v = s. During predictive learning, when the synaptic
eligibility trace is active, õ(t)>0, the synaptic strength w is adapted such that the odor
value converges to the internal shock representation, v(t) = wo(t) −→ s(t), with s(t)>0
when the electroshock-voltage is turned on and s(t)=0 else. Correspondingly, the con-
ditioned response converges to the unconditioned response, pcs(v) −→ pus(s). Crucially,
during the time when the US is absent, s=0 (while õ>0), a neutral response is learned.
On a behavioral level this appears as forgetting the shock prediction, and it also relates
to the phenomenon of extinction in classical conditioning [1].

To fit the conditioning experiments with ongoing electroshock-voltage we need to
consider a learning rate that adapts in time. Learning speeds up when the strength of
the voltage increases. A stronger voltage triggers initially a higher learning rate that,
with ongoing voltage stimulation, decays with a time constant τη on the order of 2 min.
A stepwise increase of s by ∆s (as it appears at the onset of an electric shock) leads to
a stepwise increase of the initial learning rate η by ∆η∆s for an optimized parameter
∆η (Methods).

In contrast to the pure associative rule, the predictive rule (Equation 7) qualitatively
and quantitatively reproduces the conditioning experiments (Figure 3). With the pre-
dictive learning rule, the 1*100V pairing at the end of the odor presentation elicits the
strongest conditioned response, while the response is much weaker after the distributed
8*12.5V pairing, as also observed in the experiment. The reason is that the synaptic
weight w decreases between the shocks while the odor is still present (green traces in
Figure 3). As in the extinction experiments, the presence of the CS alone leads to the
prediction that no US is present, and hence to an unlearning of the previously acquired
US prediction.

Repetitive and ongoing conditioning reveals its predictive nature

To bolster our hypothesis that olfactory conditioning in the fruit fly is predictive rather
than associative, we further tested the model to repetitive and continuously ongoing
odor-shock pairings. If the hypothesis is correct, during repeated or extended pairing,
learning should in both cases stop when shock strength is correctly predicted by the
odor. In particular, the learning performance is expected to saturate at a level below
the maximally achievable performance. This is in fact what we observed.

When repeating the previously described block of 4*25V conditioning shocks with
15s inter-shock-intervals, the LI showed a saturation after a single block (Figure 4A,B).
When conditioning with half of that block, i.e. with only 2*25V conditioning shocks in
15s, roughly 70% of the saturation level is reached. The same repetition experiment
was performed with 4*50V pulses, confirming that also for a stronger US the LI quickly
saturated (Figure 4C). Again, neither the pure associative rule, nor the covariance rule
or the more sophisticated STDP rules, could reproduce this data (Figure 3-1).
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An even more challenging test for the predictive learning rule is an odor-shock pair-
ing where the electric voltage (either 25V or 50V) is turned on throughout the odor
presentation time, from 10s up to 120s. After roughly 1 min of ongoing pairing the LI
saturated, both in the data and the model (Figure 4D). In the model, learning saturates
when the value v of the odor correctly predicts the shock, v = s, as expressed by a
successful predictive learning (i.e. when learning ceases, ẇ = 0, see Equation 7). During
learning, when the value of the odor converges to the shock representation, v → s, the
LI converges to the PI (as defined in Eqs 3 and 1),

LI(v) = 2pcs(v)−1 −→ PI(S) =
1−

(
S◦
S

)α
1 +

(
S◦
S

)α , v → s(S) . (8)

The equation is obtained from substituting v by s in the expression for pcs(v), Equation
5, and making use of Weber-Fechner’s law translating the shock strength S into the
internal representation s (Equation 2). For our simple predictive plasticity model the
exposure time to acquire the final performance can be explicitly calculated, and it is
shorter for stronger ongoing voltage stimuli (Figure 4-1).

Trace conditioning is also predictive

Odor conditioning has also been studied in the form of trace conditioning (e.g. [47,
28]). A further test of our model is to apply it to these experiments, with the same
parameters found to fit our data from Figure 3 and Figure 4. In trace conditioning,
the electroshock is applied with a variable inter-stimulus-interval (ISI) after the onset of
the odor presentation, and this ISI can even extend beyond the presentation time of the
odor (Figure 5A). We considered the experimental protocol with 10 s odor presentation
and an ISI varying from 5 to 30s, after which 4 conditioning electroshocks of 90V were
applied with 0.2 Hz [28]. The LI gradually decreased with the length of the ISI, with
a decay time of roughly 15 s. The model captures this phenomenon because the odor
trace, entering as synaptic eligibility trace (õ) in the predictive plasticity rule, is still
active for a while after the odor has been cleared up (Figure 5B). The identical set of 5
parameters has been used that were extracted from the previous experiments (S◦, α, τo,
∆η, τη, see caption of Figure 3).

MB circuits for error- or target-driven predictive plasticity

Based on anatomical connectivity patterns and previous plasticity studies we suggest two
forms of how the predictive learning may be implemented in the recurrent MB circuit,
via error- and target-driven predictive plasticity (Figure 1B). In both versions, learning
is mainly a consequence of modifying the KC-to-MBON synaptic boutons [4, 30, 33,
48, 49], but the role of the DANs is different. While the KC-to-MBON connections
drive the MBONs based on the odor representation in the KCs, the shock information is
provided by the DANs and gates the KC-to-MBON plasticity (see also [25, 27, 4, 24, 7]).
The DANs themselves may either represent the error or the target for KC-to-MBON
plasticity.
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Figure 5: Trace conditioning is faithfully reproduced. (A) Experimental protocol of trace
conditioning, with variable Inter-Stimulus Intervals (ISIs) from the onset of the odor (green) to
the onset of the electroshock train (4 ∗ 90V, 0.2Hz, each 1.25s, red bars). (B) The LI tested
immediately after the conditioning with the different ISIs (reproduced from [28]). The model
roughly captures this data (green line) without additional fitting of the parameters.

In the first implementation (error-driven predictive plasticity), the DANs themselves
represent the prediction error e = s−v . They may extract this error from the excitatory
shock input, s, and the inhibitory MBONs feedback providing the aversive value v of
the odor ([33], see Figure 6A1). The modeling captured the effect of learning on the
behavioral time scale. To predict specific activity traces in the MB on a fine-grained
temporal resolution we introduce the dynamics of the MB neurons. In the case of the
DANs as error representation, the firing rates of the MBONs (v) and DANs (e) is given
by

τ v̇ = −v + wo , τ ė = −e+ s− v , (9)

with a neuronal integration time constant τ in the order of 10 ms (Figure 6B1). The
plasticity of the synapses from the KCs to the MBON is then driven by the DAN-
represented prediction error e at any moment in time, ẇ = η e õ , consistent with the
predictive plasticity rule (Equation 7). Note that in the steady state, the DAN activity
exactly represents the difference between the shock strength and its odor-induced pre-
diction, e = s − v. After successful learning, the MBONs accurately match the shock
representation and the DAN activity vanishes, v = s and e = 0.

