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Abstract 
Dynamic changes in chromatin accessibility coincide with important aspects of neuronal differentiation, such as 
fate specification and arealization and confer cell type-specific associations to neurodevelopmental disorders. 
However, studies of the epigenomic landscape of the developing human brain have yet to be performed at single-
cell resolution. Here, we profiled chromatin accessibility of >75,000 cells from eight distinct areas of developing 
human forebrain using single cell ATAC-seq (scATACseq). We identified thousands of loci that undergo 
extensive cell type-specific changes in accessibility during corticogenesis. Chromatin state profiling also reveals 
novel distinctions between neural progenitor cells from different cortical areas not seen in transcriptomic profiles 
and suggests a role for retinoic acid signaling in cortical arealization. Comparison of the cell type-specific 
chromatin landscape of cerebral organoids to primary developing cortex found that organoids establish broad 
cell type-specific enhancer accessibility patterns similar to the developing cortex, but lack many putative 
regulatory elements identified in homologous primary cell types. Together, our results reveal the important 
contribution of chromatin state to the emerging patterns of cell type diversity and cell fate specification and 
provide a blueprint for evaluating the fidelity and robustness of cerebral organoids as a model for cortical 
development. 
 
Main text  
The diverse cell types of the human cerebral cortex (Fig. 1a) have been mostly classified based on a handful of 
morphological, anatomical, and physiological features. Recent innovations in single cell genomics, such as single 
cell mRNA sequencing (scRNA-seq), have enabled massively parallel profiling of thousands of molecular 
features in every cell, uncovering the remarkable molecular diversity of cell types previously considered 
homologous, such as excitatory neurons located in different areas of the cerebral cortex1-6. However, the 
developmental mechanisms underlying the emergence of distinct cellular identities are largely unknown, as most 
cortical neurons are generated at stages that are inaccessible to experimentation5.  
 
Over 60 years ago, Conrad Waddington introduced the concept of an epigenomic landscape to account for the 
emergence of distinct cell fates7. In particular, chromatin state defines the functional architecture of the genome 
by modulating the accessibility of gene regulatory elements, such as enhancers, which serve as binding sites for 
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transcriptional regulators. Together with the expression of unique combinations of transcription factors, 
chromatin state is believed to represent the cis-regulatory ‘vocabulary’ of gene expression, which is a 
fundamental determinant of cell identity8,9. However, studies of chromatin state in the developing brain have 
been largely limited as established methods for discovering gene regulatory elements, such as the assay for 
transposase-accessible chromatin using sequencing10 (ATACseq) or chromatin immunoprecipitation followed by 
sequencing11 (ChIP-seq), lacked cellular resolution and mainly focused on studies that enrich for broad cell 
classes revealing changes in regional patterning and neuronal differentiation8,12-17. Several methods have been 
recently developed to enable profiling of the epigenomic landscape at single cell resolution, such as scATAC-
seq18,19, revealing many cell type-specific patterns of enhancer activity in the developing and adult mouse brain, 
as well as the adult human brain20-22. However, it is particularly important to characterize gene regulatory 
elements in their native context of the developing human tissue, as growing evidence has shown that genetic 
variants associated with psychiatric disease reside in evolutionary accelerated sequences that are putative 
neurodevelopmental enhancers23-26. 
 
Chromatin states define the major cell types in the developing brain 
To characterize the chromatin state landscape of the developing human brain at single cell resolution, we 
performed scATACseq on primary samples of the human forebrain at midgestation. For a subset of samples, we 
preserved the anatomical region of origin information (Extended Data Table 1), including dorsolateral prefrontal 
cortex (PFC), primary visual cortex (V1), primary motor cortex (M1), primary somatosensory cortex, dorso-lateral 
parietal cortex, temporal cortex, insular cortex, and the medial ganglionic eminence (MGE), a major source of 
cortical interneurons27,28 (Fig. 1b, Extended Data Table 1).  
 
We generated data from 77,354 cells passing quality control criteria (Methods, Extended Data Fig. 1a-d). To 
reduce the dimensionality of the dataset, we performed latent semantic indexing followed by singular value 
decomposition (Methods). Batch correction was performed using the deep neural network-based scAlign29 to 
correct for technical sources of variance, including individual variation and processing method (Extended Data 
Fig. 1e-f, Methods). We identified 25 distinct clusters using the Leiden community detection algorithm (Fig. 1c, 
Extended Data Fig. 1g-h). This analysis robustly separated cortical and subcortical cells (MGE)(Fig. 1d).  
 
Next, to determine which epigenomic signatures correspond to the known cell types of the developing cortex, 
we calculated ‘gene activity scores’ by summing fragments in the gene body and promoter regions, which 
represents a proxy for gene expression20,30 (Fig. 1e). Activity of canonical marker genes identified the major cell 
classes, including radial glia (RG), intermediate progenitor cells (IPCs), excitatory neurons (ENs), and 
interneurons (INs)(Fig. 1g, Extended Data Fig. 2a-b). To systematically predict cell identity, we correlated gene 
activity scores from scATACseq cells with cell type marker genes inferred from previously published scRNAseq 
data1 (Methods), and assigned putative cell identity to every cell in the scATACseq dataset according to the 
highest correlation of scRNAseq-based cluster (Fig. 1f, Extended Data Fig. 2c). Most scATACseq clusters had 
one-to-one mapping to scRNAseq clusters, with few exceptions. Radial glia formed a single cluster in 
scATACseq, but map to three scRNAseq clusters of radial glia (‘ventricular’, ‘outer’, and ‘truncated’). Conversely, 
many clusters of excitatory neurons mapped to a single cluster of PFC or V1 excitatory neurons from scRNAseq 
(Fig. 1h). These discrepancies suggest that for some cell classes, epigenomic information may provide additional 
resolution of cell types beyond transcriptional definitions, while in other cases, transcriptomics may reveal more 
subtypes. 
 
Single cell chromatin state profiling reveals candidate cell type specific enhancers 
To identify putative cell type specific gene regulatory elements, we called peaks on aggregate single cells from 
each cluster31 (Methods, Fig. 1b). Non-overlapping peaks were subsequently merged to a total union set of 
398,139 peaks. Cluster-specific differentially accessible peaks were identified for each cluster, resulting in a set 
of >200,000 DA peaks, with most clusters containing many thousands of cluster specific peaks (Fisher’s Exact, 
FDR<0.05, Fig. 1h, Extended Data Fig. 3, Extended Data Fig. 4j). Annotation of our peak set in genomic features 
shows enrichment in intronic and distal intergenic regions and in the flanking regions of transcription start sites, 
suggesting an enrichment of gene regulatory elements, such as enhancers (Extended Data Fig. 4a-b). We 
intersected our scATACseq peaks with publicly available ChIP-seq data for H3K27ac (GEO: GSE63648), a 
marker for active enhancers, generated for comparable tissue samples, and found significant overlap with our 
peaks (Permutation test, p<0.001, Extended Data Fig. 4c). We also intersected our peak set with a set of 
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validated forebrain enhancers32 (VISTA Enhancer Browser) and found that 297/317 overlapped with our peakset 
(Extended Data Fig. 4d). Due to growing evidence that regions of the genome that have undergone accelerated 
sequence evolution in humans are enriched for neurodevelopmental enhancers24, we intersected our peak set 
with a set of 2,540 non-coding human accelerated regions (ncHARs) finding 880 overlaps (Extended Data Fig. 
4e). Interestingly, chromatin accessibility profiles of MGE progenitors and MGE-derived cortical interneurons 
were enriched for accessibility of ncHARs, and future studies are needed to elucidate if those genomic changes 
could have contributed to the changes in interneuron repertoire across primates33,34) (Extended Data Fig. 4f-i). 
 
