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Abstract6

Single neurons can dynamically change the gain of their spiking responses to account for shifts7

in stimulus variance. Moreover, gain adaptation can occur across multiple timescales. Here, we8

examine the ability of a simple statistical model of spike trains, the generalized linear model (GLM),9

to account for these adaptive effects. The GLM describes spiking as a Poisson process whose10

rate depends on a linear combination of the stimulus and recent spike history. The GLM success-11

fully replicates gain scaling observed in Hodgkin-Huxley simulations of cortical neurons that occurs12

when the ratio of spike-generating potassium and sodium conductances approaches one. Gain13

scaling in the GLM depends on the length and shape of the spike history filter. Additionally, the GLM14

captures adaptation that occurs over multiple timescales as a fractional derivative of the stimulus15

variance, which has been observed in neurons that include long timescale afterhyperpolarization16

conductances. Fractional differentiation in GLMs requires long spike history that span several sec-17

onds. Together, these results demonstrate that the GLM provides a tractable statistical approach for18

examining single-neuron adaptive computations in response to changes in stimulus variance.19

1 Introduction20

Neurons adapt their spiking responses in a number of ways to the statistics of their inputs (Fairhall,21

2014). A particularly well-studied example is adaptation to the stimulus variance, which can provide22

important computational properties. First, neurons can show gain scaling, such that the input is scaled23

by the stimulus standard deviation (Fairhall et al., 2001a; Mease et al., 2013). Scaling of the gain by the24

stimulus standard deviation implies that single spikes maintain the same information about the stimulus25

independent of its overall amplitude. This adaptation of the “input gain” with stimulus standard deviation26

can occur very rapidly. Second, the mean firing rate can adapt to variations in the stimulus variance27

across multiple timescales (Fairhall et al., 2001b; Wark et al., 2007). This form of spike frequency28

adaptation can in some cases have power-law properties (Pozzorini et al., 2013) and serve to compute29

the fractional derivative of the variance (Anastasio, 1998; Lundstrom et al., 2008).30
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One approach to studying such adaptation is to use Hodgkin-Huxley style (HH) conductance based31

models to explore potential single-neuron mechanisms underlying these computations (Lundstrom32

et al., 2008; Mease et al., 2013). Although HH models can indeed capture such behavior, the mecha-33

nistic HH framework is not ideally suited for statistical analysis of spike train data in sensory systems as34

HH model parameters are difficult to interpret in terms of computation and coding. Moreover, fitting HH35

models to intracellular data is difficult (Buhry et al., 2011; Csercsik et al., 2012; Vavoulis et al., 2012;36

Lankarany et al., 2014), and only recently methods that fit HH models to spike trains alone have been37

gaining success (Meng et al., 2011, 2014).38

In contrast, statistical point process models based on the generalized linear model (GLM) framework39

have provided a tractable tool for modeling spiking responses of neurons in sensory systems (Truccolo40

et al., 2005; Pillow et al., 2008). Previous work has shown the utility of finding linear features that can41

explain the spiking behavior of HH models (Agüera y Arcas et al., 2003; Agüera y Arcas and Fairhall,42

2003; Weber and Pillow, 2017). Unlike simple linear/nonlinear models, GLMs also incorporate a depen-43

dence on the history of activity, potentially providing a helpful interpretative framework for adaptation44

(Mease et al., 2014). We therefore fit GLMs to spike trains generated from a range of HH neurons.45

We found that the GLMs could reproduce the single-neuron adaptive computations of gain scaling and46

fractional differentiation. Capturing gain scaling across a range of HH active conductance parameters47

depended both on the choice of link function and spike history length. As the length of the spike history48

filter increased, the stimulus dependency of neurons changed from differentiating to integrating (Steven-49

son, 2018). Capturing adaptation as a fractional derivative required a history filter that could account for50

long timescale effects: on the order of 10 s. Together these results demonstrate that the GLM provides51

a tractable statistical framework for modeling adaptation that occurs at the single-neuron level.52

2 Materials and Methods53

2.1 Gain scaling54

Gain scaling refers to the case when for an input-output function of a neuron, the input gain is propor-55

tional to the standard deviation (SD) of the stimulus (σ). Thus, the gain depends on the recent context.56

If a neuron achieves perfect gain scaling, the firing rate R given a particular stimulus value, s, and input57

standard deviation can be written as:58

Rσ(s) = R̄σR̂
( s
σ

)
(1)

where the normalized stimulus ŝ = s
σ , and the output gain, R̄σ, is constant in s.59

To quantify the degree of gain scaling in a neuron’s spiking output, we measure the firing rate function60

in response to a white-noise input, x(t), at different SDs and constant mean µ (Figure 1A). For each61

standard deviation, we compute the normalized spike-triggered average (STA; Figure 1B) (Rieke et al.,62

