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Abstract

Protein-Protein Interactions (PPIs) are a crucial mechanism underpinning the function
of the cell. Predicting the likely relationship between a pair of proteins is thus an
important problem in bioinformatics, and a wide range of machine-learning based
methods have been proposed for this task. Their success is heavily dependent on the
construction of the feature vectors, with most using a set of physico-chemical properties
derived from the sequence. Few work directly with the sequence itself.

Recent works on embedding sequences in a low dimensional vector space has shown
the utility of this approach for tasks such as protein classification and sequence search.
In this paper, we extend these ideas to the PPI task, making inferences from the pair
instead of for the individual sequences. We evaluate the method on human and yeast
PPI datasets, benchmarking against the established methods. These results
demonstrate that we can obtain sequence encodings for the PPI task which achieve
similar levels of performance to existing methods without reliance on complex
physico-chemical feature sets.

1 Introduction

Proteins play a central role in cellular function, often mediated through the protein
interactions leading to the formation of transient or stable complexes. Such
Protein-Protein interactions (PPIs) vary in their duration and character, being governed
principally by electrostatic forces and constrained by molecular structure [1].
Knowledge of PPIs can help determine the function of new proteins and improve our
understanding of cellular processes such as DNA transcription and metabolic cycles [2].

A number of experimental techniques have been developed for determining the
nature and extent of interactions between proteins, and approaches such as the yeast
two-hybrid system [3], mass spectrometry [4] and protein chips [5] have been widely
used. Yet experimental methods share two significant drawbacks: (i) such methods are
expensive and time-consuming, and (ii) they are known to exhibit high false-positive
rates [6]. To counter these limitations, researchers have developed alternative
computational methods [7–14] for predicting PPIs. These methods rely on the
extraction and processing of features from biological sequences and their associated
metadata. The earliest work in this direction was based on identifying domains [7–9],
sequence conservation between interacting proteins [10,11] and exploiting structural
information [12–14].
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The subsequent works focused on machine learning approaches, the success of which
primarily rely on representing protein sequences as a n-dimensional feature vector.
These feature vectors essentially summarize specific attributes of a protein sequence –
such as the distribution of amino acids, their physicochemical properties [15], or the
composition of a localized region [16, 17]. Since for PPI prediction problem, the input is
protein pairs, to apply machine learning approaches directly over them, for each pair,
we first need to obtain its joint representation. Generally, such representation for a
protein pair is obtained by concatenating the feature vector of its constituent protein
sequences, hence keeping the information derived from them intact. Although the
sequence encoding methods discussed above are predominantly used by the researchers
for PPI prediction problem, they suffer from three significant drawbacks: (i) such
methods require prior knowledge of physico-chemical properties, (ii) the properties used
are not guaranteed to cover the PPI interaction information adequately and (iii) the
resulting feature vectors constructed are usually of high dimension, increasing training
time and potentially limiting the effectiveness of the model.

One potential solution to these problems is to learn sequence embeddings that
capture biological information that may be present in the sequences itself and use them
for representing a protein pair. The earliest work on learning biological sequence
embeddings by Asgari et.al [18] shows that it is possible to learn biological-information
rich embeddings for sun-sequences (kmers) directly using the sequence data. They and
subsequently Kimothi et al. [19] also demonstrated the utility of such learning
techniques, generally called as representation learning (RepL) for the protein
classification task. Following these primary works, many of the research has shown the
effectiveness of RepL approaches for a range of other downstream bioinformatics
tasks [20–23] such as trans-membrane and localization prediction. Although learning of
sequence embeddings and their usages for downstream bioinformatics tasks is been
explored now for last few years, but to date, such methods have not been studied in
detail for PPI prediction problem.

In this paper, we propose to use sequence embeddings learned through RepL
methods to represent a protein pair for making PPI predictions. Similar to the other
established methods, to represent a protein pair, we concatenate the embedding of its
constituent sequences. Here, we hypothesize that the relationship between two proteins
can be better determined using the contextual information-rich low dimensional
sequence embeddings as compared to the high dimensional physicochemical properties
based sequence feature vectors. Note that RepL methods encode the contextual (local)
information present in the sequences to generate the corresponding low dimensional
embedding.

Apart from the new representation for protein pairs, in this paper, we also focus on
the extensive evaluation and comparison with other protein interaction prediction
methods. Most of the established methods, including the most recent, use a standard
cross-validation setup for evaluation. In this setup, the data is split into training and
test set considering the protein pairs but not their constituent proteins. In such a
scenario, many proteins (although in different samples) may be present both in the
training and test set. In consequence, the prediction of test samples is affected based on
the presence or absence of their constituent proteins in the training set. Hence, as noted
by Park et al. [24] such an assessment may not be reflective of the ability of the
evaluated methods to generalize for paired input.

