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ABSTRACT
Host-parasitoid population dynamics is often probed using a semi-discrete/hybrid
modeling framework. Here, the update functions in the discrete-time model connect-
ing year-to-year changes in the population densities are obtained by solving ordinary
differential equations that mechanistically describe interactions when hosts become
vulnerable to parasitoid attacks. We use this semi-discrete formalism to study two
key spatial effects: local movement (migration) of parasitoids between patches dur-
ing the vulnerable period; and yearly redistribution of populations across patches
outside the vulnerable period. Our results show that in the absence of any redistribu-
tion, constant density-independent migration and parasitoid attack rates are unable
to stabilize an otherwise unstable host-parasitoid population dynamics. Interest-
ingly, inclusion of host redistribution (but not parasitoid redistribution) before the
start of the vulnerable period can lead to stable coexistence of both species. Next,
we consider a Type-III functional response (parasitoid attack rate increases with
host density), where the absence of any spatial effects leads to a neutrally stable
host-parasitoid equilibrium. As before, density-independent parasitoid migration by
itself is again insufficient to stabilize the population dynamics and host redistri-
bution provides a stabilizing influence. Finally, we show that a Type-III functional
response combined with density-dependent parasitoid migration leads to stable coex-
istence, even in the absence of population redistributions. In summary, we have sys-
tematically characterized parameter regimes leading to stable/unstable population
dynamics with different forms of spatial heterogeneity coupled to the parasitoid’s
functional response using mechanistically formulated semi-discrete models.

KEYWORDS
host-parasitoid; migration; semi-discrete model; Nicholson-Bailey; functional
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1. Introduction

The typical host-parasitoid interaction involves an interval within a given year for
which the parasitoid and host are in direct contact with each other. This interval is
known as the vulnerable period as host larvae are susceptible to oviposition by the
female parasitoid. Generally, a parasitoid species spends a proportion of the vulnerable
period searching for a suitable host [22, 33]. The landscape in which a female parasitoid
forages may be spatially heterogeneous in nature, consisting a several host larvae
patches. Studies have shown that once a parasitoid is within a suitable patch, they
may not leave. In fact, they will search until reaching the boundary and turn around
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to continue searching [20, 25, 32]. However, search efficiency is key for reproduction
and parasitoids may cut their losses and flee to a different patch in search of a suitable
host [3, 8, 33]. The decision for a parasitoid to stay or leave a particular patch is based
on several key factors: the concentration of kairomones in the patch which corresponds
directly to the density of current host population, the presence of competitors such as
hyperparasitoids, the number of times the female has made a successful egg deposit,
and past experiences in a particular patch [6, 9, 16, 25, 32, 34]. This decision making
process as well as the transit time between patches may provide an inefficiency in the
parasitoid’s search tactics that yields persistence in the host and parasitoid interaction.
For a more in depth review of patch-decision making rules and time allocation, we refer
the interested reader to [5] and [32].

Theoretical dynamics of spatially distributed host-parasitoid systems have been
extensively studied [10, 11]. The transfer of hosts and parasitoids among patches is
considered a global form of migration if a redistribution of hosts and parasitoids occurs
among all patches in each generation. This type of migration is known to have stabiliz-
ing effects on the coexistence equilibrium of host-parasitoid systems [13–15, 19]. Local
migration is characterized by hosts and parasitoids dispersing only to adjacent patches
within each generation. This is also known to yield persistence of the host-parasitoid
interaction [4, 12, 28, 29, 31] provided there are enough patches. These discrete-time
models have captured the conditions necessary for host-parasitoid persistence using
classic parasitism dynamics within each patch such as Nicholson-Bailey [24] or May
[21]. Adler et. al. [1] show that relatively low migration rates result in the persistence
stable oscillations whereas Reeve [26] and Rohani [28] report destabilizing effects of mi-
gration if the dispersal occurs within a patch. Lett et. al. [19] consider a discrete-time
two-patch model where global migration can occur more than once before parasitism
at each patch takes effect. They show that the frequency of migration has a stabi-
lizing effect as well. The aggregate model considered by Lett et. al. is similar to the
present model in Section 3.2.3 when a global redistribution of hosts and parasitoids is
applied to the semi-discrete model. However, we present results that couple the global
migration proportions of both hosts and parasitoids outside the vulnerable (i.e. redis-
tribution) with local migration that occurs during the vulnerable period. In short, the
semi-discrete approach allows for a generalization of these past models.

Parasitoid and host migration have also been coupled with other dynamic character-
istics of the parasitoid species. Huang et. al. [17] created a continuous model between
two patches that compare effects of the host-parasitoid interaction with autoparasitism
and migration between both patches. They find that in the two-patch model, density-
dependent migration does have a stabilizing effect in addition to the stabilizing nature
of autoparasitism. The authors derive a host density dependent cross-migration term
that considers both searching time and handling time of a female parasitoid. In the
present model, we consider a similar density dependent migration and report that also
has a stabilizing effect on the location migration scale. Reigada et. al. [27] consider
migration coupled with forager interference and sex ratio control. They find that sex
ratio alone cannot stabilize the persistence of the host-parasitoid interaction but the
role of competitive interference influences the capability of a parasitoid to reduce host
populations. On a more general approach, Ngoc et. al. [23] also employ a continuous
model to measure the effects of local patch migration in competing species models.
In particular, they investigate the competition-colonization trade-off and report that
fast asymmetric migration can lead to the inferior competitor dominating a particular
homogeneous environment. An extensive review is given by Briggs and Hoopes in [2].
In summary, the migration dynamic has been implemented into both discrete and con-
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tinuous models alike, and the overall modeling approaches have elucidated the effects
of the migratory behavior on the persistence of host-parasitoid populations. We wish
to investigate similar effects with a hybrid approach.

Our aim is to formulate a general two-patch migration model using the semi-discrete
modeling framework [7, 30], and analyze the conditions for coexistence with respect
to migration parameters. As we have seen in past models, stability of the coexistence
equilibrium point usually occurs when the parasitoid is inefficient, indicating that if
there is an interaction that inhibits the parasitoid’s ability to oviposit then coexis-
tence is more likely to occur. We investigate this migration induced inefficiency in
two forms: global redistribution of populations not occurring within the vulnerable
period and a local parasitoid migration between patches during the vulnerable period.
We assume that only female parasitoids migrate during the vulnerable period and the
host larvae are immobile. Within each patch, we consider two types of parasitism:
constant parasitism (i.e. Nicholson-Bailey model) and functional response. The paper
is organized as follows: we formulate the semi-discrete two-patch model in Section 2
and provide numerical results for constant migration and density-dependent migration
with constant parasitism at each location; in Section 3, we derive several models with
constant migration under the assumption that one or both populations redistribute to
each patch every generation; Section 4 consists of the same models with a functional
response in parasitism; and we conclude with a discussion in Section 5.