1999). We then compute the stimulus as the convolution s(t) =
∫ t

0 STA(t′)(x(t− t′)−µ)dt′. The spike63

rate function is then defined probabilistically as64

Rσ(s)∆t = pσ(spk|ŝ) =
pσ(ŝ|spk)

pσ(ŝ)
pσ(spk) (2)
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where the right side follows from Bayes’ rule. The average firing rate in time bin of width ∆t is pσ(spk).65

Thus, we get R̄σ∆t = pσ(spk) and R̂
(
s
σ

)
= pσ(ŝ|spk)

pσ(ŝ) . The spike-triggered stimulus distribution,66

pσ(ŝ|spk), is the probability of the stimulus given that a spike occurred in the bin. By definition the67

marginal stimulus distribution, pσ(ŝ), is a standard normal distribution which does not depend on σ.68

Therefore, if pσ(ŝ|spk) is similar across different values of σ, gain scaling is achieved because R̂(ŝ)69

does not depend on σ.70

We measure gain scaling in terms of the spike-triggered distribution. We do so using the 1st Wasser-71

stein, or earth-mover’s metric (we obtained qualitatively similar results using the symmetrized Kullback-72

Leibler divergence and Jensen-Shannon divergence). The Wasserstein metric is a distance function73

between two probability distributions. Intuitively, it can be thought of as the minimum work needed to74

transform one distribution into the other by moving probability mass as if the distributions are piles of75

sand (Supplementary Figure 1). Formally, it is defined as76

W1(µ, ν) = inf
γ∈Γ(µ,ν)

∫
M×M

d(x, y) dγ(x, y) (3)

where ν and µ are probability measures on a metric space M with metric d(·, ·). The infimum is taken77

over the collection of measures, Γ(µ, ν), on M ×M with µ and ν marginal distributions. We compute78

the gain scaling score at σ as Dσ = W1(p1(ŝ|spk), pσ(ŝ|spk)). A distance close to 0 indicates that the79

spike-triggered distributions are similar, and therefore the cell is gain scaling its input (Figure 1C-D).80

Larger values of Dσ indicate that the input-output function does not scale with σ (Figure 1F-G). We81

computed the spike-triggered distribution using a histogram with bins of width 0.1.82

2.1.1 Gain scaling in Hodgkin-Huxley neurons83

A previous study by Mease et al. (2013) found that Hodgkin-Huxley models could account for gain84

scaling observed in pyramidal neurons. Thus we simulated spikes from single-compartment Hodgkin-85

Huxley style models of pyramidal neurons, providing a source of data with which to explore the expres-86

sion of this property using GLMs. The voltage and gating dynamics followed the equations (Mainen87

et al., 1995)88

C
dV

dt
= Istim(t)−GNam3h(V − ENa)−GKn(V − EK)−GL(V − EL) (4)

such that for each gate x ∈ {n,m, h}89

τx(V )
dx

dt
= x∞(V )− x, τx(V ) =

1

αx(V ) + βx(V )
(5)

n∞(V ) = αn(V )τn(V ), m∞(V ) = αm(V )τn(m), h∞(V ) =
1

1 + exp
(
V+65

6.2

) (6)

αn(V ) =
20(V − 20)

1− exp
(
−V−20

9

) βn(V ) =
−2(V − 20)

1− exp
(
V−20

9

) (7)
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Figure 1: (A) Hodgkin-Huxley simulation of a neuron stimulated with white noise at two different
standard deviation levels (black σ = 1; red σ = 2). In this simulation, the total sodium and potassium
conductances were equal (GNa = GK = 1000 pS/µm2). (B) The STAs measured at the two stimulus
standard deviations. (C) Left shows the spike-triggered distributions of the STA filtered input (s) and
right shows the distributions over the STA filtered input scaled by the standard deviation (ŝ). The shaded
areas show the prior stimulus distributions, which are Gaussian distributed with standard deviation σ.
(D) The input-output functions of the stimulation at each stimulus level. Scaling the input by the standard
deviation shows that the simulated neuron scales the gain of the input by the stimulus standard deviation
(right). (E) The STAs measured at two standard deviations from a Hodgkin-Huxley simulation with high
potassium and low sodium total conductances (GNa = 600 and GK = 2000 pS/µm2). The spike-
triggered stimulus distribution (F) and scaled input-output function (G) for this simulation does not show
gain scaling.

