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Abstract 

Analysis and interpretation of single-cell RNA sequencing (scRNA-seq) experiments are 

compromised with the presence of poor quality cells for many underlying reasons. For 

meaningful analyses, such poor quality cells should be excluded before detailed analysis. 

However, there exist no clear guidelines. 

Here we present SkewedCID a novel quality-assessment method to identify poor quality 

single-cells in scRNA-seq experiments. The method relies on the measure of skewness of the 

gene coverage of each single cell as a quality measure. The gene coverage is characteristic of 
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each method, and different methods yield highly different coverage profiles. To validate the 

method, we investigated the impact of poor quality cells on downstream analysis and compared 

biological differences between good and poor quality cells. 

In addition to skewness-based quality assessment, we developed models to measure the ratio 

of intergenic expression, suggesting genomic contamination, and foreign organism 

contamination of single-cell samples.  

The method is robust and able to segregate poor quality cells from good ones and applicable to 

any type of scRNA-seq protocols. We tested our method in about 38,000 human and mouse cells 

generated by 15 scRNA-seq protocols. In addition to the quality method, our analysis brings new 

insights about the capability of scRNA-seq protocols in term of gene body coverage and the 

influence of the poor quality cells in scRNA-seq analysis. 
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Introduction  

Recent advances in scRNA-seq methods and protocols have enabled new discoveries and 

insights in the biology of cells[1, 2]. The method has been used to profile gene expression of 

individual cells under different biological conditions, and to identify new cell types and provide 

knowledge about different biological processes[3].  

Data quality measures and quality-control (QC) methods aim to provide confidence in the 

quality of the data set and assure the robustness, reproducibility and high quality of any 

experimental study. In bulk RNA-seq experiments, different data quality measures are applied at 

consecutive experimental stages. At the early stage of experiment, the integrity of RNA (RIN 

value) is measured, the raw reads are evaluated (FASTQ) as well as the quality of the aligned 

reads (MAPQ), samples with low number of reads per sample are excluded, and genes with low 

expression value may be filtered.  

In scRNA-seq no such standard measures are used, and the data quality may vary highly due 

to variation for biological reasons or experimental procedures. The variation of experimental 

procedures include cell capture methods, target of the sequencing protocols, and reaction failure, 

to name just a few. 

Cell capture method might expose individual cells to stress and cause cell death. Cell capture 

site may contain debris due to broken cells, or contain multiple cells instead of a single cell. 

scRNA-seq protocols are designed to capture reads either at the end of the gene (5’or 3’ end) or 

the full gene body (entire transcript). The multitude of the scRNA-seq methods increases the 

complexity on the required quality assessment of the resulting data set. The failure or inadequate 

quality assessment might lead to the presence of poor quality cells (dead or live cells[4]) and thus 
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incorrect interpretation or compromised resolution, resulting from mis-clustering errors, 

propagation of specific cell type population, or poor sensitivity to detect differentially expressed 

genes (DEGs). 

As reported in several publications[5], identification of poor quality cells is challenging since 

they might represent a large population of cells and may not be limited to dead cells. To identify 

poor quality cells experimentally (e.g., microscopic techniques or cell staining), is laborious and 

involve further manipulations possibly affecting the transcriptome. Computationally, several 

tools and methods have been developed to identify poor quality cells[4-11]. The first group of 

the methods classify the cells based on resulting sequence reads counts, number of expressed 

genes, gene expression patterns to detect outliers or cutoff value based on library size. The 

second group of computation methods use machine learning techniques (classifier-supervised 

learning) to classify cells based on their normalized expression profile and a training set. The 

training dataset is generated from experimentally classified scRNA-seq data. A full list of the 

current tools for single-cell QC is available at https://www.scrna-

tools.org/tools?sort=name&cats=QualityControl.  

In general, the above methods are based on existing approaches used in bulk RNA-seq QC and 

analysis, and they ignore the characteristics of scRNA-seq experiment, variation of methodology 

and the quality properties of individual cells compared to the bulk RNA-seq sample, resulting in  

limitations both in terms of the classification result or implementation[5]. Here we considered 

such limitations and introduced new approaches able to segregate poor quality cells from the 

good quality cells. SkewedCID enabled us to identify two classes of single cells that we refer to 

as good and skewed profile cells, respectively.   
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Results 

A comparison of scRNA-seq protocols  

In this study, we compare and analyze 15 scRNA-seq protocols using different approaches from 

the published studies[12, 13] In particular, we evaluate the capability and power of each protocol 

in terms of the full-length transcript coverage, variability in sequence depth, expression variation, 

ratio of intergenic expression and analysis of the unmapped sequence reads to the reference 

genome (Fig. 1). To perform this analysis, we collected and reprocessed 28 published human and 

mouse single-cell data sets comprising 37,993 single-cells generated by 15 scRNA-seq protocols 

as well as one new data set from the human MCF10A cell line.  

Based on the target read capture strategy of the scRNA-seq method, 5 data sets measured gene 

expression at the 5’-end of the transcript (STRT, C1 CAGE and 10x Chromium 5’-end), 20 

datasets measured gene expression of the full-length transcript (SMARTer, Smart-Seq, RamDA-

seq, SUPer-Seq, Quartz-Seq, C1 single-cell mRNA-Seq, Smart-Seq2, TruSeq and Drop-Seq), 

and 4 studies measured gene expression at the 3’-end of the transcript (CEL-Seq, CEL-Seq2, and 

10x Chromium 3’-end).  The data sets covered tissues, primary cells and cell lines, and to make 

the results comparable, we designed the data sets as batch-matched cells and unmatched cells 

(Table 1). For the mouse batch-matched cells, we analyzed mES, CD4 T cells, fibroblasts and 

hematopoietic cells. For human batch-matched cells, we analyzed human embryo stem cells 

(hESCs). The mouse unmatched cells were adipocytes and PBMC cells, and the human 

unmatched cells were MCF10A cells, PBMC cells and HEK 293 and 3T3 cells (Supplementary 

Table 1).  
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Wide discrepancies in gene body coverage among scRNA-seq protocols  

Gene body (full transcript length) coverage considers the distribution of the sequence tags over 

the entire transcripts. To analyze the gene body coverage of different protocols, we computed the 

gene body coverage for each single cell (Methods). Remarkably, the gene body coverage shows 

wide differences among the data-sets generated by different scRNA-seq protocols (Fig. 2a and 

b; Panels a and b in Supplementary Figs. 1-5). This indicates major variation and differences 

in scRNA-seq data sets produced by difference protocols.  