To identify putative regulatory ‘grammar’ of cell types, we calculated enrichment of known transcription factor 
binding motifs in cluster specific peak sets using HOMER35 (Methods, Fig. 1h). Transcription factor motif 
enrichments align with cell type annotations from marker gene body enrichments with NEUROD1 motif 
enrichment in EN clusters, DLX and ASCL1 motif enrichments in IN clusters, PAX6 motif enrichment in RG 
clusters, EOMES motif enrichment in IPC clusters, SOX9 motif enrichment in OPC clusters, IRF8 motif 
enrichment in microglia clusters, and NKX2.1 motif enrichment in MGE progenitors. To examine transcription 
factor motif enrichments at the single cell level, we used ChromVAR, which estimates bias-corrected deviations 
of transcription factor binding motif enrichments in scATAC-seq libraries, and found good agreement with top 
motif enrichments for each cluster as determined by HOMER (Extended Data Fig. 4k). Finally, we predicted 
likely enhancers using the recently developed activity-by-contact (ABC) model36, which integrates H3K27ac 
ChIP-seq, Hi-C, and gene expression data with chromatin accessibility to predict enhancers and link them to 
their target genes (Methods). Using this method, we were able to identify sets of high-confidence putative 
enhancers for each cell type and their likely target genes (Fig. 1i). 
 
Vulnerability of cell type specific regulatory landscape to neurodevelopmental disorders 
Mutations in non-coding genomic regions, as well as de novo loss of function mutations in chromatin regulators 
have been implicated in a wide range of neurodevelopmental and psychiatric disorders, including schizophrenia37 
and autism spectrum disorder38-41. However, due to the lack of cellular-resolution datasets of chromatin state 
across developmental stages and differentiation states, these mutations cannot be tied to selective vulnerabilities 
across diverse cell types of the developing human brain. To address this unmet need, we intersected cell type 
specific ATAC-seq peaks with disease-linked common and rare non-coding variants (Methods). We first 
intersected our cell type-specific peak sets with de novo non-coding mutations (DNMs) identified from ASD and 
neurodevelopmental delay (NDD) cases and found significant enrichment of DNMs in 19 of 27 cell-type specific 
peak sets, compared to a merged background peak set (Extended Data Figure 5). However, no cell type-specific 
peak sets were significantly enriched for DNMs in probands compared to sibling controls. We also intersected 
cell type specific peak sets with genomic regions enriched for copy number variants in cases with developmental 
delay42, identifying cell types with significant enrichment and depletion (Figure 1j). Because such regions are 
large and do not provide specificity with respect to individual genes, we next tested for enrichment of cell type 
specific peaks in the flanking regions of genes associated with ASD and NDD and identified cell types with peak 
sets significantly enriched and depleted in these regions (Figure 1k), but were underpowered to identify any 
differences in the DNM burden in peaks within the promoter and gene body between probands and siblings 
across peak sets. Finally, we sought to assess the enrichment of common variants associated with 
neuropsychiatric disease risk in our cell type specific peak sets. To do this we performed a partitioned heritability 
LD score regression analysis using summary statistics from large-scale genome-wide association studies of 
schizophrenia, ASD, major depressive disorder, and bipolar disorder (Methods). For all four disorders, we 
detected significant enrichments (FDR < 0.05) of risk-associated variants in peaks from at least one cell type. 
Interestingly, we found that, consistently across disorders, disease risk was most strongly enriched in excitatory 
neuron populations (Figure 1l). 
 
Dynamic changes in chromatin accessibility during neuronal differentiation 
Developing tissues pose unique challenges to single cell analysis methods because, unlike the adult tissue, 
many cells represent developmentally transient states along the continuum of lineage progression. Chromatin 
state profiling provides a unique opportunity to characterize the Waddingtonian landscape of cell fate decisions 
underlying the emergence of cell types during development. Identification of putative regulatory mechanisms of 
cell fate specification could in turn be harnessed to promote directed differentiation of molecularly-defined cell 
types from pluripotent stem cells for applications in cell replacement therapy and disease modelling. To combine 
transcriptomic and epigenomic information, we coembedded scRNAseq and scATACseq datasets generated in 
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parallel from samples of visual cortex (Fig. 2a). By projecting cluster annotations across the three comparisons 
(scRNAseq only, scATACseq only, and multimodal mapping), we were able to further support our predictions of 
cellular classification from chromatin state data (Fig. 2b). Projections of gene expression and gene activity scores 
in the co-embedded space show that distinct clustering of unique cell types is preserved and that scATACseq 
and scRNAseq cells of the same type cluster together (Fig. 2c-d). Because the ability to identify cell types across 
samples, species, and experimental models using single cell genomics approaches depends on robust detection 
of gene co-expression relationships1,43, we sought to compare gene-module assignments calculated based on 
mRNA expression values detected using scRNAseq or those inferred from scATACseq. We combined genes 
into modules using weighted gene co-expression network analysis44 and compared eigengene projections as 
well as gene-module assignments between scRNAseq and scATACseq datasets (Extended Data Fig. 6a-b). 
This analysis revealed a remarkable conservation of gene co-expression relationships, with the exception of 
genes related to signaling pathway activation that formed co-expression module in scRNAseq but not 
scATACseq datasets, and genes related to synapse assembly forming co-expression module in scATACseq, 
but not scATACseq dataset (Extended Data Fig. 6d-g). Together, our joint analysis of scRNAseq and 
scATACseq datasets further underscored the conserved representation of the major cell types and gene co-
expression relationships across the two modalities. 
 
To identify trajectories of chromatin accessibility underlying excitatory neuron differentiation and maturation, we 
performed pseudotemporal ordering of cells in the co-embedded space45 (Fig. 2e, Methods). Consistent with the 
known patterns of neurogenesis, pseudotime reconstruction ordered sequentially radial glia, intermediate 
progenitors, and excitatory neurons. We identified hundreds of loci with sharp, transient accessibility across 
pseudotime, and predicted enhancers that interact with genes linked to cell type identity (Fig. 2f,g). By calculating 
transcription factor binding site enrichment across peaks that show dynamic changes in accessibility along 
pseudotime, we reconstructed the known hierarchy of transcription factors involved in cortical neurogenesis, 
including sequential enrichment for SOX2, ASCL1, and NEUROD2 binding sites among transiently accessible 
loci (Extended Data Fig. 7). These results challenge the prevailing model of differentiation as a transition between 
two phases involving progressive loss of accessibility of sites open in progenitor cells and gradual opening of 
sites relevant to postmitotic cells46, and underscore highly dynamic transient states of chromatin accessibility 
during human cortical neurogenesis.  
 