αm(V ) =
182(V + 35)

1− exp
(
−V+35

9

) βm(V ) =
−124(V + 35)

1− exp
(
V+35

9

)
αh(V ) =

24(V + 50)

1− exp
(
−V+50

5

) βh(V ) =
−9.1(V + 75)

1− exp
(
V+75

5

)
The reversal potentials were ENa = −70, EK = 50, and EL = −70 mV and the capacitance was90
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C = 1 µF/cm2 . The leak conductance was set to 0.4 pS/µm2 so that the resting membrane had a91

time constant of approximately 25 ms. As in Mease et al. (2013), we explored a range of values for the92

active conductances GNa and GK : from 600-2000pS/µm2 in increments of 100 pS/µm2. Simulations93

were performed in MATLAB using a fourth-order Runge-Kutta method with step size 0.01 ms. Spike94

times were defined as upward crossings of the voltage trace at −10 mV separated by at least 2 ms.95

The input consisted of Gaussian draws every 1 ms with parameters N
(
µ, (4µσ)2

)
where σ was set to96

1.0, 1.3, 1.6 or 2.0. For each value of GNa and GK , the mean input, µ, was tuned so that at baseline,97

where σ = 1, each simulation produced approximately 10 spk/s using a 100 s simulation. We did not98

consider values of GNa and GK that spiked spontaneously (i.e., spiked when µ = 0). We simulated99

2000 s of spiking activity at each stimulus level (generating approximately 20000 spikes at σ = 1).100

2.2 Fractional differentiation101

We next looked at periodic modulations of the stimulus standard deviation to model long timescale adap-102

tive effects. We applied stimuli consisting of Gaussian noise with sinusoidal or square wave modulation103

of the variance between 1 and σ with σ again taking values of 1.3, 1.6 or 2.0, at a number of different104

frequencies. We analyzed simulated spike trains across 7 noise modulations periods: 1, 2, 4, 8, 16, 32,105

and 64 s. The simulations were 3200 s for each period, giving a minimum of 50 cycles per period.106

Lundstrom et al. (2008) found that pyramidal neurons can act as fractional differentiators of the stimulus107

amplitude envelope for this type of input. Fractional derivatives generalize the derivative operator such108

that, analogous to taking the first derivative of a function twice to obtain the second derivative, taking the109

fractional derivative of order α = 1/2 twice results in the first derivative (Oldham and Spanier, 1974).110

Fractional differential filters respond to a square stimulus as an exponential-like decay with a time111

constant that depends on α (Figure 2A-B). Fractionally differentiating a sinusoidal stimulus produces a112

frequency dependent gain change (Figure 2C)113

gain ∝ fα (8)

where f is the frequency. Additionally, fractionally differentiating the sine function gives a f requency114

independent phase shift, φ, of the stimulus (Figure 2D):115

φ = α
π

2
. (9)

These three measures can be combined to estimate approximate fractional differentiation by neurons.116

To compute the fractional derivative order, we computed cycle-averaged responses obtained using 30117

bins per cycle at each stimulus amplitude modulation frequency. We fit the cycle-averaged square-wave118

responses across all modulation frequencies as the best fitting fractional derivative of the stimulus am-119

plitude (plus a baseline rate) using least-squares. To fit α to the phase lead of the sine-wave responses,120

we computed mean phase lead (φ) across frequencies and applied Equation 9. To fit α to the gain of121

the sine-wave responses, we applied Equation 8 by fitting a least-squares regression between the fre-122

quency of modulation and the logarithm of the gain.123
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A
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phase lead
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Figure 2: Example of a fractional derivative of several orders. Each row shows a different fractional
order (α) of the function in the top row. (A) The fractional derivatives of a step function with three
different periods (colors) shows exponential filtering with an α dependent timescale. (B) The fractional
derivatives in A scaled by period. (C) The fractional derivatives of a sine function for three different
periods. As α increases, the fractional derivative shows greater frequency-dependent gain. (D) The
same function as in B with the sine functions scaled by period. At higher orders, the phase lead of the
fractional derivative relative to the signal increases equally over frequencies.

2.2.1 Fractional differentiation by Hodgkin-Huxley neurons124

We simulated neurons from the standard HH model with three additional afterhyperpolarization (AHP)125

currents with time constants ranging from 0.3 to 6 s. The equations for the HH neurons were126

C
dV

dt
= Istim(t)−GNam3h(V − ENa)−GKn4(V − EK)

−GL(V − EL)−
3∑
i=1

GAHP,iai(V − EAHP )
(10)

The gates x ∈ n,m, h follow the dynamics127

τx(V )
dn

dt
= x∞(V )− x , τx(V ) =

1

αx(V ) + βx(V )
, x∞(V ) = αx(V )τx(V ) (11)

128

αn(V ) =
0.01(V + 55)

1− exp(−0.1(V + 55))
, βn(V ) = 0.125 exp (−(V + 65)/80) (12)

αm(V ) =
0.1(V + 40)

1− exp(−0.1(V + 40))
, βm(V ) = 4 exp (−(V + 65)/18)
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αh(V ) = 0.07 exp (−(V + 65)/20), βh(V ) =
1

1 + exp(−0.1(V + 35))
.