We investigated the pattern of the gene body coverage for each single cell in individual data 

sets. The visualization of the gene body coverage profile revealed two patterns of gene body 

coverage. The first set of single-cells show well clustered gene coverage distribution according 

to the target sequence of the protocol. The second set of single-cells showed skewed gene body 

coverage distributions. The skewness in the distribution could be caused by several reasons.  

In one type, there was bias towards the 3’-end of the gene body in case of the 5’-end sequence 

and full-length sequence protocols. The bias towards the 3’-end indicated by high coverage at the 

3’-end of the gene body (Fig. 2c). The tag-based sequencing of 5’ or 3’ ends methods [14-17] 

should have the peak coverage at either the 5’ or 3’ end of the gene with low/no coverage in the 

middle region of the gene body. 

In the second type, there was high coverage in the middle of the gene for 5’-end and 3’-end 

sequence protocols (Fig. 2c), in contrast to the full-length sequencing protocols.  

In the third type, there was low coverage in the middle of the gene for full-length sequence 

protocols. This indicated by low coverage at mid-point of 5’-3’-end of gene body (Fig. 2d).   
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The above variation (bias) and skewness in the gene body coverage among individual cells of 

the same data set reflect the success of each single-cell reaction.  The variation in the gene body 

coverage of individual cell should be considered when analyzing scRNA-seq data.  

 

Variation in gene expression and gene saturation among scRNA-seq protocols  

Deep sequencing increases the statistical power to detect differentially expressed genes DEGs 

[18]. To analyze the variability in gene expression for each of the scRNA-seq protocols, we 

computed gene expression for each data set (Methods), and used normalized expression values. 

(Fig. 2e and f) and (Panel c and d in Supplementary Figs. 1-4; and Supplementary Fig. 5c) 

show variability in gene expression among single-cells of the same cell type generated by 

different protocols. The variability is more visible in the 5’ end and 3’ end sequence protocol 

compared to the full length sequence. The coefficient of variation over the mean shows higher 

CV/mean for the 5’-end and 3’-end sequence protocols, and lower CV/mean for the full length 

sequence protocols.  

We used the mean of the normalized gene expression (µ FPKM) and compute the R2 of the 

two data sets from the same batch-matched cell type (Supplementary Fig. 6).  The figure 

illustrates the variability in the mean expression of scRNA-seq protocols; the two mES data set 

(E-MTAB-2600[19] and E-MTAB-2805[20]) produced by different labs using the SMARTer 

protocol showed strong correlation (R2 = 0.85). Comparison of the mean expression of the mES 

data set generated by SMARTer (E-MTAB-2600)[19] and SUPer-Seq (GSE53386)[21] showed 

weak correlation (R2 = 0.61). SMARTer has better mean expression correlation with full length 

sequence protocols compared to the 5’-end and 3’-end sequence protocols. The mES data set 

(GSE46980)[4] and (GSE29087)[22] were generated by two different versions of STRT[14] 
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protocols and showed weak correlation (R2 = 0.54). In general, the mean gene expression values 

of data sets from the same cell type (mES) generated by different protocols were dissimilar. 

Similar patterns were illustrated using mouse CD4 T-cells, mouse fibroblasts, mouse 

hematopoietic cell and hESC (Supplementary Figs. 7–10). The high correlation between data 

sets demonstrated the similarity of the expression profiles, whereas poor correlation between 

data sets demonstrated the dissimilarity of the expression profiles.  

To investigate the variability in gene saturation for different scRNA-seq protocols, we used 

the Hanabi plot[23] (Supplementary Figs. 11–17). The figure demonstrates the detection power 

and variability in gene saturation for different protocols. The Hanabi plot considers the number 

of detected genes over the total counts. The 5’-end and 3’-end sequence protocols detected 

smaller numbers of genes with smaller total read counts compared to the full-length sequencing 

protocols. 

 

QC method segregate poor and good quality single-cells 

The results from the gene body coverage analysis discriminate two classes of cells, referred to as 

good single-cells and skewed single-cells, even in one dataset. Single-cell become skewed due to 

either technical failure during the sequencing or biological issue. To systematically classify the 

two classes of the cells, we developed an algorithm (SkewedCID). SkewedCID takes as input the 

gene body coverage of the scRNA-seq data set (Fig. 3a) (Methods). Systematically we applied 

the method for all data sets in this study (Fig. 3b–d) and (Supplementary Figs. 18–23). We 

removed single-cells with low numbers of mapped input reads (left charts of Fig. 3b–d) and (left 

panel of Supplementary Figs. 10–15). The remaining single-cells had high numbers of mapped 
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input reads. When applying our method, two distinct clusters of single-cells are visible (middle 

charts of Fig. 3b–d) and (middle charts of Supplementary Figs. 18–23).  

 

Expression variation of housekeeping genes between skewed and good cells 

To investigate the difference between the good and skewed cells in the resulting gene expression, 

we compared the normalized expression of the housekeeping genes of the good cells versus the 

skewed cells (right charts of Fig. 3b–d) and (right charts of Supplementary Figs. 18–23). The 

boxplot shows distinct differences in the variability in gene expression of the housekeeping 

genes (HKGs) between the two classes of cells with adjusted P-values < .001.  The ratio of the 

skewed cells to good cells is different between different data set. As an example, the mES data 

set E-MTAB-2600[19] has a total number of single-cells (n=869), of which single-cells with low 

input mapped reads (n=19),  good single-cells (n=765) and skewed single-cells (n=85). As 

another example, the data set GSE98664[24] with a total number of single-cells (n=364), there 

were no single-cells with low input mapped reads (n=0), good cells (n=338) and skewed cells 

(n=26).  

 

Biological features of the skewed cells 

To validate our QC methods, we used the mES data set GSE46980[4]. The authors of the data set 

classify the single-cells in their experiment as good quality cells (n=47), poor quality (n=40) and 

dead cells (n=9), totaling n=96 single-cells.  We implemented SkewedCID on the live single-

cells (n=87). The t-SNE plot (Fig. 4a) shows a clear distinction of the good and skewed cells. 

Our method reduced number of good cells from (n=47 to n=39) and increased poor quality from 
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n= 40 to n=48. This indicates that the standard QC procedures currently used in scRNA-seq 

analysis are inadequate to discover single-cells with poor quality.  