In the alternative implementation (target-driven predictive plasticity), the DANs
provide the learning target to the KC-to-MBON synapses while themselves being driven
by the MBONs (Figure 6A2). These MBON-to-DAN synapses are also plastic and learn
to predict the shock stimulus, just as the KC-to-MBON synapses do. A benefit of this
recurrent prediction scheme is that the memory life time of the odor-shock prediction is
extended. If after successful learning the odor is presented alone, the target for the KC-
to-MBON plasticity is still kept at the original level via MBON-to-DAN feedback, and
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extinction of the shock memory slows down. The recurrent circuitry between MBONs
(v) and DANs (with activity d instead of e to indicate that the DANs no longer represent
the error but the target for the MBON learning) now becomes

τ v̇ = −v + (1− λ)wMK o+ λ d , τ ḋ = −d+ (1− λ)wDMv + λs . (10)

Here, wMK and wDM are the synaptic weights of KC-to-MBON and MBON-to-DAN
synapses, respectively, and λ = 0.1 is the nudging strength of the postsynaptic teaching
signal [44]). Both KC-to-MBON and MBON-to-DAN synapses follow the same form of
error-correcting plasticity as in Equation 7,

ẇMK = η (d− wMKo) õ , ẇDK = η (s− wDKv) v , (11)

where the DAN activity d now serves as the target for KC-to-MBON synapses, while
the shock stimulus s is the target for MBON-to-DAN synapses.

After successful learning, the activity of MBONs and DANs both predict the shock
stimulus, v = d = s (as derived from the steady states of Eq. 11, see also Figure
6B2). If the shock stimulus is absent (s=0) during the presentation of the conditioned
odor o, and the odor was previously conditioned to a shock strength s◦ while the DAN
activity was fully learned (implying wD = 1), the MBON activity, supported by the
recurrent DAN activity, becomes v = 1−λ

1−λ(1−λ)s◦ ≈ 0.99s◦ (as derived from the steady

states of Eq. 10 with λ = 0.1, see Figure 6B2, column ‘Test’). Hence, the value of the
odor faithfully predicts the conditioned shock strength also in this target-driven learning
circuitry. Note that in the target-driven plasticity the KC-to-MBON plasticity ẇM does
not directly relay on the MBON activity since the activity target is imposed by the
DAN’s, not by the MBON’s (Eq. 11).

Outlook: valence learning and novelty-familiarity representation

The concept of predictive learning can be extended to valence learning where each MBON
represents a positive or negative valence, v±, coding for an appetitive and aversive value
of a stimulus, respectively [24, 50, 30, 51]. For each valence, a specific cluster of DANs is
involved in the sensory representation, PAM for positive and PPL1 for negative valences
[4, 52]. In the full MB circuit the DANs further receive excitatory drive from the KCs
([32], dashed connection in Fig. 6, here abbreviated by wDK), and the feedback circuit
modulates the plasticity of the KC-to-MBON synapses [48]. The activities of the two
valence classes of DANs can be modeled as in Eq. 10, but with multimodal input from
the unconditioned appetitive or aversive stimuli (s±) and the odor representation in the
KCs (wDKo). Together with the feedback from the corresponding MBONs via weights
wDM, and introducing a saturating nonlinear transfer function φ, the DAN activities for
the two valence clusters become

d± = φ
(

(1− λ)wDMv
± + λ(s± + wDKo)

)
. (12)

Plasticity in MBONs is known to be sign flipped when changing the valence of the
stimulus [30, 7, 52]. This can be captured in the predictive plasticity model by imposing
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0 as target when the stimulus and MBON valence do not match. For positive valence
MBONs, the target can be set to d = d+(1 − d−), assuming that the DAN activities
are restricted to the range between 0 and 1; for negative valence MBONs the target is
d−(1−d+). When a previously appetitively conditioned odor is now presented (wMKo > 0
for a positive valence MBON), together with a shock (d = 0), the postsynaptic error
term in the learning rule now becomes negative, (d− wMKo) < 0, and the synapses get
depressed rather than potentiated as in the first conditioning (Eq. 11).

The sign of the KC-to-MBON plasticity can also be changed in other ways. It has
been shown that the familiarization to odors can depress MBON responses (in the α′3
compartment), while the response to previously familiarized stimuli is recovered [49].
To explain this phenomenon we extend the predictive plasticity to involve a partial
redistribution of the total synaptic strength across the KC-to-MBON synapses, formally
expressed by

ẇMK,i = η
(
d− wMKo

) (
õi − õ

)
, (13)

where we introduced a down-shift in the presynaptic term by the mean odor that exceeds
the spontaneous activity level, õ = 1

nK

∑nK
j=1 õj − o◦. Here, the average is across all nK

Kenyon cell synapses, and we assume a spontaneous but sparse KC activity o◦ such that
in average the activity of KC i satisfies oi ≥ o◦ [53]. The spontaneous KC maps to the
eligibility trace that is strictly positive, õi ≥ o◦, and some spontaneous DAN activity
d◦ inherited from the KCs, such that d ≥ d◦. Because (PPL1−α′3) DAN activity is
necessary to observe repetition suppression [49], we postulate that the learning rate is
modulated by the DAN activity, η = dη◦, for some base learning rate η◦.

The various plasticity features of the KC-to-MBON synapses investigated in [49] are
consistent with the extended learning rule in Eq. 13. Repeated odor-evoked KC activa-
tion causes synaptic depression, assuming that odors are dominantly activating KCs and
MBONs, but less so DANs, d < wMKo (here enters the saturation of the nonlinearity φ
in Eq. 12), leading to the observed repetition suppression (ẇMK,i < 0) and explaining the
behavioral familiarization of the flies to odors. The repetition suppression may depress
the KC-to-MBON synapses such that in response to spontaneous KC activity (o◦) the
MBON activity is now smaller than the spontaneous DAN activity, wMKo◦ < d◦. In the
absence of an odor, the depressed KC-to-MBON synapses will therefore recover due to
the spontaneous KC activity (Eq. 13), such that eventually the equilibrium is reached
again when the spontaneously induces MBON activity matches the spontaneous DAN
activity, wMKo◦ = d◦. This explains the ‘passive’ recovery of the MBON responses after
odor familiarization [49].