The AHP currents have linear dynamics and are incremented by 1 at spike times (tspk,i):129

dai
dt

= −ai
τi

+
∑
i

δ(t− tspk,i) (13)

where δ is the Dirac delta function. The standard were: GNa = 120, GK = 36, GL = 0.3 mS/cm2;130

ENa = 50, EK = −77, EL = −54.4 mV; and C = 1 µF/cm2. The AHP conductances were set131

relative to the leak conductance: GAHP,· = (0.05, 0.006 and 0.004)GL. The AHP reversal potential was132

EAHP = −100 mV and the AHP timescales were set to τi = (0.3, 1, and 6)s.133

Similarly to the gain scaling simulations, the stimulus was sampled independently in each 1 ms bin134

from a normal distribution with mean µ. The time-dependent variance given σ and the period (p) was135

4µfp(t, σ). The time-dependent modulation function for the square-wave stimulus was136

fp(t, σ) = 1 + (σ − 1)

⌊
1

2
sin

(
2tπ

p

)
+ 1

⌋
(14)137

where b·c denotes the floor operator, and the function for the sine-wave stimulus was similarly defined138

as139

fp(t, σ) = 1 + (σ − 1)

(
1

2
sin

(
2tπ

p

)
+

1

2

)
. (15)140

The parameter µ was calibrated so that with no variance modulation (i.e., σ = 1), the simulated cells141

produced approximately 10 spk/s.142

2.3 Generalized linear models143

The GLM models the spiking process as an autoregressive Poisson process with (Figure 3A). The144

spike rate at time t is given as a linear-nonlinear function of the stimulus and the spike history145

λt = f
(
k>stimxt + h>spkyhist,t + b

)
(16)

where xt is the stimulus vector preceding time t, and yhist is the spike history vector. The parameters146

of the GLM are the stimulus filter (kstim), the spike history filter (hspk), and baseline rate (b). For the147

inverse-link function, f , we used the canonical exponential function except where otherwise noted.148

The log-likelihood of a binned spike train, y, given the model parameters is then149

log p(y|kstim,hspk, b) =
T∑
t=1

−λt∆t + yt log(λt) + const. (17)

For all model fits and simulations, we set ∆t = 1 ms. We numerically maximized the log-likelihood150

using conjugate-gradient methods.151
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Figure 3: (A) Diagram of the neural GLM that describes spiking as an autoregressive Poisson process.
(B) The basis functions used to parameterize the GLM filters. (top) The stimulus basis used for all
GLMs. (middle) The spike history basis used for the gain scaling simulations. (bottom) The spike
history basis used for the fractional differentiation simulations. Due to the length of the spike history
filters needed to capture fractional differentiation, the time axis is shown in log scale.

To reduce the number of model parameters, we parameterized the S filters using smooth basis functions152

(Figure 3B). The stimulus filter was parameterized using 15 raised cosine basis functions:153

bj(t) =

{
1
2 cos

(
log[t+c]−φj

a

)
+ 1

2 for log[t+c]−φj
a ∈ [−π, π]

0 otherwise
(18)

where t is in seconds. We set c = 0.02 and a = 2(φ2 − φ1)/π. The φj were evenly spaced from154

φ1 = log(T0/1000 + c), φ15 = log(Tend/1000 + c) where the peaks of the filters are in the range T0 = 0155

and Tend = 100 ms.156

The spike history filter bases were constructed in two parts. To account for the absolute refractory157

period, we used 5 box car filters of width 2 ms for the first 10 ms of the spike history. The remaining158

spike history filter was parameterized using raised cosine basis functions with the parameter c = 0.05.159

For the gain scaling simulations, N = 15 cosine basis functions were used with spacing T0 = 10 and160

Tend = 150 ms. For the fractional differentiation simulations, N = 25 cosine basis functions were used161

with spacing T0 = 10 and Tend = 16000 ms. To explore how the timescale of spike history affected162

adaptation in the GLM, for each model we fit the GLM using only the first i cosine basis functions for163

each i = 0 (using only the refractory box-car functions) to i = N . Thus, we obtained N + 1 nested164

model fits across a range of spike history lengths. When stated, the length of the spike history filter,165

Thist, denotes the time of the peak of the ith basis function.166

2.3.1 Evaluating model performance167

We evaluated the GLM performance by assessing the ability of the GLM to predict the HH model168

response to a 32 s novel stimulus. For the gain scaling simulations, we tested the response to the test169

stimulus at each stimulus SD (σ). For the fractional differentiation simulations, the stimulus SD was170

modulated by a sine or square wave with a 4 s period and a modulation height of σ = 2.0. Predictive171

performance was evaluated using the pseudo-R2 score (Cameron and Windmeijer, 1997). We selected172
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this measure because it can be applied to Poisson process observations instead of trial-averaged firing173

rates as is required by the standardR2 measure of explained variance (Benjamin et al., 2018). Thus, it is174

especially appropriate for comparing the stochastic GLM to a spike train simulated by the deterministic175

HH model. The pseudo-R2 is written as the ratio of deviances:176

pseudo−R2 = 1− D(y∗,GLM)

D(y∗, null)

