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Abstract

The question of how neurons embedded in a network update their synaptic weights
to collectively achieve behavioral goals is a longstanding problem in systems neu-
roscience. Since Hebb’s hypothesis [10] that cells that fire together strengthen their
connections, cellular studies [6] have shed light on potential synaptic mechanisms
underlying learning. These mechanisms have directly driven the careful hand
design of biologically plausible models of learning and memory in computational
neuroscience [1]. However, these hand designed rules have yet to achieve satisfy-
ing success training large neural networks, and are dramatically outperformed by
biologically implausible approaches such as backprop. We propose an alternative
paradigm for designing biologically plausible learning rules: using meta-learning to
learn a parametric synaptic update rule which is capable of training deep networks.
We demonstrate this approach by meta-learning an update rule for semi-supervised
tasks, where sparse labels are provided to a deep network but the majority of inputs
are unlabeled. The meta-learned plasticity rule integrates bottom-up, top-down,
and recurrent inputs to each neuron, and generates weight updates as the product
of pre- and post- synaptic neuronal outputs. The way in which the inputs to each
neuron are combined to produce a learning signal, however, is itself a meta-learned
function, parameterized by a neural network. Critically, the meta-learned update
rule integrates only neuron-local information when proposing updates–that is, our
learning rule is spatially localized to individual neurons. After meta-learning,
the resulting synaptic update rule is capable of driving task-relevant learning for
semi-supervised tasks. We demonstrate this capability on two simple classification
problems. In general, we believe meta-learning to be a powerful approach to finding
more effective synaptic plasticity rules, which will motivate new hypotheses for
biological neural networks, and new algorithms for artificial neural networks.

1 Introduction

Our approach is to directly optimize a synaptic weight update rule using a meta-objective that
maximizes performance on a suite of semi-supervised learning tasks. Additionally, we design our
learning rule to be biologically plausible: it is neuron local, meaning updates to weights depend
only on the corresponding pre- and post- synaptic units; it further does not use weight tying between
feedforward and feedback passes during training [16]. These design features enable the update rule
to be applied to train models with different depths or widths, and to be applied to new datasets. In
contrast to previous work [18], our approach is more biologically plausible, simpler, and tackles
semi-supervised rather than unsupervised learning. We show that meta-learned biologically plausible
learning rules for semi-supervised learning can outperform supervised learning on 2D toy tasks, and
have the ability to generalize to unseen tasks.
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2 Related Work

2.1 Learning local learning rules

Understanding how networks of interconnected neurons can learn to solve tasks using only infor-
mation that is spatially and temporally local to individual neurons is an active area of research
in both neuroscience and machine learning [23]. Prior research along these lines have proposed
and studied specific local learning rules [3] or approximated existing non-local algorithms (such as
backpropagation) with more biologically plausible variants [16, 25, 20].

Our work here follows a different thread, which uses meta-learning to learn a local learning rule.
Learning a parameterization of a local synaptic learning rule was originally proposed in the early
1990s [5, 4]. Despite differences in scale (for example, these early learning rules had just 7 or 16
meta-parameters [4]), the overall setup is largely similar: write down a parameterized learning rule
that is a function of neuron local variables, specify a set of training task(s), and finally optimize the
learning rule for those tasks using either 1st (gradient descent) or 0th order optimization methods
(simulated annealing, genetic algorithms). Concurrent work along these lines uses multilayered
fully connected networks to parameterize the learning rule [17]. A distinct line of research does
not focus on biological plausibility, that is, they use meta-learning for learning non-local learning
algorithms [12, 21, 22, 2, 24].

2.2 Semi-supervised learning

Semi-supervised learning (SSL) refers to a class of approaches that use unlabeled data to improve
supervised learning. One approach to SSL starts by learning an unsupervised representation using
unlabeled data, followed by fine tuning the model on a small labeled dataset [7, 8, 11]. Another
common approach to SSL uses unlabeled data during training by adding additional loss terms, for
example via generative modeling [13, 14], entropy minimization [9], small perturbations [19], or
creating labels for nearby unsupervised examples [15].

3 Methods
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Figure 1: Left: Schematic of inner and outer learning loops in meta-training. Right: Schematic
showing how the learned neuron-local semi-supervised learning rule produces weight updates.

Our meta-training procedure consists of a learning loop (applying the learning rule to update the
weights of a network), which itself is wrapped in a meta-learning loop (Fig. 1, Left). The training
procedure involves iteratively improving the learning rule in the meta-learning loop, where each
iteration involves training and evaluation of the learning rule on a sampled task. In a single iteration
of meta-training, we sample data from a semi-supervised learning task (discussed below), initialize
a base network with random weights, and perform a fixed number of learning iterations where the
learning rule is applied to update the base network weights. The inner model (the model the learned
update rule is training) is a 1-hidden layer fully connected neural network in all experiments, with
feed-forward weights W . We introduce two additional sets of weights W̄ and ¯̄W in addition to
the feed forward weights W (Fig. 1, Right). These two sets of auxiliary weights help propagate
error top-down in the network (W̄ ) and communicate lateral signals between neurons in the same
layer ( ¯̄W ), and are exclusively used for learning and not prediction. These are loosely inspired by
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the numerous feedback and recurrent connections present in cortex. All three sets of weights are
initialized at random and updated using the learned update rule.

