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Abstract 31 
Dynamic changes in chromatin accessibility coincide with important aspects of neuronal differentiation, such as 32 
fate specification and arealization and confer cell type-specific associations to neurodevelopmental disorders. 33 
However, studies of the epigenomic landscape of the developing human brain have yet to be performed at single-34 
cell resolution. Here, we profiled chromatin accessibility of >75,000 cells from eight distinct areas of developing 35 
human forebrain using single cell ATAC-seq (scATACseq). We identified thousands of loci that undergo 36 
extensive cell type-specific changes in accessibility during corticogenesis. Chromatin state profiling also reveals 37 
novel distinctions between neural progenitor cells from different cortical areas not seen in transcriptomic profiles 38 
and suggests a role for retinoic acid signaling in cortical arealization. Comparison of the cell type-specific 39 
chromatin landscape of cerebral organoids to primary developing cortex found that organoids establish broad 40 
cell type-specific enhancer accessibility patterns similar to the developing cortex, but lack many putative 41 
regulatory elements identified in homologous primary cell types. Together, our results reveal the important 42 
contribution of chromatin state to the emerging patterns of cell type diversity and cell fate specification and 43 
provide a blueprint for evaluating the fidelity and robustness of cerebral organoids as a model for cortical 44 
development. 45 
 46 
Main text  47 
The diverse cell types of the human cerebral cortex (Fig. 1a) have been mostly classified based on a handful of 48 
morphological, anatomical, and physiological features. Recent innovations in single cell genomics, such as single 49 
cell mRNA sequencing (scRNA-seq), have enabled massively parallel profiling of thousands of molecular 50 
features in every cell, uncovering the remarkable molecular diversity of cell types previously considered 51 
homologous, such as excitatory neurons located in different areas of the cerebral cortex1-6. However, the 52 
developmental mechanisms underlying the emergence of distinct cellular identities are largely unknown, as most 53 
cortical neurons are generated at stages that are inaccessible to experimentation5.  54 
 55 
Over 60 years ago, Conrad Waddington introduced the concept of an epigenomic landscape to account for the 56 
emergence of distinct cell fates7. In particular, chromatin state defines the functional architecture of the genome 57 
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by modulating the accessibility of gene regulatory elements, such as enhancers, which serve as binding sites for 58 
transcriptional regulators. Together with the expression of unique combinations of transcription factors, 59 
chromatin state is believed to represent the cis-regulatory ‘vocabulary’ of gene expression, which is a 60 
fundamental determinant of cell identity8,9. However, studies of chromatin state in the developing brain have 61 
been largely limited as established methods for discovering gene regulatory elements, such as the assay for 62 
transposase-accessible chromatin using sequencing10 (ATACseq) or chromatin immunoprecipitation followed by 63 
sequencing11 (ChIP-seq), lacked cellular resolution and mainly focused on studies that enrich for broad cell 64 
classes revealing changes in regional patterning and neuronal differentiation8,12-17. Several methods have been 65 
recently developed to enable profiling of the epigenomic landscape at single cell resolution, such as scATAC-66 
seq18,19, revealing many cell type-specific patterns of enhancer activity in the developing and adult mouse brain, 67 
as well as the adult human brain20-22. However, it is particularly important to characterize gene regulatory 68 
elements in their native context of the developing human tissue, as growing evidence has shown that genetic 69 
variants associated with psychiatric disease reside in evolutionary accelerated sequences that are putative 70 
neurodevelopmental enhancers23-26. 71 
 72 
Chromatin states define the major cell types in the developing brain 73 
To characterize the chromatin state landscape of the developing human brain at single cell resolution, we 74 
performed scATACseq on primary samples of the human forebrain at midgestation (n = 6 individuals). For a 75 
subset of samples, we preserved the anatomical region of origin information (Extended Data Table 1), including 76 
dorsolateral prefrontal cortex (PFC), primary visual cortex (V1), primary motor cortex (M1), primary 77 
somatosensory cortex, dorso-lateral parietal cortex, temporal cortex, insular cortex, and the medial ganglionic 78 
eminence (MGE), a major source of cortical interneurons27,28 (Fig. 1b, Extended Data Table 1).  79 
 80 
We generated data from 77,354 cells passing quality control criteria (Methods, Extended Data Fig. 1a-d). To 81 
reduce the dimensionality of the dataset, we performed latent semantic indexing followed by singular value 82 
decomposition (Methods). Batch correction was performed using the deep neural network-based scAlign29 to 83 
correct for technical sources of variance, including individual variation and processing method (Extended Data 84 
Fig. 1e-f, Methods). We identified 25 distinct clusters using the Leiden community detection algorithm (Fig. 1c, 85 
Extended Data Fig. 1g-h). This analysis robustly separated cortical and subcortical cells (MGE)(Fig. 1d).  86 
 87 
Next, to determine which epigenomic signatures correspond to the known cell types of the developing cortex, 88 
we calculated ‘gene activity scores’ by summing fragments in the gene body and promoter regions, which 89 
represents a proxy for gene expression20,30 (Fig. 1e). Activity of canonical marker genes identified the major cell 90 
classes, including radial glia (RG), intermediate progenitor cells (IPCs), excitatory neurons (ENs), and 91 
interneurons (INs)(Fig. 1g, Extended Data Fig. 2a-b). To systematically predict cell identity, we correlated gene 92 
activity scores from scATACseq cells with cell type marker genes inferred from previously published scRNAseq 93 
data1 (Methods), and assigned putative cell identity to every cell in the scATACseq dataset according to the 94 
highest correlation of scRNAseq-based cluster (Fig. 1f, Extended Data Fig. 2c). Most scATACseq clusters had 95 
one-to-one mapping to scRNAseq clusters, with few exceptions. Radial glia formed a single cluster in 96 
scATACseq, but map to three scRNAseq clusters of radial glia (‘ventricular’, ‘outer’, and ‘truncated’). Conversely, 97 
many clusters of excitatory neurons mapped to a single cluster of PFC or V1 excitatory neurons from scRNAseq 98 
(Fig. 1h). These discrepancies suggest that for some cell classes, epigenomic information may provide additional 99 
resolution of cell types beyond transcriptional definitions, while in other cases, transcriptomics may reveal more 100 
subtypes. 101 
 102 
Single cell chromatin state profiling reveals candidate cell type specific enhancers 103 
To identify putative cell type specific gene regulatory elements, we called peaks on aggregate single cells from 104 
each cluster31 (Methods, Fig. 1b). Non-overlapping peaks were subsequently merged to a total union set of 105 
398,139 peaks. Cluster-specific differentially accessible peaks were identified for each cluster, resulting in a set 106 
of >200,000 DA peaks, with most clusters containing many thousands of cluster specific peaks (Fisher’s Exact, 107 
FDR<0.05, Fig. 1h, Extended Data Fig. 3, Extended Data Fig. 4j). Annotation of our peak set in genomic features 108 
shows enrichment in intronic and distal intergenic regions and in the flanking regions of transcription start sites, 109 
suggesting an enrichment of gene regulatory elements, such as enhancers (Extended Data Fig. 4a-b). We 110 
intersected our scATACseq peaks with publicly available ChIP-seq data for H3K27ac (GEO: GSE63648), a 111 
marker for active enhancers, generated for comparable tissue samples, and found significant overlap with our 112 
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peaks (Permutation test, one-sided, p<0.001, Extended Data Fig. 4c). We also intersected our peak set with a 113 
set of validated forebrain enhancers32 (VISTA Enhancer Browser) and found that 297/317 overlapped with our 114 