Given these findings, we rigorously evaluate our proposed approach according to the
evaluation strategy proposed by Park et al. [24]. Here the test sets are based on the
presence or absence of the individual protein (from the testing sample) in the training
set and hence cover different possible scenarios. For experiments, we use benchmark
Human and Yeast datasets provided in [24] and [15]. The experimental results on these
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datasets show that even the vanilla embedding approaches are capable of achieving
better results than most of the physicochemical properties based vector representation.
When compared to the recent deep neural network-based approaches applied to
sequence data, we find that even a simple framework like ours can give comparable
performance stressing the need to better understand the relationship between sequences
and the possibility of their interaction. In summary, following are the main contribution
of this paper:

• We present a generic PPI prediction framework that uses RepL approaches for
feature construction.

• We show that the low dimensional representations learned from the sequences
provide better results than most of the feature vectors that exploit
physicochemical properties on the PPI prediction task.

• We show that our approach gives comparable performance when compared to
much complex end-to-end deep learning classification models.

Before discussing the details of the proposed framework, we briefly review the
feature construction methods commonly used for the PPI prediction problem.

1.1 Previous Work

The most prominent feature extraction methods include Auto Covariance (AC), Auto
Cross Covariance (ACC), Conjoint Triad (CT) and Local Protein Descriptors (LD). AC
and ACC based feature vectors are derived by considering protein sequences as time
series and computing their auto and cross-correlation properties. The length of the AC
and ACC based feature vectors are 420 and 2940 respectively. The conjoint triad
method divides the physico-chemical properties of the system into seven categories
based on their dipole and volume scale [25], allowing the representation of the protein
sequence based on an array of category labels. Once converted, the feature vector of the
sequence is given as the frequency of conjoint triads i.e. the three category labels. For a
protein pair, the CT method gives a 686-dimensional feature vector.

The Local Descriptor method uses the same categories of physico-chemical
properties as CT. The feature vector is constructed from three descriptors - composition
(C), Transition (T) and distribution (D) for local regions. The descriptors calculated for
each of the local regions are then stacked together to give a 630-dimensional vector for
each protein sequence. Other methods based on local regions include Multi-scale Local
Feature descriptors (MLD) [26] and the Multi-scale Continuous and Discontinuous
feature set (MCD) [27]. MLD uses the multi-scale decomposition of protein sequences to
account for overlapping local regions, binary coding to produce an 1134-dimensional
vector for a protein pair. MCD works on a similar principle as MLD, though it gives
1764-dimensional vector.

Apart from these methods, approaches such as the physico-chemical Property
Response Matrix combined with Local Phase Quantization descriptor (PR-LPQ) [28]
and Substitution Matrix Representation (SMR) [29] use signal and image processing
techniques to compute the feature vector for a sequence. These methods generally
operate on an intermediary matrix representation of a sequence; PR-LPQ uses
physico-chemical properties of amino acids, whereas SMR uses the BLOSUM62 [30]
matrix to construct the representations.

On top of these feature vectors, a number of different machine learning approaches
have been applied to characterise PPIs. These methods have included the Support
Vector Machine [15], Random Forests [29] and autoencoders [6]. More recently, studies
such as DPPI [31], DNN-PPI [32], and PIPR [33] have explored deep learning
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frameworks for PPI prediction. Note that these newer deep learning-based approaches
are end-to-end classification models and do not specifically focus on the feature
construction technique. Also, given their deep architecture, these are complex and
hence computationally expensive approaches. Since the success of PPI prediction
methods is strongly dependent on the feature vectors extracted from the sequences, new
methods for feature extraction remain an active area for researchers.

In the sections below we discuss the proposed framework in detail followed by
experiments and results.

2 PPI prediction and Proposed Framework

Notations

We denote M protein pairs as P = {p1, p2, . . . , pM}, where pz consist of two samples
from a corpus of N protein sequences, S = {s1, s2, . . . , sN}. We write pz = (si, sj), to
uniquely map the sequences with samples in P, we add superscript to si i.e., pz is
written as pz = (szi , s

z
j ). We denote the vocabulary of M unique k-mers created from S

as K = {k1, k2, . . . , kM} and each sequence si =
[
ki1 , ki2 , . . . , kini

]
as an ordered list of

k-mers. To avoid notation clutter, we use si also to denote its tag. Finally, the
embeddings of k-mer ki, sequence si and protein pair pz are denoted as ki, si and pz

respectively.

2.1 PPI prediction problem

PPI prediction is a paired input problem in which the prediction about the relationship
between two objects (here proteins) is made. Since machine learning approaches
generally operate on a single mathematical entity, for paired input problems, the pair is
often represented as a combination of the feature vectors for the individual objects. In a
setting where Ptrain,Ptest ⊂ P are the training and test set of protein pairs respectively
and Ptrain ∩ Ptest = ∅, the task in PPI prediction problem is to determine if the
proteins in py = [si, sj ] ∈ Ptest interacts or not given that the label for samples in
training set is available.

In our proposed framework, we use RepL methods, like BioVec, Seq2Vec,
SuperVecX for generating the sequence embedding that are concatenated for a protein
pair, and a binary classifier for making predictions. For the better exposition of the
proposed framework, in the section below, we first give an overview of the recent
biological sequence representation learning (RepL) methods followed by a description of
the complete pipeline of the proposed framework, as shown in Fig 2.