To investigate the biological meaning of the  good and skewed cells we used the microscopic 

image of the Fluidigm C1 chip provided by the authors in[4] and computed the cell size in pixels 

of all single-cells (Methods) and (Supplementary Table 2). The good cells have larger cell size 

compared to the skewed cells (Fig. 4b, bottom plot).  

An additional analysis to investigate biological difference between good and skewed cells is 

the distribution of the cell-cycle phase in the data set. We assigned the cell-cycle phase for each 

single-cell based on their gene expression (Methods).  The majority of the good cells were in the 

G2/M and M/G1 phase (n=26 of 39), bottom graph of Fig. 4c, suggesting that good cells pass the 

G2 checkpoint (G2/M) and the spindle checkpoint (M/G1). On the other hand, the majority of 

the skewed cells are in G1/S, S and G2 phase (n= 32 of 48), indicating that skewed cell reside 

around the S phase (Synthesis Phase) but do not pass to the Mitotic phase (chromosome 

separation), top panel of Fig. 4c. 

We investigated the differences in coverage skewness between the good and skewed cells (Fig. 

4d). The skewed cell possess high coverage skewness compared to the good cells.  

Finally, we performed gene expression analysis between the good and skewed cells. The 

clustering of the top 100 most variable genes across cells illustrated in the heatmap (Fig. 4e) with 

good and skewed cells are clustered separately based on the gene expression of the top 100 genes.  

We performed gene set enrichment analysis (GSEA) on of the top 100 genes, we found the 

KRAS signaling DN pathway was enriched in the good cells (p-value < .001). The set of genes 

up-regulated by KRAS play roles in cell signaling[25]. 
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Effect of skewed cells on downstream analysis 

Since we noticed a great variability in the mean expression of the HKGs between good and 

skewed cells, we investigated the effect of skewed cells on the downstream analysis of the 

scRNA-seq experiment. The t-distributed stochastic neighbor embedding (t-SNE)[26], is a 

common dimension reduction technique in scRNA-seq analysis. t-SNE is usually performed after 

read count normalization[27]. We analyzed the impact of filtering skewed cells on t-SNE 

implementation using mES data set (Fig. 5). In the first data set E-MTAB-2600[19] generated by 

SMARTer protocol (Fig. 5a), the top panel shows the t-SNE plot of all single-cells clustered and 

colored by the growth factors used in the experiment, some of the single-cells are misplaced in 

the wrong cluster (mis-cluster). The t-SNE plot in the middle panel of (Fig. 5a), cluster and color 

the single-cells based on the classification of good and skewed cells.  The majority of the skewed 

cells clustered together with few exceptions. The t-SNE plot in the bottom panel of (Fig. 5a) 

shows replotting the t-SNE after filtering the skewed cells. The plotting of the good cells only 

show distinct clustering of the cells based on the growth factors compared the t-SNE before the 

filtering of the skewed cells. This shows the impact of the skewed cells on the clustering of the 

single-cells. 

The data set GSE98664[24] is a time-course analysis of mES development generated by 

RamDA-seq protocol (Fig. 5b). The top panel illustrates t-SNE with four clusters (four time-

points). Each of the four clusters contains single-cells that do not belong to the same time-point 

(mis-clustered). The wrongly clustered single-cells are in fact skewed cells that stopped 

development but were mis-annotated by as developing cells. The middle t-SNE plot shows the 

clustering of the same data set based on good and skewed cells and the appearance of the skewed 

cells in two clusters (ES_12h & ES_24h). The bottom t-SNE illustrates re-clustering of the data 
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set after filtering the skewed cells; the plot shows clear improvement of the clustering result. 

Compared to the top t-SNE plot, the final t-SNE after filtering of the skewed cell removed the 

group of single-cells of time-point ES_72h from ES_12h and the ES_24h cells were removed 

from the cluster from ES_48h. 

In the single-cell data set PRJDB5282[16], generated by C1 CAGE protocol (Fig. 5c), the 

skewed cells clustered separately on t-SNE plot (top of Fig. 5c). After filtering the skewed cells, 

t-SNE shows one cluster consisting of good cells. 

All the above examples demonstrate the strong impact of skewed cells on the clustering results. 

The identification and filtering of the skewed cells is important to consider in any downstream 

analysis.  

 

Ratio of intergenic expression 

In scRNA-seq protocols, cDNA is obtained from the reverse transcription of RNA. This step is 

followed by amplification of cDNA by PCR or in vitro transcription before sequencing[28]. The 

amplification step is required due to the small amount of RNA found in an individual cell, and 

the workflow is prone to losses or biases[29]. To investigate the possibility of such problems 

resulting, e.g., from genomic DNA contamination, we developed a model to quantify the ratio of 

intergenic expression (Methods). For each cell, the model computes the ratio of intergenic 

expression. As a control, we considered matched cell type bulk RNA-Seq data set from 

ENCODE[30] (PloyRNA-Seq and Total RNA-Seq). As an example (Fig. 6a), the data set 

GSE68981[31] from mouse hematopoietic stem cells (HSCs) was analyzed with single-cell (C1-

single-cell mRNA-Seq protocol) and bulk RNA-Seq used as control.  As another example, we 

compared the human data sets GSE75748[32] (Fig. 6b), from human embryonic stem cells 
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(analyzed with single-cell SMARTer protocol) and bulk RNA-Seq. As demonstrated in the 

above examples, the ratio of intergenic expression is high in the scRNA-seq data compared to the 

bulk RNA-Seq.  

Our analysis suggested that scRNA-seq data prone to high level of intergenic expression 

compared to bulk RNA-Seq. One possibility for such high read counts from intergenic regions is 

amplification of genomic DNA, as such signals are not observed in bulk RNA-seq data from 

same cell types. Our results suggest that single-cell data set should be evaluated for intergenic 

expression, possibly originating from genomic DNA amplification.  