2. Model Formulation

We consider the population of female hosts and parasitoids at two locations. The host
and parasitoid populations at site i in year t are denoted Hi,t and Pi,t, respectively.
We assume that the yearly update for hosts and parasitoids at each location is given
by the following discrete system:

Hi,t+1 = Li(T, t) (1)

Pi,t+1 = kIi(T, t), (2)

where Li(T, t) is the number of host larvae escaping parasitism after the vulnerable
period at location i and kIi(T, t) is the number of infected host larvae at the end of the
vulnerable period at location i, where k is the average number of parasitoid larvae that
emerge from one infected host. We define the host larvae, infected host larvae, and
parasitoid populations as Li(τ, t), Ii(τ, t), and Pi(τ, t), respectively. We will assume
that at each location basic parasitism occurs via the parasitic attack rate gi( · ) for
i = 1, 2. Here, we write ‘( · )’ to mean that this function may be density dependent.
Similarly, since the parasitoids are mobile and the host larvae are not, we assume that
the parasitoids can migrate from location to location via the migration rates gij( · ),
defined as the potentially density dependent rate from location i to location j. The
reactions can be written in terms of the following differential equations:

dL1

dτ
= −g1( · )L1P1 (3)

dI1

dτ
= g1( · )L1P1 (4)

dP1

dτ
= −g12( · )P1 + g21( · )P2 (5)

dL2

dτ
= −g2( · )L2P2 (6)

dI2

dτ
= g2( · )L2P2 (7)

dP2

dτ
= g12( · )P1 − g21( · )P2, (8)
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where τ ∈ [0, T ] represents the time variable over the vulnerable period. Here, we
subject each population above to the following initial conditions:

L1(0, t) = RH1,t (9)

I1(0, t) = 0 (10)

P1(0, t) = P1,t (11)

L2(0, t) = RH2,t (12)

I2(0, t) = 0 (13)

P2(0, t) = P2,t, (14)

where R > 1 denotes the number of viable eggs per adult host. Using this model-
ing framework, we seek to investigate the stability of the system under a variety of
migration dynamics and redistribution assumptions. We note here that the general
system for a two-patch model shown above considers local parasitoid migration be-
tween adjacent patches during the vulnerable period. A global redistribution of hosts
and parasitoids is not present in this model, which suggests that the density of hosts
and parasitoids at each patch in the next generation is based on the concentration left-
over at the end of the previous generation’s vulnerable period. In this sense, the global
redistribution into the next generation is completely determined by the continuous
dynamics of the previous generation.

2.1. Constant Migration and Parasitism

We consider the simplest case – both the migration rates constant, i.e. gij( · ) = mij .
Because we are investigating the stabilizing effect of migration, we also assume the
parasitism rates are constant, i.e. gi( · ) = ci. We note that constant parasitism in
this form is analogous to Nicholson-Bailey dynamics at each location [24, 30]. Using
these expressions for the migration and parasitism rates, we solve Equations (3) – (8)
subject to the initial conditions in Equations (9) – (14) for all variables (Appendix
A). In Equations (1) and (2), we obtain the following discrete yearly update for the
number of hosts and parasitoids at each patch:

H1,t+1 = RH1,tf1( · ) (15)

P1,t+1 = kRH1,t

[
1− f1( · )

]
(16)

H2,t+1 = RH2,tf2( · ) (17)

P2,t+1 = kRH2,t

[
1− f2( · )

]
, (18)

where fi( · ) is the fraction of hosts surviving into the next year at location i. These
functions are given by

f1(P1,t, P2,t) = exp
{
−c1

[m21

m
(T − γ) + γ

]
P1,t

}
exp

[
−c1

m21

m
(T − γ)P2,t

]
(19)

f2(P1,t, P2,t) = exp
{
−c2

[m12

m
(T − γ) + γ

]
P2,t

}
exp

[
−c2

m12

m
(T − γ)P1,t

]
, (20)

where m = m12 +m21 and γ = (1− e−mT )/m. The fixed points of this system are
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H∗1 =
P ∗1

k(R− 1)
(21)

P ∗1 =

[
(c2m12 − c1m21)(T − γ) + c2mγ

]
ln(R)

c1c2Tmγ
(22)

H∗2 =
P ∗2

k(R− 1)
(23)

P ∗2 =

[
(c1m21 − c2m12)(T − γ) + c1mγ

]
ln(R)

c1c2Tmγ
. (24)

We find that the spectral radius of the Jacobian matrix for the system of four equations
given by (15) – (18) is always greater than one for all migration parameter values and
for R > 1 (Appendix A). This indicates that constant, local migration alone does not
provide a stabilizing effect in the host-parasitoid interaction. This confirms that local
migration among two sites is unstable.

2.2. Density Dependent Migration

In this section, we investigate the behavior of the system when migration is density
dependent. There are several factors that may influence the decision of a single para-
sitoid to stay or leave a particular patch. The presence of substances (i.e. kairomones)
secreted by the host informs the parasitoid about patch characteristics such as patch
size and host concentration [32]. Thus, rate of migration is inversely proportional to
host density. To model this characteristic, we may define the migration rate from patch
i to patch j as the following function:

gij( · ) =
mij

1 + aLi(τ, t)
, (25)

where a is associated to parasitoid searching time similar to that in the model by
Huang et. al. [17], where the mobile-handling parameter is set to zero, i.e. there is
no migration while handling. Using numerical evidence based on trajectories, we find
that dependence on the unparasitized host larvae alone does not yield persistence in
the host-parasitoid interaction.

Furthermore, parasitoids are able to detect if a host is already parasitized by probing
it with its ovipositor. In this case, the host is determined to be unsuitable and if
a threshold number of infected hosts are encountered, the parasitoid will leave the
patch [32]. In some species, the decision to leave a patch is determined by how many
times the parasitoid has oviposited in that patch. Therefore, to avoid encountering its
own oviposited host for a second time, the parasitoid may abandon a patch for other
suitable hosts in an adjacent patch [6]. We assume that the migration rate is directly
proportional to the concentration of parasitoids infected host larvae. We define the
migration rate from patch i to patch j as the following function:

gij( · ) = mijIi(τ, t). (26)

By a numerical investigation, the model experiences diverging oscillations for both
hosts and parasitoids indicating that dependence on the infected host larvae does not
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induce stability.
Finally, parasitoids may have incentive to leave a patch based on the presence other

parasitoids [18], in a competitive sense. We assume the rate of migration to and from
patches is linearly dependent on the population of parasitoids at each patch,

gij( · ) = mijPi(τ, t) (27)

Also, we assume the migration parameters are not equal, i.e. m12 6= m21. Under these
conditions, we solve Equations (3) – (8) subject to the initial conditions in (9) – (14)
(Appendix B). As in the constant migration case, this yields a discrete yearly update
for hosts and parasitoids at each location given by Equations (15) – (18), with the
fraction of hosts surviving at each location given by

f1(P1,t, P2,t) = exp

[( √
m12m21

|m21 −m12|
− m21

m21 −m12

)
c1TPt

] [
1 +A1e

µTPt

1 +A1

] c1
m21−m12

(28)

f2(P1,t, P2,t) = exp

[( √
m12m21

|m12 −m21|
− m12

m12 −m21

)
c2TPt

] [
1 +A2e

−µTPt

1 +A2

] c2
m12−m21

(29)

where Pt = P1,t + P2,t, µ = 2sgn(m12 −m21)
√
m12m21, and

A1 =

( √
m12m21

|m21−m12| −
m21

m21−m12

)
Pt + P1,t( √

m12m21

|m21−m12| + m21

m21−m12

)
Pt − P1,t

, A2 =

( √
m12m21

|m12−m21| −
m12

m12−m21

)
Pt + P2,t( √

m12m21

|m12−m21| + m12

m12−m21

)
Pt − P2,t

.

The fixed points for this system cannot be obtained explicitly. Preliminary trajec-
tories of this system suggest that coexistence is impossible; however, it is possible for
only one location to sustain a host and parasitoid population while the other dies out.
Figure 1 shows trajectories in the phase plane for the host and parasitoid populations
at each patch for three values of migration rates, where m12 > m21. The host popu-
lation at patch 2 dies out in every simulation, but the other population survives as
long as the migration rate is not too rapid. In the case when m12 � m21, the sur-
viving populations will exhibit diverging oscillations. However, in every case, stability
is impossible when the migration rates are comparable in size, m12 ≈ m21. Overall,
this suggests that coexistence can occur at a single patch only if most parasitoids are
exiting that patch throughout the vulnerable period.