2.2 Representation learning methods for biological sequences

Advances in word embedding methods in text processing have inspired several studies of
sequence encoding in the bioinformatics domain. These encoding schemes treat
sequences as ‘sentences’ and the sub-sequences as ‘words.’ Since the sequences are a
continuous array of alphabets and there is no notion of ‘words,’ they are first split by
passing a window of size k through them. The sub-sequences (k-mers) thus generated,
are treated as words.

Some of the earliest biological sequence embedding methods include BioVec [18] and
Seq2Vec [34]. Both of these papers utilize Word2Vec [19] based architecture for
computing the vector representation for protein sequences and demonstrated the utility
of such representations for protein family classification tasks. These models are shallow
neural network with one hidden layer where the weight matrix between the input/output
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and hidden layer constitutes the n - dimensional representation of kmers or sequences in
Rn. The architecture for BioVec and Seq2vec models are provided in Fig 3.

The training of these models involve a simple prediction mechanism over samples,
consisting of k-mer and their neighbors (context) randomly picked from the corpus of
sequences. For prediction over a sample, either the kmer is predicted from the context
or vice-versa as depicted in Fig 3. In BioVec model, the sample consists of k-mer and
its neighbours (context), whereas for Seq2Vec, the sample also contains the tag
associated with the corresponding sentence. Mathematically, by iterating through the
samples, the parameters of these models are learned such that negative log-likelihood
probabilities of co-occurrence of k-mers is minimized. The cost function that is
minimized in BioVec and Seq2Vec is given in Eq (1) and Eq (2) respectively.

J(K) =
∑
si∈S

ni∑
j=1

− log Pr
[
Cij | kij

]
, (1)

J(K,S) =
∑
si∈S

ni∑
j=1

− log Pr
[
kij | Cij , si

]
, (2)

here Cij (context) consist of the surrounding k-mers of kij and si is the sequence tag.
Once the BioVec model is trained, the sequence embedding is computed by linearly

combining the embeddings of its constituent k-mers. For Seq2Vec, the sequence
embeddings are directly obtained by passing them through the trained model. This step
is also known as an inference step. Note that these approaches are unsupervised and
only need the sequence corpus for training.

The followup work by Kimothi et al. [35] presented supervised approaches for
learning representations of protein sequences: SuperVec and SuperVecX. These
supervised approaches use the sequences as well as their associated labels during the
training of the models. Similar to Word2Vec, these models are trained via a prediction
task. Training of SuperVecX involves prediction of the class label using all k-mers of
given sequences.

In contrast to SuperVecX, the SuperVec model joins the two prediction units
together to learn contextual and label information. The first unit follows the prediction
of a k-mer given its context to capture contextual information. The second unit ensures
the inclusion of label information in the training process by forcing the network to
predict the tags of sequences that share the label with the considered sample. The joint
cost function [35] of SuperVec is given as below,

J(S,K) =
∑
si∈S

ni∑
j=1

− log Pr
[
kij | Cij , si

]︸ ︷︷ ︸
NN1

−γ
∑
z∈I+

i

log Pr [sz | si]︸ ︷︷ ︸
NN2

 . (3)

Here I+i is the set of sequences that share label with si. Note that NN1 and NN2 in
Eq. (3) represents the two parts of the complete model, i.e. for learning contextual and
label information respectively. As noted before, the SuperVec requires the labels of
protein sequences for training purposes. Since for the PPI prediction problem, we also
have the interaction network along with the sequences, we incorporate limited
information from the network by exploiting it to obtain the sequence labels. We call
this adaptation of SuperVec as SuperVecNW; the description is given below:

SuperVecNW

In using SuperVecNW we make use of the available network information to label the
sequences. The neighborhood of a sequence is looked up in the complete interaction
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network obtained from the training pairs of proteins. For a given sequence, the
sequences connected to it in the PPI network are considered to come from the same
class (interacting) and others from the different class (non-interacting).

Fig 1. An example of a PPI network obtained from the training pair. Here si for
i = 1, 2, ...11 represents the tag of the protein sequences. An edge between two proteins
indicate that they interact, missing edge indicates the absence of known interactions.

For example, Fig 1 shows a PPI network that is derived from a given training pairs.
Here, for s3, s1, s7 and s8 are from the same class (interacting) and all others are the
different (non-interacting) class. The joint cost function for SuperVecNW is same as that
for SuperVec as given in Eq (3), the difference is only in the process of deriving class
labels for a sample; for the given example in Fig 1, for sample s3, I+i = s1, s7, s8 in
Eq (3).

2.3 Proposed Framework

In the proposed framework, along with the sequence embedding techniques discussed
above, we use the Random forest classifier for making predictions. Note that while the
framework is generic and in principle any binary classifier can be used, we use the
Random Forest Classifier [36] for our experiments due to its computational efficiency
and convenience – only one hyper parameter needs to be tuned.