 

Annotation and classification of the sequence reads  

One potential source of problems with scRNA-seq is microbial contamination (bacteria, archaea 

and viruses), we developed a workflow to annotate and classify unmapped sequence reads from 

scRNA-seq experiments (Methods). Sequence reads are annotated on three categories, single-

mapped, multi-mapped, or unmapped on the reference genome.  The majority of the sequence 

reads are annotated as mapped reads (Fig. 6c, d) (wheat color) with one exception of the data set 

E-MTAB-3346[33] (mouse thyme epithelial cells (mTECs) generated by Smart-Seq2 protocol) 

(Fig. 6c). The unmapped reads are annotated as positive sequencing control (phiX), or as reads 

belonging to unexpected organisms (bacteria, archaea, virus) (Fig. 6c, d). The dataset 

PRJEB8994[1] of gene expression during the first three days of human development (Fig. 6d) is 

the only data set that doesn’t contain any reads annotated as unexpected organisms (bacteria, 

archaea, virus), possibly because the PRJEB8994 experiment was conducted in a sterile clinical 

environment.  
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A set of unmapped sequence reads were annotated as unexplained-unmapped (Fig. 6c, d) 

(gray color). These are reads that failed to find any match in the Kraken database. Notable, the 

two data sets GSE54695[34] and GSE70798[35] generated by CEL-Seq contain high numbers (> 

50% of the raw reads) of unexplained-unmapped reads. A common source of the unmapped 

reads in scRNA-seq experiments might arise from the sequence linkers. Specific sequencing 

linkers are usually added to cDNA during library construction.  

Mycoplasma contamination of cell cultures in the laboratory is common and special detection 

kits are available to ensure that the cell culture is free of such contamination. In bulk RNA-seq, it 

was reported that several large scale RNA-seq projects generate 9-20% of reads that do not map 

to the human reference genome[36-38].  

 

Discussion 

Advances in scRNA-seq have already impacted biology and medicine and will increasingly do 

so. It has enabled investigation of transcriptomic variation between individual cells, thereby 

enabling the discovery of new cell types, analyses of cellular response to stimulation, analyses of 

the nature and dynamics of cell differentiation and reprogramming, and study of transcriptional 

stochasticity. In spite of the technical advances, several challenges still remain and need to be 

understood for improved interpretation of the data. There is high variability in the performance 

of scRNA-seq protocols in terms of coverage, accuracy and specificity, impacting the quality of 

data generated by different scRNA-seq protocols[12, 13]. The variability among scRNA-seq 

protocols and the quality of the scRNA-seq data set might also impact global efforts to map 

transcription in human and mouse cells[39, 40].  
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Our analysis identified wide differences in patterns of gene coverage generated from same cell 

types by different scRNA-seq protocols. Based on the analysis of the gene body coverage, we 

identified two classes of single-cells in any data set: cells with method-specific distribution of 

gene body coverage, and cells with a skewed distribution. Each of the scRNA-seq protocols 

yields different gene body coverage. A skewed distribution with excess observed 3’-end bias 

could be attributed to technical or biological processes during any of the experimental steps, such 

as reaction failure, or cell death, triggering mRNA degradation.  During embryo development, 

skewed distribution coverage suggests induction of maternal transcript degradation at early 

genome activation in the earliest developmental stages[41], as maternal transcript degradation 

takes place after the fertilization till day 3[1, 42] . 

SkewedCID based on the observation of the two distribution patterns in the gene body 

coverage of scRNA-seq protocols and the identification of the good and skewed cells. The 

skewed cells might result from a technical failure of the reaction, or be either live or dead cells. 

The skewed live cells might potentially be quiescent satellite cells, a form of (G0 cell-cycle 

phase), cell enter G0 phase (resting) due to different environmental factors. The common feature 

between the identified skewed cells and the quiescent satellite cells is the low RNA content[43, 

44].  

We evaluated the impact of gene body coverage skewness on the expression of housekeeping 

genes and find significant differences in the expression of housekeeping genes between good 

cells and skewed cells. We further assessed the impact of filtering out the skewed cells from 

downstream analysis (clustering and differential gene expression analysis), and found that 

exclusion of skewed cells drastically changes t-SNE clustering results. Wrong clustering may 

lead to false discovery resulting from the skewed cells. The skewed cells show different 
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expression profile of the top expressed genes compared to the good cell, as seen in the heatmap. 

We also investigated the difference in biological features between skewed and good cells (cell-

size and cell cycle). In contract to skewed cells, good cells are strongly correlated with cell size 

and cell cycle phase.  

We recommend that skewed cells should be identified and excluded from any downstream 

analyses of scRNA-seq experiments.   

The data set-to-data set similarity analyses in terms of gene expression profiles rather 

expectedly show weak expression correlation between data sets generated by different protocols. 

Our results show strong variation in sequence depth, detection power and gene saturation 

revealed by different scRNA-seq protocols. This result demonstrated challenges for the current 

efforts to computationally integrate heterogeneous scRNA-seq data sets generated by different 

protocols and labs[45-47]. 

We developed a model to estimate the intergenic expression in scRNA-seq, and observed high 

level of intergenic expression in single-cells compared to the control bulk data set. This might be 

caused by scRNA-seq contamination with genomic DNA reads, but other alternatives to explain 

this observation might also exist. Finally, we annotated and classify unmapped reads in order to 

find the source of contamination in scRNA-seq experiments.  

In conclusion, our results demonstrated that a QC procedure to segregate good cells and 

skewed cells in scRNA-seq should be incorporated in any scRNA-seq experiment to avoid false 

interpretations of data. scRNA-seq experiments may suffer from biological and technical failures 

such as genomic DNA amplification and microbial contamination as possible sources.  
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Materials and Methods 

Study design 

Based on the objective of the scRNA-seq experiment, the protocols are divided in two 

categories; full-length sequence profiling or transcript end-tagging (5’ or 3’). In full-length 

sequence protocols (SMARTer, Smart-Seq, SUPer-Seq, RamDA-seq, etc.) the sequence reads 

cover the entire gene body (5’to 3’-end) and quantify gene and transcript isoforms. The end-

tagging based sequencing protocols (C1 CAGE, CEL-Seq, CEL-Seq2, STRT, 10x Chromium 

Single Cell 3' –end etc.) target one end of the transcript (5’-end or 3’-end) and are used to 

identify promoters (5’ tagging) or give an estimate of transcript abundance. In our study design 

(Fig. 1). We analyzed data sets produced with 15 different protocols representing commonly 

used scRNA-seq methods of the above two categories.  