3. Redistribution

In this section, we consider the effects of global redistribution between each generation
coupled with local migration during the vulnerable period. We assume a dispersion of
host larvae and/or adult female parasitoids occurs at the beginning of every season,
resulting in a similar redistribution to each patch. Further, we assume that this dis-
persion results in an identical proportion to each patch every year. This is a similar
assumption to models considered by Adler [1] and Lett et. al. [19]. To test this assump-
tion on the stability of the system, we modify the initial conditions of the continuous
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Figure 1. Persistence is possible at a single location, only if migration rates are asymmetric.
As the migration rate from patch 1 to patch 2 increases in magnitude, the surviving populations at patch 1

exhibit a stable limit cycle. Each figure shows trajectories in the phase plane for (H1,t, P1,t) and (H2,t, P2,t)

with R = 2, c1 = c2 = 1, T = 1, k = 1, m21 = 0.01 and (left) m12 = 8, (middle) m12 = 12, and (right)
m12 = 16 with H1,0 = H2,0 = 8, P1,0 = P2,0 = 5.

model. If we only allow the parasitoid population to disperse yearly, the results remain
unstable with diverging oscillations. In the following sections, we discuss the results of
redistributing the hosts and redistributing both populations as these yield coexistence.

3.1. Redistribution of Hosts

We assume that the yearly update for the hosts and parasitoids are subject to identical
continuous dynamics during the vulnerable period as in Equations (3) – (8), with
gij( · ) = mij . The proportion of the total host population, Ht, dispersed to patch 1
will be denoted by α, which is a redistribution parameter between 0 and 1. To model
this, we modify the initial conditions in (9) and (12) to the following:

L1(0, t) = αRHt (30) L2(0, t) = (1− α)RHt. (31)

In this model, we need only consider the total number of hosts, whose yearly up-
date is given by Ht+1 = L1(T, t) + L2(T, t). This yields a three dimensional discrete
system of the form

Ht+1 = RHt [αf1( · ) + (1− α)f2( · )] (32)

P1,t+1 = αkRHt [1− f1( · )] (33)

P2,t+1 = (1− α)kRHt [1− f2( · )] , (34)
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where fi is the fraction of hosts surviving at location i. These functions are given by

f1(P1,t, P2,t) = exp
{
−c1

[m21

m
(T − γ) + γ

]
P1,t

}
exp

[
−c1

m21

m
(T − γ)P2,t

]
(35)

f2(P1,t, P2,t) = exp
{
−c2

[m12

m
(T − γ) + γ

]
P2,t

}
exp

[
−c2

m12

m
(T − γ)P1,t

]
. (36)

Numerical simulations of this model show that coexistence is possible. To better un-
derstand the persistence of each population, we numerically compute a stability region
in Figure 2. Here, we vary the redistribution parameter α and the ratio of migration
rates, log(m12/m21). With m21 = 0.1, we see that persistence of of hosts and para-
sitoids only occurs when m12 is at least 1.2 orders of magnitude larger than m12. This
suggests that coexistence is impossible when the migration between patches is similar,
i.e. asymmetric rates yield stability. Also in Figure 2 is a plot of two stable trajec-
tories corresponding to α = .62 and α = .32 with asymmetric migration rates. The
parameters associated to these trajectories correspond to points near the boundary of
the stability region. We see that α = .62, patch 2 yields persistence of both host and
parasitoid populations but patch 1 only consists of a host population as t→∞. This
suggests that a host refuge is present at the first location as long as the migration
to the patch with hosts (i.e. patch 2) is relatively large enough. In contrast, when
α = .32, we see the opposite steady-state behavior. Hosts and parasitoids both persist
at patch 1 even though the migration rate away from this patch is much higher. Patch
2, however, yields only parasitoids as t→∞. Thus, depending on the value of α, two
types of limiting behavior my exist at each location.

Figure 2. Global host redistribution stabilizes the constant migration model yielding persistence
at both locations for asymmetric local migration rates. As the redistribution parameter α increases,

the coexistence equilibrium essentially switches from patch 2 to patch 1, indicating a host refuge is present for

larger α and a parasitoid refuge is present for smaller α. (Left) A numerical depiction of the stability region in
(log10(m12/m21), α) space, with R = 2, c1 = c2 = .1, T = 1, k = 1, and m21 = .1. Two points are plotted near

the boundary of this stable region and the phase plane trajectories, (H1,t, P1,t) and (H2,t, P2,t), corresponding
to these points are given on the right. For each trajectory, H1,0 = H2,0 = 8, P1,0 = P2,0 = 5, and (top-right)

m12 = 6.31 and α = .62 and (bottom-right) m12 = 6.31 and α = .32.
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3.2. Redistribution of Hosts and Parasitoids

To obtain analytical results, we assume that both host larvae and adult female para-
sitoids are subject to a redistribution to each location every year. To model this, we
define the total hosts and total parasitoids in year t as Ht and Pt, respectively. We
employ the initial conditions given by Equations (30) and (31) for the host population
and we assume the parasitoid population is redistributed yearly at each location. The
proportion of the total parasitoid population, Pt, at patch one will be denoted by β, a
redistribution parameter between 0 and 1. The initial conditions for the redistribution
of parasitoids are given as

P1(0, t) = βPt (37) P2(0, t) = (1− β)Pt. (38)

In this model, the update for the total populations is given by

Ht+1 = L1(T, t) + L2(T, t) (39)

Pt+1 = kI1(T, t) + kI2(T, t). (40)

We solve this system for all variables in Equations (3) – (8) (Appendix C). We obtain
the following discrete yearly update for the number of hosts and parasitoids:

Ht+1 = RHtf( · ) (41)

Pt+1 = kRHt

[
1− f( · )

]
, (42)

where f( · ) is the fraction of hosts surviving parasitism at both locations into the next
year. This function is

f(Pt) = αe−zc1Pt + (1− α)e−(T−z)c2Pt , (43)

where the parameter z is given by

z =
m21

m
T + γ

(
β − m21

m

)
. (44)

where m = m12 +m21 and γ = (1− e−mT )/m. We note that the parameter z contains
all information about the locatl migration dynamics – β is the proportion of parasitoids
starting at the first location, and m12 and m21 are the migration rates between each
location. We note that z ∈ [0, 1] for all β, m12, and m21. An in depth description of
the parameter z is contained in Appendix C. In short, z is a measure of the strength
of migration from site 2 to site 1. As we’ll see, persistence is only possible when z ≈ 0.
We wish to do a stability analysis in the remaining parameters of the system, namely
z, R, and α, with the parasitism rates, c1 and c2, held fixed as well as k and T . In this
sense, we’ll be able to determine the effect of the migration parameter on coexistence
of the two species.

3.2.1. Reduction to Nicholson-Bailey Model

The fraction of hosts surviving parasitism, Equation (43), is similar to the Nicholson-
Bailey model in the sense that f(Pt) is a weighted average of exponential functions, the
weight being determined by the proportion, α, of hosts at the first location. Several
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scenarios of this model will simplify to the unstable Nicholson-Bailey model. If the
entire population of host larvae are at either location at the start of the vulnerable
period each year, then the model reduces to the Nicholson-Bailey model. That is, if
α = 0 or α = 1, then the model is unstable. When α = 0, the fraction of hosts surviving
is f(Pt) = exp(−zc1Pt). Similarly, if α = 1, then f(Pt) = exp[−(1− z)c2Pt], which is
essentially identical to the Nicholson-Bailey model. Also, if the migration parameters,
β, m12, and m21 are chosen so that z = 0.5 and c1 = c2 = c (i.e. the parasitism
rates are the same at each site), then f(Pt) = exp(−cPt/2), which is identical to
the Nicholson-Bailey model. In each scenario, both populations experience diverging
oscillations.