= 1−
log (pGLM(y∗|kstim,hspk, b))− log (psatur.(y

∗))

log
(
pnull(y∗|y∗)

)
− log (psatur.(y∗))

(19)

where y∗ is the test spike train. The GLM likelihood is pGLM(Y y∗|kstim,hspk, b) and the likelihood of177

the null model (pnull(y
∗|y∗)) is the probability of the spike train given only the mean firing rate, y∗. The178

saturated model likelihood (psatur.(y
∗)) is the probability of observing y∗ given one parameter per bin:179

that is, the Poisson probability observing y∗ given a model with rate λ = 1 in each bin in which the HH180

model spiked and rate λ = 0 in each bin that the HH did not spike. Thus, the pseudo-R2 measures the181

fraction of explainable log-likelihood captured by the GLM.182

3 Results183

3.1 GLMs capture gain scaling behavior184

To investigate how GLMs can capture biophysically realistic gain scaling, we fit the Hodgkin-Huxley185

simulations with GLMs (Figure 4A). We fit a unique GLM for each value of GNa and GK in the HH186

model, and the GLMs were fit using the entire range of stimulus SDs (σ = 1.0, 1.3, 1.6, and 2.0).187

Applying the STA analysis at the four stimulus SDs, we quantified gain scaling in GLM fits and compared188

the gain scaling in the GLM simulations to the HH neurons (Figure 4B-C). Across the range of spiking189

conductance values, we found that the GLM fits consistently showed gain scaling (Figure 4D). The HH190

neurons showed the greatest degree of gain scaling when the GNa/GK ratio was close to one, with the191

lowest D2 score occurring at a ratio of 1.17 (Mease et al., 2013). We observed the same pattern in the192

GLM simulations, but the GLM fits generally exhibited stronger gain scaling when GNa/GK < 1 than193

the HH neurons.194

The GLM’s characterization of the HH neurons depended on the spike history filter. This is revealed by195

comparing the stimulus filters (Figure 4A) to the stimulus features extracted by spike-triggered averag-196

ing (Figure 4B): While the STA showed multiphasic responses, the GLM stimulus filter was consistent197

with a simple, monophasic integration. This demonstrates that the STA reflects the combination of198

stimulus and spike history effects (Stevenson, 2018; Agüera y Arcas and Fairhall, 2003). A spike his-199

tory filter of sufficient length was necessary to achieve accurate model fits across all stimulus SDs200

(Figure 5A,B).201

We also explored how the stimulus conditions used to fit the GLM determined the model’s ability to202

capture gain scaling. Remarkably, we found that the GLM fit only to the baseline stimulus SD (σ = 1.0)203

captured the gain scaling pattern seen in the HH neuron (Figure 5B). The gain scaling observed in the204

GLMs required a sufficiently long spike history filter, on the order of at least 50 ms. With shorter spike205

history, the GLM did not obtain the same level of gain scaling performance at the optimalGNa/GK ratio.206
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Figure 4: (A) Example filters from GLM fits to HH simulations with three different spiking conductance
levels (rows). Large negative values driving the refractory period in the spike history filter (right) have
been truncated. (B) The spike-triggered averages (left), scaled spike-triggered stimulus distributions
(right), and scaled input-output functions (right) for the GLM fits in A for all four stimulus SDs. (C)
Same as B for the HH simulations. (D) Gain scaling performance (Wasserstein distance between the
spike-triggered distributions at σ = 1 and σ = 2) at all the spiking conductance levels explored for the
GLM simulations (top) and the Hodgkin-Huxley simulations (bottom). Lower values of D2 correspond
to stronger gain scaling. The three black circles indicate the conductance levels for the GLM examples
in A and B. Gain scaling was not computed for values of GNa and GK that resulted in spontaneous
spiking in the Hodgkin-Huxley simulations.

However, these GLM fits failed to generalize across stimulus SDs. The GLM trained only at σ = 1.0207

explained less variance in the spiking responses to a stimulus at σ = 2.0 than a model capturing only208

the mean firing rate for all values of GNa and GK (predictive pseudo-R2 less than 0; Figure 5C).209

Therefore, the GLM trained at σ = 1.0 does not accurately characterize the HH responses despite210

accurately predicting gain scaling in those cells. In contrast, GLMs trained at all four σ values failed211

to capture the lack of gain scaling at low GNa/GK values despite showing improved model fit across212

all σ (Figure 5D; a detailed example is provided in Supplementary Figure 2A). Because the GLM213

trained on all σ showed both consistent generalization performance and strong gain scaling behavior,214

the remaining analyses considered only that training condition.215

We next considered how the GLM parameters related to the gain scaling computation and the space216

of GNa and GK in the HH models. To visualize the geometry of the model parameters, we performed217