 

Study data set    

To perform fair comparison among different protocols, we used both batch-matched and 

unmatched mouse and human dataset of primary cells and cell lines (Table 1).  In this study, we 

used three types of data sets: (1) we generated a data set for human MCF10A cells, (2) we 

reanalyzed published human and mouse scRNA-seq from International Nucleotide Sequence 

Database Collaboration (INSDC) data set, and (3) we reanalyzed published scRNA-seq data set 

for human and mouse from 10x Genomics data portal. The three types of the data sets are 

described below. 
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10× Genomics Chromium experiment of human MCF10A cells 

10x Genomic Chromium data set was generated from the MCF10A cells (ATCC). The cells were 

grown in DMEM/F12(1:1) as described in [48]. RNA-Seq library was prepared using 10x 

Chromium Single Cell 3' –end Reagent Kits User Guide (v2 Chemistry).  Libraries were 

sequenced using paired-end sequencing (26bp Read 1 and 98bp Read 2) with a single sample 

index (8bp) on the Illumina HiSeq 2500. 

 

International Nucleotide Sequence Database Collaboration (INSDC) data set 

The method for collecting and processing the raw read scRNA-seq from the public databases 

were illustrated in [49] and listed in Supplementary Table 1[1, 4, 15, 16, 19-22, 24, 31, 32, 34, 

50-63]. In brief, published scRNA-seq were collected by searching PubMed for human and 

mouse scRNA-seq articles. Our strategy was to include different types of cells generated by 

different technology platforms. All single-cells in the database were annotated using different 

type of ontologies[64]. This strategy enabled us to cover a wide range of cell types and datasets 

generated by different platforms. We retrieved study accession number(s) of the original data 

deposited to International Nucleotide Sequence Database Collaboration (INSDC). The study 

accession numbers were used to retrieve sequence read files and metadata files from INSDC sites 

(DDBJ, EMBL-EBI, NCBI). To obtain FASTQ files, we implemented an automated program 

using the NCBI SRA Toolkit[65].  Metadata about each data set were collected as well. This 

metadata contains information about the cell type, protocol, sequence platform, single-cell 

isolation techniques, etc. We implemented automated script to retrieve data set metadata utilizing 

The Entrez Programming Utilities (E-utilities) from NCBI[66].  
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10x Genomics data set 

We downloaded two data sets from 10x Genomics portal 

(https://support.10xgenomics.com/single-cell-vdj/datasets). The Human PBMCs of a healthy 

donor - 5' –end gene expression and cell surface protein (8,258 single-cell)  BAM files were 

downloaded from  

http://cf.10xgenomics.com/samples/cell-

vdj/3.0.0/vdj_v1_hs_pbmc2_5gex_protein/vdj_v1_hs_pbmc2_5gex_protein_web_summary.html 

The Mouse PBMCs from C57BL/6 mice - 5’ gene expression (8,500 single-cell) BAM files were 

downloaded from  

http://cf.10xgenomics.com/samples/cell-

vdj/3.0.0/vdj_v1_mm_c57bl6_pbmc_5gex/vdj_v1_mm_c57bl6_pbmc_5gex_web_summary.htm

l 

 

Data processing of the raw sequence reads 

For the raw sequence data downloaded from INSDC, we run basic QC procedures to obtain 

quality assessment metrics of the raw sequence reads. The QC procedures includes testing of all 

FASTQ files with FastQC tool [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/] to 

identify any quality issues. Additional QC procedures of the raw reads includes count of raw tags. 

The raw sequence reads were aligned to a recent reference genome build (GRCh38 (human) or 

GRCm38 (mouse) genome assembly).  We used STAR software (version 2.5.1b)[67] with 

default settings and GENCODE gene annotations in the release v24 for human and the release 
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vM9 for mouse for all data set but not for (GSE98664) in which we used GENCODE vM22.  

Aligned reads in BAM file format together with the log files generated by STAR were used to 

obtain quality assessment metrics (total read count, number of uniquely mapped reads and 

assigned reads (mapped reads assigned to gene)). The mapping ratio, counts of mapped reads, 

unmapped and multi-mapped reads were summarized using SAMtools software[68].   For 

MCF10A data set, we used cell ranger2.1.1 for data processing. The data sets from 10x 

Genomics were processed with Cell Ranger version 3.1.0. 

 

Reads count summarization and expression normalization   

To obtain expression matrices, we quantified gene expression counts using featureCounts (in the 

Subread package Version 1.5.0-p1) [69]. The gene expression counts were normalized into 

transcripts per million reads (TPM) and fragments per kilobase million (FPKM) to generate a 

gene expression table for each study, according to the following standard formula.  

TPM (gene-level expression) = mapped reads assigned to each gene) * 1,000,000 / mapped reads  

FPKM (gene-level expression) = mapped reads assigned to each gene) * 1000 / (gene length 

(bp)) * 1,000,000 / mapped reads 

 

Computation and visualization of the gene body coverage  

To compute the gene body coverage for data set, we implemented[11] module 

geneBody_coverage.py. The module was used to check if reads coverage was uniform and if 

there was any 5’/3’ end bias. The input for the module is indexed BAM files and gene model in 

BED format. All BAM files were sorted and indexed prior to this procedure. Gene models were 
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downloaded from http://rseqc.sourceforge.net/#download-gene-models-update-on-08-07-2014 . 

The gene model BED files for human hg38_Gencode_V28.bed.gz and for mouse 

mm10_Gencode_VM18.bed.gz were preprocessed to filter ribosomal RNA and transfer RNA. 

Since processing gene body coverage is a time-consuming task even in a high performance 

computer environment, data sets with large numbers of single-cells were split to smaller number 

of data sets to run small jobs in parallel. The result of the gene body coverage module is a vector 

of normalized values. The values cover the gene body from the 5’-end to the 3’-end scaled from 

0-100 (positions). The value for each position range from (0-1), where 0 indicate now coverage 

and 1 indicate full coverage at the position on the gene body. The vector of the normalized 

values were post-processed in several steps for visualization and study the normality and 

skewness of the coverage (Fig. 3a).  

 

Computation of intergenic expression  

To quantify the possibility of genomic DNA contamination (e.g. due to the PCR amplifications 

of the starting material of genomic DNA), we modelled the following formula:  

Possibility of genomic contamination (%) = (((total number of mapped reads) - (the total number 

of reads that are assigned to a gene feature in GENCODE annotation)) / ((total number of 

mapped reads))) * 100. 

