Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

The pattern of Nodal morphogen signaling is shaped by co-receptor expression

View ORCID ProfileNathan D. Lord, View ORCID ProfileAdam N. Carte, Philip B. Abitua, View ORCID ProfileAlexander F. Schier
doi: https://doi.org/10.1101/2019.12.30.891101
Nathan D. Lord
1Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Nathan D. Lord
  • For correspondence: [email protected] [email protected]
Adam N. Carte
1Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
2Systems, Synthetic, and Quantitative Biology Program, Harvard University, Cambridge, MA 02138, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Adam N. Carte
Philip B. Abitua
1Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alexander F. Schier
1Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
3Biozentrum, University of Basel, Basel, Switzerland
4Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, WA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Alexander F. Schier
  • For correspondence: [email protected] [email protected]
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

Embryos must communicate instructions to their constituent cells over long distances. These instructions are often encoded in the concentration of signals called morphogens. In the textbook view, morphogen molecules diffuse from a localized source to form a concentration gradient, and target cells adopt fates by measuring the local morphogen concentration. However, natural patterning systems often incorporate numerous co-factors and extensive signaling feedback, suggesting that embryos require additional mechanisms to generate signaling patterns. Here, we examine the mechanisms of signaling pattern formation for the mesendoderm inducer Nodal during zebrafish embryogenesis. We find that Nodal signaling activity spans a normal range in the absence of signaling feedback, suggesting that diffusion is sufficient for Nodal gradient formation. We further show that the range of endogenous Nodal ligands is set by the EGF-CFC co-receptor Oep: in the absence of Oep, Nodal ligands spread to form a nearly uniform distribution throughout the embryo. In turn, increasing Oep levels sensitizes cells to Nodal ligands. We recapitulate these experimental results with a computational model in which Oep regulates the diffusive spread of Nodal ligands by setting the rate of capture by target cells. This model predicts, and we confirm in vivo, the surprising observation that a failure to replenish Oep during patterning transforms the Nodal signaling gradient into a travelling wave. These results reveal that patterns of Nodal morphogen signaling are shaped by co-receptor-mediated restriction of ligand spread and cell sensitization.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted December 30, 2019.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
The pattern of Nodal morphogen signaling is shaped by co-receptor expression
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The pattern of Nodal morphogen signaling is shaped by co-receptor expression
Nathan D. Lord, Adam N. Carte, Philip B. Abitua, Alexander F. Schier
bioRxiv 2019.12.30.891101; doi: https://doi.org/10.1101/2019.12.30.891101
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
The pattern of Nodal morphogen signaling is shaped by co-receptor expression
Nathan D. Lord, Adam N. Carte, Philip B. Abitua, Alexander F. Schier
bioRxiv 2019.12.30.891101; doi: https://doi.org/10.1101/2019.12.30.891101

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Developmental Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (6025)
  • Biochemistry (13714)
  • Bioengineering (10446)
  • Bioinformatics (33180)
  • Biophysics (17117)
  • Cancer Biology (14192)
  • Cell Biology (20120)
  • Clinical Trials (138)
  • Developmental Biology (10868)
  • Ecology (16027)
  • Epidemiology (2067)
  • Evolutionary Biology (20349)
  • Genetics (13400)
  • Genomics (18634)
  • Immunology (13761)
  • Microbiology (32172)
  • Molecular Biology (13395)
  • Neuroscience (70091)
  • Paleontology (526)
  • Pathology (2192)
  • Pharmacology and Toxicology (3743)
  • Physiology (5872)
  • Plant Biology (12021)
  • Scientific Communication and Education (1814)
  • Synthetic Biology (3368)
  • Systems Biology (8168)
  • Zoology (1842)