peakset (Extended Data Fig. 4d). Due to growing evidence that regions of the genome that have undergone 115 
accelerated sequence evolution in humans are enriched for neurodevelopmental enhancers24, we intersected 116 
our peak set with a set of 2,540 non-coding human accelerated regions (ncHARs) finding 880 overlaps (Extended 117 
Data Fig. 4e). Interestingly, chromatin accessibility profiles of MGE progenitors and MGE-derived cortical 118 
interneurons were enriched for accessibility of ncHARs, and future studies are needed to elucidate if those 119 
genomic changes could have contributed to the changes in interneuron repertoire across primates33,34) 120 
(Extended Data Fig. 4f-i). 121 
 122 
To identify putative regulatory ‘grammar’ of cell types, we calculated enrichment of known transcription factor 123 
binding motifs in cluster specific peak sets using HOMER35 (Methods, Fig. 1h). Transcription factor motif 124 
enrichments align with cell type annotations from marker gene body enrichments with NEUROD1 motif 125 
enrichment in EN clusters, DLX and ASCL1 motif enrichments in IN clusters, PAX6 motif enrichment in RG 126 
clusters, EOMES motif enrichment in IPC clusters, SOX9 motif enrichment in OPC clusters, IRF8 motif 127 
enrichment in microglia clusters, and NKX2.1 motif enrichment in MGE progenitors. To examine transcription 128 
factor motif enrichments at the single cell level, we used ChromVAR, which estimates bias-corrected deviations 129 
of transcription factor binding motif enrichments in scATAC-seq libraries, and found good agreement with top 130 
motif enrichments for each cluster as determined by HOMER (Extended Data Fig. 4k). Finally, we predicted 131 
likely enhancers using the recently developed activity-by-contact (ABC) model36, which integrates H3K27ac 132 
ChIP-seq, Hi-C, and gene expression data with chromatin accessibility to predict enhancers and link them to 133 
their target genes (Methods). Using this method, we were able to identify sets of high-confidence putative 134 
enhancers for each cell type and their likely target genes (Fig. 1i). 135 
 136 
Vulnerability of cell type specific regulatory landscape to neurodevelopmental disorders 137 
Mutations in non-coding genomic regions, as well as de novo loss of function mutations in chromatin regulators 138 
have been implicated in a wide range of neurodevelopmental and psychiatric disorders, including schizophrenia37 139 
and autism spectrum disorder38-41. However, due to the lack of cellular-resolution datasets of chromatin state 140 
across developmental stages and differentiation states, these mutations cannot be tied to selective vulnerabilities 141 
across diverse cell types of the developing human brain. To address this unmet need, we intersected cell type 142 
specific ATAC-seq peaks with disease-linked common and rare non-coding variants (Methods). We first 143 
intersected our cell type-specific peak sets with de novo non-coding mutations (DNMs) identified from ASD and 144 
neurodevelopmental delay (NDD) cases and found significant enrichment of DNMs in 19 of 27 cell-type specific 145 
peak sets, compared to a merged background peak set (Extended Data Figure 5). However, no cell type-specific 146 
peak sets were significantly enriched for DNMs in probands compared to sibling controls. We also intersected 147 
cell type specific peak sets with genomic regions enriched for copy number variants in cases with developmental 148 
delay42, identifying cell types with significant enrichment and depletion (Figure 1j). Because such regions are 149 
large and do not provide specificity with respect to individual genes, we next tested for enrichment of cell type 150 
specific peaks in the flanking regions of genes associated with ASD and NDD and identified cell types with peak 151 
sets significantly enriched and depleted in these regions (Figure 1k), but were underpowered to identify any 152 
differences in the DNM burden in peaks within the promoter and gene body between probands and siblings 153 
across peak sets. Finally, we sought to assess the enrichment of common variants associated with 154 
neuropsychiatric disease risk in our cell type specific peak sets. To do this we performed a partitioned heritability 155 
LD score regression analysis using summary statistics from large-scale genome-wide association studies of 156 
schizophrenia, ASD, major depressive disorder, and bipolar disorder (Methods). For all four disorders, we 157 
detected significant enrichments (FDR < 0.05) of risk-associated variants in peaks from at least one cell type. 158 
Interestingly, we found that, consistently across disorders, disease risk was most strongly enriched in excitatory 159 
neuron populations (Figure 1l). 160 
 161 
Dynamic changes in chromatin accessibility during neuronal differentiation 162 
Developing tissues pose unique challenges to single cell analysis methods because, unlike the adult tissue, 163 
many cells represent developmentally transient states along the continuum of lineage progression. Chromatin 164 
state profiling provides a unique opportunity to characterize the Waddingtonian landscape of cell fate decisions 165 
underlying the emergence of cell types during development. Identification of putative regulatory mechanisms of 166 
cell fate specification could in turn be harnessed to promote directed differentiation of molecularly-defined cell 167 
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types from pluripotent stem cells for applications in cell replacement therapy and disease modelling. To combine 168 
transcriptomic and epigenomic information, we coembedded scRNAseq and scATACseq datasets generated in 169 
parallel from samples of visual cortex (Fig. 2a). By projecting cluster annotations across the three comparisons 170 
(scRNAseq only, scATACseq only, and multimodal mapping), we were able to further support our predictions of 171 
cellular classification from chromatin state data (Fig. 2b). Projections of gene expression and gene activity scores 172 
in the co-embedded space show that distinct clustering of unique cell types is preserved and that scATACseq 173 
and scRNAseq cells of the same type cluster together (Fig. 2c-d). Because the ability to identify cell types across 174 
samples, species, and experimental models using single cell genomics approaches depends on robust detection 175 
of gene co-expression relationships1,43, we sought to compare gene-module assignments calculated based on 176 
mRNA expression values detected using scRNAseq or those inferred from scATACseq. We combined genes 177 
into modules using weighted gene co-expression network analysis44 and compared eigengene projections as 178 
well as gene-module assignments between scRNAseq and scATACseq datasets (Extended Data Fig. 6a-b). 179 
This analysis revealed a remarkable conservation of gene co-expression relationships, with the exception of 180 
genes related to signaling pathway activation that formed co-expression module in scRNAseq but not 181 
scATACseq datasets, and genes related to synapse assembly forming co-expression module in scATACseq, 182 
but not scATACseq dataset (Extended Data Fig. 6d-g). Together, our joint analysis of scRNAseq and 183 
scATACseq datasets further underscored the conserved representation of the major cell types and gene co-184 
expression relationships across the two modalities. 185 
 186 
To identify trajectories of chromatin accessibility underlying excitatory neuron differentiation and maturation, we 187 
performed pseudotemporal ordering of cells in the co-embedded space45 (Fig. 2e, Methods). Consistent with the 188 
known patterns of neurogenesis, pseudotime reconstruction ordered sequentially radial glia, intermediate 189 
progenitors, and excitatory neurons. We identified hundreds of loci with sharp, transient accessibility across 190 
pseudotime, and predicted enhancers that interact with genes linked to cell type identity (Fig. 2f,g). By calculating 191 
transcription factor binding site enrichment across peaks that show dynamic changes in accessibility along 192 
pseudotime, we reconstructed the known hierarchy of transcription factors involved in cortical neurogenesis, 193 
including sequential enrichment for SOX2, ASCL1, and NEUROD2 binding sites among transiently accessible 194 
loci (Extended Data Fig. 7). These results challenge the prevailing model of differentiation as a transition between 195 