Furthermore, we leveraged the scRNAseq and scATACseq co-embedding to compare changes in gene 
expression, enhancer accessibility, and transcription factor motif enrichment along the differentiation trajectory. 
Considering a few key regulators of neurogenesis, SOX2, EOMES, and NEUROD2, we observed a trend for 
accessibility of predicted enhancers to precede changes in gene expression (Fig. 2h). These findings are 
consistent with recent reports21,47 and support the model whereby changes in chromatin state along a 
developmental lineage foreshadow changes in gene expression and cell fate decisions. Intersection of cell type 
and developmentally dynamic loci and putative regulatory elements with whole genome sequencing data from 
neurodevelopmental or neuropsychiatric disorders may reveal developmentally transient states that are 
vulnerable to non-coding mutations.  
 
Cortical progenitors develop area-specific chromatin states 
Single cell transcriptomics recently revealed that area-specific cortical excitatory neurons emerge during early 
neurogenesis, while only limited molecular differences can be found between progenitor cells1,2. Given that 
changes in the accessibility of regulatory elements often precede changes in gene expression (Fig. 2h), we 
sought to examine whether epigenomic signatures could foreshadow the emergence of area-specific excitatory 
neurons. Specifically, we compared scRNAseq and scATACseq profiles of excitatory lineage cells sampled from 
the extremes of the rostral-caudal axis, PFC and V1 (Fig. 3a-b, Extended Data Fig. 8a-h). For each modality, we 
ordered the cells in pseudotime to approximate the differentiation trajectory, and identified the ‘branch’ point 
along this trajectory at which transcriptomic or chromatin state differences between PFC and V1 lineages 
become apparent. In contrast to transcriptomic data, which only distinguishes maturing excitatory neuron clusters 
from distinct cortical areas1 (Fig. 3h), chromatin state signatures reveal a striking divergence between PFC and 
V1 earlier in differentiation, and define area-specific IPC populations (Fig. 3g).  
 
To identify putative regulatory networks that could underlie the divergence of PFC and V1 lineages, we performed 
transcription factor binding site enrichment analysis35 on peaks that were differentially accessible between PFC 
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and V1 (Fisher’s Exact, FDR<0.05, Fig. 3i-l, Extended Data Figure 8i-j, Supplementary Tables 1&2). This 
analysis recovered previously known regulators of cortical arealization and those consistent with transcriptomic 
studies1,48. For example, our analysis predicts motif enrichment for known transcription factors enriched in the 
PFC, including POU3F2, MEIS1, TBR1, NEUROD1, NEUROG2, and TBX21 (Supplementary Table 1). 
Interestingly, many of the candidates identified in this analysis relate to retinoic acid signaling pathway. In early 
development, retinoic acid signaling plays a well-established role in development of caudal fates, including 
hindbrain and spinal cord49. However, at later stages of development, retinoic acid signaling has been shown to 
interact with pathways involved in cortical arealization including the NR2F1 transcription factor and Wnt signaling 
that promote occipital (visual cortex) identities50,51, and is negatively regulated by TGIF152, the top enriched motif 
among PFC cells (Fig. 3j-k). Together, our analyses suggest that epigenomic differences distinguish cortical 
progenitor cells between cortical areas and foreshadow the emergence of area-specific excitatory neuron 
subtypes. In addition, our study suggests a previously unappreciated role for the retinoic signaling pathway in 
cortical arealization. 
 
An epigenomic ‘report card’ for in vitro models of cortical neurogenesis 
Due to the scarcity of primary human tissue, studies of human neural development critically require suitable in 
vitro models. Cerebral organoids are a three-dimensional culture model of the developing brain that can be 
derived from somatic cells. Previous studies emphasized the similarities between cerebral organoid cells and 
their in vivo counterparts using single cell transcriptomics43,53,54 and bulk epigenomics15,17. We sought to extend 
these comparisons by performing chromatin state profiling of cerebral organoids at single cell resolution and 
generated scATACseq data for cortical organoids derived via directed differentiation from three genetically 
normal individuals43 (Fig. 4a, Extended Data Fig. 9a, Methods). We identified the major classes of cell types 
expected to emerge in this model, including radial glia, IPCs, interneurons, and excitatory neurons, although 
individual clusters were less discrete than their in vivo counterparts, and contained fewer distinguishing 
chromatin state features (Fig. 4b-d, Extended Data Fig. 9d,f).  
 
To compare organoid clusters with their primary counterparts, we quantified the chromatin accessibility signal 
from organoid cells in peaks defined from primary cells, allowing us to identify clusters representing homologous 
cell types (Methods, Fig. 4e). We found that cell type specific peaks identified in primary cells maintained cell 
type specificity in organoid cells, but many peaks corresponding to cell types not present in organoids, such as 
microglia and endothelial cells, were missing (Fig. 4g, Extended Data Fig. 9e). Next, to assess the fidelity of 
organoids as a model for the epigenomic state of primary cortical cells, we called peaks for each organoid cluster 
and compared with primary peaks for homologous cell types. We found that, while organoids mostly contain 
peaks found in their corresponding primary counterparts, they are missing ~50% of peaks identified in primary 
clusters (Fig. 4f, Extended Data Fig. 9b-c). Interestingly, shared peaks show higher enrichment in promoter 
regions, while peaks found only in primary are more enriched in distal intergenic and intronic regions, suggesting 
that organoids may be missing many distal regulatory elements identified in primary cells. In addition, we 
compared enhancers predicted by activity-by-contact model, which revealed that organoids lack many candidate 
cell type specific enhancers found in primary, even after correcting for cellular coverage (Fig. 4h).  
 
In summary, scATACseq data generated for primary cells represents a blueprint for normal epigenomic states 
of cell types in the developing human brain that serves as a reverence for evaluating the fidelity and robustness 
of in vitro derived models. Our analysis reveals features of chromatin state found in normal developing brain are 
recapitulated in cerebral organoids, epigenomic features of organoid cell types are less discrete and lack 
thousands of distal regulatory elements found in vivo. 
 