A Random Forest is a supervised classifier that uses an ensemble of decision trees to
make predictions. These decision trees are constructed using bagging (a bootstrap
aggregation technique [36]), and random feature selection. In the bagging method, each
of the decision trees is trained using randomly drawn subsets of the training set. For
random feature selection, the nodes in each decision tree are split based on a random
selection of m features drawn from the n features available. Here, m <= n. For a test
sample, the prediction is made based on voting (averaging) the prediction output from
each decision tree. The presence of multiple trees in the random forest helps to avoid
overfitting and limits the error due to bias. Also, there is virtually no hyper-parameter
to tune except the number of trees.

In this paper, we represent each sequence as a 100-dimensional feature vector, and
the pair of proteins as 200 dimensional vector. To use SuperVecX, we concatenate the
sequences, with the result that the protein pair is represented by a single 100
dimensional feature vector. Note the much lower dimensionality of these representations
compared to the other established feature vectors discussed in section 1.1. For
interacting and non-interacting pairs, we use the class labels 1 and 0 respectively. The
number of decision trees is fixed as 500, where each of the trees is built by selecting
m� 200 random features at each node. A test sample is then predicted based on
voting of the decision trees.

The complete pipeline of the proposed framework is provided in Fig 2. Here block A
shows the training stage of the representation learning model, A1; when trained, we
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Fig 2. Proposed framework: Block A – training stage of representation learning model;
Block B – constitutes a) Train/Test split of interacting/non interacting pair of protein
sequences, b) vector concatenation module – for a pair of protein from Train/Test set,
the vectors obtained from RL block are concatenated before finally passing to the c)
binary classifier

denote it as A2. The A1 is trained using the sequences in training set Strain ⊂ S. Note
that Strain constitutes of all the unique sequences present in protein pairs in Ptrain.
Block B is used for making predictions. It is operated in two phases, namely, the
training and testing phase. In the training phase, the samples (protein pair) from Ptrain

are passed through B1 to generate the embeddings of their constituent sequences. These
embeddings are then concatenated to finally create the feature vector for the protein
pairs, which are further used to train the binary classifier, B3. In the testing phase,
similar to the training phase, the feature vector for any given test pair from Ptest is
generated by passing them through B1 and B2. This feature vector is finally given to
the trained binary classifier for predicting if the test pair is interacting or not.

3 Results and Discussion

In this section, we present the results of our approach on the benchmark human and
yeast PPI datasets provided by Park et al. [24]. These datasets were originally obtained
from the protein interaction network analysis platform [37] and were further refined to
contain only those sequences that share up to 40% identity. We also provide the results
on another widely used benchmark yeast dataset that is provided by Guo et al. [15]; this
dataset was originally obtained from DIP [38] and then refined such that majority of
the protein pairs in it share less than 40% pairwise sequence identity.

3.1 Evaluation Scheme

For the experiments, we follow the evaluation scheme specifically proposed for the
paired input problem by Park et al. [24]. In these problems the inference is made for a
pair of objects (i.e. the PPI prediction) rather than for the single object (e.g., protein
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Biovec seq2vec

Fig 3. Architecture for BioVec and Seq2Vec models. kij represents jth k-mer in the
ith sequence, si.

family prediction). Based on their experimental results, the authors in [24] showed that
the performance of any method for the PPI prediction problem is affected by the
presence of the individual proteins of the test sample in the training set, providing
better results for the pairs that share protein(s) in the training data.

We cannot therefore expect a reliable assessment of generalisation if performance is
evaluated on a test set dominated by samples which share components with the training
data. Considering this issue, the authors suggested that the methods be evaluated on
three different test classes, namely C1, C2, and C3. Here C1 constitutes the test
samples of which both proteins are present in the training data, whereas in C2, only
those test samples are considered that share one protein with the training data. Finally,
the C3 test class is constructed from those test samples which share none of the
constituent proteins with the training samples, making it the most difficult test class
among the three.

Park et al. [24] also noted that the dataset previously used for cross-validation is
close to the C1 type, but these pairs constitute only a modest fraction of known human
PPIs. According to the HIPPIE database [44], the C1 type accounts for 19.2% of all
interacting human protein pairs, whereas C2 and C3 constitute 49.2% and 31.6% of
protein pairs respectively. Hence, in a typical cross-validation test set, the C1 class is
more frequent than the population level, and performance estimates from
cross-validation test sets can not be expected to generalize reliably. Therefore, apart
from the evaluation on the cross-validation and C1 test classes, results obtained on C2
and C3 test classes should be taken into account before making any judgment about the
generalization properties of the method.