The possibility of genomic DNA contamination was computed for each single-cell and 

summarized per the data set. 
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Analysis and annotation of the unmapped reads  

In our pipeline for aligning raw reads to the reference genome, we kept log files and unmapped 

reads. We investigated the source and ration of the unmapped reads from each FASTQ file. Our 

workflow to analyse the unmapped reads started with filtering of ribosomal RNA and artificial 

reads from the BAM file of the unmapped reads using TagDust tool[70]. Next we filtered multi-

mapped reads to get true unmapped reads and finally, we performed blast search on the most 

frequent unmapped reads [71]. The remaining reads were screened for microbial contamination 

sequences. To screen for such organisms, we utilized metagenomics tools: sequana[72] and 

Kraken [73]. The Kraken tool provided 8GB database of complete bacterial, archaeal and viral 

genomes (https://ccb.jhu.edu/software/kraken/dl/minikraken_20171019_8GB.tgz). 

 

Cell size estimation of the data set GSE46980 

The data set GSE46980 of mESs [4] was generated by the STRT protocol and provided full 

annotation of quality status of the single-cells (n=96). The authors classify each single-cell as 

either dead (depleted before cell capture by the flow-cell) or live cell. The live cells were further 

classified as either low quality cells or good quality cells (see [4] for details on how the 

annotation was performed). We used this data set to compare our QC method of good and 

skewed cells. Additionally, the data set provided a microscopic image of the Fluidigm C1 chip. 

In the microscopic image, each Fluidigm C1 chip (a 96-well plate) was imaged after cell capture 

and a grid of thumbnails was generated for each chip. To verify some of the morphological 

phenotypes of the good and skewed cells, we estimated morphological properties of the cells 
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based on the microscopic image, cell size, areas, circularity, skewness roundness and solidity 

that were calculated using the ImageJ tool [74]. 

 

Cell cycle phase prediction 

To further evaluate some of the biological phenotypes of the good and skewed single-cells, we 

predicted the cell-cycle phase, the cell-cycle phase predicted computationally based on the 

expression profile of the single-cell[75]. We obtained the predefined human cell-cycle marker set 

provided in [76]. As for the mouse cell-cycle markers, the orthologous mouse genes of the 

human cell-cycle gene marker were obtained Supplementary Table 3.  The cell-cycle phase 

predictor [75] assign any of (S, G1/S, G2, M/G2 , G2/M) phase to each single-cell.  

 

Statistical tests, boxplots and plotting tools 

Unless otherwise indicated, all p-values were obtained with two-sided t-test. In all boxplots, 

center lines indicate median values, box heights indicate the inter-quartile range of data. The 

ggplot2 library from R software version 3.5.1 (2018-07-02) was used for plotting of all plots and 

figures. 

 

Data availability 

The raw read data listed in (Supplementary Table 1) are available from INSDEC sites. We 

developed SCPortalen, a single-cell database in which we deposited all results from this study at 

http://single-cell.clst.riken.jp/  
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Table Legends 

Table 1: Sample design and tested single-cell RNA sequence protocols. 

 

Figure Legends 

Figure 1: SkewedCID workflow. 

Flow diagram summarizing the Workflow for skewness-based quality assessment of single-cell 

RNA-Seq experiment. Data sets are collected from three sources, in-house, public data, and 

10xGenomics web resource.  The figure illustrates the computation analysis tasks, and the result 

from each task. 

 

Figure 2: Gene coverage skewness and variation in expression among single-cell RNA-Seq 

protocols using mES. 

9 datasets from mouse embryonic stem cells. (a) Distribution of the mapped reads (tags) across 

the genes. Each panel shows gene body coverage percentile per dataset. The x-axis represents the 

gene body from 5’ end to 3’ end scaled from 0-100, and the y-axis gene coverage (0-1). Each 

line represents a single cell. (b) Mean calculated for bin size = 10. (c-d) Skewed distribution of 

the gene body coverage. (c)  & (d) show the bias towards the 3’-end of the gene body (magenta 

dashed box) and low coverage in the middle of the gene body (blue dashed box). (STRT as 5’-

end sequence protocol) shows the bias towards the 3’-end of the gene body (magenta dashed 

box) and high coverage in the middle of the gene body (green dashed box). (e) The variability in 

gene expression plot. The X-axis is the mean of the normalized gene expression (FPKM), Y-
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Axis is the coefficient of variation. CV/mean correlates the sequence depths and variability in 

gene expression among different protocols. Figure (f), grouping of the smooth lines from (e).  

 

Figure 3: Classification of the good and skewed coverage distribution cells. 

Overall description and steps for the QC methods; (a) The figure illustrates the method to 

discriminate skewed cells with skewed coverage distribution. (b–d) application of the QC 

methods in 3 different data sets. Left chart filter cells with low-input reads, middle chart perform 

trimmed clustering on the coverage matrix of the cell with high read count. A proportion of the 

most outlying observations is trimmed (the skewed cells). This results into two sets of cell: Good 

cells with normal gene coverage and skewed cells with skewed coverage distribution. Right chart, 

the classification of cells was validated with the housekeeping genes (boxplot of the expression 

of the house keeping genes of the good vs. skewed cells.). We applied our method to other 

dataset (Supplementary Figs. 18–23) 

 

Figure 4: Validation of QC method. 

We used an existing experimentally validated dataset to validate the QC methods. The data set 

GSE46980. (a) t-SNE illustrating the clustering of single-cells. (b) Line and point graph with 

error bars representing the standard error of the mean of the single-cell size. Upper panel shows 

that cell size of the single-cells as annotated by the data set authors (dead, low quality and good 

quality cells). The bottom plot shows that cell size of the cells as annotated after applying our 

QC methods (Skewed cells and Good cells). (c), distribution of predicted cell-cycle phases 

among skewed cells (top) and good cells (bottom). (d) Coverage skewness comparison between 
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good and skewed cells. (e) Heatmap showing the top 100 differentially expressed genes in the 

data set. Columns are cell category (good and skewed) and rows are gene names. 

Figure 5: Effect skewed cells on downstream analysis. 

To evaluate the effect of the skewed cells when performing downstream analysis, t-SNE 

generated for several datasets. (a) mES single-cell treated with three types of growth factors. On 

the top is the t-SNE before the classification and colored by the growth factor used, in the middle 

a t-SNE of the skewed and good cells, on the bottom t-SNE after removing the skewed cells. (b) 

mES with four development time-points. Top t-SNE of the dataset before the classification. The 

cluster in the bottom show the majority of the cells at 12 h, with few cell from 72 h. In the 

middle t-SNE we observed that the skewed cells are cells from 72h. The bottom t-SNE show 

better clustering of the single-cell per development time-point after filtering the skewed cells. (c) 

t-SNE perfectly discriminate good and skewed cells. 

 

Figure 6: Ratio of intergenic expression and annotation of the reads. 