Discussion 
By performing massively parallel single cell profiling of chromatin state, we were able to extend previous studies 
of cell-type specific epigenomic regulation of brain development. Specifically, scATAC-seq analyses reveals 
transiently accessible loci that track with neuronal differentiation. These states may reveal mechanisms 
governing the establishment of cell fate during neurogenesis, in particular those underlying the emergence of 
area-specific excitatory neurons. Our findings provide new perspectives on the mechanisms underlying the 
rewiring of regulatory pathways during neurogenesis46. Intersection of chromatin state landscape with disease 
variants implicates post-mitotic, developing cortical excitatory neurons in the etiopathogenesis of 
neuropsychiatric disorders14,55,56, and future studies are needed to probe how disease-associated variants in 
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these regulatory regions modify cell fate decisions in the developing cortex. Furthermore, our findings suggest a 
potential limitation for cortical organoids to serve as experimental models to test these hypotheses, as many 
non-coding regulatory elements, in particular distal enhancers, may not be recapitulated in this model. In order 
to determine the fidelity of organoids as a model for the epigenomic landscape of the developing brain, functional 
characterization of conserved and non-conserved chromatin features in vivo and in vitro will be required. In 
addition to serving as a reference for evaluating in vitro models of human brain development, our data will enable 
scalable prediction of candidate cell type specific regulatory elements that could facilitate the development of 
enhancer-based tools for accessing molecularly-defined cell types57-59.  
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Fig. 1: Single cell chromatin state atlas of the developing human brain. a) Schematic cross-section of 
developing cortex highlighting major cell types. b) Schematic depicting experimental workflow. c) UMAP 
projection of all primary scATAC-seq cells (77,354) colored by leiden clusters. d) UMAP projection of all primary 
scATAC-seq cells colored by brain region of origin. e) Gene activity scores were calculated for all protein coding 
genes for each cell based on summing reads in the promoter plus gene bodies. An intersecting set of 1084 
marker genes was used to correlate gene activity scores to scRNA-seq data generated from single samples. 
Cell type predictions for scATACseq cells were made based on the max correlation values with cell type averages 
from the scRNAseq data (methods). f) UMAP projection of all primary scATAC-seq cells colored by cell type 
prediction. g) UMAP projections of gene activity scores for GFAP marking glia, EOMES marking intermediate 
progenitors, DLX1 marking cells in the interneuron lineage, and NEUROD2 marking cells in the excitatory neuron 
lineage. h) Top, sankey plot depicting mapping between scATACseq clusters and cell type predictions. Bottom 
left, Pileups of cluster specific ATAC-seq signal for each cluster within sets of the 1000 cluster specific peaks for 
each cluster by p-value (Fisher’s Exact). Pileups are centered on peak centers and the +/-10Kb flanking region 
is depicted. Bottom right, significantly enriched TF motifs for each cluster specific peak set as determined by 
HOMER. i) Left, enhancer-gene interaction predictions for cluster 1 cells (EN-PFC-2) and cluster 7 cells (RG) in 
the SOX2 locus. Differentially accessible peaks that interact with SOX2 highlighted in yellow. Right, enhancer-
gene interaction predictions for cluster 1 cells (EN-PFC-2) and cluster 7 cells (RG) in the GRIN2B locus, 
highlighting a peak interacting with GRIB2B in neurons but not in RGs. j) Enrichment and depletion of cell type-
specific scATACseq peaks in CNV regions enriched in pediatric cases of neurodevelopmental delay. Filled 
circles indicate Bonferroni corrected significance. k) Enrichment and depletion of scATACseq peaks in promoter 
and gene regions of genes associated for autism and NDD including genes enriched in DNM (SFARI845, 
DDD29960, COE25361). Stars indicate tests that pass Bonferroni significance. l) Heritability enrichment based on 
LD score regression analysis of GWAS summary statistics in cell type-specific peak sets from primary scATAC 
cells. From left to right, PGC schizophrenia GWAS37, PGC schizophrenia GWAS62, PGC ASD GWAS63, PGC 
MDD GWAS37, PGC bipolar disorder64. 
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Fig. 2: Dynamic changes in chromatin accessibility during human cortical neurogenesis. a) Schematic 
depicting experimental workflow for coembeddding scATACseq and scRNAseq data from the same samples. 
Top left, UMAP projection of scATAC-seq cells from 3 samples of visual cortex colored by leiden clusters. Top 
middle, schematic depicting experimental workflow. Top right, UMAP projection of scRNA-seq cell from 2 
samples of visual cortex colored by leiden clusters. Bottom middle, UMAP projection of coembedded scATAC-
seq & scRNA-seq cells colored by leiden clusters. b) Sankey plot depicting the mappings between scATAC-seq 
clusters, scRNA-seq clusters, and coembedded clusters. c) Projection of log normalized gene expression and 
gene activity scores in coembedded space for GFAP (RGs), EOMES (IPCs), SATB2 (Upper-layer ENs), and 
CRYM (Deep-layer ENs). d) UMAP projection of coembedded cells colored by assay. e) UMAP projection of 
coembedded cells colored by pseudotime with principal graph overlaid. f) Heatmap depicting the average 
proportion of cells with peaks that are differentially accessible across pseudotime. Cells are binned by 
pseudotime into equally sized bins. g) Left, barplots of peak accessibility for 4 individual peaks across 10 
pseudotime bins with regression line overlaid. Right, predicted enhancer-gene interaction predictions for each of 
the four peaks, peaks highlighted in yellow. h) Comparison of moving averages of normalized enhancer 
accessibility (red), gene expression (blue), and motif enrichment (green) across pseudotime for SOX2 (top), 
EOMES (middle), and NEUROD2 (bottom).   

 
Fig. 3: Areal differences in chromatin state of progenitor cells foreshadow the emergence of area-
specific excitatory neuron types. a) Schematic depicting differentiation trajectories for excitatory neurons from 
the PFC (left) and V1 (right). b) UMAP projection of all PFC & V1 scATACseq cells colored by cell type 
predictions. Cells from the excitatory lineage are circled by a dashed line. c) UMAP projection of PFC & V1 
scATACseq excitatory lineage cells colored by area of origin. d) UMAP projection of PFC & V1 scATACseq 
excitatory lineage cells colored by pseudotime with principal graph overlaid. e) UMAP projection of PFC & V1 
scRNAseq excitatory lineage cells (from same samples as ⅔ used for scATACseq) colored by area of origin. f) 
UMAP projection of all PFC & V1 scRNAseq excitatory lineage cells colored by pseudotime with principal graph 
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overlaid. g) Left, Projection of PFC & V1 scATACseq excitatory lineage cells ordered from bottom to top by 
pseudotime value with PFC/V1 divergence branch point displayed (Methods). Cells colored by gene activity 
score of EOMES, highlighting IPCs. Right, schematic illustrating the excitatory neuron differentiation trajectory 
based on chromatin accessibility, with which PFC/V1 divergence becomes apparent at the level of IPCs. h) Left, 
Projection of PFC & V1 scRNAseq excitatory lineage cells ordered from bottom to top by pseudotime value with 
PFC/V1 divergence branch point displayed (Methods). Cells colored by expression of EOMES, highlighting IPCs. 
Right, schematic illustrating the excitatory neuron differentiation trajectory based on gene expression, with which 
PFC/V1 divergence is not apparent until the level of maturing neurons. i) Pileups of PFC and V1 signal in PFC 
and V1 specific peak sets. Pileups are centered on peaks showing +/-10Kb flanking regions. j) Top, TF motif 
enrichments in set of 5,863 PFC specific peaks (Fisher’s Exact, FDR<0.05) as determined by HOMER. Bottom, 
TF motif enrichments in set of 26,520 V1 specific peaks (Fisher’s Exact, FDR<0.05) as determined by HOMER. 
k) UMAP projection of deviation scores of motif enrichment for TGIF1 as determined by ChromVAR. l) UMAP 
projection of deviation scores of motif enrichment for MEF2C as determined by ChromVAR. 

 
Fig. 4: Cell type-specific differences in chromatin accessibility between cerebral organoids and the 
developing human brain. a) Schematic depicting experimental workflow. b) UMAP projection of all organoid 
scATACseq cells (11,171) colored by leiden clusters. c) UMAP projections of gene activity scores for GFAP 
marking radial glia, EOMES marking intermediate progenitors, DLX1 marking interneurons, and NEUROD2 
marking excitatory neurons. d) UMAP projection of all organoid scATACseq cells colored by cell type predictions 
(Methods). e) Heatmap of pearson correlations between primary and organoid scATACseq clusters based on a 
common peak set. f) Top left, overlap of primary and organoid radial glia peak sets. Top right, annotation of 
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primary only RG peaks and shared RG peaks in genomic features. Bottom left, overlap of primary and organoid 
excitatory neuron peaksets. Bottom right, annotation of primary only EN peaks and shared EN peaks in genomic 
features. g) Left, UMAP projection of enrichment Z-scores of the top 1000 radial glia specific peaks (Fisher’s 
Exact) in all primary scATACseq cells. Right, UMAP projection of Z-scores of enrichment of the same 1000 radial 
glia specific peaks in all organoid scATACseq cells. h) Genome browser tracks of the SOX2 locus showing 
enhancer-gene predictions for organoid radial glia (top, blue), all primary radial glia (middle, purple), and V1 
radial glia (bottom, green). Highlighted in yellow is a peak that is predicted to interact with SOX2 present in both 
primary radial glia populations and not present in the organoid radial glia. 
 