PCA on the stimulus and spike history filters (Figure 6A,E). The filters produced across the two HH218
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Figure 5: (A) The pseudo-R2 of the GLM fits at the four different stimulus SDs averaged over all GNa
and GK as a function of spike history length. The GLMs were trained at all stimulus conditions. (B)
Gain scaling in the Hodgkin-Huxley simulations (blue) measured as a function of the sodium-potassium
conductance ratio (GNa/GK ). The gray traces show gain scaling measured in the GLMs fit to the HH
simulations for four different spike history filter length. The GLMs were trained using HH simulations
with the stimulus at the baseline SD (σ = 1.0). (C) The average pseudo-R2 measured for each σ for
the GLMs given each training stimulus condition. (D) Same as B for the GLMs fit only using all four
valuesσ.

parameters spanned a two-dimensional subspace (variance explained: stimulus 98.8%, spike history219

97.3%). The PCA reconstructions for example stimulus filters are given in Supplementary Figure 3.220

However, the PCs do not correspond to a linear mapping of the GNa and GK axes (Figure 6B,F).221

Instead, the first component for both filters correlated with the GNa/GK ratio (Figure 6C,G; stimulus222

PC1 r = −0.97, p < 10−4; spike history PC2 r = 0.97, p < 10−4). The second correlates with the gain223

scaling value observed in the corresponding HH model (Figure 6D,H; stimulus PC2 r = −0.89, p <224

10−4; spike history PC2 r = 0.90, p < 10−4). Thus, the GLM parameterizes the HH neuron in a space225

that corresponds to the ratio GNa/GK and gain scaling factor.226

3.1.1 Power-law firing rate nonlinearities227

The GLMs we considered used the canonical inverse-link function, the exponential nonlinearity (McCul-228

lagh and Nelder, 1989), to transform the filtered stimulus plus spike history into a firing rate. However,229

it is known that firing rate nonlinearities that instead have a power-law relationship of the input produce230

gain scaling (Miller and Troyer, 2002; Murphy and Miller, 2003). We therefore considered a range of231

soft-power nonlinearities over a range of exponents for the GLM firing rate (Figure 7A; Equation 16):232

f(x) = log(1 + exp(x))p (20)

for p ∈ {2, 3, 4, 5} (for p = 1, the model performed poorly for all HH simulations and the results are not233

shown). We found that the power-law nonlinearity produced better predictive fit than the exponential234
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Figure 6: Principal component analysis of the GLM stimulus and spike history filters trained across all
values of GNa and GK . The GLMs were trained on all σ values with a spike history length of 150 ms.
(A) The first two PCs (blue and red) of the stimulus filter. The normalized mean filter is given in black.
(B) The projections of the stimulus filters onto the first two PCs. The shade of the points corresponds
to GNa/GK where lighter indicates a higher ratio. The black points in B-C,E-F indicates GLM fit to the
HH model with the best gain scaling (i.e., lowest D2). (C) The stimulus filter PC weights (same as in B)
as a function of the GNa/GK ratio. (D) The stimulus filter PC weights as a function of the gain scaling
factor (D2) observed in the HH simulation fit by the GLM. (D-F) Same as A-F for the GLMs’ spike history
filters. The first 20 ms of the spike history filters were excluded from analysis to avoid effects from the
strong refractory period.

for HH simulations with low GNa/GK ratios (Figure 7B). For those ratios, the exponential GLM in fact235

predicted greater gain scaling than the HH simulation actually showed (Figure 5A and Supplemen-236

tary Figure 2A). We found the power-law nonlinearities showed less gain scaling in the low GNa/GK237

regime, which was more consistent with the HH simulations (Figure 7C). This perhaps counter-intuitive238

result is likely due to the temporal processing of the GLM: the spike history filter shapes the effective239

stimulus-response function over longer timescales. Thus, the instantaneous spike rate function need240

not be a power law to produce gain scaling and an instantaneous power-law function may not result in241

strong gain scaling in the presence of spike history dependencies.242

3.2 GLMs capture fractional differentiation with long timescales of adaptation243

In this section, we address adaptive computations occurring over multiple timescales spanning tens of244

seconds, instead of instantaneous gain. We consider adaptation to changes in stimulus variance in245

the responses of HH simulations with three AHP currents (Lundstrom et al., 2008). The neurons were246

injected with noise stimuli such with a periodically modulated SD. The stimulus SD followed either a247

sine or square wave. We focused our analyses on the cycle-averaged firing rate to see how the neural248
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Figure 7: (A) The 5 inverse-link functions tested in the GLM. The red trace shows the canonical
exponential inverse-link function used in Figures 4-5. The gray traces show the soft-power function for
different exponents, p. (B) The difference in predictive performance (measured as pseudo-R2) between
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σ = 2.0 (right). Positive values indicate the GLM with a power-law nonlinearity had greater predictive
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power-law GLMs (gray traces) compared to the exponential GLMs (red) and the HH simulations (blue).

responses reflect fractional differentiation of the stimulus SD envelope in the cycle-averages.249