Further experimental investigations of the KC-to-MBON plasticity shows that op-
togenetically activating DANs alone potentiates the synapses. In our model this DAN-
induced potentiation arises since for the isolated optogenetic DAN activation we have
to assume that d > wMKo, and the presynaptic term in the plasticity rule (Eq. 13) is
positive in average due to the spontaneous KC activity, (õi − õ) = o◦ > 0. Next, if we
assume that the optogenetic co-activation of MBONs (v > 0) and DANs (d > 0) applied
in [49] is such that d < v = wMKo (but with an increased learning rate η = dη◦), then
the KC-to-MBON synapses get depressed, as reported from the experiment.
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Finally, due to the partial weight redistribution, the repetition suppression during the
familiarisation to a new odor implies the potentiation of the other synapses that are not
activated, among them most of the previously suppressed synapses that were involved in
the representation of a preceding odor. The reason for this heterosynaptic potentiation in
our model is that repetition suppression is caused by a negative postsynaptic factor (d−
wMKo) < 0 in Eq. 13 as explained above, implying the depression of an active synapses
i for which (õi − õ) > 0, but also implying the potentiation of not activated synapses,
since for those (õi − õ) < 0 and hence ẇMK,i > 0. This odor-induced potentiation in
other synapses explains the ‘active’ recovery from the repetition suppression as seen in
the experiment [49]. Technically, (õi− õ) < 0 holds for not activated synapses only if we
assume that the odor-evoked average activity in the KCs is well above the spontaneous
activity level such that õ > o◦.

Discussion

Predictive, but not correlation-based plasticity, reproduces experimental data
We reconsidered classical odor conditioning in the fruit fly and presented experimental
and modeling evidence showing that olfactory learning, also on the synaptic level, is bet-
ter described as predictive rather than associative. The key observation is that repetitive
and time-continuous odor-shock pairing stops strengthening the conditioned response
after roughly 1 minute of pairing, even if the shock intensity is below the behavioral sat-
uration level. During conditioning, the odor is learned to predict the co-applied shock
stimulus. As a consequence, the odor-evoked avoidance reaction stops strengthening at
a level that depends on the shock strength, irrespective of the pairing time beyond 1 min.
We found that associative synaptic plasticity, defined by a possibly nonlinear function
of the CS-US correlation strength, as suggested by STDP models, fails to reproduce the
early saturation of learning.

We suggest a simple phenomenological model for predictive plasticity according to
which synapses change their strength proportionally to the prediction error. This error
is expressed as a difference between the internal shock representation and the value rep-
resentation of the odor. The model encompasses a description of the shock and value
representation, the stochastic response behavior of individual flies, and the synaptic
dynamics (using a total of 5 parameters). It faithfully reproduces our conditioning ex-
periments (with a total of 28 data points from 3 different types of experiments) as well as
previously studied trace conditioning experiments (without need for further fitting). As
compared to the associative rules (Hebbian, linear and nonlinear STDP, covariance rule),
the predictive plasticity rule obtained the best fits with the least number of parameters.
We further compared the model by the Akaike information criterion that considers the
number of parameters beside the fitting quality. This criterion yields a likelihood for the
predictive plasticity rule to be the best one that is at least 7 orders of magnitude larger
as compared to the other four associative rules we considered (see Table 1, Methods,
and Figure 3-2).
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Figure 6: Suggested implementation of error- and target-driven predictive plasticity. (A1)
Mushroom body circuits for olfactory error-driven predictive plasticity. Kenyon cells (KCs)
carrying the odor information project to mushroom body output neurons (MBONs) through
synapses encoding the aversive value (v) of the odor. The input triggered by the electroshock,
s, drives the dopaminergic neurons (DANs) that are also inhibited by the MBONs. The DANs
represent the prediction error, e = s− v, and modulate the KC-to-MBON synapses according to
ẇ ∝ e õ , with õ representing the odor eligibility trace. The conditioned response probability (pcs,
avoidance reaction) is a function of v. (A2) Neuronal activity traces of a DAN (e, magenta), a
KC (o, light green) and a MBON (v, dark green), shown at the onset of an odor-shock pairing
(‘Pairing onset’, full triangle), 20 s later (During), and later at the test when only the odor is
presented (‘Test’, open triangle, cf. Eq. 9). The aversive value v steadily increases (dark green),
while the prediction error, e, decreases throughout learning and becomes negative when the odor
is presented alone (purple). (B1) Mushroom body circuit for target-driven predictive plasticity.
Beside the shock stimulus, the DANs can also indirectly be excited by the MBONs (or directly
by the KC, not shown) to form a shock prediction also in the DANs and prevent fast extinction.
The shock stimulus (s) sets the target for the MBON-to-DAN plasticity, and the DANs (d) set
the target for the KC-to-MBON plasticity (cf. Eq. 11). (B2) As in A2, but since the DANs now
form a prediction of the shock itself based on v, their activity increases throughout learning, and
they are also activated during the Test, when the conditioned odor is presented alone (Eq. 10).
Sketch adapted from [33] and [6] that favor excitatory feedback to the DANs as in version B.
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Error- versus target-driven predictive plasticity The same phenomenological
model of predictive learning may be implemented in two versions by the recurrent MB
circuitry. In both versions the MBONs code for the odor value (‘valence’) that drives
the conditioned response. For the error-driven predictive plasticity, the DANs directly
represent the shock-prediction error by comparing the shock strength with its MBON
estimate, and this prediction error modulates the KC-to-MBON plasticity (Figs 1B1 and
6A). For the target-driven predictive plasticity, the DANs represent the shock stimulus
itself that is then provided as a target for the KC-to-MBON plasticity. In this target-
driven predictive learning, the DANs may also learn to predict the shock stimulus based
on the MBON feedback, preventing a fast extinction of the KC-to-MBON memory (Figs
1B2 and 6B).

Predictive plasticity for both types of implementation has its experimental support.
In general, MBON activity is well recognized to encode the aversive or appetitive value
of odors and to evoke the corresponding avoidance or approach behavior [4, 24, 30, 54,
55], while KC-to-MBON synapses were mostly shown to undergo long-term depression,
but also potentiation (see e.g. [50]). DAN responses are shown to be involved in both
the representation of punishment and reward [6, 56, 26, 7] that drive the aversive or
appetitive olfactory conditioning [7]. This conditioning further involves the recurrent
feedback from MBONs to DANs that may be negative or positive [50, 33], see [5] for
a recent review. Moreover, the connectome from the larvae and adult fruit fly MBON
circuit reveals feedback projections from DANs to the presynaptic side on the KC and
the postsynaptic side on the MBONs at the KC-to-MBON synaptic connection [31, 32],
giving different handles to modulate synaptic plasticity.