METHODS 
  
Nuclei isolation from fresh primary tissue 
Cortical areas were microdissected from 3 specimens of mid-gestation human cortex, in addition to three 
specimens of non-area-specific mid-gestation human cortex. Tissue was dissociated in Papain containing 
Deoxyribonuclease I (DNase) for 30 minutes at 37C and samples were triturated to form a single cell suspension. 
106 Cells were pelleted and lysed for 3 minutes in 100uL chilled Lysis Buffer (10mM Tris-HCl pH7.4, 10mM NaCl, 
3mM MgCl2, 0.1% Tween-20, 0.1% Igepal CA-630, 0.01% Digitonin, 1% BSA). Lysed cells were then washed 
with 1mL chilled Wash Buffer (10mM Tris-HCl pH7.4, 10mM NaCl, 3mM MgCl2, 0.1% Tween-20, 1% BSA) and 
nuclei were pelleted at 500rcf for 5 minutes at 4C.   
 
Nuclei isolation from frozen primary tissue 
Tissue sections were snap frozen and stored at -80C. Nuclei were isolated from frozen tissues using the protocol 
published in Corces MR et al., 201765. Briefly, frozen tissue samples were thawed in 2mL chilled Homogenization 
Buffer (10mM Tris pH7.8, 5mM CaCl2, 3mM Mg(Ac)2, 320 mM Sucrose, 0.1mM EDTA, 0.1% NP40, 167uM β-
mercaptoethanol, 16.7uM PMSF) and lysed in a pre-chilled dounce. Cell lysates were then centrifuged in an 
Iodixanol gradient for 20 minutes at 3000rcf at 4C in a swinging bucket centrifuge with the brake turned off. The 
nuclei band was then carefully pipetted and nuclei were diluted in Wash Buffer.  
  
Cortical organoid differentiation protocol 
Cortical organoids were cultured using a forebrain directed differentiation protocol43,66. Briefly, PSC lines were 
expanded and dissociated to single cells using accutase. After dissociation, cells were reconstituted in neural 
induction media at a density of 10,000 cells per well in 96 well v-bottom low adhesion plates. GMEM-based 
neural induction media includes 20% Knockout Serum Replacer (KSR), 1X non-essential amino acids, 
0.11mg/mL Sodium Pyruvate, 1X Penicillin-Streptomycin, 0.1mM Beta Mercaptoethanol, 5uM SB431542 and 
3uM IWR1-endo. Media was supplemented with 20uM Rock inhibitor Y-27632 for the first 6 days. After 18 days 
organoids were transferred from 96 to six well low adhesion plates and moved to an orbital shaker rotating at 
90rpm and changed to DMEM/F12-based media containing 1X Glutamax, 1X N2, 1X CD Lipid Concentrate and 
1X Penicillin-Streptomycin. At 35 days, organoids were moved into DMEM/F12-based media containing 10% 
FBS, 5ug/mL Heparin, 1X N2, 1X CD Lipid Concentrate and 0.5% Matrigel. Throughout culture duration 
organoids were fed every other day. 
  
Nuclei isolation from cerebral organoids 
Cerebral organoids were dissociated in Papain containing Deoxyribonuclease I (DNase) for 30 minutes at 37C 
and samples were triturated to form a single cell suspension. 106 Cells were pelleted and lysed for 3 minutes in 
100uL chilled Lysis Buffer (10mM Tris-HCl pH7.4, 10mM NaCl, 3mM MgCl2, 0.1% Tween-20, 0.1% Igepal CA-
630, 0.01% Digitonin, 1% BSA). Lysed cells were then washed with 1mL chilled Wash Buffer (10mM Tris-HCl 
pH7.4, 10mM NaCl, 3mM MgCl2, 0.1% Tween-20, 1% BSA) and nuclei were pelleted at 500rcf for 5 minutes at 
4C. 
  
Single Cell RNA-seq Library Preparation and Sequencing 
Single cell RNA-seq libraries were generated using the 10x Genomics Chromium 3’ Gene Expression Kit. Briefly, 
single cells were loaded onto chromium chips with a capture target of 10,000 cells per sample. Libraries were 
prepped following the provided protocol and sequenced on an Illumina NovaSeq with a targeted sequencing 
depth of 50,000 reads per cell. BCL files from sequencing were then used as inputs to the 10X Genomics Cell 
Ranger pipeline. 
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Single Cell RNA-seq Analysis 
For preprocessing of scRNA-seq data, a minimum of 500 genes and 5 percent mitochondrial cutoff was used 
and Scrublet67 for doublet removal. The SCTransform68 workflow in Seurat69 were run separately on each batch. 
Canonical component analysis (CCA) on the Pearson residuals from SCTransform was used as input into 
scAlign for batch correction.  
  
Bulk ATAC-seq Library Preparation and Sequencing 
Bulk ATAC-seq libraries were generated using the protocol outlined in Corces MR et al., 201765. Briefly, 50,000 
nuclei were permeablized and tagmented. Tagmented chromatin libraries were generated and sequenced on an 
Illumina NovaSeq with a target sequencing depth of 50 million reads per library. Sequencing data was used as 
an input to the ENCODE ATAC-seq analysis pipeline (https://github.com/ENCODE-DCC/atac-seq-pipeline). 
  
Single Cell ATAC-seq Library Preparation and Sequencing 
Nuclei were prepared as outlined in the 10X Genomics Chromium single cell ATAC-seq solution protocol. Nuclei 
were loaded with a capture target of 10,000 nuclei per sample. scATAC-seq libraries were prepared for 
sequencing following the 10X Genomics single cell ATAC-seq solution protocol. scATAC-seq libraries were 
sequenced using PE150 sequencing on an Illumina NovaSeq with a target depth of 25,000 reads per nucleus 
(see Extended Data Table 1).  
  
Single Cell ATAC-seq Analysis Pipeline 
Cell Ranger 
BCL files generated from sequencing were used as inputs to the 10X Genomics Cell Ranger ATAC pipeline. 
Briefly, FASTQ files were generated and aligned to GRCh38 using BWA. Fragment files were generated 
containing all unique properly paired and aligned fragments with MAPQ > 30. Each unique fragment is associated 
with a single cell barcode.  
  