(a–b) High level of intergenic expression in scRNA-seq (a) mouse and (b) human data compared 

to bulk. Box plots are grouped by protocol name. (c–d) Classification of reads annotations per 

dataset for (c) mouse and (d) human data. Mapped reads are separated between uniquely mapped 

and multimapped on the reference genome. Unmapped reads are annotated in categories 

according to the explanation of unmapping, namely tagdust filtered, positive sequencing control 

(phiX), contamination by a foreign organism (archea, bacteria, virus). Unmapped reads that 

couldn't be explained are presented in gray. 
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Supplementary Table Legends 

Supplementary Table 1: List of the data set used in the analysis. 

Supplementary Table 2: Analysis of the microscopic image for the data set GSE46982. 

Supplementary Table 3: List of the cell cycle marker genes for mouse. 

 

Supplementary Figure Legends 

Supplementary Figure 1: Gene coverage skewness and variation in expression among 

single-cell RNA-Seq protocols using mouse CD4 T cells. 

4 datasets from mouse CD4 T cells. (a) Distribution of the mapped reads (tags) across the genes. 

Each panel shows gene body coverage percentile per dataset. The x-axis represents the gene 

body from 5’ end to 3’ end scaled from 0-100, and the y-axis gene coverage (0-1). Each line 

represents a single cell. (b) Mean calculated for bin size = 10. (c) The variability in gene 

expression plot. The X-axis is the mean of the normalized gene expression (FPKM), Y-Axis is 

the coefficient of variation. CV/mean correlates the sequence depths and variability in gene 

expression among different protocols. (d) Grouping of the smooth lines from (c).  

 

Supplementary Figure 2: Gene coverage skewness and variation in expression among 

single-cell RNA-Seq protocols using mouse fibroblast 

4 datasets from mouse fibroblast. (a) Distribution of the mapped reads (tags) across the genes. 

Each panel shows gene body coverage percentile per dataset. The x-axis represents the gene 

body from 5’ end to 3’ end scaled from 0-100, and the y-axis gene coverage (0-1). Each line 

represents a single cell. (b) Mean calculated for bin size = 10. (c) The variability in gene 
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expression plot. The X-axis is the mean of the normalized gene expression (FPKM), Y-Axis is 

the coefficient of variation. CV/mean correlates the sequence depths and variability in gene 

expression among different protocols. (d) Grouping of the smooth lines from (c).  

 

Supplementary Figure 3: Gene coverage skewness and variation in expression among 

single-cell RNA-Seq protocols using mouse hematopoietic cells 

3 datasets from mouse hematopietic cells. (a) Distribution of the mapped reads (tags) across the 

genes. Each panel shows gene body coverage percentile per dataset. The x-axis represents the 

gene body from 5’ end to 3’ end scaled from 0-100, and the y-axis gene coverage (0-1). Each 

line represents a single cell. (b) Mean calculated for bin size = 10. (c) The variability in gene 

expression plot. The X-axis is the mean of the normalized gene expression (FPKM), Y-Axis is 

the coefficient of variation. CV/mean correlates the sequence depths and variability in gene 

expression among different protocols. (d) Grouping of the smooth lines from (c).  

 

Supplementary Figure 4: Gene coverage skewness and variation in expression among 

single-cell RNA-Seq protocols using human embryo. 

4 datasets from mouse human embryo cells. (a) Distribution of the mapped reads (tags) across 

the genes. Each panel shows gene body coverage percentile per dataset. The x-axis represents the 

gene body from 5’ end to 3’ end scaled from 0-100, and the y-axis gene coverage (0-1). Each 

line represents a single cell. (b) Mean calculated for bin size = 10. (c) The variability in gene 

expression plot. The X-axis is the mean of the normalized gene expression (FPKM), Y-Axis is 

the coefficient of variation. CV/mean correlates the sequence depths and variability in gene 

expression among different protocols. (d) Grouping of the smooth lines from (c).  
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Supplementary Figure 5: Gene coverage skewness and variation in expression among 

single-cell RNA-Seq protocols using human and mouse un-matched single-cells. 

5 different human and mouse datasets. (a) Distribution of the mapped reads (tags) across the 

genes. Each panel shows gene body coverage percentile per dataset. The x-axis represents the 

gene body from 5’ end to 3’ end scaled from 0-100, and the y-axis gene coverage (0-1). Each 

line represents a single cell. (b) Mean calculated for bin size = 10. (c) The variability in gene 

expression plot. The X-axis is the mean of the normalized gene expression (FPKM), Y-Axis is 

the coefficient of variation. CV/mean correlates the sequence depths and variability in gene 

expression among different protocols. 

 

Supplementary Figure 6: Dataset-to-dataset similarity of the mean expression: mouse ES 

cells. 

Scatterplot of the mean value of the gene expression (FPKM) to compare the variability of gene 

expression in mES data set. Each thumbnail illustrates two datasets generated from same cell 

type. The dataset are either generated by same or different protocols, and some cases shows 

dataset generated by same protocols from different labs. 

The figure illustrated that gene expression of dataset from cell type, generated by different 

protocols are dissimilar in the average expression. 

 

Supplementary Figure 7: Dataset-to-dataset similarity of the mean expression: mouse CD4 

T cells. 
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Scatterplot of the mean value of the gene expression (FPKM) to compare the variability of gene 

expression in mouse CD4 T cells data set. Each thumbnail illustrates two datasets generated from 

same cell type. The dataset are either generated by same or different protocols, and some cases 

shows dataset generated by same protocols from different labs. 

 

Supplementary Figure 8: Dataset-to-dataset similarity of the mean expression: mouse 

fibroblast cells. 

Scatterplot of the mean value of the gene expression (FPKM) to compare the variability of gene 

expression in mouse fibroblast cells data set. Each thumbnail illustrates two datasets generated 

from same cell type. The dataset are either generated by same or different protocols, and some 

cases shows dataset generated by same protocols from different labs. 

 

Supplementary Figure 9: Dataset-to-dataset similarity of the mean expression: mouse 

hematopoietic cells. 

Scatterplot of the mean value of the gene expression (FPKM) to compare the variability of gene 

expression in mouse hematopoietic cells data set. Each thumbnail illustrates two datasets 

generated from same cell type. The dataset are either generated by same or different protocols, 

and some cases shows dataset generated by same protocols from different labs. 

 

Supplementary Figure 10: Dataset-to-dataset similarity of the mean expression: human 

embryo. 