3.2 Datasets

3.2.1 Park and Marcotte datasets

We first evaluated our method on the Human and Yeast PPI datasets provided by
Yungki Park and M.Marcotte [24]. The human PPI dataset contains 20, 117 proteins
and 24, 718 PPIs whereas the Yeast dataset contains 6, 806 proteins and 14, 938 PPIs.
The experiments are conducted on the 40-fold train-test split for the CV, C1, C2, and
C3 classes; for benchmarking the split files were also as provided by [24]. Results
averaged over these splits are provided in Table 1 and 2.
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Table 1. Comparison of the prediction performance between the proposed methods
and other state of art methods on the Human dataset

AUROC
Methods CV C1 C2 C3

M1 (Martin et al. [39]) 0.81± 0.01 0.81± 0.01 0.61± 0.01 0.58± 0.03
M2 (Vert et al. [40]) 0.85± 0.01 0.85± 0.01 0.60± 0.01 0.58± 0.02
M3 (Shen et al. [25]) 0.63± 0.01 0.64± 0.01 0.55± 0.01 0.50± 0.00
M4 (Guo et al. [15]) 0.77± 0.01 0.77± 0.01 0.57± 0.02 0.53± 0.02

M5 (Park et al. [24]) 0.81± 0.01 0.81± 0.01 0.59± 0.01 0.54± 0.03
M6 (Pitre et al. [41]) 0.76± 0.01 0.77± 0.01 0.64± 0.01 0.59± 0.02

M7 (Bellucci et al. [42]) 0.56± 0.01 0.56± 0.01 0.53± 0.01 0.54± 0.02
M8 (Ding et al. [43]) 0.82± 0.02 0.82± 0.01 0.60± 0.02 0.57± 0.02

M9 (Seq2Vec) 0.82± 0.01 0.82± 0.01 0.59± 0.01 0.55± 0.02
M10 (BioVec) 0.77± 0.02 0.78± 0.02 0.59± 0.01 0.56± 0.01

M11 (SuperVecNW) 0.82± 0.04 0.82± 0.01 0.58± 0.01 0.54± 0.02
M12 (SuperVecX) 0.80± 0.01 0.80± 0.01 0.55± 0.01 0.52± 0.02

SPRINT NA 0.82 0.66 0.61
PIPR 0.8± 0.01 0.8± 0.01 0.57± 0.01 0.52± 0.01

AUPRC
Methods CV C1 C2 C3

M1 (Martin et al. [39]) 0.82± 0.01 0.82± 0.01 0.60± 0.01 0.57± 0.03
M2 (Vert et al. [40]) 0.85± 0.00 0.85± 0.01 0.60± 0.01 0.56± 0.03
M3 (Shen et al. [25]) 0.67± 0.01 0.67± 0.01 0.57± 0.02 0.52± 0.05
M4 (Guo et al. [15]) 0.77± 0.01 0.77± 0.01 0.56± 0.01 0.53± 0.02

M5 (Park et al. [24]) 0.82± 0.01 0.82± 0.01 0.59± 0.01 0.54± 0.02
M6 (Pitre et al. [41]) 0.79± 0.01 0.79± 0.01 0.67± 0.01 0.59± 0.02

M7 (Bellucci et al. [42]) 0.56± 0.01 0.56± 0.01 0.53± 0.01 0.54± 0.02
M8 (Ding et al. [43]) 0.83± 0.01 0.83± 0.01 0.60± 0.01 0.56± 0.02

M9 (Seq2Vec) 0.83± 0.01 0.83± 0.01 0.59± 0.01 0.55± 0.02
M10 (BioVec) 0.78± 0.01 0.79± 0.02 0.59± 0.01 0.56± 0.01

M11 (SuperVecNW) 0.84± 0.02 0.83± 0.01 0.59± 0.01 0.53± 0.01
M12 (SuperVecX) 0.8± 0.01 0.8± 0.01 0.56± 0.01 0.53± 0.01

SPRINT NA 0.86 0.70 0.63
PIPR 0.80± 0.01 0.80± 0.01 0.57± 0.01 0.51± 0.01

3.2.2 Guo dataset

Gua et al. [15] provide PPI datasets for several species. These datasets are balanced
and contain an equal number of positive and negative samples. In this paper, we use the
yeast dataset used as a benchmark in many of the earlier studies [28,31]. In this dataset,
there are 2450 unique proteins, and a total of 11188 protein pairs, where half of these
pairs are interacting (positive pair) and rest are non-interacting (negative pair). For
negative pairs, the proteins that have no evidence of interactions are randomly selected,
that are further filtered based on their sub-cellular location.

3.3 Evaluation Measurements

Park et al. [24] use AUROC – the area under the Receiver Operating Characteristic
curve – and the mean of the AUPRC – the area under the Precision-Recall curve – to
benchmark the performance of previous studies. The ROC is a graph showing the
relationship between the False positive rate (FPR) and the True positive rate (TPR),
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Table 2. Comparison of the prediction performance between the proposed methods
and other state of art methods on the Yeast dataset

AUROC
Methods CV C1 C2 C3

M1 (Martin et al. [39]) 0.82± 0.01 0.82± 0.01 0.61± 0.02 0.58± 0.03
M2 (Vert et al. [40]) 0.83± 0.01 0.84± 0.01 0.60± 0.02 0.59± 0.03
M3 (Shen et al. [25]) 0.61± 0.01 0.61± 0.01 0.53± 0.01 0.50± 0.01
M4 (Guo et al. [15]) 0.76± 0.02 0.76± 0.02 0.57± 0.02 0.54± 0.03