SnapATAC 
Fragment files generated from the Cell Ranger ATAC pipeline were loaded into the SnapATAC70 pipeline 
(https://github.com/r3fang/SnapATAC) and Snap files were generated. A cell-by-bin matrix was then generated 
for each sample by segmenting the genome into 5-Kb windows and scoring each cell for reads in each window. 
Cells were filtered based on log10(UMI) between 3-5 and fraction of reads in promoters between 10-60% to obtain 
cells with high quality libraries. Bins were then filtered, removing bins overlapping ENCODE blacklist regions 
(http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/). This matrix was then binarized and coverage of 
each bin was calculated and normalized by log10(count + 1). Z-scores were calculated from normalized bin 
coverages and bins with a z-score beyond ± 2 were filtered from further analysis. A cell-by-cell similarity matrix 
was generated by calculating the Latent Semantic Index (LSI) of the binarized bin matrix. Principal component 
analysis (PCA) was then performed on LSI values. The top 50 principal components were used for batch 
correction through scAlign. 
  
scAlign Batch Correction 
Multiple batches were integrated using the scAlign package29 (https://github.com/quon-titative-biology/scAlign). 
The ATAC batches were first merged together to calculate the Latent Semantic Index (LSI) with the TF matrix 
log-scaled for input into PCA. The 50 principal components of LSI were used as inputs to the encoder. The latent 
dimension was set at 32 and ran with all-pairs alignment of all batches. The input dimension to the encoder was 
set to 50 to match the input 50 principal components, and trained to 15,000 iterations using the small architecture 
setting with batch normalization (BN). The 32 dimensions were used for downstream analysis for finding 
neighbors. The scRNAseq were processed using Seurat and computed the top 15 components from CCA for 
input into scAlign, and the latent dimension was set to 20 using the small architecture with BN and 15,000 
iterations. All alignments were unsupervised. 
  
Clustering and Visualization 
In order to visualize the high dimensionality dataset in 2D space, the latent dimensions for the ATAC and RNA 
data from scAlign were used to construct UMAP (https://arxiv.org/abs/1802.03426) graphs from Seurat. A K-
nearest neighbor graph was constructed using the latent dimensions from scAlign. The leiden algorithm was 
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then used to identify ‘communities’, or clusters, in the sample, representing groups of cells likely to be of the 
same cell type.  
  
Calculating Gene Activity Scores 
To create a proxy for gene expression, ATACseq fragments in the gene-body plus promoter (2Kb upstream from 
transcription start sites) of all protein-coding genes were summed for each cell to generate ‘Gene Activity Scores’. 
A matrix was constructed for all gene activity scores by all cells. Due to the sparsity of scATAC-seq data, the 
MAGIC imputation method71 was used to impute gene activity scores based on the K-nearest neighbor graph. 
  
Cell Type Predictions 
In order to link scATACseq clusters to known cell types of the developing cortex, gene activity scores were used 
to correlate scATACseq cells with cell types from scRNAseq data generated from similar samples1. Briefly, 
cluster ‘marker genes’ were identified for each leiden cluster by performing a Fisher’s Exact test for enrichment 
of gene activity scores. The top 300 enriched genes for each cluster were identified based on p-value. Similarly, 
cell type marker genes were identified for annotated cell types from Nowakowski et al. 20171, and the top 300 
genes for each cluster were identified based on p-value. The intersection of genes from scATACseq marker 
genes and scRNAseq marker genes was identified, resulting in a set of 1084 genes. Average expression values 
for each scRNAseq cell type for each of the 1084 genes was determined. For each scATACseq cell, the gene 
activity scores of the 1084 genes was correlated with cell type averages from the scRNAseq data and a cell type 
prediction was made based on the cell type most highly correlated with each scATACseq cell. 
  
Peak Calling 
Fragments from cells were grouped together by cluster and peaks were called on all cluster fragments using 
MACS2 (https://github.com/taoliu/MACS) with the parameters ‘--nomodel --shift -37 --ext 73 --qval 1e-2 -B --
SPMR --call-summits’. Peaks from each cluster were then combined to form a master peak set and a cell-by-
peak matrix was constructed. This matrix was binarized for all downstream applications. 
  
Determination of Differentially Accessible Peaks 
Differentially accessible peaks for each cluster were determined by performing a Fisher’s exact test. 
  
Visualizing Cluster Signal in Peaks 
The deeptools suite72 (https://deeptools.readthedocs.io/en/develop/) was used to visualize pileups of cluster-
specific ATACseq signal (output from MACS2) in DA peak sets. 
  
Transcription Factor Motif Enrichment Analysis 
The findMotifsGenome.pl tool from the HOMER suite35 (http://homer.ucsd.edu/homer/) was used to identify TF 
motif enrichments in peak sets. The ChromVAR R package73 was used to identify TF motif enrichments at the 
single cell level in scATACseq data. Briefly, the peak-by-cell matrix from the snap object was used as an input, 
filtering for peaks open in at least 10 cells. Biased-corrected TF motif deviations were calculated for the set of 
1764 human TF motifs for each cell. 
  
Enhancer-Gene Predicted Interactions  
The Activity-by-Contact (ABC) model36 (https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction) was 
used for prediction of enhancer-gene interactions from scATACseq data. Cluster-specific ATAC-seq signal and 
peak outputs from MACS2 were used as inputs. Gene expression values from scRNAseq of GW20 visual cortex 
were averaged and used an input. As recommended and provided by the creators of ABC, an averaged Hi-C 
profile of 10 cell types was used as an input.   
  
VISTA Enhancer Intersections 
VISTA Enhancers were taken from the VISTA Enhancer Browser (https://enhancer.lbl.gov/) and filtered for 
human sequences found to be active in the forebrain. Enhancers were lifted over to Hg38 using the UCSC 
LiftOver tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver) and overlapping regions were merged, resulting in 317 
unique regions. These regions were intersected with the peak set from all primary scATACseq cells and 297 
peaks overlapping VISTA forebrain enhancer regions were identified. 
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Non-coding Human Accelerated Region Intersections 
Non-coding Human Accelerated Regions (ncHARs) were taken from Capra et al. 201324. These regions were 
then lifted over to Hg38 using the UCSC LiftOver tool and overlapping regions were merged, resulting in 2540 
unique regions. These regions were intersected with the peak set from all primary scATACseq cells and 880 
peaks overlapping ncHAR regions were identified. 
  
H3K27ac ChIP-seq Data Intersection 
Publicly available H3K27ac ChIP-seq peak sets generated from 12pcw (GW14) human cortical samples25 were 
obtained from GEO (GEO: GSE63648). All peak sets were lifted over to Hg38 using the UCSC LiftOver tool and 
overlapping regions were merged. Using the RegioneR R package74 
(https://www.bioconductor.org/packages/release/bioc/html/regioneR.html), a hypergeometric test was 
performed to determine the significance of overlap between H3K27ac peaks and scATACseq peaks, using 1000 
random shuffling iterations to build a null distribution. 
  
Genomic Feature Annotations 
The ChIPSeeker R package75 (https://bioconductor.org/packages/release/bioc/html/ChIPseeker.html) was used 
to annotate all peak sets in genomic features. 
  
Pseudotime Analysis 
The Monocle 3 R package45 (https://cole-trapnell-lab.github.io/monocle3/) was used for pseudotime calculation 
of the coembedded RNA and ATAC dataset. The radial glia cells were set as the root cells. The minimum branch 
length was 9 in the graph building. Monocle 3 was also used for the pseudotime calculation of the scRNAseq 
PFC/V1 dataset. The Cicero package76 (https://cole-trapnell-lab.github.io/cicero-release/) was used for the 
pseudotime calculation of the scATACseq PFC/V1 dataset. 
  