Instead of computing the gradient of the parameters with respect to the loss (as would be done in
backprop), we query the learned update rule for updates to the inner-parameters. Specifically, we
compute updates one layer at a time from the top of the network down. For each neuron i, we use the
forward activation (z), reverse signal (z̄ obtained from W̄ ), and lateral signal (¯̄z obtained from ¯̄W ) to
query the outer model and compute weight updates ∆W , ∆W̄ , and ∆ ¯̄W for pre- and post- synaptic
neurons j and i:(

δi, αi, βi, ᾱi, β̄i, ¯̄αi,
¯̄βi

)
= LearnedPlasticityRule ((zi, z̄i, ¯̄zi) ; θ) ,

∆Wij = αiβj , ∆W̄ij = ᾱiβ̄j , ∆ ¯̄Wij = ¯̄αiβ̄j .

The output δ from the outer model is a learned top down error signal, and θ denotes the meta-
parameters that parameterize the learning rule. See the Appendix A for a detailed description for how
weight updates, and reverse and lateral signals, are computed.

4 Results
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Figure 2: Meta-trained Semi-Supervised update rule outperforms gradient descent on toy two-
moons task and generalizes to two-Gaussians. We plot the inner-accuracy and inner-training
loss with respect to the number of labeled examples seen for both a supervised baseline (red) and
semi-supervised learning with a learned update rule (blue), outer-trained on random two-moons
tasks. The total number of labeled examples is 10, while the number of unlabeled examples available
during semi-supervised learning is unlimited. Shaded regions represent standard error over 100
trials. Additionally, we show example decision boundaries on two-moons from supervised learning
(bottom-right) and semi-supervised learning using a meta-learned update rule (top-right).
†cosyne

To generate our preliminary results, we train a fully connected neural network with one hidden layer.
We train and evaluate semi-supervised learning rules on toy classification tasks. We train on tasks
formed by re-sampling labeled examples from the two-moons dataset.

For the inner loop, we use a batch size of 10 and train for 50 steps. We compare supervised learning
from 10 labeled examples (using backprop) against semi-supervised learning using the same labeled
examples and unlimited unlabeled examples using our learned update rule (Fig. 2, Left). We see that
the learned update rule has learned to leverage unlabeled examples, achieving higher generalization
accuracy. In Figure 2 (Right), the decision boundaries resulting from applying the learned update
rule are nonlinear and better aligned to the underlying data distribution.

We further show that the learning rule generalizes from a two moons task to random two-Gaussian
tasks that it never experienced during outer-training. On this new semi-supervised learning task, it
continues to outperform the supervised baseline. Note that the learned update rule solves the task in a
qualitatively different way than backpropagation, and despite doing better on test accuracy performs
dramatically worse on training loss.
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A Inner-Training details

Below we provide update equations describing how the inner-model weight updates are produced by
the outer model:

x0bi ≡ unit i of input example b in batch
yb ≡ label for example b in batch. Need not be defined for all b.

N l ≡ width of layer l

W l ∈ RN l−1×N l

≡ input weights for layer l, initialize ∼ N (0,
1

N l−1 )

W̄ l ∈ RN l+1×N l

≡ top down weights for layer l, initialize ∼ N (0,
1

N l+1
)

¯̄W l ∈ RN l×N l

≡ lateral weights for layer l, initialize ∼ N (0,
1

N l
)

zlbi =
∑
j

xl−1bj W l
ji ≡ feedforward pre-activations

xlbi = φ(zlbi), for l > 0, and where φ is a nonlinearity such as ReLU

zL ≡ logits at top of L layer network

J =
∑

b∈[supervised examples]

loss
(
zLb , yb

)
≡ total loss

z̄Lbi = gradient of loss w.r.t. logits,
∂J

∂zLbi

¯̄zlbi =
∑
j

xlbj
¯̄W l
ji ≡ lateral inputs
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θ ≡ parameters of per-neuron MLP(
δ, α, β, ᾱ, β̄, ¯̄α, ¯̄β

)l
·i

= MLP
(

(z, z̄, ¯̄z)
l
·i ; θ

)
,where the MLP can accumulate information along the batch dimension

z̄lbi =
∑
j

δl+1
bj W̄ l

ji ≡ top-down learning signal for l < L

B ≡ [batch size]

∆W l
ji =

1

B

∑
b

αl−1
bj βl

bi

LN l−1
√
N l

,∆W̄ l
ji =

1

B

∑
b

ᾱl+1
bj β̄l

bi

L
√
N l+1

,∆ ¯̄W l
ji =

1

B

∑
b

¯̄αl
bj

¯̄βl
bi

L
√
N l
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