With regard to the specific implementations, the error-driven predictive plasticity
is consistent with the observation that DAN activity decreases during the conditioning
[49, 51]. The two models have opposite predictions for learning while blocking MBON
activity. The error-driven predictive plasticity would yield a higher LI, similarly as
observed in [54], while the target-driven predictive plasticity would yield a lower LI,
similarly to [24]. It was also shown that some DANs increased their activity with learn-
ing while other DANs, in the same PPL1 cluster that is supposed to represent aversive
valences, decreased their activity [51]. In fact, error- and target driven predictive plas-
ticity may both act in concert to enrich and stabilize the representations. As shown
in Figure 6, DAN activity would decrease in those DANs involved in error-driven and
increase in those involved in target-driven predictive plasticity.

While error-driven predictive plasticity offers access to an explicit error represen-
tation in DANs, target-driven predictive plasticity has its own merits. If DANs and
MBONs code for similar information, they can support a positive feedback-loop to rep-
resent a short-term memory beyond the presence of an odor or a shock, as it was observed
for aversive valences in PPL1 DANs [6] and for appetitive PAM DANs [33]. A positive
feedback-loop between MBONs and DANs is further supported by the persistent fir-
ing between these cells after a rejected courtship that may consolidate memory of the
rejection, linked to as specific pheromone [57, 8].

19

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 30, 2019. ; https://doi.org/10.1101/2019.12.29.890533doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.29.890533
http://creativecommons.org/licenses/by-nc-nd/4.0/


Distributed learning, memory life-time and novelty-familiarity coding Target-
driven plasticity has further functional advantages in terms of memory retention time.
Any odor-related input to the DANs, arising either through a forward hierarchy from KC
[48] or a recurrence via MBONs to the DANs [6, 33], will extend the memory life-time
in a 2-stage prediction process: the unconditioned stimulus (s) that drives the DAN
activity (d) to serve as a target for the value learning in the MBONs via KC-to-MBON
synapses (v = wMKo), will itself be predicted in the DANs (see Eq. 11). Extending the
memory life-time through circuit plasticity might be attractive under the light of energy
efficiency, showing that long-term memory in a synapse involving de novo protein syn-
thesis can be costly [58, 8], while cheaper forms of individual synaptic memories likely
have limited retention times. Moreover, distributed memory that includes the learning
of an external target representation offers more flexibility, including the regulation of
the speed of forgetting [45].

Target-driven predictive plasticity may also explain the novelty-familiarity represen-
tation observed in the recurrent triple of KCs, DANs and MBONs [49]. The distributed
representation of valences allows for expressing temporal components of the memories.
Spontaneous activity in the KCs and their downstream cells [53] injures a minimal
strength of the KC-to-MBON synapses through predictive plasticity. A novel odor that
drives KCs will then also drive MBONs and, to a smaller extent (as we assume), also
DANs. If the DANs that represent the target for the KC-to-MBON plasticity are only
weakly activated by the odor, the KC-to-MBON synapses learn to predict this weaker
activity and depress. The depression results in a repetition suppression of MBONs and
the corresponding familiarization of the fly to the ongoing odor. However, when the
odor is cleared away, the MBON activity induced by spontaneously active KCs via de-
pressed synapses now becomes lower than the spontaneous DAN activity, and predictive
plasticity recovers the original synaptic strength. Eventually the spontaneous MBON
and DAN activites match again (Eq. 13) and the response to the originally novel odor
is also recovered, as seen in the experiment [49].

Olfactory learning is likely distributed across several classes of synapses in the MB.
The acquisition of olfactory memories was shown to be independent of transmitter release
in KC-to-MBON synapses, although the behavioral recall of these memories required the
intact transmission [59]. In fact, learning may also be supported by plasticity upstream of
the MBONs such that the effect of blocking KC-to-MBON transmission during learning is
behaviorally compensated. Predictive plasticity at the KC-to-MBON synapses requires
the summed synaptic transmissions across all synapses in the form of the value v = wo
to be compared with the target d, also during the memory acquisition. This type of
plasticity would therefore be impaired by blocking the release.

Distributed learning and absence of blocking Distributed learning also offers
flexibility in acquiring predictions from new cues. While the original Rescorla-Wagner
rule would predict blocking [1], this has not been observed in the fruit fly [46]. Blocking
refers to the phenomenon that, if the first odor of a compound-CS is pre-conditioned,
the second odor of the compound will not learned to become predictive for the shock.
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Because our predictive plasticity rules are expressed at the neuronal but not at the
phenomenological level, predictions about blocking will depend on the neuronal odor
representation. If the two odors activate the same MBONs, blocking would be observed
since the MBONs are already driven to the correct value representation by the first odor.
If they activate different MBONs, however, blocking would not be observed since the
MBONs of the second odor did not yet have the chance to learn the correct value during
the first conditioning. Hence, since blocking has not been observed in the fruit fly, we
postulate that the odors of the compound-CS in these experiments were represented by
different groups of MBONs.

Concentration-specificity and relieve learning How does our model relate to the
concentration-specificity and the timing-specifity of odor conditioning? First, olfactory
learning was found to be specific to the odor concentration, with different concentrations
changing the subjective odor identity [60]. The response behavior was described to be
non-monotonic in the odor intensity, with the strongest response for the specific con-
centration the flies were conditioned with. It was suggested that this may arise from a
non-monotonic odor representation in the KC population as a function of odor intensity
[61, 35]. Given such a presynaptic encoding of odor concentrations, the predictive ol-
factory learning in the KC-to-MBON connectivity would also inherit the concentration
specificity from the odor representation in the KCs. Our predictive plasticity, and also
the Rescorla-Wagner model, further predicts that learning with a higher odor concentra-
tion (but the same electroshock strength) only speeds up learning, but would not change
the asymptotic performance.

Second, olfactory conditioning was also shown to depend on the timing of the shock
application before or after the conditioning odor. While a shock application 30s after
an odor assigns this odor an aversive valence, an appetitive valence is assigned if the
shock application arises 30s before the odor presentation [16, 62, 17, 63]. Modeling the
approaching behavior in the context of predictive plasticity would require duplicating
our model to also represent appetitive valences, and the action selection would depend
on the difference between aversive and appetitive valences. Inverting the timing of CS
and US may explain ‘relief learning’ if a stopping electroshock would cause a decrease of
the target for aversive MBONs (d−) and an increase of the target for appetitive MBONs
(d+, see Eq. 12). An odor presented after the shock would then predict the increased
appetitive target and explain the relieve from pain behavior, similarly to the model of
relief learning in humans [64].