Comparison of Accessibility, Gene Expression, and TF Motif Enrichment Across Pseudotime 
Since pseudotime was calculated on the co-embedded space of ATAC and RNA cells, we can directly compare 
temporal changes in gene expression and chromatin accessibility. For each of the transcription factors, we 
identified gene-linked enhancers candidates using the ABC model, and calculated a 1,000 cell moving average 
of their accessibility across pseudotime from the ATAC cells. Using Z-scores from ChromVAR, we calculated a 
1,000 cell moving average of the motif enrichment across pseudotime from the ATAC cells. For gene expression, 
we calculated a 1,000 cell moving average across pseudotime from the RNA cells. LOESS regression lines were 
fit to the moving average data. 
 
Branchpoint Analysis 
URD77 (https://github.com/farrellja/URD/) was used to compare the branchpoint of ATAC and RNA 
independently. Deep-layer neurons weren’t considered during this analysis due to obfuscating identities, and the 
batch corrected values were used as input to the diffusion map calculations to combat batch effects. Diffusion 
parameters were set to 150 nearest neighbors, and sigma was auto calculated from the data. The tree was 
constructed using 200 cells per pseudotime bin, 6 bins per pseudotime window, and branch point p-value 
threshold of 0.001. 
  
scRNAseq/scATACseq Coembedding 
To anchor mRNA expression and chromatin state profiles in the same map of cell diversity, we applied scAlign 
on datasets where we profiled scRNAseq and scATACseq in parallel in the sample sample. This was achieved 
by linking gene expression data to gene activity scores derived from chromatin accessibility data. The gene 
activity scores were logRPM values derived from gene activity scores generated by the SnapATAC pipeline. 
Then the gene expression and gene activity scores were processed using Seurat, and then split into batches for 
input into scAlign. The encoder space was computed using multi CCA of the 10 dimensions with latent 
dimensions at 20 using the ‘small’ architecture. 
   
Disease Intersection 
De novo mutation (DNM) enrichment 
Peak sets from 27 cell types were intersected DNMs from 2,708 probands and 1,876 siblings using bedtools 
v2.24.0. Peak sets were determined based on the presence of the peak in at least 5% of the cells for that cell 
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type. DNMs were identified by an in-house pipeline. Briefly, variants from whole-genome sequencing data were 
called using four independent callers: GATK v3.8, FreeBayes, Strelka, and Platypus. Variant calls from each 
caller were intersected, and filtered for read depth (> 9), allele balance (> 0.25), absence of reads supporting the 
mutation in parents, and identified by at least three of the four callers. 
 
Peak sets were tested for an enrichment of DNMs in probands as compared to a background peak set which 
contained all peaks. We used a Fisher’s exact test to compare the number of peaks with one or more DNMs 
between the cell type-specific peak set and the background peak set. We also performed a Wilcox rank sum test 
comparing the number of DNMs per peak in the cell type-specific set to the background peak set. We applied a 
Bonferroni multiple test correction for 27 tests (# of cell types) to all p-values. 
  
ASD/NDD gene set enrichment 
We created gene plus promoter regions using bedtools v2.24.0, where we defined the promoter as the 1Mb 
region upstream of the gene transcription start sites. Gene regions were defined using Gencode V27. Peak sets 
were determined based on the presence of the peak in at least 5% of the cells for that cell type. The total number 
of peaks in each gene plus promoter region was quantified per gene for each cell type and compared to the 
number of peaks in the merged peak set for each gene set using a Fisher’s exact test. The peaks in the remaining 
gene plus promoter regions were used as background. Gene sets from Coe et al.42 (COE253), Kaplanis et al.60 
(DDD299) and SFARI gene (SFARI854) were used for enrichment testing. P-values were Bonferroni corrected 
for 81 tests (27 cell types and 3 gene sets). In addition, we also compared the number of probands and siblings 
carrying one or more DNMs in a peak within the gene plus promoter region of genes in the union set of the three 
gene sets tested above. Burden was quantified using a Fisher’s exact test for each peak set. P-values were 
Bonferroni corrected for 28 tests (# of cell types plus the merged peak set). 
 
Morbidity map CNV enrichment 
CNVs enriched in NDD cases from Coe et al 201442 were intersected with peak sets using bedtools 2.24.0; 
peaks were required to have a 50% overlap with the CNV region. Peak sets were determined based on the 
presence of the peak in at least 5% of the cells for that cell type. The total number of peaks overlapping a CNV 
were compared to the number of peaks that did not overlap with a CNV for each cell type. The merged peak set 
was used as background and compared by Fisher’s exact test. P-values were Bonferroni corrected for 27 tests 
(# of cell types). 
 
Cell type-specific GWAS enrichment testing 
We retrieved GWAS summary statistics for schizophrenia (Ripke et al., 2014)37, bipolar disorder (Stahl et al., 
2019)64, and autism (Grove et al., 2019)78 from the Psychiatric Genomics Consortium data portal 
(https://www.med.unc.edu/pgc). We also obtained GWAS summary statistics for schizophrenia (Pardiñas et al., 
2018)63 from http://walters.psycm.cf.ac.uk/. GWAS summary statistics for major depression (Howard et al., 
2019)62 were obtained from the authors under the auspices of a Data Use Agreement between 23AndMe and 
the University of Maryland Baltimore. We applied stratified LD score regression (LDSC version 1.0.1; Finucane 
et al., 2018; Finucane et al., 2015)79,80 to these summary statistics to evaluate the enrichment of trait heritability 
in each of 27 cell type-specific peak sets, which we defined as peaks present in at least 1% of cells from a given 
cell type. These associations were adjusted for the union of the peak sets as well as for 52 annotations from 
version 1.2 of the LDSC baseline model (including genic regions, enhancer regions and conserved regions; 
Finucane et al., 2015)79. Associations that met a cutoff of FDR < 0.05 were considered significant. 
 