two phases involving progressive loss of accessibility of sites open in progenitor cells and gradual opening of 196 
sites relevant to postmitotic cells46, and underscore highly dynamic transient states of chromatin accessibility 197 
during human cortical neurogenesis.  198 
 199 
Furthermore, we leveraged the scRNAseq and scATACseq co-embedding to compare changes in gene 200 
expression, enhancer accessibility, and transcription factor motif enrichment along the differentiation trajectory. 201 
Considering a few key regulators of neurogenesis, SOX2, EOMES, and NEUROD2, we observed a trend for 202 
accessibility of predicted enhancers to precede changes in gene expression (Fig. 2h). These findings are 203 
consistent with recent reports21,47 and support the model whereby changes in chromatin state along a 204 
developmental lineage foreshadow changes in gene expression and cell fate decisions. Intersection of cell type 205 
and developmentally dynamic loci and putative regulatory elements with whole genome sequencing data from 206 
neurodevelopmental or neuropsychiatric disorders may reveal developmentally transient states that are 207 
vulnerable to non-coding mutations.  208 
 209 
Cortical progenitors develop area-specific chromatin states 210 
Single cell transcriptomics recently revealed that area-specific cortical excitatory neurons emerge during early 211 
neurogenesis, while only limited molecular differences can be found between progenitor cells1,2. Given that 212 
changes in the accessibility of regulatory elements often precede changes in gene expression (Fig. 2h), we 213 
sought to examine whether epigenomic signatures could foreshadow the emergence of area-specific excitatory 214 
neurons. Specifically, we compared scRNAseq and scATACseq profiles of excitatory lineage cells sampled from 215 
the extremes of the rostral-caudal axis, PFC and V1 (Fig. 3a-b, Extended Data Fig. 8a-h). For each modality, we 216 
ordered the cells in pseudotime to approximate the differentiation trajectory, and identified the ‘branch’ point 217 
along this trajectory at which transcriptomic or chromatin state differences between PFC and V1 lineages 218 
become apparent. In contrast to transcriptomic data, which only distinguishes maturing excitatory neuron clusters 219 
from distinct cortical areas1 (Fig. 3h), chromatin state signatures reveal a striking divergence between PFC and 220 
V1 earlier in differentiation, and define area-specific IPC populations (Fig. 3g).  221 
 222 
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To identify putative regulatory networks that could underlie the divergence of PFC and V1 lineages, we performed 223 
transcription factor binding site enrichment analysis35 on peaks that were differentially accessible between PFC 224 
and V1 (Fisher’s Exact, two-sided, FDR<0.05, Fig. 3i-l, Extended Data Figure 8i-j, Supplementary Tables 1&2). 225 
This analysis recovered previously known regulators of cortical arealization and those consistent with 226 
transcriptomic studies1,48. For example, our analysis predicts motif enrichment for known transcription factors 227 
enriched in the PFC, including POU3F2, MEIS1, TBR1, NEUROD1, NEUROG2, and TBX21 (Supplementary 228 
Table 1). Interestingly, many of the candidates identified in this analysis relate to retinoic acid signaling pathway. 229 
In early development, retinoic acid signaling plays a well-established role in development of caudal fates, 230 
including hindbrain and spinal cord49. However, at later stages of development, retinoic acid signaling has been 231 
shown to interact with pathways involved in cortical arealization including the NR2F1 transcription factor and Wnt 232 
signaling that promote occipital (visual cortex) identities50,51, and is negatively regulated by TGIF152, the top 233 
enriched motif among PFC cells (Fig. 3j-k). Together, our analyses suggest that epigenomic differences 234 
distinguish cortical progenitor cells between cortical areas and foreshadow the emergence of area-specific 235 
excitatory neuron subtypes. In addition, our study suggests a previously unappreciated role for the retinoic 236 
signaling pathway in cortical arealization. 237 
 238 
An epigenomic ‘report card’ for in vitro models of cortical neurogenesis 239 
Due to the scarcity of primary human tissue, studies of human neural development critically require suitable in 240 
vitro models. Cerebral organoids are a three-dimensional culture model of the developing brain that can be 241 
derived from somatic cells. Previous studies emphasized the similarities between cerebral organoid cells and 242 
their in vivo counterparts using single cell transcriptomics43,53,54 and bulk epigenomics15,17. We sought to extend 243 
these comparisons by performing chromatin state profiling of cerebral organoids at single cell resolution and 244 
generated scATACseq data for cortical organoids derived via directed differentiation from three genetically 245 
normal individuals43 (Fig. 4a, Extended Data Fig. 9a, Methods). We identified the major classes of cell types 246 
expected to emerge in this model, including radial glia, IPCs, interneurons, and excitatory neurons, although 247 
individual clusters were less discrete than their in vivo counterparts, and contained fewer distinguishing 248 
chromatin state features (Fig. 4b-d, Extended Data Fig. 9d,f).  249 
 250 
To compare organoid clusters with their primary counterparts, we quantified the chromatin accessibility signal 251 
from organoid cells in peaks defined from primary cells, allowing us to identify clusters representing homologous 252 
cell types (Methods, Fig. 4e). We found that cell type specific peaks identified in primary cells maintained cell 253 
type specificity in organoid cells, but many peaks corresponding to cell types not present in organoids, such as 254 
microglia and endothelial cells, were missing (Fig. 4g, Extended Data Fig. 9e). Next, to assess the fidelity of 255 
organoids as a model for the epigenomic state of primary cortical cells, we called peaks for each organoid cluster 256 
and compared with primary peaks for homologous cell types. We found that, while organoids mostly contain 257 
peaks found in their corresponding primary counterparts, they are missing ~50% of peaks identified in primary 258 
clusters (Fig. 4f, Extended Data Fig. 9b-c). Interestingly, shared peaks show higher enrichment in promoter 259 
regions, while peaks found only in primary are more enriched in distal intergenic and intronic regions, suggesting 260 
that organoids may be missing many distal regulatory elements identified in primary cells. In addition, we 261 
compared enhancers predicted by activity-by-contact model, which revealed that organoids lack many candidate 262 
cell type specific enhancers found in primary, even after correcting for cellular coverage (Fig. 4h).  263 
 264 
In summary, scATACseq data generated for primary cells represents a blueprint for normal epigenomic states 265 
of cell types in the developing human brain that serves as a reverence for evaluating the fidelity and robustness 266 
of in vitro derived models. Our analysis reveals features of chromatin state found in normal developing brain are 267 
recapitulated in cerebral organoids, epigenomic features of organoid cell types are less discrete and lack 268 
thousands of distal regulatory elements found in vivo. 269 
 270 
Discussion 271 
By performing massively parallel single cell profiling of chromatin state, we were able to extend previous studies 272 
of cell-type specific epigenomic regulation of brain development. Specifically, scATAC-seq analyses reveals 273 
transiently accessible loci that track with neuronal differentiation. These states may reveal mechanisms 274 
governing the establishment of cell fate during neurogenesis, in particular those underlying the emergence of 275 
area-specific excitatory neurons. Our findings provide new perspectives on the mechanisms underlying the 276 
rewiring of regulatory pathways during neurogenesis46. Intersection of chromatin state landscape with disease 277 
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variants implicates post-mitotic, developing cortical excitatory neurons in the etiopathogenesis of 278 
neuropsychiatric disorders14,55,56, and future studies are needed to probe how disease-associated variants in 279 