We fit GLMs to HH simulations in response to with either sine- or square-wave SD modulation. The250

training data included simulations with noise modulation periods of 1 to 64 s. We considered GLMs with251

different lengths of spike history filters. Cycle-averaged responses of HH and GLM simulations appear252

qualitatively similar (Figure 8), and thus we aimed to characterize how well the GLM fits captured the253

fractional differentiation properties of the HH neuron.254

The sinusoidal noise simulations show two properties of fractional differentiation. First, we estimated255

response gain (i.e., the strength of the sinusoidal modulation in the cycle-averaged response as a256

function of stimulus period; Figure 9A). In an ideal fractional differentiator, the log gain is proportional257

to the log of the stimulus period. The HH neuron shows a near linear response (r2 = 0.99, p < 10−4).258

Although the GLM with short history shows an almost flat relationship, increasing the spike history259

length shows similar slope to the HH neuron. The second property was the phase lead of the cycle-260

averaged response relative to the stimulus (Figure 9B). The phase lead should be constant under261

perfect fractional differentiation. The phase lead declines with longer period, but the HH simulation still262

shows strong phase lead in a 64 s period. Short spike history filter GLMs exhibit a phase lead that tends263

to zero with long SD periods. However, the GLM fit with a long spike history filter closely tracks the HH264

neuron’s phase lead.265

The final signature of fractional differentiation was the exponential decay of the cycle-averaged re-266

sponse under square-wave noise simulation (Figure 9C). We estimate the time constant of the decay267

on the square noise cycle average for both steps up and steps down in stimulus SD. The time constant268

increases approximately linearly with the SD period, and GLMs with long spike history showed time269

constants closely approximated the HH neuron.270

From each signature, we estimated the order of the fractional differentiation (α) in both the HH neurons271

and the GLM fits. We estimated the order using the slope of log-period compared to log-gain and272

mean phase lead across all stimulus periods for the sine-wave SD simulations (Figure 9D-E). A least-273

squares fit of FD filter of order α was applied to the square noise stimuli (Figure 9F). We considered274
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α for the GLM fits as a function of the spike history length. The order estimates for the HH neuron,275

although slightly different for each signature, were approximately α = 0.2. The GLM’s FD order tends276

toward that of the HH neuron as the spike history length increases from below. Surprisingly, when we277

considered a GLM trained only to a flat noise stimulus (no sine or square modulation; stimulus SD278

σ = 1.0) showed similar α estimates (Figure 9D-F, red traces). Thus, the response properties giving279

rise to fractional differentiation of the noise envelope could be detected by the GLM even without driving280

with long timescale noise modulation.281

We then considered how the estimated fractional differentiation order depended on the strength of the282

SD modulation. We found a slightly higher α for lower stimulus SDs. (note that σ = 2.0 was used to fit283

the GLMs) for the gain and timescale estimates (Figure 9G-I). However, the phase lead estimate was284

fairly stable across SDs.285

Next, we quantified how well the GLM predicted the HH responses to new stimuli. Long timescale spike286

history filters improved the GLM’s ability to predict spike trains, and the improvement continued for spike287

histories of several seconds (Figure 10A). However, training only on unmodulated noise did not result288

in a good GLM fit despite predicting α (Figure 10A).289

We examined the parameter estimates in the GLM as a function of spike history length. We plotted290

the integral of the spike history filter to show how the filter integrates spikes over time. The integrals291

show long timescales seen for the GLM fit to either sine- or square- wave noise (Figure 10B). The292

GLM fit to either type of noise predicted over 60% of the variance in the HH responses to both sine-293

and square-wave noise. The flat noise GLM also showed long timescales, but the integral changed294

substantially with the spike history length changes. This indicates that the combination of spike-history295

dependent timescales is not well-constrained in the flat noise condition despite predicting α, perhaps296

due to biases present in the data without modulations (Stevenson, 2018). The stimulus filters are short297

timescale and showed little dependence on spike history length (Figure 10C). Thus, the GLM captured298

fractional differentiation in the HH neuron by linearizing the long timescale AHP currents.299

4 Discussion300

Individual neurons can adapt their responses to changes in input statistics. Here, we studied two301

adaptive computations to changes in the stimulus variance that are captured by biophysically realistic302

neurons. First, we examined gain scaling of the inputs so that the spike-triggered stimulus distribution303

was independent of the stimulus variance. The ability of the neuron to gain scale depended on the304

ratio of the spike-generating potassium and sodium conductances. Second, we considered spiking305

responses that approximate a fractional derivative of the stimulus standard deviation, which can be306

produced by a set of AHP currents with different timescales. Although HH neurons can produce these307

adaptive effects, it is difficult to fit the HH to data.308

Our results demonstrate that the GLM provides a tractable statistical framework for modeling adaptation309

to stimulus variance in single-neurons. The GLM provides an alternative representation of the spiking310

responses as two linear filters (stimulus and spike history filters) with a fixed spiking nonlinearity instead311