Scatterplot of the mean value of the gene expression (FPKM) to compare the variability of gene 

expression in human embryo cells data set. Each thumbnail illustrates two datasets generated 
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from same cell type. The dataset are either generated by same or different protocols, and some 

cases shows dataset generated by same protocols from different labs. 

 

Supplementary Figure 11: Hanabi plot Gene saturation using mouse ES cells. 

The x-axis shows total counts, and y-axis shows the number of detected genes in 9 mouse ES cell 

data set. 

 

Supplementary Figure 12: Hanabi plot Gene saturation using mouse CD4 T cell. 

The x-axis shows total counts, and y-axis shows the number of detected genes in 4 mouse CD4 T 

cells data set. 

 

Supplementary Figure 13: Hanabi plot Gene saturation using mouse fibroblast cells. 

The x-axis shows total counts, and y-axis shows the number of detected genes in 4 mouse 

fibroblast cells data set. 

. 

Supplementary Figure 14: Hanabi plot Gene saturation using mouse hematopoietic cells 

The x-axis shows total counts, and y-axis shows the number of detected genes in 3 mouse 

hematopoietic cells data set. 

 

Supplementary Figure 15: Hanabi plot Gene saturation using mouse PBMC 

The x-axis shows total counts, and y-axis shows the number of detected genes in 2 mouse PBMC 

cells data set. 
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Supplementary Figure 16: Hanabi plot Gene saturation using human embryo. 

The x-axis shows total counts, and y-axis shows the number of detected genes in 4 human 

embryo cells data set. 

 

Supplementary Figure 17: Hanabi plot Gene saturation using human MCF10A, PBMC 

and HEK & 3T3  

The x-axis shows total counts, and y-axis shows the number of detected genes in in different 

human cells data set. 

. 

Supplementary Figure 18: Classification of the good and skewed coverage distribution 

cells: mouse ES cells. 

Application of the QC methods. Left chart filter cells with low-input reads, middle chart perform 

trimmed clustering on the coverage matrix of the cell with high read count. A proportion of the 

most outlying observations is trimmed (the skewed cells). This results into two sets of cell: Good 

cells with normal gene coverage and skewed cells with skewed coverage distribution. Right chart, 

the classification of cells was validated with the housekeeping genes (boxplot of the expression 

of the house keeping genes of the good vs. skewed cells).  

 

Supplementary Figure 19: Classification of the good and skewed coverage distribution 

cells:  mouse CD4 T cells. 

Application of the QC methods. Left chart filter cells with low-input reads, middle chart perform 

trimmed clustering on the coverage matrix of the cell with high read count. A proportion of the 

most outlying observations is trimmed (the skewed cells). This results into two sets of cell: Good 
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cells with normal gene coverage and skewed cells with skewed coverage distribution. Right chart, 

the classification of cells was validated with the housekeeping genes (boxplot of the expression 

of the house keeping genes of the good vs. skewed cells).  

 

Supplementary Figure 20: Classification of the good and skewed coverage distribution 

cells: mouse fibroblast. 

Application of the QC methods. Left chart filter cells with low-input reads, middle chart perform 

trimmed clustering on the coverage matrix of the cell with high read count. A proportion of the 

most outlying observations is trimmed (the skewed cells). This results into two sets of cell: Good 

cells with normal gene coverage and skewed cells with skewed coverage distribution. Right chart, 

the classification of cells was validated with the housekeeping genes (boxplot of the expression 

of the house keeping genes of the good vs. skewed cells).  

 

Supplementary Figure 21: Classification of the good and skewed coverage distribution 

cells: mouse hematopoietic cells 

Application of the QC methods. Left chart filter cells with low-input reads, middle chart perform 

trimmed clustering on the coverage matrix of the cell with high read count. A proportion of the 

most outlying observations is trimmed (the skewed cells). This results into two sets of cell: Good 

cells with normal gene coverage and skewed cells with skewed coverage distribution. Right 

panel, the classification of cells was validated with the housekeeping genes (boxplot of the 

expression of the house keeping genes of the good vs. skewed cells).  
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Supplementary Figure 22: Classification of the good and skewed coverage distribution 

cells: human embryo. 

Application of the QC methods. Left chart filter cells with low-input reads, middle chart perform 

trimmed clustering on the coverage matrix of the cell with high read count. A proportion of the 

most outlying observations is trimmed (the skewed cells). This results into two sets of cell: Good 

cells with normal gene coverage and skewed cells with skewed coverage distribution. Right chart, 

the classification of cells was validated with the housekeeping genes (boxplot of the expression 

of the house keeping genes of the good vs. skewed cells).  

 

Supplementary Figure 23: Classification of the good and skewed coverage distribution 

cells: human MCF10A and HEK & 3T3 mix. 

Application of the QC methods. Left chart filter cells with low-input reads, middle chart perform 

trimmed clustering on the coverage matrix of the cell with high read count. A proportion of the 

most outlying observations is trimmed (the skewed cells). This results into two sets of cell: Good 

cells with normal gene coverage and skewed cells with skewed coverage distribution. Right chart, 

the classification of cells was validated with the housekeeping genes (boxplot of the expression 

of the house keeping genes of the good vs. skewed cells).  
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Figure 2: Gene coverage skewness and variation in expression among single-cell RNA-Seq protocols using mES  
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Figure 4: Validation of QC method using GSE46980
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Figure 5: Effect of skewed cells on downstream analysis
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Figure 6: Ratio of intergenic expression and annotation of the reads
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scRNA-seq library protocol Species Cell type  

CEL-seq Mouse mES

CEL-seq2 Mouse Fibroblast

C1 CAGE Mouse mES

C1 single-cell mRNA-seq Mouse CD4 T cell & Hematopoietic

Quartz-seq Mouse mES

RamDA-seq Mouse mES 

SMARTer Mouse mES, CD4 T cell, Fibroblast & Hematopoietic

Smart-seq Mouse CD4 T cell & Fibroblast

Smart-seq2 Mouse Fibroblast

STRT Mouse mES

SUPer-seq Mouse mES

SMARTer Human Embryo

Smart-seq2 Human Embryo

STRT Human Embryo

Chromium 5' end Mouse PBMC

TruSeq Mouse Adipocyte

Chromium 5' end Human PBMC

Drop-seq Human HEK & 3T3

Chromium 3' end Human MCF10A

                           Batch-matched human and mouse cells 

                           Un-Batch-matched human and mouse cells 
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