3.2.2. No-Return to Patch 1 (z = 0)

We consider a sub-case of the previous model when the migration parameters β, m12,
and m21 are chosen so that z = 0. For instance, if we consider no-return from site
2 to site 1, i.e. m21 = 0, and the migration rate from site 1 to site 2 is very fast,
i.e. m12 →∞, then z → 0. In this case, we see that the parasitoids essentially transport
instantaneously to the second location without returning, which results in the entire
parasitoid population attacking host larvae at the second location. The total parasitoid
population is trapped at the second location with only a proportion of the host larvae
population to oviposit. We’ll see that this is enough to yield coexistence of both species
overall. Fixing the parasitism rates to be equal at each site (c1 = c2 = c), the stability
region is dependent on the parameters R and α, which determine the amount of host
larvae at each location. We explore this model below.

Setting z = 0, the fraction of hosts surviving is

f(Pt) = α+ (1− α)e−cPt , (45)

We find the fixed points of the system in Equations (41) and (42) as

P ∗0 =
1

c
ln

(
(1− α)R

1− αR

)
, H∗0 =

P ∗0
k(R− 1)

. (46)

We note that these fixed point values are only valid if α < 1/R. A linear stability
analysis in Appendix C shows that coexistence is possible with asymptotically stable
solutions occurring when

α∗ < α <
1

R
,

where α∗ satisfies the following equation:

(1− α∗R)R

R− 1
ln

(
(1− α∗)R
1− α∗R

)
= 1.

For α < α∗, both species experience bounded oscillations. Figure 3 depicts the
stability region. When the migration strength from site 2 to site 1 is non-existent
(z = 0), we see that the proportion of hosts available at site 1 must decrease with R
for coexistence to occur. Essentially, this means that if the parasitoids are trapped at
the second location, then there must be a larger proportion of host larvae available for
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oviposition at the second location every year as the number of viable eggs increases.
However, this region of stability shrinks with R, which means the system is less likely
to exhibit coexistence if the number of viable eggs is large. In contrast, we see that as
R → 1, the proportion of host larvae available at site 1 need only be more than half
for stable conditions to occur. This means that a host refuge exists at site 1 with the
majority of the hosts residing there.

3.2.3. Asymmetric migration or slow symmetric migration (z 6= 0)

We consider the fixed points of the discrete dynamical system given in Equations (41)
and (42). We wish to determine the effect of parasitoid migration on the stability of
this system. To this end, we fix the parasitism rates at each location to be c1 = c2 = 1
with k = 1 and T = 1. Also, we choose several values for the migration parameter z
and determine a stability region in (R,α) for each z value, where z ∈ (0, 0.5). We find
that the fixed points of the system in Equations (41) and (42), denoted by (H∗, P ∗), for
the parasitoid and host larvae population, respectively, satisfy the following equations:

f(P ∗) =
1

R
, H∗ =

P ∗

R− 1
. (47)

The solution for the parasitoid fixed point in Equation (47) cannot be obtained explic-
itly. However, we can numerically compute a stability region by considering the Jury
condition det[J(H∗, P ∗)] = 1, where J is the Jacobian matrix given in Equation (C6).

We establish a stability region in (R,α) space for different values of the migration
parameter z (Appendix C). Figure 3 gives the stability region for z = 0.05, z = 0.1,
z = 0.125, and z = 0.14. We can see that as z increases, the stability region tends
to shrink. This indicates that stability occurs in the presence of relatively unbalanced

Figure 3. Global redistribution of hosts and parasitoids stabilizes the constant migration model
yielding coexistence when z = 0 (no-return) and z 6= 0 (asymmetric migration or slow symmetric

migration). (Left) The stability region in (R,α) space for z = 0. We see that this model yields three stability
regimes: bounded oscillations, asymptotically stable, and unbounded oscillations. The fixed point of the system

is asymptotically stable for all α such that α∗ < α < 1/R. (Right) The stability region in (R,α) space
for z = 0.05, 0.1, 0.125, and 0.14. Within the stable region, coexistence occurs; otherwise, the populations
experience diverging oscillations.
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migration rates as z tends to be much smaller when m12 � m21. In fact, in the presence
of relatively balanced initial parasitoid concentrations (i.e. β ≈ 0.5), m12 needs to be
approximately two orders of magnitude larger than m21 (see Figure C1) to maintain
a migration parameter value of z = 0.05. In this case, a regime of coexistence is
observed for α > 0.5 as long as the number of viable eggs per host (R) is relatively
small. This indicates that migration from patch 1 to patch 2, with essentially no return
to patch 1, creates enough inefficiency in the searching habits of the parasitoid to
yield a coexistence between the two populations. In short, the parasitoids are initially
balanced at each patch, but they are quickly leaving patch 1 for patch 2, when most
of the host larvae reside at patch 1 (i.e. α > 0.5). Also, this indicates coexistence is
possible when parasitoids abandon the majority of hosts at site 1 in favor of site 2,
creating a host refuge. Ultimately the decision to leave the patch and barely return
causes a stable system. However, as R increases, the stability region begins to favor
values of α less than 0.5, which indicates that reproduction of viable hosts must be
relatively high to maintain the majority of parasitoids that are searching at site 2.
As z approaches a threshold value near 0.14, the region shrinks to a set completely
contained above the line α = 0.5, indicating that movement away from the patch
with the majority hosts is the only condition for coexistence. Overall, we conclude
that for a uniform distribution of parasitoids among sites, the migration rates must
be unbalanced in favor of migration to the site with less hosts in order for coexistence
to occur.

To get a better understanding of the stability criteria for equal migration rates, we
fix the value of R and consider a stability region in (α, β). Using a similar approach as
in Appendix C, we may work with Equation (47) and det[J(H∗, P ∗)] = 1 to establish
how coexistence depends on the redistribution proportions at patch 1 for hosts, α, and
parasitoids, β. Letting m12 = η = m21 and fixing R = 1.5, Figure 4 gives the stability

Figure 4. Coexistence is possible when both populations redistribute yearly with equal local
migration rates; however, this rate must be slow. As R increases, coexistence only occurs for smaller
values of η, and for relatively equal redistribution proportions. The stability region is shown for the redistri-

bution model in (α, β) space for equal migration rates, m12 = η = m21, where η varies from 0.001 to 0.3. Two
sets of stability regions are shown for R = 1.5 and R = 8.
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region for several values of η. Here, a stability region exists for migration rates that
are relatively low, η < .3. We see that the stability region for all values of η exists
for β between approximately 0.4 and 0.9 and α less than or equal to approximately
0.1. Coexistence will occur in the inverse scenario as well if the proportion of hosts
is greater than approximately 0.9 with the proportion of parasitoids between 0.1 and
0.6. Therefore, for R = 1.5 the two species coexist with equal migration rates but only
if they are relatively redistributed with their majorities at different locations at the
beginning of the vulnerable period, suggesting that a host refuge is present. Figure 4
also shows stability regions for R = 8. As R increases, we not only note the stability
region shrinks in size, but the value of α and β tend toward each other, indicating that
coexistence occurs if the hosts and parasitoids are redistributed with their majorities
at the same location. This is a sharp contrast to the case when R ≈ 1; however, as R
increases, the migration rates must be very small for any type of stability to occur. In
fact, the migration rates are ∼ 10−1, suggesting that most parasitoids do not migrate
during the vulnerable period since T = 1. We note that this model is a generalization
of the Lett et. al. model [19] and the Adler model [1]. Allowing η → 0 gives z → βT ,
which would mean there is no local migration during the vulnerable period. This yields
identical results to Lett’s aggregate model (global redistribution parameters: α = v∗1
and βTc1 = µ∗1).