M5 (Park et al. [24]) 0.80± 0.02 0.80± 0.01 0.58± 0.01 0.55± 0.02
M6 (Pitre et al. [41]) 0.75± 0.02 0.75± 0.02 0.59± 0.04 0.52± 0.04

M7 (Bellucci et al. [42]) 0.58± 0.02 0.58± 0.01 0.54± 0.02 0.52± 0.03
M8 (Ding et al. [43]) 0.82± 0.02 0.82± 0.01 0.62± 0.02 0.61± 0.02

M9 (Seq2Vec) 0.81± 0.02 0.81± 0.01 0.59± 0.02 0.58± 0.02
M10 (BioVec) 0.81± 0.01 0.81± 0.01 0.61± 0.04 0.61± 0.02

M11 (SuperVecNW) 0.82± 0.01 0.8± 0.01 0.58± 0.01 0.54± 0.01
M12 (SuperVecX) 0.81± 0.01 0.81± 0.01 0.55± 0.01 0.54± 0.02

PIPR 0.83± 0.03 0.84± 0.01 0.6± 0.02 0.56± 0.03

AUPRC
Methods CV C1 C2 C3

M1 (Martin et al. [39]) 0.83± 0.02 0.83± 0.01 0.62± 0.02 0.57± 0.03
M2 (Vert et al. [40]) 0.84± 0.02 0.84± 0.01 0.61± 0.02 0.58± 0.03
M3 (Shen et al. [25]) 0.65± 0.02 0.65± 0.02 0.56± 0.03 0.53± 0.07
M4 (Guo et al. [15]) 0.76± 0.02 0.76± 0.02 0.58± 0.02 0.54± 0.03

M5 (Park et al. [24]) 0.78± 0.02 0.78± 0.01 0.57± 0.02 0.54± 0.02
M6 (Pitre et al. [41]) 0.75± 0.02 0.76± 0.02 0.60± 0.05 0.47± 0.07

M7 (Bellucci et al. [42]) 0.60± 0.02 0.60± 0.02 0.55± 0.025 0.53± 0.02
M8 (Ding et al. [43]) 0.84± 0.01 0.84± 0.01 0.64± 0.02 0.62± 0.02

M9 (Seq2Vec) 0.83± 0.02 0.83± 0.01 0.61± 0.02 0.59± 0.02
M10 (BioVec) 0.82± 0.01 0.82± 0.01 0.62± 0.03 0.62± 0.02

M11 (SuperVecNW) 0.84± 0.02 0.82± 0.01 0.59± 0.01 0.53± 0.02
M12 (SuperVecX) 0.81± 0.01 0.56± 0.01 0.54± 0.01 0.54± 0.01

PIPR 0.83± 0.03 0.84± 0.02 0.6± 0.02 0.55± 0.02

whereas the PRC is the graph showing precision and recall values calculated at different
thresholds. The AUROC and AUPRC summarize the ROC and PR curves, respectively.
The AUROC value indicates the ability of the classifier to distinguish between two
classes, whereas AUPRC shows the trade-off achieved between precision and recall. To
compare with these benchmark methods, we also compute the AUROC and AUPRC
values (averaged for 40 randomly selected train-test splits) to evaluate our approaches
for the Park datasets. The benchmark methods that use the Guo dataset for
performance evaluation use accuracy, precision, sensitivity, specificity, F1-score, and
MCC as evaluation metrics. To compare with these benchmark methods, we evaluate
our proposed approaches using these same metrics.
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Table 3. Evaluation of PPI prediction on the Yeast dataset (Guo’s) based on 5 fold cross validation. Mean and standard
deviation is reported in the table

Methods Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-score (%) MCC (%)
SVM-AC 87.35± 1.38 87.82± 4.84 87.30± 5.23 87.41± 6.33 87.34± 1.33 75.09± 2.51
kNN-CTD 86.15± 1.17 90.24± 1.34 81.03± 1.74 NA 85.39± 1.51 NA
EELM-PCA 86.99± 0.29 87.59± 0.32 86.15± 0.43 NA 86.86± 0.37 77.36± 0.44
SVM-MCD 91.36± 0.4 91.94± 0.69 90.67± 0.77 NA 91.3± 0.73 84.21± 0.66
MLP 94.43± 0.3 96.65± 0.59 92.06± 0.36 NA 94.3± 0.45 88.97± 0.62
RF-LPQ 93.92± 0.36 96.45± 0.45 91.10± 0.31 NA 93.7± 0.37 88.56± 0.63
SAE 67.17± 0.62 66.90± 1.42 68.06± 2.50 66.30± 2.27 67.44± 1.08 34.39± 1.25
DNN-PPI 76.61± 0.51 75.1± 0.66 79.63± 1.34 73.59± 1.28 77.29± 0.66 53.32± 1.05
DPPI 94.55 96.68 92.24 NA 94.41 NA
SRGRU 93.77± 0.84 94.60± 0.64 92.85± 1.58 94.69± 0.81 93.71± 0.85 87.56± 1.67
SCNN 95.03± 0.47 95.51± 0.77 94.51± 1.27 95.55± 0.77 95.00± 0.50 90.08± 0.93
PIPR 97.09± 0.24 97.00± 0.65 97.17± 0.44 97.00± 0.67 97.09± 0.23 94.17± 0.48
M9 (Seq2Vec) 94.24± 0.48 97.35± 0.55 90.97± 0.91 97.52± 0.53 94.05± 0.51 88.68± 0.93
M10 (BioVec) 94.18± 0.30 97.16± 0.67 91.03± 0.67 97.34± 0.65 93.99± 0.31 88.55± 0.61