these regulatory regions modify cell fate decisions in the developing cortex. Furthermore, our findings suggest a 280 
potential limitation for cortical organoids to serve as experimental models to test these hypotheses, as many 281 
non-coding regulatory elements, in particular distal enhancers, may not be recapitulated in this model. In order 282 
to determine the fidelity of organoids as a model for the epigenomic landscape of the developing brain, functional 283 
characterization of conserved and non-conserved chromatin features in vivo and in vitro will be required. In 284 
addition to serving as a reference for evaluating in vitro models of human brain development, our data will enable 285 
scalable prediction of candidate cell type specific regulatory elements that could facilitate the development of 286 
enhancer-based tools for accessing molecularly-defined cell types57-59.  287 
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Fig. 1: Single cell chromatin state atlas of the developing human brain. a) Schematic cross-section of 335 
developing cortex highlighting major cell types. VZ – ventricular zone, ISVZ – inner subventricular zone, OSVZ 336 
– outer subventricular zone, IZ – intermediate zone, SP – subplate, CP- cortical plate, MZ – marginal zone, oRG 337 
– outer radial glia, tRG – truncated radial glia, vRG – ventricular radial glia, IPCs – intermediate progenitor cells. 338 
b) Schematic depicting experimental workflow. PFC – prefrontal cortex, MGE – medial ganglionic eminence.  c) 339 
UMAP projection of all primary scATAC-seq cells (n = 6 individuals, 77,354 cells) colored by leiden clusters. d) 340 
UMAP projection of all primary scATAC-seq cells colored by brain region of origin. Somato – somatosensory 341 
cortex, V1 – primary visual cortex. e) Gene activity scores were calculated for all protein coding genes for each 342 
cell based on summing reads in the promoter plus gene bodies. An intersecting set of 1084 marker genes was 343 
used to correlate gene activity scores to scRNA-seq data generated from single samples. Cell type predictions 344 
for scATACseq cells were made based on the max correlation values with cell type averages from the scRNAseq 345 
data (methods). f) UMAP projection of all primary scATAC-seq cells colored by cell type prediction. g) UMAP 346 
projections of gene activity scores for GFAP marking glia, EOMES marking intermediate progenitors, DLX1 347 
marking cells in the interneuron lineage, and NEUROD2 marking cells in the excitatory neuron lineage. h) Top, 348 
sankey plot depicting mapping between scATACseq clusters and cell type predictions. Bottom left, Pileups of 349 
cluster specific ATAC-seq signal for each cluster within sets of the 1000 cluster specific peaks for each cluster 350 
by p-value (Fisher’s Exact, two-sided). Pileups are centered on peak centers and the +/-10Kb flanking region is 351 
depicted. Bottom right, significantly enriched TF motifs for each cluster specific peak set as determined by 352 
HOMER. i) Left, enhancer-gene interaction predictions for cluster 1 cells (EN-PFC-2) and cluster 7 cells (RG) in 353 
the SOX2 locus. Differentially accessible peaks that interact with SOX2 highlighted in yellow. Right, enhancer-354 
gene interaction predictions for cluster 1 cells (EN-PFC-2) and cluster 7 cells (RG) in the GRIN2B locus, 355 
highlighting a peak interacting with GRIB2B in neurons but not in RGs. j) Enrichment and depletion of cell type-356 
specific scATACseq peaks in copy number variant (CNV) regions enriched in pediatric cases of 357 
neurodevelopmental delay (NDD). Filled circles indicate Bonferroni corrected significance. k) Enrichment and 358 
depletion of scATACseq peaks in promoter and gene regions of genes associated for autism and NDD including 359 
genes enriched in de novo non-coding mutations (DNM) (SFARI845, DDD29960, COE25361). Stars indicate tests 360 
that pass Bonferroni significance. l) Heritability enrichment based on LD score regression analysis of GWAS 361 
summary statistics in cell type-specific peak sets from primary scATAC cells. From left to right, Pychiatric 362 
Genomics Consortium (PGC) schizophrenia  (SCZ) GWAS37, an additional PGC schizophrenia GWAS62, PGC 363 
autism spectrum disorder (ASD) GWAS63, PGC major depressive disorder (MDD) GWAS37, PGC bipolar (BIP) 364 
disorder64. 365 
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Fig. 2: Dynamic changes in chromatin accessibility during human cortical neurogenesis. a) Schematic 367 
depicting experimental workflow for coembeddding scATACseq and scRNAseq data from the same samples. 368 
Top left, UMAP projection of scATAC-seq cells from samples of visual cortex (n = 3 individuals) colored by leiden 369 
clusters. Top middle, schematic depicting experimental workflow. Top right, UMAP projection of scRNA-seq cell 370 
from samples of visual cortex (n = 2 individuals, same as 2 of 3 from scATACseq) colored by leiden clusters. 371 
Bottom middle, UMAP projection of coembedded scATAC-seq & scRNA-seq cells colored by leiden clusters. b) 372 
Sankey plot depicting the mappings between scATAC-seq clusters, scRNA-seq clusters, and coembedded 373 
clusters. c) Projection of log normalized gene expression and gene activity scores in coembedded space for 374 
GFAP (RGs), EOMES (IPCs), SATB2 (Upper-layer ENs), and CRYM (Deep-layer ENs). d) UMAP projection of 375 
coembedded cells colored by assay. e) UMAP projection of coembedded cells colored by pseudotime with 376 
principal graph overlaid. f) Heatmap depicting the average proportion of cells with peaks that are differentially 377 
accessible across pseudotime. Cells are binned by pseudotime into equally sized bins. g) Left, barplots of peak 378 
accessibility for 4 individual peaks across 10 pseudotime bins with regression line overlaid. Right, predicted 379 
enhancer-gene interaction predictions for each of the four peaks, peaks highlighted in yellow. h) Comparison of 380 
moving averages of normalized enhancer accessibility (red), gene expression (blue), and motif enrichment 381 
(green) across pseudotime for SOX2 (top), EOMES (middle), and NEUROD2 (bottom).   382 
 383 

 384 
Fig. 3: Areal differences in chromatin state of progenitor cells foreshadow the emergence of area-385 
specific excitatory neuron types. a) Schematic depicting differentiation trajectories for excitatory neurons from 386 
the PFC (left) and V1 (right). b) UMAP projection of all PFC & V1 scATACseq cells (n = 3 individuals) colored by 387 
cell type predictions. Cells from the excitatory lineage are circled by a dashed line. c) UMAP projection of PFC 388 
& V1 scATACseq excitatory lineage cells colored by area of origin. d) UMAP projection of PFC & V1 scATACseq 389 
excitatory lineage cells colored by pseudotime with principal graph overlaid. e) UMAP projection of PFC & V1 390 
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scRNAseq excitatory lineage cells (n = 2 individuals, same as 2 of 3 from scATACseq) colored by area of origin. 391 
f) UMAP projection of all PFC & V1 scRNAseq excitatory lineage cells colored by pseudotime with principal 392 
graph overlaid. g) Left, Projection of PFC & V1 scATACseq excitatory lineage cells ordered from bottom to top 393 
by pseudotime value with PFC/V1 divergence branch point displayed (Methods). Cells colored by gene activity 394 
score of EOMES, highlighting IPCs. Right, schematic illustrating the excitatory neuron differentiation trajectory 395 
based on chromatin accessibility, with which PFC/V1 divergence becomes apparent at the level of IPCs. h) Left, 396 
Projection of PFC & V1 scRNAseq excitatory lineage cells ordered from bottom to top by pseudotime value with 397 
PFC/V1 divergence branch point displayed (Methods). Cells colored by expression of EOMES, highlighting IPCs. 398 
Right, schematic illustrating the excitatory neuron differentiation trajectory based on gene expression, with which 399 
PFC/V1 divergence is not apparent until the level of maturing neurons. i) Pileups of PFC and V1 signal in PFC 400 
and V1 specific peak sets. Pileups are centered on peaks showing +/-10Kb flanking regions. j) Top, TF motif 401 
enrichments in set of 5,863 PFC specific peaks (Fisher’s Exact, two-sided, FDR<0.05) as determined by 402 
HOMER. Bottom, TF motif enrichments in set of 26,520 V1 specific peaks (Fisher’s Exact, two-sided, FDR<0.05) 403 