4. Functional Response

In this section, we consider linear dependence on the current host larvae density in
the parasitism rate, i.e. gi( · ) = ciLi, which incorporates a quadratic functional re-
sponse. For a single location, the quadratic functional response model is known to
yield neutrally stable oscillations in both the host and parasitoid populations [30].
In the following sections, we incorporate the functional response into the two-patch
model and determine whether global and/or local migration can stabilize the system.

4.1. Functional Response with Constant Migration

We investigate the behavior of the system when a functional response is applied to
the parasitism rates with migration held constant. We assume gij( · ) = mij and the
parasitism is linearly dependent on the host population at each site, gi( · ) = ciLi as
in [30]. Under these conditions, we solve Equations (3) – (8) subject to the initial
conditions in (9) – (14) (Appendix D). As in the constant migration case, this yields
an equivalent discrete yearly update for hosts and parasitoids at each location as
Equations (15) – (18) but with the fraction of hosts surviving at each location given
by

f1(H1,t, P1,t, P2,t) =
1

1 + c1

{[
m21

m (T − γ) + γ
]
P1,t + m21

m (T − γ)P2,t

}
RH1,t

(48)

f2(H2,t, P1,t, P2,t) =
1

1 + c2

{[
m12

m (T − γ) + γ
]
P2,t + m12

m (T − γ)P1,t

}
RH2,t

, (49)

where m = m12 + m21 and γ = (1 − e−mT )/m. Similar to the constant parasitism
case, constant migration does not have a stabilizing effect on the functional response
model without redistribution. The two patch model remains neutrally stable for all
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parameter values.

4.2. Functional Response with Density Dependent Migration

As in Section 2.2, we consider three separate cases where the migration rate is density
dependent. Parasitoids typically migrate from patch 1 to patch 2 if the host density
at the patch 1 is low. Also, if the infected host larvae density or the parasitoid density
is high at patch 1, a parasitoid may decide to leave patch 1 for patch 2. To cover these
three cases, we let gij( · ) be defined by Equations (25), (26), or (27) coupled with the
functional response in parasitism. Under these conditions, we numerically integrate
Equations (3) – (8) subject to the initial conditions (9) – (14).

Figure 5. Persistence is possible when all three types of density dependent migration are coupled

with functional response. The type of dependence yields different rates of convergence. Trajectories in the
phase plane for (H1,t, P1,t) and (H2,t, P2,t) with R = 2, c1 = c2 = 0.01, T = 1, k = 1, m21 = 0.1 and m12 = 0.2

using three density dependent migration rates: (left) gij( · ) = mij/(1+Li(t, τ)), (middle) gij( · ) = mijIi(t, τ),

and (right) gij( · ) = mijPi(t, τ) with H1,0 = H2,0 = 8, P1,0 = P2,0 = 5.

A numerical investigation show that the three systems all yield stable, non-zero
equilibria at both locations. In fact, stable trajectories are observed when the migration
rates are relatively equal. Figure 5 shows an output of the functional response model
with equal parameters in all three density dependent cases. In contrast to the constant
migration models of Section 2.2, both patches exhibit non-zero population values as
t→∞. However, the rate of convergence for each model seems to depend on the type
of density dependence migration, with the rate of convergence slowest if the migration
is inversely proportion to the current host larvae population.

4.3. Functional Response with Redistribution of Hosts

We consider the functional response model with the host population redistribution as
explained in Section 3.1. This yields a three dimensional discrete system equivalent to
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Equations (32) – (34) with the fraction of hosts surviving at each location given by

f1(Ht, P1,t, P2,t) =
1

1 + αc1

{[
m21

m (T − γ) + γ
]
P1,t + m21

m (T − γ)P2,t

}
RHt

(50)

f2(Ht, P1,t, P2,t) =
1

1 + (1− α)c2

{[
m12

m (T − γ) + γ
]
P2,t + m12

m (T − γ)P1,t

}
RHt

.

(51)

As in the constant parasitism case, the redistribution of hosts has a stabilizing effect to
the original neutrally stable model. Figure 6 shows a numerically constructed stability
region according to the redistribution parameter α and the ratio of migration rates.
Compared to Figure 2, we see that there is a much larger region of parameter space that
yields a stable equilibrium. In fact, the functional response model is much more stable
when the migration rates are relatively equal in magnitude. Interestingly, however, a
region of instability is possible if the migration rates are asymmetric in magnitude
with α > 0.5. This suggests that local migration during the vulnerable period has
a destabilizing effect when asymmetric redistribution of hosts is present. The figure
confirms that the model is neutrally stable if α = 0.5 with equal migration rates.
For two points in the parameter space, we also show the trajectories at each location.
Most trajectories contained in the stability region will yield non-zero equilibria at
both locations, but we can see that for large α, the population at patch 2 seems to
approach zero in Trajectory A. This suggests, as in the case with constant migration,
that various types of equilibrium behavior is present within the stability region.

Figure 6. Functional response further stabilizes the global host redistribution model with con-
stant migration yielding persistence at both locations with symmetric and asymmetric migra-

tion rates. (Left) A numerical depiction of the stability region in (log10(m12/m21), α) space, with R = 2,
c1 = c2 = .1, T = 1, k = 1, and m21 = .1. Two points are plotted near the boundary of this stable region

and the phase plane trajectories, (H1,t, P1,t) and (H2,t, P2,t), corresponding to these points are given on the
right. For each trajectory, H1,0 = H2,0 = 8, P1,0 = P2,0 = 5, and (top-right) m12 = 3.98 and α = .95 and
(bottom-right) m12 = 10 and α = .55.
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4.4. Functional Response with Redistribution of Hosts and Parasitoids

We consider a redistribution of both populations as explained in Section 3.2 with a
functional response applied to the parasitism at each location. We solve the system for
all variables in Equations (3) – (8) subject to the redistribution initial conditions given
by Equations (30) and (31) for the host population and Equations (37) and (38) for
the parasitoid population. (Appendix E). This yields the following update equivalent
to Equations (41) and (42) with the fraction of hosts surviving to the next year given
by

f(Ht, Pt) =
α

1 + c1zαRHtPt
+

1− α
1 + c2(T − z)(1− α)RHtPt

. (52)

We let T = 1 for the remainder of the section. The lumped parameter z =
z(β,m12,m21) also appears in this model and is given by Equation (C5). As in Sec-
tion 3.1, we wish to do a stability analysis in the parameters z, R, and α, with the
functional response rates of parasitism, c1 and c2 fixed. We will fix the values of k and
T as well as these parameters are known to not influence stability.

4.4.1. Reduction to Neutrally Stable Model

The fraction of hosts surviving parasitism, Equation (52), is similar to the neutrally
stable model considered by Singh et. al. in [30] in the sense that f(Ht, Pt) is a weighted
average of reciprocal functions. Here, the weight is determined by the yearly redistri-
bution of hosts at site 1, given by α. This model will yield identical results to the
quadratic functional response model in [30], if α = 0 or α = 1. In either of these cases,
all hosts are at a single location subject to a functional response in the parasitism
rate. Also, the model is neutrally stable if α + z = 1 and the rates of parasitism are
equivalent (c1 = c2 = c). In this case, the fraction of hosts surviving is exactly

f(Ht, Pt) =
1

1 + czαRHtPt
, (53)

which has the same form as the Singh et. al. quadratic functional response model
with an extra factor of zα in the denominator. This model will yield neutrally stable
trajectories with a period of 2π/ arctan(

√
R2 − 1) for small amplitude oscillations. The

neutral stability is not dependent on the value of c, z, or α.