Overall, our behavioral experiments and the plasticity model for the KC-to-MBON
synapses support the notion of predictive learning in olfactory conditioning, with the
DANs representing either the CS-US prediction error or the prediction itself. While
predictive coding is recognized as a hierarchical organization principle in the mammalian
cortex [65, 66, 67, 68] that explains animal [2] and human behavior [69] it may also offer
a framework to investigate the logic of the MB and the multi-layer MBON readout
network as studied by various experimental work [24, 32].

21

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 30, 2019. ; https://doi.org/10.1101/2019.12.29.890533doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.29.890533
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods and Materials

Flies

We used Drosophila melanogaster of the Canton-S wild-type strain. Flies were reared
on standard cornmeal food at 25◦C and exposed to a 12:12 hour light-dark cycle. For
the experiments groups of 60-100 flies (1-4 days old) were used.

Behavioral experiments

The apparatus that was used to conduct the behavior experiment is based on [18] and was
modified to allow performing four experiments in parallel. Experiments were performed
in a climate chamber at 23 − 25◦C and 70-75% relative humidity. Training procedures
were done in dim red light and tests were accomplished in darkness. Two artificial
odors, benzaldehyde (Fluka, CAS No. 100-52-7) and limonene (Sigma-Aldrich, CAS No.
5989-27-5), were used for the experiments. 60µl of benzaldehyde was filled in plastic
containers of 5mm and 85µl of limonene was filled in plastic containers of 7mm. Odor
containers were attached to the end of the tubes. A vacuum pump was used for odor
delivery at a flow rate of 7 l/min. Tubes lined with an electrifiable copper grid were used
to apply electric shock. Shock pulses were 1.5 s long.

Sequence shock experiments

Groups of flies were loaded in tubes lined with an electrifiable grid. After an initial phase
of 90s, one of the odors was presented for 60s. At the same time electric shock pulses
were delivered. After 30s of non-odorised airflow, the second odor was presented for 60s,
without electric shock. Different electric shock treatments were used (see Fig. 2). In
half of the cases benzaldehyde was paired with electric shock, while in the other half
limonene was the paired odor. Whatever the idendity of the odor is, after pairing with
the shock it is called the conditioned stimulus (CS+) while the odor paired with 0 shock
strength is called the unconditioned stimulus (CS-). After the training flies were loaded
into a sliding compartment and moved to a choice point in the middle of two tubes.
Benzaldehyde was attached to one tube and limonene to the other. Flies could choose
between the two odors for 120s. Then, the number of flies in each odor tube was counted.

Repeated training experiment

One training block consists of 60s odor, 30s non-odorised air and 60s of the second
odor. Four electric shock pulses were delivered after 15, 30, 45 and 60s of the first odor
presentation. Flies were exposed to this training block one, two or four times. The time
between the training blocks was 90s. For ‘0.5 repetitions’ (as reported in Fig. 4) only
two pulses were delivered 45 and 60s after onset of the odor and this block was not
repeated. Experiments were performed with electric shock pulses of 25 and 50V. After
the training, learning performance was tested as in the sequence shock experiment.
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Continuous shock experiments

Continuous electric shock was used to train the animals instead of pulses. Electric shock
was applied during the entire presentation of the first odor (odor X). odor X and shock
duration were 10, 15, 30, 45, 90 or 120s. The second odor (odor Y) was presented for
the same duration as odor X and the electric shock. odor Y was always applied 30s after
the end of odor X presentation. Experiments were performed with 25 and 50V. The
learning test after the training was identical to the sequence shock experiment.

Minimal shock detection

For the electric shock avoidance tests, flies were loaded into a sliding test chamber
(compartment). The chamber with the flies was pushed to a choice point between two
arms (tubes) with an electrifiable grid at the floor. The grid in one tube was connected to
a voltage source (of strength S), whereas the other was not. Electric shock was delivered
continuously for 30 s and then the number of flies in each tube was counted. For a
shock of strength S = 5, 9 and 12.5 V we measure a performance index PI(S = 5V) =
0.006 ± 0.014 (mean ± standard error of the mean, SEM), PI(S= 9V) = 0.030 ± 0.014
and PI(S=12.5V) = 0.068± 0.019, respectively. For S=7 V we estimated the mean PI
to be roughly 0.01, with a SEM to be roughly twice as large, 0.02, see Figure 2-1.

Parameter optimization

The parameters are optimized to minimize the least square error between the experimen-
tal data and the model simulation. The optimization is done in Matlab (R2014a), using
Interior point method with maximum 3000 iterations, 1.0e-06 tolerance. Initial condi-
tions of the parameters are uniformly sampled from a wide interval, and all optimized
parameters with similar overall performances were clustered around the ones reported
in the caption of Fig. 3. The same set of parameters for the predictive plasticity (Eq. 7)
is used throughout. The mean square error (MSE) between data mean and model mean
is calculated by summing the squared error of the means (with the same Nfly and Ntrial)
for all 28 data points across all experiments, divided by 28. The parameters for the
predictive learning model are reported in the caption of Fig. 3, the ones for the other
models below.

Adaptable learning rate

The learning rate is assumed to increase with increasing stimulus strength (ṡ > 0) and
otherwise passively decays. Its dynamics has the form

dη

dt
= − η

τη
+ ∆η max{ṡ, 0} , (14)

with optimized parameters τη and ∆η. We were choosing τη = 133.48s and ∆η = 0.057
in all the experiments using predictive learning rule except for the simulation of the
target-driven learning model in Figure 6B where we set τη = 26.7s and ∆η = 0.74. For
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the discrete time simulations, a step-increase ∆s in the shock stimulus triggers a step
increase in η by ∆η∆s.

Linear STDP, nonlinear STDP, and covariance rule

Given the analogy of the olfactory conditioning to spike-timing (or stimulus-timing)
dependent plasticity (STDP) [13, 16, 17, 7], we considered two different forms of STDP
rules. The linear STDP learning rule is

dw

dt
= η1 s õ− η2 s̃ o , (15)

where s̃ is the low-pass filtered s with filtering time constant τs = 17.87s, õ is the low-
pass filtered o with time constant τo = 7.47s, η1 = −0.47, η2 = −0.47, α = 0.23, and
S◦ = 9.31V . For the linear STDP we get MSE = 5.489×10−3 for the indicated optimized
parameters.