as determined by HOMER. k) UMAP projection of deviation scores of motif enrichment for TGIF1 as determined 404 
by ChromVAR. l) UMAP projection of deviation scores of motif enrichment for MEF2C as determined by 405 
ChromVAR. 406 

 407 
Fig. 4: Cell type-specific differences in chromatin accessibility between cerebral organoids and the 408 
developing human brain. a) Schematic depicting experimental workflow. PSCs – pluripotent stem cells. b) 409 
UMAP projection of all organoid scATACseq cells (n = 3 organoids from different lines, 11,171 cells) colored by 410 
leiden clusters. c) UMAP projections of gene activity scores for GFAP marking radial glia, EOMES marking 411 
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intermediate progenitors, DLX1 marking interneurons, and NEUROD2 marking excitatory neurons. d) UMAP 412 
projection of all organoid scATACseq cells colored by cell type predictions (Methods). e) Heatmap of pearson 413 
correlations between primary and organoid scATACseq clusters based on a common peak set. f) Top left, 414 
overlap of primary and organoid radial glia peak sets. Top right, annotation of primary only RG peaks and shared 415 
RG peaks in genomic features. Bottom left, overlap of primary and organoid excitatory neuron peaksets. Bottom 416 
right, annotation of primary only EN peaks and shared EN peaks in genomic features. g) Left, UMAP projection 417 
of enrichment Z-scores of the top 1000 radial glia specific peaks (Fisher’s Exact, two-sided) in all primary 418 
scATACseq cells. Right, UMAP projection of Z-scores of enrichment of the same 1000 radial glia specific peaks 419 
in all organoid scATACseq cells. h) Genome browser tracks of the SOX2 locus showing enhancer-gene 420 
predictions for organoid radial glia (top, blue), all primary radial glia (middle, purple), and V1 radial glia (bottom, 421 
green). Highlighted in yellow is a peak that is predicted to interact with SOX2 present in both primary radial glia 422 
populations and not present in the organoid radial glia. 423 
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METHODS 577 
 578 
Tissue Source 579 
De-identified tissue samples were collected with previous patient consent in strict observance of the legal and 580 
institutional ethical regulations. Protocols were approved by the Human Gamete, Embryo, and Stem Cell 581 
Research Committee (institutional review board) at the University of California, San Francisco. 582 
 583 
Nuclei isolation from fresh primary tissue 584 
Cortical areas were microdissected from 3 specimens of mid-gestation human cortex, in addition to 3 specimens 585 
of non-area-specific mid-gestation human cortex. Tissue was dissociated in Papain containing 586 
Deoxyribonuclease I (DNase) for 30 minutes at 37C and samples were triturated to form a single cell suspension. 587 
106 Cells were pelleted and lysed for 3 minutes in 100uL chilled Lysis Buffer (10mM Tris-HCl pH7.4, 10mM NaCl, 588 
3mM MgCl2, 0.1% Tween-20, 0.1% Igepal CA-630, 0.01% Digitonin, 1% BSA). Lysed cells were then washed 589 
with 1mL chilled Wash Buffer (10mM Tris-HCl pH7.4, 10mM NaCl, 3mM MgCl2, 0.1% Tween-20, 1% BSA) and 590 
nuclei were pelleted at 500rcf for 5 minutes at 4C.   591 
 592 
Nuclei isolation from frozen primary tissue 593 
Tissue sections were snap frozen and stored at -80C. Nuclei were isolated from frozen tissues using the protocol 594 
published in Corces MR et al., 20171. Briefly, frozen tissue samples were thawed in 2mL chilled Homogenization 595 
Buffer (10mM Tris pH7.8, 5mM CaCl2, 3mM Mg(Ac)2, 320 mM Sucrose, 0.1mM EDTA, 0.1% NP40, 167uM β-596 
mercaptoethanol, 16.7uM PMSF) and lysed in a pre-chilled dounce. Cell lysates were then centrifuged in an 597 
Iodixanol gradient for 20 minutes at 3000rcf at 4C in a swinging bucket centrifuge with the brake turned off. The 598 
nuclei band was then carefully pipetted and nuclei were diluted in Wash Buffer.  599 
  600 
Cortical organoid differentiation protocol 601 
Cortical organoids were cultured using a forebrain directed differentiation protocol2,3. Briefly, 3 genetically normal 602 
PSC lines, H28126, 1323-4, and H1 (WA01), were expanded and dissociated to single cells using accutase. 603 
After dissociation, cells were reconstituted in neural induction media at a density of 10,000 cells per well in 96 604 
well v-bottom low adhesion plates. GMEM-based neural induction media includes 20% Knockout Serum 605 
Replacer (KSR), 1X non-essential amino acids, 0.11mg/mL Sodium Pyruvate, 1X Penicillin-Streptomycin, 0.1mM 606 
Beta Mercaptoethanol, 5uM SB431542 and 3uM IWR1-endo. Media was supplemented with 20uM Rock inhibitor 607 
Y-27632 for the first 6 days. After 18 days organoids were transferred from 96 to six well low adhesion plates 608 
and moved to an orbital shaker rotating at 90rpm and changed to DMEM/F12-based media containing 1X 609 
Glutamax, 1X N2, 1X CD Lipid Concentrate and 1X Penicillin-Streptomycin. At 35 days, organoids were moved 610 
into DMEM/F12-based media containing 10% FBS, 5ug/mL Heparin, 1X N2, 1X CD Lipid Concentrate and 0.5% 611 
Matrigel. Throughout culture duration organoids were fed every other day. 612 
  613 
Nuclei isolation from cerebral organoids 614 
Cerebral organoids were dissociated in Papain containing Deoxyribonuclease I (DNase) for 30 minutes at 37C 615 
and samples were triturated to form a single cell suspension. 106 Cells were pelleted and lysed for 3 minutes in 616 
100uL chilled Lysis Buffer (10mM Tris-HCl pH7.4, 10mM NaCl, 3mM MgCl2, 0.1% Tween-20, 0.1% Igepal CA-617 
630, 0.01% Digitonin, 1% BSA). Lysed cells were then washed with 1mL chilled Wash Buffer (10mM Tris-HCl 618 
pH7.4, 10mM NaCl, 3mM MgCl2, 0.1% Tween-20, 1% BSA) and nuclei were pelleted at 500rcf for 5 minutes at 619 
4C. 620 
  621 
Single Cell RNA-seq Library Preparation and Sequencing 622 
Single cell RNA-seq libraries were generated using the 10x Genomics Chromium 3’ Gene Expression Kit. Briefly, 623 
single cells were loaded onto chromium chips with a capture target of 10,000 cells per sample. Libraries were 624 
prepped following the provided protocol and sequenced on an Illumina NovaSeq with a targeted sequencing 625 
depth of 50,000 reads per cell. BCL files from sequencing were then used as inputs to the 10X Genomics Cell 626 
Ranger pipeline. 627 
 628 
Single Cell RNA-seq Analysis 629 
For preprocessing of scRNA-seq data, a minimum of 500 genes and 5% mitochondrial cutoff was used and 630 
Scrublet4 for doublet removal. The SCTransform5 workflow in Seurat6 were run separately on each batch. 631 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 8, 2020. ; https://doi.org/10.1101/2019.12.30.891549doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.30.891549


 
Canonical component analysis (CCA) on the Pearson residuals from SCTransform was used as input into 632 
scAlign for batch correction.  633 
  634 
Bulk ATAC-seq Library Preparation and Sequencing 635 
Bulk ATAC-seq libraries were generated using the protocol outlined in Corces MR et al., 2017 (1). Briefly, 50,000 636 
nuclei were permeablized and tagmented. Tagmented chromatin libraries were generated and sequenced on an 637 
Illumina NovaSeq with a target sequencing depth of 50 million reads per library. Sequencing data was used as 638 
an input to the ENCODE ATAC-seq analysis pipeline (https://github.com/ENCODE-DCC/atac-seq-pipeline). 639 
  640 
Single Cell ATAC-seq Library Preparation and Sequencing 641 
Nuclei were prepared as outlined in the 10X Genomics Chromium single cell ATAC-seq solution protocol. Nuclei 642 
were loaded with a capture target of 10,000 nuclei per sample. scATAC-seq libraries were prepared for 643 
sequencing following the 10X Genomics single cell ATAC-seq solution protocol. scATAC-seq libraries were 644 
sequenced using PE150 sequencing on an Illumina NovaSeq with a target depth of 25,000 reads per nucleus 645 
(see Extended Data Table 1).  646 
  647 
Single Cell ATAC-seq Analysis Pipeline 648 
Cell Ranger 649 
BCL files generated from sequencing were used as inputs to the 10X Genomics Cell Ranger ATAC pipeline. 650 
Briefly, FASTQ files were generated and aligned to GRCh38 using BWA. Fragment files were generated 651 
containing all unique properly paired and aligned fragments with MAPQ > 30. Each unique fragment is associated 652 
with a single cell barcode.  653 
  654 
SnapATAC 655 
Fragment files generated from the Cell Ranger ATAC pipeline were loaded into the SnapATAC7 pipeline 656 