of a multidimensional (and potentially stochastic) dynamical system (Meng et al., 2011, 2014). Impor-312

tantly, a single GLM could accurately approximate the responses of HH neurons across multiple levels313

of input variance or across multiple timescales of variance modulation. The GLM accomplished this314
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Figure 8: (A) The cycle-averaged response of the simulated Hodgkin-Huxley neurons with three AHP
currents to sine wave modulated noise. Each trace shows the average response for a different period of
noise modulation. The columns show the responses to different strengths of stimulus noise modulation
(σ). (B) The cycle-averaged response of a GLM fit to the HH simulations in A. The GLM used a 16 s
spike history filter. (C) The cycle-averaged response of the HH neurons to square-wave modulated
noise. (D) The cycle-averaged response of a GLM fit to the HH simulations in C. The cycle averages
can be compared to the exact fractional derivatives in Figure 2B,D.

by linearizing the effect of recent spiking into a nonlinear and stochastic spiking mechanism to adjust315

for the current stimulus statistics. To reproduce gain scaling, only around 150 ms of spike history is316

required, in line with the rapid expression of the gain scaling property with changes in stimulus statistics317

(Fairhall et al., 2001a; Mease et al., 2013). In the fractional derivative case, the GLM summarized the318

multiple AHP currents of the HH models as a single linear autoregressive function with long timescale319

effects.320

The simulations explored here assumed the input to a cell was an injected current generated from321

a Gaussian distribution. However, neurons receive input as excitatory and inhibitory conductances,322

which can be integrated across complex dendritic processes. Additionally, realistic input statistics may323

not follow a Gaussian distribution. Further work towards understanding the adaptive computations324
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Figure 9: (A) The gain of the average responses to sine-wave modulated noise as a function of
stimulus period for the HH and GLMs (Figure 8A-B right). The GLM fit with a 0.17 s spike history filter
(gray) is compared to the GLM with the full 16 s spike history (black). The HH simulation is given in
blue. The noise stimulus was modulated with σ = 2. (B) The phase lead of the average responses
to sine-wave modulated noise as a function of stimulus period for the HH and GLMs. The fraction of
variance explained in the HH phase lead curve by the GLM with 16 s spike history was R2 = 0.61. (C)
The time constant of an exponential function fit to the cycle-averaged response to square wave noise
for each stimulus period (Figure 8C-D right). The markers denote time constants estimated for steps
from low to high variance or step from high v to low. The fraction of variance explained of the log time
constants of the HH simulation by the GLM with 16 s spike history was R2 = 0.80. (D) The fractional
differentiation order (α) of the GLM estimated by the slope of gain as a function of the log stimulus
period in B. The value is estimated for each spike history lengths (black) and compared to α estimated
from the HH simulation (blue). The red trace shows α estimated from the GLM fit only to unmodulated
noise. (E) α estimated by the average phase lead across stimulus periods. (F) α estimated by fitting
a the square-wave responses with a fractional differentiating filter. (G-I) α estimated at different noise
modulation strengths for the 16 s spike history GLM and HH simulation.

performed by single neurons should consider the inputs the neuron receives within a broader network.325

Neural coding and computations that occur across a wide range of input levels depend heavily on326

adaption to the stimulus variance (Wark et al., 2007). The GLM, despite being a simple approximation,327

can provide a good representation of adaptive computations in biophysically realistic neurons.328
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or square (dashed lines) modulated noise with a 4 s period and a modulation strength of σ = 2. (B)
The integral over time (i.e., cumulative sums) of each spike history filter. (C) The stimulus filters for all
GLM fits.
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Supplementary Figure 1: Example differences between the Kullback-Leibler (KL) divergence with the
Wasserstein distance used to measure gain scaling. The difference in the three distributions is proba-
bility mass moved along the axis. (Left) Three example distributions over the value s are given. (Right)
The (symmetrized) KL divergence between each of the three distributions and the Wasserstein dis-
tances. The Wasserstein metric depends on the distance the peak of probability mass is moved along
the axis: the distance between distributions 1 and 3 is greater than between distributions 1 and 2. In
contrast, the KL divergence does not depend on the distance and the divergence between each pair of
distributions is equal.
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Supplementary Figure 2: (A) Example gain scaling analysis for four different GLM fits to the HH
simulation in the top row. The HH simulation has a low sodium to potassium ratio with poor gain
scaling. (B) The firing rates of the HH and GLM simulations as a function of σ.
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Supplementary Figure 3: Example PCA reconstruction of the GLM’s stimulus filter for two of the HH
fits. The mean filter and the two weighted PC vectors are given. The filter is reconstructed from the
2-D PCA space as the sum of the mean and the two PCs (dashed gray trace), and the reconstruction
can be compared to the GLM filter (dark teal trace). Adding the weighted combinations of the two PCs
extends or shortens the mean filter instead of adding multiple modes.
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