The evaluation metrics used are defined as follows:

Sensitivity =
TP

TP + FN
(4)

Specificity =
TN

TN + FP
(5)

FPR = 1− specificity (6)

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Precision =
TP

TP + FP
(8)

F1score = 2 ∗ Precision ∗ Sensitivity
Precision+ Sensitivity

(9)

MCC =
TP ∗ TN − FN ∗ FP√

(TP + FN) ∗ (TN + FP ) ∗ (TP + FP ) ∗ (TN + FN)
(10)

Here the True Positive (TP) and True Negative (TN) counts record the number of
correctly predicted interacting and noninteracting protein pairs. Similarly, the False
Negative (FN) and False Positive (FP) counts reflect the number of incorrectly
predicted non-interacting and interacting pairs, respectively.

3.4 Experiments and Results

3.4.1 Experiments on Park’s dataset

In these experiments, we compare the results of the proposed framework with
benchmark methods (M1-M8) that rely on physico-chemical properties for encoding the
protein sequences. Here, M1 and M2 are signature-product based methods proposed by
Martin et al. [39]. M1 uses the signature-product directly, whereas M2 [40] uses metric
learning on the signatures to compute the feature vector for the protein pair. M3 [25] is
the Conjoint triad method; in this method, the feature vector of a protein sequence is
based on the frequency of conjoint triads. M4 and M5 both use the AC method
proposed by Guo et al. [15] for feature construction, but they differ in the classification
algorithm, with M4 using the SVM whereas M5 employs a random forest. The M7
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method was developed initially for protein-RNA interaction prediction and is based on
maximizing the scores computed for interacting protein pairs vis-a-vis non-interacting
protein pairs within the vector space. M8, proposed by Ding et al. [43], calculates
mutual information-based features based on the functional categories of amino acids.
For predictions, M1-M4 use the SVM while M5-M8 use a random forest classifier. All of
these methods (M1-M8), except M6 (PIPE), are machine learning-based approaches.
PIPE is a sequence similarity-based approach that relies on the shared local similarity
between known interacting protein pairs and the test pair. In the comparison for the
human dataset, we also report another sequence similarity-based approach,
SPRINT [45]. In contrast to the machine learning-based approaches, these methods use
only positive (interacting) pairs for making predictions and hence do not require the
negative (non-interacting) examples.

Our approach is a generic machine learning based framework in which we can
accommodate different representation learning methods for generating the feature
vectors. We report the results for four different representation learning techniques –
Seq2Vec (M9), BioVec (M10), SuperVecNW (M11) and SuperVecX (M12) – on both the
human and yeast datasets.

Results

Table 1 and Table 2 summarize the performance of each method on the human and
yeast datasets respectively. We report the mean AUROC and AUPRC and their
corresponding standard deviations calculated over forty randomly selected train-test
splits.

On the human dataset, for the CV and C1 test set, the performance of our methods
(M9, M11, and M12) is better than M1-M7 except for M2 and gives comparable
performance to M8 and SPRINT. When compared to the conjoint triad (M3) method,
we achieve an improvement of 18%.

For C2, the averaged AUROC value of all machine learning-based methods ranges
between 0.55− 0.61 whereas PIPE (M6) and SPRINT provide comparatively better
results, i.e., 0.64 and 0.66 respectively. For C3, the values of averaged AUROC for all
methods range from 0.55− 0.61. Note that for a classifier that randomly predicts
interacting and non-interacting pairs, the AUROC is expected to be 0.5 and hence none
of these methods can be considered to perform very well for C3. This leaves
considerable scope for improvement in the feature construction methods. The AUPRC
values obtained for all methods follow the same trend as AUROC values. Overall,
SPRINT provides the best results for the C2 and C3 test class.

The results obtained for all methods on the yeast dataset are in general consistent
with the results obtained for the human dataset, except for PIPE, which deteriorates for
C2 and C3. SPRINT results are not available for the yeast dataset.

Comparing the performance of different RepL techniques i.e. Seq2Vec (M9), BioVec
(M10), SuperVecNW (M11) and SuperVecX (M12) on the human dataset, we observe
that for CV and C1, M9, M11 and M12 provide slightly better result than M10, whereas
for C2 and C3 they provide comparable values. For the yeast data set, M9 and M10
provide comparable results. This difference in performance when compared to the
human dataset might be due to the larger number of human protein interactions
available for training as compared to the yeast dataset.