The nonlinear STDP rule is of the form

dw

dt
= η1 tanh(α1 õ s)− η2 tanh(α2 o s̃) . (16)

The learning rates η1/2 were allowed to be both positive and negative. The optimal
parameters are η1 = 0.01, η2 = 0.19, τo = 51.20s, τs = 124.12s, α = 9.93, α1 = 9.93,
α2 = 0.44, S◦ = 11.91V , with a MSE = 6.550× 10−3.

The covariance rule has the form

dw

dt
= η (s− s̃) (o− õ) , (17)

and the optimal parameters are η = 0.12, τo = 300.00s, τs = 19.18s, α = 0.53, S◦ =
9.13V , with a MSE = 8.236× 10−3.

All these 3 rules (Eq. 15–17) failed mainly in reproducing the repetitive conditioning
experiments (Fig. 4B), see Supplementary Material. Overall, the MSE for all these
associative rules is roughly 10 times bigger than the MSE for the predictive rule (MSE =
6.393× 10−4).

Associative learning rules with adaptive learning rate

We also tested the associative learning rules with the adaptive learning rate from Equa-
tion 14. Although the MSEs get smaller for both linear and nonlinear STDP rules, they
remain twice as large as for the predictive learning rule (see Figure 3-2). The covari-
ance rule (with optimised parameters α = 0.12, S◦ = 3.68, τo = 37.70s, τs = 1498.38s,
τη = 60.54s, ∆η = 1.00, with a MSE = 1.00 × 10−2) did not profit from the adaptable
learning rate. For the linear STDP learning rule (Equation 15) the optimal parame-
ters with adaptable learning rate are α = 0.31, S◦ = 3.20, τo = 8.29s, τs = 171.05s,
τη1 = 16.01s, τη2 = 5.78s, ∆η1 = 0.39, ∆η2 = 5.71, with a MSE = 1.45× 10−3.

For the nonlinear STDP learning rule (Equation 16), the optimal parameters are
α = 0.13, S◦ = 3.21V , τo = 8.30s, τs = 171.10s, τη1 = 16.02s, τη2 = 5.82, ∆η1 = 8.96,
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∆η2 = 5.14, α1 = 0.24, α2 = 6.05, with a MSE = 1.46× 10−3. For the Hebbian additive
rule in Equation 6 with adaptable learning rate, the optimal parameters are α = 0.05,
S◦ = 5.08, τo = 1.50s, τη = 49.81s, ∆η = 5.46, with a MSE = 1.24× 10−2.

Model comparison based on the Akaike information criterion

We compared the various models on the basis of the Akaike information criterion (AIC)
that puts the model accuracy on the data set into relation to the number of parameters
used to achieve this accuracy [70, 71]. Assuming that the estimation errors of all n
experimental conditions are normally distributed with zero mean, the AIC for a given
model M is calculated as a log-likelihood,

AIC(M) = 2k + n log MSE(M) + 2C , (18)

where k is the number of parameters in the model, n = 28 the number of experimental
conditions, and C = n

2 (ln(2π)+1)+1 = 40.73. The relative likelihood p for model M to

be true as compared to the predictive plasticity model M0 is p(M) = exp AIC(M0)−AIC(M)
2

(Table 1).

Table 1: Akaike information criterion supports predictive plasticity

Model M
Predictive
plasticity

Nonlinear
STDP

Linear
STDP

Covariance Hebbian

Number of
parameters

5 10 8 6 5

MSE(M) 6.40× 10−4 1.46× 10−3 1.45× 10−3 1.00× 10−2 1.24× 10−2

-AIC(M) 114.45 81.36 85.55 35.48 31.46

Relative
likelihood p

1 6.49× 10−8 5.30× 10−7 7.15×10−18 9.48×10−19

Data availability

The mathematical model (Matlab) including the experimental data will be available on
https://github.com/unibe-cns.
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[28] Galili, D. S., Lüdke, A., Galizia, C. G., Szyszka, P. & Tanimoto, H. Olfactory trace
conditioning in Drosophila. The Journal of Neuroscience 31, 7240–8 (2011). URL
http://www.ncbi.nlm.nih.gov/pubmed/21593308.

[29] Hige, T. et al. Heterosynaptic Plasticity Underlies Aversive Olfactory Learning in
Drosophila. Neuron 88, 985–998 (2015). URL http://dx.doi.org/10.1016/j.

neuron.2015.11.003.

[30] Owald, D. et al. Activity of Defined Mushroom Body Output Neurons Underlies
Learned Olfactory Behavior in Drosophila. Neuron 86, 417–427 (2015). URL http:

//dx.doi.org/10.1016/j.neuron.2015.03.025.

[31] Eichler, K. et al. The complete connectome of a learning and memory centre in
an insect brain. Nature 548, 175–182 (2017). URL http://dx.doi.org/10.1038/

nature23455.

[32] Takemura, S.-y. et al. A connectome of a learning and memory center in the adult
Drosophila brain. eLife 6, e26975 (2017).

[33] Ichinose, T. et al. Reward signal in a recurrent circuit drives appetitive long-term
memory formation. eLife 4, e10719 (2015).

28

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 30, 2019. ; https://doi.org/10.1101/2019.12.29.890533doi: bioRxiv preprint 

http://www.ncbi.nlm.nih.gov/pubmed/12671643
http://www.ncbi.nlm.nih.gov/pubmed/12671643
http://dx.doi.org/10.1016/j.neuron.2017.01.030
https://elifesciences.org/articles/04580
https://elifesciences.org/articles/04580
http://www.nature.com/doifinder/10.1038/nature11614
http://www.nature.com/doifinder/10.1038/nature11614
http://www.ncbi.nlm.nih.gov/pubmed/21593308
http://dx.doi.org/10.1016/j.neuron.2015.11.003
http://dx.doi.org/10.1016/j.neuron.2015.11.003
http://dx.doi.org/10.1016/j.neuron.2015.03.025
http://dx.doi.org/10.1016/j.neuron.2015.03.025
http://dx.doi.org/10.1038/nature23455
http://dx.doi.org/10.1038/nature23455
https://doi.org/10.1101/2019.12.29.890533
http://creativecommons.org/licenses/by-nc-nd/4.0/


[34] Ueno, K. et al. Coincident postsynaptic activity gates presynaptic dopamine release
to induce plasticity in Drosophila mushroom bodies. eLife 6, e21076 (2017).