(https://github.com/r3fang/SnapATAC) and Snap files were generated. A cell-by-bin matrix was then generated 657 
for each sample by segmenting the genome into 5-Kb windows and scoring each cell for reads in each window. 658 
Cells were filtered based on log10(UMI) between 3-5 and fraction of reads in promoters between 10-60% to obtain 659 
cells with high quality libraries. Bins were then filtered, removing bins overlapping ENCODE blacklist regions 660 
(http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/). This matrix was then binarized and coverage of 661 
each bin was calculated and normalized by log10(count + 1). Z-scores were calculated from normalized bin 662 
coverages and bins with a z-score beyond ± 2 were filtered from further analysis. A cell-by-cell similarity matrix 663 
was generated by calculating the Latent Semantic Index (LSI) of the binarized bin matrix. Principal component 664 
analysis (PCA) was then performed on LSI values. The top 50 principal components were used for batch 665 
correction through scAlign. 666 
  667 
scAlign Batch Correction 668 
Multiple batches were integrated using the scAlign package8 (https://github.com/quon-titative-biology/scAlign). 669 
The ATAC batches were first merged together to calculate the Latent Semantic Index (LSI) with the TF matrix 670 
log-scaled for input into PCA. The 50 principal components of LSI were used as inputs to the encoder. The latent 671 
dimension was set at 32 and ran with all-pairs alignment of all batches. The input dimension to the encoder was 672 
set to 50 to match the input 50 principal components, and trained to 15,000 iterations using the small architecture 673 
setting with batch normalization (BN). The 32 dimensions were used for downstream analysis for finding 674 
neighbors. The scRNAseq were processed using Seurat and computed the top 15 components from CCA for 675 
input into scAlign, and the latent dimension was set to 20 using the small architecture with BN and 15,000 676 
iterations. All alignments were unsupervised. 677 
  678 
Clustering and Visualization 679 
In order to visualize the high dimensionality dataset in 2D space, the latent dimensions for the ATAC and RNA 680 
data from scAlign were used to construct UMAP (https://arxiv.org/abs/1802.03426) graphs from Seurat. A K-681 
nearest neighbor graph was constructed using the latent dimensions from scAlign. The leiden algorithm was 682 
then used to identify ‘communities’, or clusters, in the sample, representing groups of cells likely to be of the 683 
same cell type.  684 
  685 
Calculating Gene Activity Scores 686 
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To create a proxy for gene expression, ATACseq fragments in the gene-body plus promoter (2Kb upstream from 687 
transcription start sites) of all protein-coding genes were summed for each cell to generate ‘Gene Activity Scores’. 688 
A matrix was constructed for all gene activity scores by all cells. Due to the sparsity of scATAC-seq data, the 689 
MAGIC imputation method9 was used to impute gene activity scores based on the K-nearest neighbor graph. 690 
  691 
Cell Type Predictions 692 
In order to link scATACseq clusters to known cell types of the developing cortex, gene activity scores were used 693 
to correlate scATACseq cells with cell types from scRNAseq data generated from similar samples10. Briefly, 694 
cluster ‘marker genes’ were identified for each leiden cluster by performing a Fisher’s Exact test for enrichment 695 
of gene activity scores. The top 300 enriched genes for each cluster were identified based on p-value. Similarly, 696 
cell type marker genes were identified for annotated cell types from Nowakowski et al. 201710, and the top 300 697 
genes for each cluster were identified based on p-value. The intersection of genes from scATACseq marker 698 
genes and scRNAseq marker genes was identified, resulting in a set of 1084 genes. Average expression values 699 
for each scRNAseq cell type for each of the 1084 genes was determined. For each scATACseq cell, the gene 700 
activity scores of the 1084 genes was correlated with cell type averages from the scRNAseq data and a cell type 701 
prediction was made based on the cell type most highly correlated with each scATACseq cell. 702 
  703 
Peak Calling 704 
Fragments from cells were grouped together by cluster and peaks were called on all cluster fragments using 705 
MACS2 (https://github.com/taoliu/MACS) with the parameters ‘--nomodel --shift -37 --ext 73 --qval 1e-2 -B --706 
SPMR --call-summits’. Peaks from each cluster were then combined to form a master peak set and a cell-by-707 
peak matrix was constructed. This matrix was binarized for all downstream applications. 708 
  709 
Determination of Differentially Accessible Peaks 710 
Differentially accessible peaks for each cluster were determined by performing a two-sided Fisher’s exact test, 711 
and selecting peaks that had log fold change >0, and FDR-corrected p-value < 0.05. 712 
  713 
Visualizing Cluster Signal in Peaks 714 
The deeptools suite11 (https://deeptools.readthedocs.io/en/develop/) was used to visualize pileups of cluster-715 
specific ATACseq signal (output from MACS2) in DA peak sets. 716 
  717 
Transcription Factor Motif Enrichment Analysis 718 
The findMotifsGenome.pl tool from the HOMER suite12 (http://homer.ucsd.edu/homer/) was used to identify TF 719 
motif enrichments in peak sets. The ChromVAR R package13 was used to identify TF motif enrichments at the 720 
single cell level in scATACseq data. Briefly, the peak-by-cell matrix from the snap object was used as an input, 721 
filtering for peaks open in at least 10 cells. Biased-corrected TF motif deviations were calculated for the set of 722 
1,764 human TF motifs for each cell. 723 
  724 
Enhancer-Gene Predicted Interactions  725 
The Activity-by-Contact (ABC) model14 (https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction) was 726 
used for prediction of enhancer-gene interactions from scATACseq data. Cluster-specific ATAC-seq signal and 727 
peak outputs from MACS2 were used as inputs. Gene expression values from scRNAseq of GW20 visual cortex 728 
were averaged and used an input. As recommended and provided by the creators of ABC, an averaged Hi-C 729 
profile of 10 cell types was used as an input.   730 
  731 
VISTA Enhancer Intersections 732 
VISTA Enhancers were taken from the VISTA Enhancer Browser (https://enhancer.lbl.gov/) and filtered for 733 
human sequences found to be active in the forebrain. Enhancers were lifted over to Hg38 using the UCSC 734 
LiftOver tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver) and overlapping regions were merged, resulting in 317 735 
unique regions. These regions were intersected with the peak set from all primary scATACseq cells and 297 736 
peaks overlapping VISTA forebrain enhancer regions were identified. 737 
  738 
Non-coding Human Accelerated Region Intersections 739 
Non-coding Human Accelerated Regions (ncHARs) were taken from Capra et al. 201315. These regions were 740 
then lifted over to Hg38 using the UCSC LiftOver tool and overlapping regions were merged, resulting in 2,540 741 
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unique regions. These regions were intersected with the peak set from all primary scATACseq cells and 880 742 
peaks overlapping ncHAR regions were identified. 743 
  744 
H3K27ac ChIP-seq Data Intersection 745 
Publicly available H3K27ac ChIP-seq peak sets generated from 12pcw (GW14) human cortical samples16 were 746 
obtained from GEO (GEO: GSE63648). All peak sets were lifted over to Hg38 using the UCSC LiftOver tool and 747 
overlapping regions were merged. Using the RegioneR R package17 748 
(https://www.bioconductor.org/packages/release/bioc/html/regioneR.html), a one-sided permutation test was 749 
performed to determine the significance of overlap between H3K27ac peaks and scATACseq peaks, using 1000 750 
random shuffling iterations to build a null distribution. 751 
  752 
Genomic Feature Annotations 753 
The ChIPSeeker R package18 (https://bioconductor.org/packages/release/bioc/html/ChIPseeker.html) was used 754 
to annotate all peak sets in genomic features. 755 
  756 
Pseudotime Analysis 757 
The Monocle 3 R package19 (https://cole-trapnell-lab.github.io/monocle3/) was used for pseudotime calculation 758 