In summary, our proposed framework (tested with different RepL approaches)
outperforms most of the standard methods for CV and C1, while giving comparable
results for C2 and C3 in most cases. We also compare the proposed framework with a
recent deep learning based architecture - PIPR, as discussed below.
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Comparison with Deep Learning approach - PIPR

Some recent work has demonstrated the applicability of deep learning based approaches
for the PPI prediction task. All of these approaches are primarily based on the
Convolutional Neural Network and have a deep architecture. The most recent of these
approaches, PIPR [33], provides an end-to-end deep GRU (gated recurrent unit) based
architecture for PPI prediction. The results reported [33] show an improvement in
classification results (refer Table 3) compared to other benchmark methods – including
other deep learning based approaches.

These results are computed following a 5-fold cross validation test on Guo’s yeast
dataset. As discussed before, the cross-validation results may not reflect the ability of
the method to generalize over the complete dataset. We thus evaluate the performance
of PIPR on Marcotte’s dataset for C1, C2, C3 test classes along with the cross validation
setting. The results for yeast dataset show improvement (2-3%) for CV and C1; for C2
the results are comparable but for C3 the figure is some 2-4% below our approaches. For
the human dataset, its performance is generally 2-4% below our methods. These results
show that like the other techniques PIPR does not perform well for C2 and C3 test sets.
For the human dataset, it is not the best among the machine learning based methods.

3.4.2 Experiment with Guo’s dataset

In these experiments, we compare the results of our methods (M9 and M10) on Guo’s
yeast dataset with baseline approaches SVM-AC [15], kNN-CTD [17], EELM-PCA [46],
SVM-MCD [27], MLP [47], RF-LPQ [28], SAE [6], DNN-PPI [32], DPPI [31] and
SRGRU, SCNN and PIPR from [33]. The results for the baseline approaches are taken
from [33].

Results

As shown in Table 3, M9 and M10 outperform many approaches (SVM-AC, kNN-CTD,
EELM-PCA, SVM-MCD, SAE, DNN-PPI, SRGRU) and perform at par with DPPI and
SCNN. The only method that outperforms our approaches is PIPR with an
improvement of approx 2.5% in accuracy. Note that PIPR is a deep end-to-end method
whereas our methods comprise a simple feature extraction method with a binary
classifier. Also, it is important to mention that these results are reported in the
cross-validation setting and hence should not be considered to generalize for the
complete dataset. It is appropriate to evaluate these further on the C2 and C3 test
classes. As discussed before we evaluated PIPR on Marcotte’s benchmark dataset and
procedure (reported in Table ?? and ??) and find that even deep learning methods like
PIPR do not perform well for C2 and C3.

3.5 Discussion

Predicting PPIs is a challenging problem. In recent years, computational methods have
been a valuable alternative to experimental methods owing to their speed and relatively
low false-positive rates. Over this period, sequence-based techniques have evolved, and
better performance – as much as 18% compared to the earliest methods – has been
achieved. Sequence-based methods mainly differ in the way the feature vector is
constructed from the sequences. Most of the available methods rely on known
physico-chemical properties of the protein. Such properties might not cover the
interaction information completely and hence may not be useful in distinguishing
interacting from non-interacting pairs. The availability of sequence data and the
improvement in automatic extraction of features in text processing have motivated
researchers to learn feature vectors directly from the sequences. This work establishes
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the fact that representation learning (RepL) based approaches can produce sequence
embeddings that are useful for PPI prediction, providing better results than the
physico-chemical property feature vectors without the need for extensive domain
knowledge.

While sequence-based methods have evolved and have been shown to provide a high
level of accuracy for PPI prediction, we need to be careful while making a judgment
about their ability to generalize. Most of these methods give high cross-validation
accuracy, which may not be a reflection on their generalization properties [24].
Therefore, we need to also focus on the results of the C2 and C3 test classes.

In our experiments, we found that all methods – including the state-of-art deep
learning method PIPR – show good cross-validation accuracy, but when evaluated for
C2 and C3 test class, their performance markedly deteriorates. Based on these
observations, it can be inferred that capturing the interaction information from a pair of
proteins in a feature vector remains a challenging task. While our methods offer much
more convenient construction of feature vectors than some existing alternatives, and
performance remains comparable, some insight is lacking and there is a good deal of
scope to improve our models for generating feature vectors from raw sequences.

4 Conclusions

In this paper, we proposed a framework that uses the embeddings learned through
word2vec based models for the PPI prediction task. Such embeddings do not require
any prior biological knowledge and are learned directly from the sequence data.
Moreover, these embeddings offer a far lower dimensional representation than those
based on physico-chemical properties of the proteins and their constituent amino acids.

The experimental results obtained on both Human and Yeast datasets confirm that
better sequence embeddings for PPI prediction tasks can be generated without
necessarily relying on biological prior knowledge. We observe that most of the
sequence-based methods perform well when evaluated on CV and C1 but not on the C2
and C3 test classes. The inability of sequence-based methods to perform better for C2
and C3 test classes presents an attractive if challenging opportunity to learn feature
vectors that better represent the interaction between two proteins. Perhaps some
limited use of prior knowledge in a supervised learning framework may provide the
answer – maintaining most of the convenience of our approach while offering improved
performance on the more challenging datasets.
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