EXTENDED DATA FIGURES 
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Extended Data Fig. 1: Batch correction and quality control metrics for primary scATACseq data. a) UMAP 
projection of all primary scATACseq cells colored by log10(read depth). b) UMAP projection of fractions of reads 
in peaks for all primary scATACseq cells. c) UMAP projection of all primary scATACseq cells colored by condition 
(fresh/frozen). d) Aggregate signal of single cell data was highly correlated with bulk ATACseq libraries prepared 
in parallel. Pearson’s correlation coefficient (ρ=0.79) between bulk ATAC-seq and aggregate of all scATACseq 
cells was calculated from the PFC_GW20 sample based on coverage of 10Kb genomic bins. Bulk ATAC-seq 
and scATACseq data were generated from the same sample. e) UMAP projection of all primary scATACseq 
cells before batch correction colored by sample. f) UMAP projection of all primary scATACseq cells after batch 
correction colored by sample (Methods). g) Barplot depicting the proportion of cells from each brain region for 
each leiden cluster for all primary scATACseq cells. h) Dendrogram of hierarchical clustering of leiden clusters 
for all primary scATACseq cells.  
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Extended Data Fig. 2: Gene activity scores correlate with cell type-specific expression of marker genes. 
a) UMAP projections of all primary scATACseq cells colored by gene activity score. From top left to bottom right, 
AQP4 marking glia/astrocytes, TBR1 marking excitatory neurons, HES1 marking radial glia, HOPX marking outer 
radial glia, CCL4 marking microglia, CRYAB marking truncated radial glia, OLIG1 marking oligodendrocyte 
precursors, SOX2 marking radial glia, NKX2.1 marking MGE cells, SATB2 marking upper layer excitatory 
neurons, FEZF2 marking deep layer excitatory neurons, and LHX6 marking MGE-derived interneurons. b) 
Heatmap of average gene activity scores for 200 variable genes for the 25 leiden clusters of all primary 
scATACseq cells. c) UMAP projection of max correlation values with scRNAseq cell types. 
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Extended Data Fig. 3: Projection of cluster specific peaks for all scATACseq clusters. UMAP projections 
of all primary scATACseq cells colored by Z-score of peak set enrichment. From top left to bottom right, projection 
of cluster specific peak sets for each of the 25 leiden clusters (Fisher’s Exact, FDR<0.05). 
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Extended Data Fig. 4: scATACseq peaks overlap with marks of active enhancers and previously 
validated forebrain enhancers. a) Annotation of peaks called from all primary scATACseq cells in genomic 
features. b) Distribution of peaks called from all primary scATACseq cells in flanking regions around transcription 
start sites. c) Enrichment of overlaps of H3K27ac ChIP-seq peaks generated from GW14 human frontal cortex 
(GEO: GSE63648) with peaks called from all primary scATACseq cells (Permutation Test, p<0.001). d) Overlap 
of 317 VISTA enhancer regions active in the forebrain with peaks called from all primary scATACseq cells 
(297/217, Image taken from VISTA Enhancer Browser, hs123 - embryo 1). e) Overlap of 2540 non-coding human 
accelerated regions (ncHARS) taken from Capra et al. 2013 with peaks called from all primary scATACseq cells 
(880/2540). f) UMAP projection of all primary scATACseq cells colored by Z-score of enrichment of peaks 
overlapping ncHARs. g) Average Z-score of enrichment of peaks overlapping ncHARs grouped by cell type 
predictions. h) Average Z-score of enrichment of peaks overlapping ncHARs grouped by brain region. i) Violin 
plots depicting Z-scores of enrichment of peaks overlapping ncHARs grouped by brain region. j) Heatmap of 
average proportion of cells in each cluster that have reads overlapping top cluster specific peaks (Fisher’s Exact). 
Columns represent the signal from each cluster arranged left-to-right 1-25. Rows represent top 100 cluster 
specific peaks for each cluster arranged top-to-bottom 1-25. k) Average transcription factor motif enrichments 
for 13 TFs in 25 leiden clusters from all primary scATACseq cells calculated using ChromVAR (Methods).       
  

 
Extended Data Figure 5: DNM enrichment in cell type-specific peaks. Peaks in 19 out of 27 cell types are 
enriched for DNMs observed in ASD cases as compared to the merged peak set. Filled circles indicate cell types 
with significant enrichment after Bonferroni correction. We did not find any differences in the number of DNMs 
in cell type-specific peaks between probands and siblings across any cell type after Bonferroni correction. 
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Extended Data Fig. 6: Preservation of gene co-expression relationships inferred from transcriptomic and 
chromatin state profiling of single cells. a) Single cells profiled for scRNAseq and scATACseq were analyzed 
for gene co-expression relationships using weighted gene coexpression network analysis44. For scATACseq, we 
used gene activity scores as proxy for mRNA expression. b-c) WGCNA hierarchical clustering plots and module 
assignments of genes (b) or gene activity scores (c). See also Supplementary Tables 3 and 4 for gene-module 
assignments and module eigengene correlations. d) Gene-module correlations were compared between 
scRNAseq and scATACseq datasets, revealing a high degree of correlation between gene co-expression 
modules calculated from scRNAseq and those inferred from gene activity scores in scATACseq data. e-f) 
Histograms showing the distributions of module correlations across modalities. In either comparison, only a small 
number of clusters lack appreciable correlation to any module in the other modality, with scATACseq-specific 
modules enriched for genes involved in cell-cell interactions, including the protocadherin gene clusters that are 
highly co-accessible across single cells, but not highly co-expressed. g) Analysis of gene-module memberships 
reveal high degree of conserved gene co-expression and co-accessibility across single cells.        
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Extended Data Fig. 7: Temporally dynamic transcription factor motif enrichments reveal regulators of 
excitatory differentiation. Heatmap of average transcription factor motif enrichments for the top 200 most 
variable transcription factors as determined by ChromVAR (Methods) in equally-sized bins of pseudotime 
arranged in increasing order from left-to-right.    
  

 
Extended Data Fig. 8: Chromatin state profiling reveals divergence of PFC and V1 excitatory lineages. a) 
UMAP projection of scATACseq cells from PFC and V1 samples before batch correction colored by sample. b) 
UMAP projection of scATACseq cells from PFC and V1 samples after batch correction colored by sample. c) 
UMAP projection of scATACseq cells from PFC and V1 samples colored by leiden cluster. d) UMAP projection 
of scATACseq cells from PFC and V1 samples colored by gene activity score for EOMES, a marker of IPCs. e) 
UMAP projection of scRNAseq cells from PFC and V1 samples before batch correction colored by sample. f) 
UMAP projection of scRNAseq cells from PFC and V1 samples after batch correction colored by sample. g) 
UMAP projection of scRNAseq cells from PFC and V1 samples colored by leiden cluster. h) UMAP projection of 
scRNAseq cells from PFC and V1 samples colored by expression of EOMES, a marker of IPCs. i) UMAP 
projection of scATACseq cells from PFC and V1 samples colored by Z-score of enrichment of 5,863 PFC-specific 
peaks (Fisher’s Exact, FDR<0.05). j) UMAP projection of scATACseq cells from PFC and V1 samples colored 
by Z-score of enrichment of 26,520 V1-specific peaks (Fisher’s Exact, FDR<0.05) 
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Extended Data Figure 9: Comparison of organoid and primary peaks reveal significant differences in the 
chromatin landscapes. a) UMAP projection of all organoid cells colored by sample of origin. b) Venn diagram 
depicting the overlap of peaks called from IPCs from primary samples with peaks called from IPCs from organoid 
samples. c) Annotation of peaks found only in primary IPCs (top) and peaks shared between primary and 
organoids (bottom) in genomic features. d) Left, heatmap of correlations between leiden clusters of all primary 
scATACseq cells. Right, heatmap of correlations between leiden clusters of all organoid scATACseq cells. The 
average inter-cluster correlation for primary clusters (ρ=0.2) is approximately half that of organoid clusters 
(ρ=0.39). e) Pileups of ATACseq signal from each organoid leiden cluster in sets of top 1000 DA peaks for each 
primary leiden cluster. Pileups are centered on each peak and the flanking +/-10Kb regions are shown. f) Pileups 
of ATACseq signal from each organoid leiden cluster in sets of top 1000 DA peaks for each organoid leiden 
cluster. Pileups are centered on each peak and the flanking +/-10Kb regions are shown. 
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Extended Data Table 1: Sample Metadata Table. Includes sample metadata and key summary statistics 
including sequencing depth, cell counts, fraction of fragments in peaks, and fraction of fragments in promoters. 
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