of the coembedded RNA and ATAC dataset. The radial glia cells were set as the root cells. The minimum branch 759 
length was 9 in the graph building. Monocle 3 was also used for the pseudotime calculation of the scRNAseq 760 
PFC/V1 dataset. The Cicero package20 (https://cole-trapnell-lab.github.io/cicero-release/) was used for the 761 
pseudotime calculation of the scATACseq PFC/V1 dataset. 762 
  763 
Comparison of Accessibility, Gene Expression, and TF Motif Enrichment Across Pseudotime 764 
Since pseudotime was calculated on the co-embedded space of ATAC and RNA cells, we can directly compare 765 
temporal changes in gene expression and chromatin accessibility. For each of the transcription factors, we 766 
identified gene-linked enhancers candidates using the ABC model and calculated a 1,000 cell moving average 767 
of their accessibility across pseudotime from the ATAC cells. Using Z-scores from ChromVAR, we calculated a 768 
1,000 cell moving average of the motif enrichment across pseudotime from the ATAC cells. For gene expression, 769 
we calculated a 1,000 cell moving average across pseudotime from the RNA cells. LOESS regression lines were 770 
fit to the moving average data. 771 
 772 
Branchpoint Analysis 773 
URD21 (https://github.com/farrellja/URD/) was used to compare the branchpoint of ATAC and RNA 774 
independently. Deep-layer neurons weren’t considered during this analysis due to obfuscating identities, and the 775 
batch corrected values were used as input to the diffusion map calculations to combat batch effects. Diffusion 776 
parameters were set to 150 nearest neighbors, and sigma was auto calculated from the data. The tree was 777 
constructed using 200 cells per pseudotime bin, 6 bins per pseudotime window, and branch point p-value 778 
threshold of 0.001. 779 
  780 
scRNAseq/scATACseq Coembedding 781 
To anchor mRNA expression and chromatin state profiles in the same map of cell diversity, we applied scAlign 782 
on datasets where we profiled scRNAseq and scATACseq in parallel in the sample sample. This was achieved 783 
by linking gene expression data to gene activity scores derived from chromatin accessibility data. The gene 784 
activity scores were logRPM values derived from gene activity scores generated by the SnapATAC pipeline. 785 
Then the gene expression and gene activity scores were processed using Seurat, and then split into batches for 786 
input into scAlign. The encoder space was computed using multi CCA of the 10 dimensions with latent 787 
dimensions at 20 using the ‘small’ architecture. 788 
   789 
Disease Intersection 790 
De novo mutation (DNM) enrichment 791 
Peak sets from 27 cell types were intersected DNMs from 2,708 probands and 1,876 siblings using bedtools 792 
v2.24.0. Peak sets were determined based on the presence of the peak in at least 5% of the cells for that cell 793 
type. DNMs were identified by an in-house pipeline. Briefly, variants from whole-genome sequencing data were 794 
called using four independent callers: GATK v3.8, FreeBayes, Strelka, and Platypus. Variant calls from each 795 
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caller were intersected, and filtered for read depth (> 9), allele balance (> 0.25), absence of reads supporting the 796 
mutation in parents, and identified by at least three of the four callers. 797 

 798 

Peak sets were tested for an enrichment of DNMs in probands as compared to a background peak set which 799 
contained all peaks. We used a Fisher’s exact test to compare the number of peaks with one or more DNMs 800 
between the cell type-specific peak set and the background peak set. We also performed a Wilcox rank sum test 801 
comparing the number of DNMs per peak in the cell type-specific set to the background peak set. We applied a 802 
Bonferroni multiple test correction for 27 tests (# of cell types) to all p-values. 803 
  804 
ASD/NDD gene set enrichment 805 
We created gene plus promoter regions using bedtools v2.24.0, where we defined the promoter as the 1Mb 806 
region upstream of the gene transcription start sites. Gene regions were defined using Gencode V27. Peak sets 807 
were determined based on the presence of the peak in at least 5% of the cells for that cell type. The total number 808 
of peaks in each gene plus promoter region was quantified per gene for each cell type and compared to the 809 
number of peaks in the merged peak set for each gene set using a Fisher’s exact test. The peaks in the remaining 810 
gene plus promoter regions were used as background. Gene sets from Coe et al.22 (COE253), Kaplanis et al.23 811 
(DDD299) and SFARI gene (SFARI854) were used for enrichment testing. P-values were Bonferroni corrected 812 
for 81 tests (27 cell types and 3 gene sets). In addition, we also compared the number of probands and siblings 813 
carrying one or more DNMs in a peak within the gene plus promoter region of genes in the union set of the three 814 
gene sets tested above. Burden was quantified using a Fisher’s exact test for each peak set. P-values were 815 
Bonferroni corrected for 28 tests (# of cell types plus the merged peak set). 816 

 817 

Morbidity map CNV enrichment 818 
CNVs enriched in NDD cases from Coe et al 201422 were intersected with peak sets using bedtools 2.24.0; 819 
peaks were required to have a 50% overlap with the CNV region. Peak sets were determined based on the 820 
presence of the peak in at least 5% of the cells for that cell type. The total number of peaks overlapping a CNV 821 
were compared to the number of peaks that did not overlap with a CNV for each cell type. The merged peak set 822 
was used as background and compared by Fisher’s exact test. P-values were Bonferroni corrected for 27 tests 823 
(# of cell types). 824 
 825 
Cell type-specific GWAS enrichment testing 826 
We retrieved GWAS summary statistics for schizophrenia (Ripke et al., 2014)24, bipolar disorder (Stahl et al., 827 
2019)25, and autism (Grove et al., 2019)26 from the Psychiatric Genomics Consortium data portal 828 
(https://www.med.unc.edu/pgc). We also obtained GWAS summary statistics for schizophrenia (Pardiñas et al., 829 
2018)27 from http://walters.psycm.cf.ac.uk/. GWAS summary statistics for major depression (Howard et al., 830 
2019)28 were obtained from the authors under the auspices of a Data Use Agreement between 23AndMe and 831 
the University of Maryland Baltimore. We applied stratified LD score regression (LDSC version 1.0.1; Finucane 832 
et al., 2018; Finucane et al., 2015)29,30 to these summary statistics to evaluate the enrichment of trait heritability 833 
in each of 27 cell type-specific peak sets, which we defined as peaks present in at least 1% of cells from a given 834 
cell type. These associations were adjusted for the union of the peak sets as well as for 52 annotations from 835 
version 1.2 of the LDSC baseline model (including genic regions, enhancer regions and conserved regions; 836 
Finucane et al., 2015)29. Associations that met a cutoff of FDR < 0.05 were considered significant. 837 
 838 
 839 
 840 
 841 
 842 
 843 
 844 
 845 
 846 
 847 
 848 
 849 
 850 
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EXTENDED DATA FIGURES 851 

 852 
Extended Data Fig. 1: Batch correction and quality control metrics for primary scATACseq data. a) UMAP 853 
projection of all primary scATACseq cells colored by log10(read depth). b) UMAP projection of fractions of reads 854 
in peaks for all primary scATACseq cells. c) UMAP projection of all primary scATACseq cells colored by condition 855 
(fresh/frozen). d) Aggregate signal of single cell data was highly correlated with bulk ATACseq libraries prepared 856 
in parallel. Pearson’s correlation coefficient (r=0.79) between bulk ATAC-seq and aggregate of all scATACseq 857 
cells was calculated from the PFC_GW20 sample based on coverage of 10Kb genomic bins. Bulk ATAC-seq 858 
and scATACseq data were generated from the same sample. e) UMAP projection of all primary scATACseq 859 
cells before batch correction colored by sample. f) UMAP projection of all primary scATACseq cells after batch 860 
correction colored by sample (Methods). g) Barplot depicting the proportion of cells from each brain region for 861 
each leiden cluster for all primary scATACseq cells. h) Dendrogram of hierarchical clustering of leiden clusters 862 
for all primary scATACseq cells.  863 
  864 