[35] Nehrkorn, J., Tanimoto, H., Herz, A. V. M. & Yarali, A. A model for non-monotonic
intensity coding. Royal Society Open Science 2, 150120 (2015). URL http://rsos.

royalsocietypublishing.org/content/2/5/150120.abstract.

[36] Fechner, G. T., translated by Adler, H. E., edited by Boring, E. G. & Howes, D. H.
Elements of Psychophysics (Holt, Rinehart and Winston, INC., 1966).

[37] Stevens, S. S., Carton, A. S. & Shickman, G. M. A scale of apparent intensity of
electric shock. Journal of Experimental Psychology 56, 328–334 (1958).

[38] Tully, T., Preat, S., T.and Boynton & Del Vecchlo, M. Genetic Dissection in
Drosophila. Cell 79, 35–47 (1994).

[39] Pamir, E. et al. Average group behavior does not represent individual behavior in
classical conditioning of the honeybee. Learning and memory 18 11, 733–41 (2011).

[40] Pamir, E., Szyszka, P., Scheiner, R. & Nawrot, M. P. Rapid learning dynamics in
individual honeybees during classical conditioning. Frontiers in Behavioral Neuro-
science 8, 313 (2014). URL https://www.frontiersin.org/article/10.3389/

fnbeh.2014.00313.

[41] Diegelmann, S., Klagges, B., Michels, B., Schleyer, M. & Gerber, B. Maggot learning
and Synapsin function. The Journal of Experimental Biology 216, 939–951 (2013).

[42] Widrow, B. & Hoff, M. E. Adaptive switching circuits. WESCON Convention
Record 96—-104 (1960).

[43] Sutton, R. S. Learning to Predict by the Methods of Temporal Differences. Machine
Learning 3, 9–44 (1988).

[44] Urbanczik, R. & Senn, W. Learning by the Dendritic Prediction of Somatic Spiking.
Neuron 81, 521–528 (2014).

[45] Brea, J., Gaál, A. T., Urbanczik, R. & Senn, W. Prospective Coding by Spiking
Neurons. PLoS Computational Biology 12, 1–25 (2016). URL http://dx.plos.

org/10.1371/journal.pcbi.1005003.

[46] Young, J., Wessnitzer, J., Armstrong, J. & Webb, B. Elemental and non-elemental
olfactory learning in drosophila. Neurobiology of Learning and Memory 96, 339 –
352 (2011).

[47] Tomchik, S. M. & Davis, R. L. Dynamics of Learning-Related cAMP Signaling and
Stimulus Integration in the Drosophila Olfactory Pathway. Neuron 64, 510–521
(2009). URL http://dx.doi.org/10.1016/j.neuron.2009.09.029.

29

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 30, 2019. ; https://doi.org/10.1101/2019.12.29.890533doi: bioRxiv preprint 

http://rsos.royalsocietypublishing.org/content/2/5/150120.abstract
http://rsos.royalsocietypublishing.org/content/2/5/150120.abstract
https://www.frontiersin.org/article/10.3389/fnbeh.2014.00313
https://www.frontiersin.org/article/10.3389/fnbeh.2014.00313
http://dx.plos.org/10.1371/journal.pcbi.1005003
http://dx.plos.org/10.1371/journal.pcbi.1005003
http://dx.doi.org/10.1016/j.neuron.2009.09.029
https://doi.org/10.1101/2019.12.29.890533
http://creativecommons.org/licenses/by-nc-nd/4.0/


[48] Cervantes-Sandoval, I., Phan, A., Chakraborty, M. & Davis, R. L. Reciprocal
synapses between mushroom body and dopamine neurons form a positive feedback
loop required for learning. eLife 6, e23789 (2017).

[49] Hattori, D. et al. Representations of Novelty and Familiarity in a Mushroom Body
Compartment. Cell 169, 956–969.e17 (2017). URL http://dx.doi.org/10.1016/

j.cell.2017.04.028.

[50] Cohn, R., Morantte, I., Cohn, R., Morantte, I. & Ruta, V. Coordinated and Com-
partmentalized Neuromodulation Shapes Sensory Processing in Drosophila. Cell
163, 1742–1755 (2015). URL http://dx.doi.org/10.1016/j.cell.2015.11.019.

[51] Felsenberg, J., Barnstedt, O., Cognigni, P., Lin, S. & Waddell, S. Re-evaluation of
learned information in Drosophila. Nature (2017). URL http://dx.doi.org/10.

1038/nature21716.

[52] Felsenberg, J. et al. Integration of parallel opposing memories underlies memory
extinction. Cell 175, 709 – 722.e15 (2018).

[53] Joseph, J., Dunn, F. A. & Stopfer, M. Spontaneous olfactory receptor neuron
activity determines follower cell response properties. Journal of Neuroscience 32,
2900–2910 (2012).

[54] Hige, T., Aso, Y., Rubin, G. M. & Turner, G. C. Plasticity-driven individualization
of olfactory coding in mushroom body output neurons. Nature 526, 258–262 (2015).

[55] Perisse, E. et al. Aversive learning and appetitive motivation toggle feed-forward
inhibition in the drosophila mushroom body. Neuron 90, 1086 – 1099 (2016).

[56] Liu, C. et al. A subset of dopamine neurons signals reward for odour mem-
ory in Drosophila. Nature 488, 512–516 (2012). URL http://www.nature.com/

doifinder/10.1038/nature11304.

[57] Keleman, K. et al. Dopamine neurons modulate pheromone responses in Drosophila
courtship learning. Nature 489, 145–149 (2012).

[58] Mery, F. & Kawecki, T. J. Frederic Mery and Tadeusz J. Kawecki. Science 308,
20–23 (2005).

[59] McGuire, S. E., Le, P. T. & Davis, R. L. The role of Drosophila mushroom body
signaling in olfactory memory. Science 293, 1330–1333 (2001).

[60] Wright, G. A., Thomson, M. G. A. & Smith, B. H. Odour concentration affects
odour identity in honeybees. Proceedings of the Royal Society B 272, 2417–2422
(2005).

[61] Luo, S. X., Axel, R. & Abbott, L. F. Generating sparse and selective third-order
responses in the olfactory system of the fly. PNAS 107, 10713–10718 (2010).