4.4.2. No-Return to Patch 1 (z = 0)

As in the model with constant parasitism and migration, we assume the lumped param-
eter takes on a value of z = 0. This reduces the model considerably and gives insight
into what happens when the migration rate from patch 1 to patch 2 is very fast or if
the migration rate from patch 2 to patch 1 is essentially zero. Fixing c1 = c2 = c and
z = 0, the fraction of hosts surviving to the next year is

f(Ht, Pt) = α+
1− α

1 + c(1− α)RHtPt
, (54)
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which reveals the following equilibrium point

H∗0 =
P ∗0

k(R− 1)
(55)

P ∗0 = (R− 1)

√
k

c(1− α)(1− αR)R
. (56)

A linear stability analysis in Appendix E shows that det
[
J(H∗0 , P

∗
0 )
]
< 1 for all

α < 1/R and R > 1. Therefore, the model is asymptotically stable for all values of α
and R for which it exists. A similar analysis holds for z = 1.

4.4.3. Asymmetric migration or slow symmetric migration (z 6= 0)

We consider the fixed point of the discrete dynamical system given in Equations (41)
and (42) with the fraction of hosts surviving given by Equation (52), where z ∈ (0, 0.5).
The fixed points of this satisfy the following equations:

H∗

P ∗
=

1

k(R− 1)
(57)

H∗P ∗ = −
(1− αR)k2 +

(
1− (1− α)R

)
k1

2k1k2R
+ · · ·√[

(1− αR)k2 +
(
1− (1− α)R

)
k1

]2 − 4k1k2(R− 1)

2k1k2R
, (58)

where k1 = c1αz and k2 = c2(1 − z)(1 − α). A brief stability analysis in Appendix E
shows that this fixed point is asymptotically stable for all α, z, and R except when
α+ z = 1; in this case, the fixed point is neutrally stable.

5. Discussion

In this paper, we have considered the classic host-parasitoid interaction coupled with
global redistribution of both populations and local migration of female parasitoids. In
contrast to most phenomenological models, we incorporate the migration dynamic into
the semi-discrete framework, which tends to have more relevance to parasitoid popula-
tions with one year life cycles. This approach also allows us to track the local migration
tendencies of parasitoids during the vulnerable period. The preceding analyses show
that constant local migration between two patches cannot stabilize Nicholson-Bailey
parasitism at each site. In fact, local migration coupled with a neutrally stable func-
tional response will also not stabilize host-parasitoid interactions. However, if local
migration is density dependent, a stable equilibrium is formed. Further, coupling loca-
tion migration with global redistribution has a quantifiable stabilizing effect in host-
parasitoid interactions, which is known to be the case in other studies. A summary of
all stabilizing factors are contained in Table 5. Overall, we find that the asymmetric
local migration rates typically stabilize the two-patch semi-discrete model; however, in
the case of global redistribution of hosts only or both hosts and parasitoids, persistence
can occur with relatively equal local migration rates.
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We found, using numerical evidence, that density dependent local migration is stabi-
lizing in both the constant and functional response parasitism models. We considered
three types of density dependent migration: inversely proportional to the host larvae
population, directly proportional to the infected host population, directly proportional
to parasitoid population. In the case of constant parasitism, coexistence is only ob-
served at the a single patch for asymmetric migration rates. Indeed, persistence at
patch 1 occurs when g12 = m12P1 with m12 at least three orders of magnitude greater
than m21. With T = 1, this essentially means all parasitoids migrate to patch 2 and
never return. Hence, stability is caused by the parasitoids leaving the patch that has
a host population. In the case of a quadratic functional response in the attack rates,
Singh and Nisbet show that the sole equilibrium point is neutrally stable [30]. In
the two-patch semi-discrete model, we find that any type of density dependence in
the migration rate yields stability. In fact, the migration rates can be relatively equal,
suggesting that there is a dynamic exchange of parasitoids between the patches during
the vulnerable period.

Redistribution of the host population can stabilize the two-patch model. This means
the host population is reset to similar proportions every year. In the case of constant
parasitism, stability can arise as long as m12 is at least one order of magnitude larger
than m21. Furthermore, the proportion of hosts at patch 1 (α) must be contained
between approximately 0.35 and 0.65. For α closer to 0.65 and log10(m12/m21) = 1.8,
coexistence occurs in the form of a host refuge. We find that coexistence occurs at
patch 2, where there are less hosts every year; however, the parasitoids are traveling
to patch 2 more frequently and so little to no parasitoids reside at patch 1, leaving the
host population to steadily oscillate there. This suggests that persistence is defined
by parasitoids leaving the patch that has the larger proportion of hosts, which is a
reoccurring theme in the stability criteria. If log10(m12/m21) = 1.8 and α is closer to
0.35, we see the opposite: a coexistence equilibrium exists at patch 1 with a parasitoid
population existing at patch 2 (with very little to no hosts). This suggests that the
system is stable when parasitoids are moving to the patch with a larger host popula-

Parasitism Local Migration Global Redistribution Stability

Constant
gi( · ) = ci

Constant
gij( · ) = mij

None Unstable

Hosts only
Coexistence/ Host Refuge possible

(asymmetric, see Fig. 2)

Hosts and Parasitoids
Coexistence/ Host Refuge possible

(asymmetric or slow
symmetric, see Fig. 3)

Parasitoid Dependent
gij( · ) = mijPi

None
Single Patch Coexistence

(asymmetric)

Functional
Response
gi( · ) = ciLi

Constant
gij( · ) = mij

None Neutrally Stable

Hosts only
Coexistence
(see Fig. 6)

Hosts and Parasitoids
Stable for α+ z 6= 1

Neutrally Stable otherwise.
Density Dependent
gij( · ) = mij/(1 + Li)

gij( · ) = mijIi
gij( · ) = mijPi

None Always Stable

Table 1. Summary of migration tendencies that stabilize the two-patch semi-discrete model.

Persistence may occur for asymmetric local migration rates, i.e. m12 � m21, or slow symmetric, i.e. m12 ≈
m21 ≈ 10−1. Global redistribution coupled with constant local migration and density dependent local migration

stabilize the two-patch semi-discrete model under both constant and functional response parasitism.
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tion. The coexistence occurs where the lesser of the two populations reside, which is
completely opposite of the previous case. We see that this scenario leads to the para-
sitoids decimating the host population at site 2, yet still surviving from year-to-year.
In the case of functional response in the parasitism rate, we see a much larger region
of stability. In fact, for equal migration rates, the model is stable for all values of α,
except for α = 0.5, suggesting that there is a dynamic exchange of parasitoids between
both patches during the vulnerable period. When α = 0.5, the model is identical to
the single patch model by Singh and Nisbet [30]. As m12 becomes larger than m21,
a region of instability arises for α > 0.5, suggesting that persistence is impossible if
more parasitoids are located at the site with less hosts.

Global redistribution of both populations stabilizes the two-patch semi-discrete
model. In this case, both populations reset at each locations with similar proportions
every year. As in the previous models, an offset ratio of local migration rates will yield
stability in the system. If we consider relatively equal migration rates, m12 ≈ m21,
a value of z ≈ 0.01 (i.e. the strength of migration from site 2 to site 1 is weak) is
maintained when β ≈ 0. However, in this situation both migration rates are of order
10−2. This means that coexistence will occur within the system if there is negligible
patch-use with the majority of the parasitoids searching patch 2, the location with
minimal hosts under the condition that R, the number of viable eggs per adult host,
is approximately less than 4. As R increases, we note again that stability occurs for
values of α less than 0.5, indicating that more hosts are at patch 2 than patch 1.
Therefore, in the case of increasing R and negligible yet relatively equal migration
rates, as long as the majority of parasitoids coincide with the majority of hosts at
the same patch at the beginning of the vulnerable period every year, coexistence can
occur. This is a heavy contrast to the case when R → 1 as the parasitoids and hosts
must be, essentially, in different places to yield coexistence. As z increases towards
0.14, coexistence is maintained for migration rates between 10−1 and 100, but we see
that the stability region shrinks to a set bounded below by α = 0.5. Hence, coexistence
is only maintained if the parasitoids are located at the site with less hosts, but have a
tendency to search both sites at equal pace.