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Extended Data Fig. 2: Gene activity scores correlate with cell type-specific expression of marker genes. 866 
a) UMAP projections of all primary scATACseq cells colored by gene activity score. From top left to bottom right, 867 
AQP4 marking glia/astrocytes, TBR1 marking excitatory neurons, HES1 marking radial glia, HOPX marking outer 868 
radial glia, CCL4 marking microglia, CRYAB marking truncated radial glia, OLIG1 marking oligodendrocyte 869 
precursors, SOX2 marking radial glia, NKX2.1 marking MGE cells, SATB2 marking upper layer excitatory 870 
neurons, FEZF2 marking deep layer excitatory neurons, and LHX6 marking MGE-derived interneurons. b) 871 
Heatmap of average gene activity scores for 200 variable genes for the 25 leiden clusters of all primary 872 
scATACseq cells. c) UMAP projection of max correlation values with scRNAseq cell types. 873 
 874 

 875 
Extended Data Fig. 3: Projection of cluster specific peaks for all scATACseq clusters. UMAP projections 876 
of all primary scATACseq cells colored by Z-score of peak set enrichment. From top left to bottom right, projection 877 
of cluster specific peak sets for each of the 25 leiden clusters (Fisher’s Exact, two-sided, FDR<0.05). 878 
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Extended Data Fig. 4: scATACseq peaks overlap with marks of active enhancers and previously 880 
validated forebrain enhancers. a) Annotation of peaks called from all primary scATACseq cells in genomic 881 
features. b) Distribution of peaks called from all primary scATACseq cells in flanking regions around transcription 882 
start sites. c) Enrichment of overlaps of H3K27ac ChIP-seq peaks generated from GW14 human frontal cortex 883 
(GEO: GSE63648) with peaks called from all primary scATACseq cells (Permutation Test, one-sided, p<0.001). 884 
d) Overlap of 317 VISTA enhancer regions active in the forebrain with peaks called from all primary scATACseq 885 
cells (297/217, Image taken from VISTA Enhancer Browser, hs123 - embryo 1). e) Overlap of 2540 non-coding 886 
human accelerated regions (ncHARS) taken from Capra et al. 2013 with peaks called from all primary 887 
scATACseq cells (880/2540). f) UMAP projection of all primary scATACseq cells colored by Z-score of 888 
enrichment of peaks overlapping ncHARs. g) Average Z-score of enrichment of peaks overlapping ncHARs 889 
grouped by cell type predictions. h) Average Z-score of enrichment of peaks overlapping ncHARs grouped by 890 
brain region. i) Violin plots depicting Z-scores of enrichment of peaks overlapping ncHARs grouped by brain 891 
region. j) Heatmap of average proportion of cells in each cluster that have reads overlapping top cluster specific 892 
peaks (Fisher’s Exact). Columns represent the signal from each cluster arranged left-to-right 1-25. Rows 893 
represent top 100 cluster specific peaks for each cluster arranged top-to-bottom 1-25. k) Average transcription 894 
factor motif enrichments for 13 TFs in 25 leiden clusters from all primary scATACseq cells calculated using 895 
ChromVAR (Methods).       896 
  897 

 898 
Extended Data Figure 5: DNM enrichment in cell type-specific peaks. Peaks in 19 out of 27 cell types are 899 
enriched for DNMs observed in ASD cases as compared to the merged peak set. Filled circles indicate cell types 900 
with significant enrichment after Bonferroni correction. We did not find any differences in the number of DNMs 901 
in cell type-specific peaks between probands and siblings across any cell type after Bonferroni correction. 902 
 903 
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 904 
Extended Data Fig. 6: Preservation of gene co-expression relationships inferred from transcriptomic and 905 
chromatin state profiling of single cells. a) Single cells profiled for scRNAseq and scATACseq were analyzed 906 
for gene co-expression relationships using weighted gene coexpression network analysis31. For scATACseq, we 907 
used gene activity scores as proxy for mRNA expression. b-c) WGCNA hierarchical clustering plots and module 908 
assignments of genes (b) or gene activity scores (c). See also Supplementary Tables 3 and 4 for gene-module 909 
assignments and module eigengene correlations. d) Gene-module correlations were compared between 910 
scRNAseq and scATACseq datasets, revealing a high degree of correlation between gene co-expression 911 
modules calculated from scRNAseq and those inferred from gene activity scores in scATACseq data. e-f) 912 
Histograms showing the distributions of module correlations across modalities. In either comparison, only a small 913 
number of clusters lack appreciable correlation to any module in the other modality, with scATACseq-specific 914 
modules enriched for genes involved in cell-cell interactions, including the protocadherin gene clusters that are 915 
highly co-accessible across single cells, but not highly co-expressed. g) Analysis of gene-module memberships 916 
reveal high degree of conserved gene co-expression and co-accessibility across single cells.        917 
  918 
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Extended Data Fig. 7: Temporally dynamic transcription factor motif enrichments reveal regulators of 920 
excitatory differentiation. Heatmap of average transcription factor motif enrichments for the top 200 most 921 
variable transcription factors as determined by ChromVAR (Methods) in equally-sized bins of pseudotime 922 
arranged in increasing order from left-to-right.    923 
  924 

 925 
Extended Data Fig. 8: Chromatin state profiling reveals divergence of PFC and V1 excitatory lineages. a) 926 
UMAP projection of scATACseq cells from PFC and V1 samples before batch correction colored by sample. b) 927 
UMAP projection of scATACseq cells from PFC and V1 samples after batch correction colored by sample. c) 928 
UMAP projection of scATACseq cells from PFC and V1 samples colored by leiden cluster. d) UMAP projection 929 
of scATACseq cells from PFC and V1 samples colored by gene activity score for EOMES, a marker of IPCs. e) 930 
UMAP projection of scRNAseq cells from PFC and V1 samples before batch correction colored by sample. f) 931 
UMAP projection of scRNAseq cells from PFC and V1 samples after batch correction colored by sample. g) 932 
UMAP projection of scRNAseq cells from PFC and V1 samples colored by leiden cluster. h) UMAP projection of 933 
scRNAseq cells from PFC and V1 samples colored by expression of EOMES, a marker of IPCs. i) UMAP 934 
projection of scATACseq cells from PFC and V1 samples colored by Z-score of enrichment of 5,863 PFC-specific 935 
peaks (Fisher’s Exact, two-sided, FDR<0.05). j) UMAP projection of scATACseq cells from PFC and V1 samples 936 
colored by Z-score of enrichment of 26,520 V1-specific peaks (Fisher’s Exact, two-sided, FDR<0.05) 937 
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Extended Data Figure 9: Comparison of organoid and primary peaks reveal significant differences in the 939 
chromatin landscapes. a) UMAP projection of all organoid cells colored by sample of origin. PSC – pluripotent 940 
stem cell. b) Venn diagram depicting the overlap of peaks called from IPCs from primary samples with peaks 941 
called from IPCs from organoid samples. c) Annotation of peaks found only in primary IPCs (top) and peaks 942 
shared between primary and organoids (bottom) in genomic features. d) Left, heatmap of correlations between 943 
leiden clusters of all primary scATACseq cells. Right, heatmap of correlations between leiden clusters of all 944 
organoid scATACseq cells. The average inter-cluster correlation for primary clusters (r=0.2) is approximately 945 
half that of organoid clusters (r=0.39). e) Pileups of ATACseq signal from each organoid leiden cluster in sets of 946 
top 1000 DA peaks for each primary leiden cluster. Pileups are centered on each peak and the flanking +/-10Kb 947 
regions are shown. f) Pileups of ATACseq signal from each organoid leiden cluster in sets of top 1000 DA peaks 948 
for each organoid leiden cluster. Pileups are centered on each peak and the flanking +/-10Kb regions are shown. 949 
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Extended Data Table 1: Sample Metadata Table. Includes sample metadata and key summary statistics 953 
including sequencing depth, cell counts, fraction of fragments in peaks, and fraction of fragments in promoters. 954 
 955 
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