30

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 30, 2019. ; https://doi.org/10.1101/2019.12.29.890533doi: bioRxiv preprint 

http://dx.doi.org/10.1016/j.cell.2017.04.028
http://dx.doi.org/10.1016/j.cell.2017.04.028
http://dx.doi.org/10.1016/j.cell.2015.11.019
http://dx.doi.org/10.1038/nature21716
http://dx.doi.org/10.1038/nature21716
http://www.nature.com/doifinder/10.1038/nature11304
http://www.nature.com/doifinder/10.1038/nature11304
https://doi.org/10.1101/2019.12.29.890533
http://creativecommons.org/licenses/by-nc-nd/4.0/


[62] Yarali, A. et al. Genetic distortion of the balance between punishment and relief
learning in Drosophila. Journal of Neurogenetics 23, 235–47 (2009). URL http:

//www.ncbi.nlm.nih.gov/pubmed/19052955.

[63] König, C. et al. Reinforcement signaling of punishment versus relief in fruit flies.
Learning and Memory 25, 247–257 (2018).

[64] Seymour, B. et al. Opponent appetitive-aversive neural processes underlie predictive
learning of pain relief. Nature Neuroscience 8, 1234–1240 (2005).

[65] Rao, R. P. N. & Ballard, D. H. Predictive coding in the visual cortex: a functional
interpretation of some extra-classical receptive-field effects. Nature Neuroscience 2,
79–87 (1999). URL http://www.nature.com/doifinder/10.1038/4580.

[66] Bastos, A. M. et al. Canonical Microcircuits for Predictive Coding. Neuron 76,
695–711 (2012). URL https://doi.org/10.1016/j.neuron.2012.10.038.

[67] Vladimirskiy, B., Urbanczik, R. & Senn, W. Hierarchical novelty-familiarity repre-
sentation in the visual system by modular predictive coding. PLoS ONE 10, 1–19
(2015). URL https://www.ncbi.nlm.nih.gov/pubmed/26670700.

[68] Sacramento, J., Costa, R. P., Bengio, Y. & Senn, W. Dendritic error backpropaga-
tion in deep cortical microcircuits. arXiv 1–37 (2017). arXiv:1801.00062v1.

[69] Lefebvre, G., Lebreton, M., Meyniel, F., Bourgeois-Gironde, S. & Palminteri,
S. Behavioural and neural characterization of optimistic reinforcement learn-
ing. Nature Human Behavior 1, 1–9 (2017). URL http://dx.doi.org/10.1038/

s41562-017-0067.

[70] Akaike, H. Information Theory and an Extension of the Maximum Likelihood
Principle, 199–213 (Springer New York, New York, NY, 1998). URL https:

//doi.org/10.1007/978-1-4612-1694-0_15.

[71] Banks, H. & Joyner, M. L. Aic under the framework of least squares estimation.
Applied Mathematics Letters 74, 33 – 45 (2017).

31

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 30, 2019. ; https://doi.org/10.1101/2019.12.29.890533doi: bioRxiv preprint 

http://www.ncbi.nlm.nih.gov/pubmed/19052955
http://www.ncbi.nlm.nih.gov/pubmed/19052955
http://www.nature.com/doifinder/10.1038/4580
https://doi.org/10.1016/j.neuron.2012.10.038
https://www.ncbi.nlm.nih.gov/pubmed/26670700
arXiv:1801.00062v1
http://dx.doi.org/10.1038/s41562-017-0067
http://dx.doi.org/10.1038/s41562-017-0067
https://doi.org/10.1007/978-1-4612-1694-0_15
https://doi.org/10.1007/978-1-4612-1694-0_15
https://doi.org/10.1101/2019.12.29.890533
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Information

Predictive olfactory learning in Drosophila

Chang Zhao*1, Yves F Widmer*2, Soeren Diegelmann1, Simon G Sprecher†2, Walter
Senn†1

1 Department of Physiology, University of Bern, Switzerland
2 Department of Biology, University of Fribourg, Switzerland
* These authors contributed equally to this work
†Corresponding authors: senn@pyl.unibe.ch, simon.sprecher@unifr.ch

Figure 2-1: The minimal detectable shock stimulus: Electrical shocks with 5V, 9V, and 12.5V
are applied in the electric shock avoidance tests. The performance index decreases as the shock
intensity decreases. PI is close to 0 when the shock intensity is 5V and significantly above 0 for
9V, and we estimate S◦ ≈ 7V. The error bars represent the SEM.
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Figure 3-1: Associative learning rules are not able to fit all experimental data. A comparison of
all learning rules. (A) Temporal sequence training with shocks-at-end alignment. (B) Temporal
sequence training with shocks-at-beginning alignment. (C) Repeated training with 25V. (D)
Repeated training with 50V. (E) Continuous shock training with 25V. (F) Continuous shock
training with 50V. The associative (linear and nonlinear STDP and covariance) learning rules
fail mostly in the repeated training experiments, as they are not able to capture the saturation
in the experimental data.
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A B

Figure 4-1: Extracting the learning time constant for the ongoing shock experiments. (A) The
analytical solution (solid lines, Equation S5) for the development of the LI matches the numeric
simulation (dash lines, overlaid) for the ongoing conditioning experiments (stars). (B) The time
constant of learning diverges for shock intensity S close to S◦, and it monotonically decreases for
shock intensities beyond S◦. For 25V, the learning time constant is 30.99s; for 50V, it is 21.37s
(with optimized parameters from the model, see caption of Fig. 3).
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Analytical solution for the ongoing shock experiments

In the ongoing shock experiments, the odor and shock stimuli are both turned on for
the whole pairing duration, and turned off when pairing stops. For a constant odor
concentration o = 1 for t ≥ 0 while o = 0 before, the dynamics of the odor eligibility
trace, τo ˙̃o = −õ+ o, is solved by

õ(t) = o(1 − e−
t
τo ) . (S1)

With a step increase of the shock from 0 to ∆s at time t = 0, the learning rate η
according to the dynamics Equation 12 undergoes a step increase by ∆η∆s that again
decays during the constant voltage application,

η(t) = ∆η∆se
− t
τη . (S2)

The weight w from the KCs to the MBONs Further, according to the predictive plasticity
rule Equation 7, ẇ = η(s− v)õ, exponentially increases from 0 to s

o ,

w(t) =
s

o

(
1 − e−f(t)

)
, (S3)

with

f(t) = ∆η∆s o2
(

τητo
τη + τo

(
e
−
(

1
τη

+ 1
τo

)
t − 1

)
− τη

(
e
− t
τη − 1

))
. (S4)

Plugging Equation 19 into v = wo and this into expression for the avoidance probability
pcs(v), Equation 5, the learning index LI(v) = 2pcs(v)− 1 develops in time according to

LI(t) =
1 − e−s(1−e

−f(t))

1 + e−s(1−e
−f(t))

, (S5)

and this converges to LI(s) is as in Equation 8.
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