Appendix A. ODE Solutions and Stability Analysis to Constant
Parasitism Model with Constant Migration

We seek the solutions to the ODE system given by Equations (3) – (8) subject to the
initial conditions in Equations (9) – (14). We assume the parasitism rates are constant,
g1( · ) = c1 and g2( · ) = c2. Also, the migration rates are constant, g12( · ) = m12 and
g21( · ) = m21. Let m = m12 + m21 and Pt = P1,t + P2,t. Then the solutions for the
parasitoid populations at each location are given by

P1(τ, t) =
m21

m
Pt +

(
P1,t −

m21

m
Pt

)
e−mτ (A1)

P2(τ, t) =
m12

m
Pt +

(
P2,t −

m12

m
Pt

)
e−mτ , (A2)
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and the solutions for the host populations are

L1(τ, t) = RH1,t exp

{
−c1

[
m21

m
Ptτ +

(
P1,t −

m21

m
Pt

)(1− e−mτ

m

)]}
(A3)

L2(τ, t) = RH2,t exp

{
−c2

[
m12

m
Ptτ +

(
P2,t −

m12

m
Pt

)(1− e−mτ

m

)]}
. (A4)

It follows immediately from the initial conditions that I1(τ, t) = RH1,t − L1(τ, t) and
I2(τ, t) = RH2,t − L2(τ, t).

We consider the stability of the fixed points given by Equations (21) – (24). Noting
that fi(P

∗
1 , P

∗
2 ) = 1/R, for i = 1, 2, we may write the Jacobian matrix evaluated at

the fixed point of the system of four equations as the block matrix

J =

[
I 1

kA
k(R− 1)I −A

]
, (A5)

where I is the 2× 2 identity matrix and

A =
R

R− 1

[
P1

∂f1
∂P1

P1
∂f1
∂P2

P2
∂f2
∂P1

P2
∂f2
∂P2

]∣∣∣∣∣
P1=P ∗1 ,P2=P ∗2

. (A6)

Interestingly, we find that the determinant of J is given by det(J) = R2 det(A) and
the Eigenvalues of J are roots of the following characteristic polynomial

λ2(λ− 1)2 + λ(λ− 1)(λ−R)tr(A) + (λ−R)2 det(A) = 0. (A7)

Let µ1 and µ2 be the eigenvalues of A, then the eigenvalues of J are given by

λ1,2 =
1− µ1

2
±
√

(1− µ1)2 + 4Rµ1

λ3,4 =
1− µ2

2
±
√

(1− µ2)2 + 4Rµ2.

We find that the spectral radius of J is always greater than one for all migration
parameter values, indicating that the nontrivial fixed point given by Equations (21) –
(24) is asymptotically unstable for R > 1.

Appendix B. ODE Solutions to the Constant Parasitism Model with
Parasitoid Dependent Migration

We seek the solutions to the ODE system given by Equations (3) – (8) subject to the
initial conditions in Equations (9) – (14). We assume the parasitism rates are constant,
g1 = c1 and g2 = c2. Also, the migration rates are linearly dependent on the parasitoid
population at each location, g12( · ) = m12P1 and g21( · ) = m21P2. Let m = m12 +m21

and Pt = P1,t +P2,t, then the solutions for the parasitoid populations at each location
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are given by

P1(τ, t) =
m21

m21 −m12
Pt −

√
m12m21

|m21 −m12|

[
1−A1e

µPtτ

1 +A1eµPtτ

]
Pt (B1)

P2(τ, t) =
m12

m12 −m21
Pt −

√
m12m21

|m12 −m21|

[
1−A2e

−µPtτ

1 +A2e−µPtτ

]
Pt (B2)

(B3)

where Pt = P1,t + P2,t, µ = 2sgn(m12 −m21)
√
m12m21 and

A1 =

( √
m12m21

|m21−m12| −
m21

m21−m12

)
Pt + P1,t( √

m12m21

|m21−m12| + m21

m21−m12

)
Pt − P1,t

, A2 =

( √
m12m21

|m12−m21| −
m12

m12−m21

)
Pt + P2,t( √

m12m21

|m12−m21| + m12

m12−m21

)
Pt − P2,t

The solutions for the host populations are

L1(τ, t) = RH1,t exp

[( √
m12m21

|m21 −m12|
− m21

m21 −m12

)
c1Ptτ

] [
1 +A1e

µPtτ

1 +A1

] c1
m21−m12

(B4)

L2(τ, t) = RH2,t exp

[( √
m12m21

|m12 −m21|
− m12

m12 −m21

)
c2Ptτ

] [
1 +A2e

−µPtτ

1 +A2

] c2
m12−m21

(B5)

It follows immediately from the initial conditions that I1(τ, t) = RH1,t − L1(τ, t) and
I2(τ, t) = RH2,t − L2(τ, t).

Appendix C. ODE Solutions and Stability Analysis to the Constant
Parasitism Model with Redistribution

The solutions for the parasitoid populations at each location to the ODE system given
by Equations (3) – (8) with g1( · ) = c1 and g2( · ) = c2 subject to the redistribution
initial conditions in Equations (30) – (31) and Equations (37) – (38) are given by

P1(τ, t) =
m21

m
Pt +

(
β − m21

m

)
Pte
−mτ (C1)

P2(τ, t) =
m12

m
Pt +

(
1− β − m12

m

)
Pte
−mτ , (C2)

where m = m12 +m21. The solutions for the host populations are

L1(τ, t) = αRHt exp

{
−c1

[
m21

m
τ +

(
β − m21

m

)(1− e−mτ

m

)]
Pt

}
(C3)

L2(τ, t) = (1− α)RHt exp

{
−c2

[
m12

m
τ +

(
1− β − m12

m

)(1− e−mτ

m

)]
Pt

}
(C4)
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It follows immediately from the initial conditions that I1(τ, t) = αRHt − L1(τ, t) and
I2(τ, t) = (1− α)RHt − L2(τ, t). Defining the migration parameter z as

z =
m21

m
T + γ

(
β − m21

m

)
. (C5)

gives the fraction of host surviving in Equation (43). Letting T = 1, we note that
the parameter z = z(β,m12,m21) contains all information about the local migration
dynamics – β is the proportion of parasitoids starting at the first location, and m12

and m21 are the migration rates between each location. We note that z ∈ [0, 1] for
all β, m12, and m21. Here, z is a measure of the strength of migration from site 2
to site 1. Figure C1 depicts a top down view of iso-surfaces for specific values of z.
Considering the top-left figure of Figure C1, we see that when z is small, i.e. z = 0.01,
the parameter m12 is generally much larger than m21 for values of β > 0.5. Small
values of z can also be obtained if the migration parameters are small with relatively
equal magnitudes and the proportion of parasitoids at site 1 is small, i.e. β ≈ 0. In
this case, a weak strength of migration from patch 2 to 1 is attained because almost
all parasitoids are at site 2 and the migration rates are negligible but relatively equal.
Considering the bottom-right figure of Figure C1, we see that z = 0.5 corresponds to
migration rates being relatively equal for any value of β. However, if the migration
rates are relatively small but not equal, we see that z = 0.5 can be established if the
proportion of parasitoids at site 1 balances the strength of movement from site 2 to site
1. Similar behavior is observed for values of z greater than 0.5 – the value 1− z is the
strength of migration of parasitoids from site 1 to site 2. In Sections 3.2.2 and 3.2.3,
we perform a stability analysis in the remaining parameters of the system, namely z,
R, and α, with the parasitism rates, c1 and c2, held fixed as well as k and T .

Figure C1. Iso-surfaces for the migration parameter z = z(β,m12,m21) defined by Equation (C5) with

T = 1. The surfaces are generated for z = 0.01 (top-left), z = 0.015 (top-right), z = 0.35 (bottom-left), and
z = 0.5 (bottom-right) and viewed from above, with the colormap corresponding to the value of β. We see that

to attain a small value of z, which represents the strength of migration from site 2 to 1, asymmetric migration
rates are needed for relatively equal distribution of parasitoids (i.e. β ≈ 0.5).

For z = 0: We consider the stability of the fixed points that satisfy Equation
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(46). Define the right hand side of Equations (41) and (42) as the following functions:
F (H,P ) = RHf(P ) and G(H,P ) = kRH

[
1 − f(P )

]
. We can see that k∂F/∂P =

−∂G/∂P . We obtain the general form of the Jacobian matrix to the system evaluated
at (H,P ) as the following:

J(H,P ) =

[
1 RPf ′(P )

k(R−1)

k(R− 1) RPf ′(P )
1−R

]
. (C6)

From Equations (46), we have

f ′(P ∗0 ) =
c(αR− 1)

R
. (C7)

Using this expression, we obtain the Jacobian matrix evaluated at (H∗0 , P
∗
0 ) as

J(H∗0 , P
∗
0 ) =

 1
(
αR−1
R−1

)
ln
(

(1−α)R
1−αR

)
R− 1

(
1−αR
R−1

)
ln
(

(1−α)R
1−αR

) . (C8)

We note that the Jacobian doesn’t depend on the parasitism rate c or k, only the
number of viable adult hosts, R, and the proportion of initial host larvae at the start
of the vulnerable period, α. Using the Jury conditions, (namely det[J(H∗0 , P

∗
0 )] < 1),

we create Figure 3 that demonstrates the stability region of this model. We see that
coexistence is possible if α < 1/R, with asymptotically stable solutions occurring when

α∗ < α <
1

R
,

where α∗ satisfies the following equation:

(1− α∗R)R

R− 1
ln

(
(1− α∗)R
1− α∗R

)
= 1,

which is equivalent to the boundary of the Jury condition det[J(H∗0 , P
∗
0 )] < 1.

For z ∈ (0, 0.5): We consider the stability of the fixed points that satisfy Equation
(47). The solution for the parasitoid fixed point cannot be obtained explicitly. To
determine the boundary of the stability region, we work with Equation (47) and the
Jury condition that determines the stability boundary, namely det[J(H∗, P ∗)] = 1,
where J is the Jacobian matrix given in Equation (C6). This yields the equation

R2P ∗f ′(P ∗)

1−R
= 1, (C9)

where

f ′(P ∗) = −αze−zP ∗ − (1− α)(1− z)e−(1−z)P ∗ . (C10)

We note that, for fixed z, Equations (47) and (C9) define two implicit surfaces in
(R,α, P ∗) space. To determine the stability region in (R,α) space, we first consider
the space curve defined by the intersection of these two surfaces for a fixed value of z.
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The intersection of the two surfaces for z = 0.05 is depicted in Figure C2. If we view
this intersection as a space curve in (R,α, P ∗), we can determine the stability region
for values of R and α (also Figure C2). We establish the various stability regions for
different values of z in Figure 3 by computing the intersection of the iso-surfaces in
this way.

Figure C2. (Left) The black space curve defines the intersection of the two iso-surfaces in (P ∗, α,R) space
defined by Equation (47) (green) and Equation (C9) (orange). (Right) The space curve that defines the inter-

section boundary is plotted in the (R,α) plane, with the colormap corresponding to the value of P ∗.

Appendix D. ODE Solutions to the Functional Response Model with
Constant Migration

We consider the solutions to the ODE system given by Equations (3) – (8) subject
to the initial conditions in Equations (9) – (14). We assume the parasitism rates are
dependent on the host larvae population, g1( · ) = c1L1 and g2( · ) = c2L2 and the
migration rates are constant. The solutions for the parasitoid populations at each
location are identical to those in Equations (A1) and (A2). The host populations are
found to be

L1(τ, t) =
RH1,t

1 + c1

[
m21

m Ptτ +
(
P1,t − m21

m Pt
) (

1−e−mτ
m

)]
RH1,t

(D1)

L2(τ, t) =
RH2,t

1 + c2

[
m12

m Ptτ +
(
P2,t − m12

m Pt
) (

1−e−mτ
m

)]
RH2,t

, (D2)

where Pt = P1,t+P2,t. It follows immediately from the initial conditions that I1(τ, t) =
RH1,t − L1(τ, t) and I2(τ, t) = RH2,t − L2(τ, t).

Appendix E. ODE Solutions and Stability Analysis to Functional
Response Model with Redistribution

The solutions for the parasitoid populations at each location to the ODE system
given by Equations (3) – (8) with g1( · ) = c1L1 and g2( · ) = c2L2 subject to the
redistribution initial conditions in Equations (30) – (31) and (37) – (38) are identical
to those provided in Equations (C1) and (C2). The solutions for the host populations
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are

L1(τ, t) =
αRHt

1 + c1

[
m21

m τ +
(
β − m21

m

) (
1−e−mτ

m

)]
αRHtPt

(E1)

L2(τ, t) =
(1− α)RHt

1 + c2

[
m12

m τ +
(
1− β − m12

m

) (
1−e−mτ

m

)]
(1− α)RHtPt

(E2)

It follows immediately from the initial conditions that I1(τ, t) = αRHt − L1(τ, t) and
I2(τ, t) = (1− α)RHt − L2(τ, t).

For z = 0: We consider the stability of the fixed points given by Equations (55)
and (56). We note that these fixed point values are only valid for α < 1/R. Let
F (H,P ) = RHtf(H,P ) and G(H,P ) = kRH [1− f(H,P )], where f(H,P ) is given
by Equation (54). The Jacobian matrix to this system evaluated at (H,P ) is given by

J(H,P ) =

[
Rf +RH ∂f

∂H RH ∂f
∂P

kR(1− f)− kRH ∂f
∂H −kRH ∂f

∂P

]
(E3)

Noting that f(H∗0 , P
∗
0 ) = 1/R and

∂f

∂H
(H∗0 , P

∗
0 ) = −c(1− αR)2

R
P ∗0 ,

∂f

∂P
(H∗0 , P

∗
0 ) = −c(1− αR)2

kR(R− 1)
P ∗0 , (E4)

it follows that

det
[
J(H∗0 , P

∗
0 )
]

=
1− αR
1− α

. (E5)

The Jury condition responsible for the stability of the model, namely
det
[
J(H∗0 , P

∗
0 )
]
< 1, holds for all α < 1/R and R > 1. Therefore, the model is

asymptotically stable for all values of α and R for which it exists. A similar analysis
holds for z = 1.

For z ∈ (0, 0.5): We consider the stability of the fixed points that satisfy Equations
(57) and (58). Noting that f(H∗, P ∗) = 1/R, we find that the determinant of the
Jacobian matrix (Equation (E3)) evaluated at the point (H∗, P ∗) is

det
[
J(H∗, P ∗)

]
=
R3H∗P ∗

R− 1

[
αk1

(1 + k1RH∗P ∗)2
+

(1− α)k2

(1 + k2RH∗P ∗)2

]
. (E6)

This determinant is always between 0 and 1 for all values of α, z, and R, except in
the case when α + z = 1. In that case, the determinant is equal to one and the fixed
point is neutrally stable.
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