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Abstract 
We have made several steps towards creating fast and accurate algorithm for gene prediction in eukaryotic genomes. 
First, we introduced an automated method for efficient ab initio gene finding, GeneMark-ES, with parameters 
trained in iterative unsupervised mode. Next, in GeneMark-ET we proposed a method of integration of unsupervised 
training with information on intron positions revealed by mapping short RNA reads. Now we describe 
GeneMark-EP, a tool that utilizes another source of external information, a protein database, readily available prior 
to a start of a sequencing project. The new algorithm and software tool integrate information produced by proteins 
spliced aligned to genomic regions into model training and gene prediction steps. A specialized pipeline, ProtHint, 
makes processing the results of mapping of multiple proteins to a genomic region where a protein from the same 
family is likely encoded. GeneMark-EP uses the hints from ProtHint to improve estimation of model parameters as 
well as to adjust co-ordinates of predicted genes if they disagree with the most reliable hints (the -EP+ mode). Tests 
conducted with GeneMark-EP and -EP+ have demonstrated that the gene prediction accuracy is higher than one of 
GeneMark-ES, particularly in large eukaryotic genomes. 
 
Introduction 
One of major challenges of gene prediction in eukaryotes is finding an optimal way to combine extrinsic and 
intrinsic sources of information. External information could be transferred from RNA transcripts as well as from 
cross-species proteins either derived from annotated genomes or determined by proteomics. Integration of transcript 
information, e.g. RNA-Seq reads, with ab initio gene prediction was implemented in several algorithms and 
software tools, e.g. AUGUSTUS (1), GeneMark-ET (2), EuGene (3,4), mGene.ngs (5). Also, a few other tools made 
use of protein sequences. The task of transferring protein information for gene identification in a newly sequenced 
genome is complex. Therefore, mapping a single protein to genomic locus where a homologous protein could be 
encoded was considered to be a separate task and specialized tools were developed for protein spliced alignment 
(e.g. currently available GeneWise (6), GenomeThreader (7), ProSplign (8), Spaln (9)). Notably, whole families of 
homologous proteins could be used to map elements of gene and protein structure conserved in evolution, e.g. 
AUGUSTUS-PPX (10) that used protein profiles derived for conserved protein domains. Information about 
conservation of intron position with respect to protein primary structures of multiple homologs was used in another 
tool, GeMoMa (11). Notably, an attempt to combine protein profiles with intron position conservation for 
assessment and refinement of predicted eukaryotic genes was made upon construction of yet another method 
GSA-MPSA (12).  

A weakness of methods heavily relying on mapping of homologous proteins is the patchiness of this evidence; a 
sizable fraction of the whole complement of genes may code for proteins with few or no orthologues. Another 
weakness is that protein splice alignments become less accurate as the distance between the two species increases. 
Therefore, ab initio gene finders (e.g. GENSCAN (13), GeneMark.hmm (14), AUGUSTUS (15) or GeneID (16))  
have been a necessary part of genome annotation tools and pipelines (e.g. GNOMON (17), PASA (18) and Ensembl 
(19)).  

Application of ab initio algorithms for genome wide eukaryotic gene prediction was for long time hampered by 
the need of tedious and time-consuming training. To address this issue we have earlier developed an ab initio gene 
finder GeneMark-ES (20,21) with model parameters estimated by iterative unsupervised training. This algorithm 
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did not require expert based training or hints for building a training set. GeneMark-ET (2) was an extension of 
GeneMark-ES developed for integration of transcript information, raw RNA-Seq reads spliced aligned to genome in 
question. 

Here we describe GeneMark-EP, an algorithm and software tool using external information extracted from 
reference set of cross-species protein sequences. To generate protein hints for a given genomic locus we first 
identify a set of proteins, homologous to the true protein encoded in a genomic locus. Then a specialized pipeline, 
ProtHint, computes the hints, a set of mapped splice sites (intron borders) and translation start and stop sites with 
scores characterizing hint confidence. The most reliably constructed elements of spliced alignment could be used to 
directly identify elements of exon-intron structures, this mode of algorithm execution with direct gene structure 
correction we call GeneMark-EP+.  

A key question is how to find optimal method of hint incorporation into the ab initio algorithm. Unsupervised 
training implemented in GeneMark-ES carries a risk of convergence to a biased set of model parameters. On the 
other hand, giving too much weights to protein hints may generate parameters dictated by a narrow set of conserved 
genes and proteins (22). By design, the GeneMark-EP algorithm combines strong features of both methods: i/ ability 
of unsupervised iterative training of an ab initio gene finder to create a set of training sequences with a size beyond 
reach of conventional supervised training and ii/ ability to correct model parameters and structures of newly 
discovered genes with respect to splice alignments of homologous cross-species proteins. The new method falls into 
category of gene prediction methods with semi-supervised training.  
 
Materials  
For assessment of GeneMark-EP as well as ProtHint accuracy we selected annotated genomes from diverse clades - 
fungi, worms, plants, insects, and vertebrae (Table 1). The genome length varied from under 100 Mb (Neurospora 
crassa) to more than 1.3 Gb (Danio rerio). With exception of Solanum lycopersicum, a species representating 
economically important plants with long genomes, all selected species are model organisms whose genomes 
presumably have high quality annotation.  Therefore, to assess accuracy of gene prediction for such species, we 
compared genes predicted and annotated on a whole genome scale. In case of S. lycopersicum we used a limited set 
of genes, validated by available RNA-Seq data. In all genomic datasets, isolated contigs were excluded from the 
analysis as well as genomes of organelles. 
We used OrthoDB v10 protein database (23) as an all-inclusive source of protein sequences. However, for 
generating protein hints for particular species we used subsets of OrthoDB: plant proteins for Arabidopsis thaliana, 
arthropod proteins for Drosophila melanogaster, etc. (Table 2). 
As an additional test set we used annotation of major protein isoforms available in the APPRIS database (24); this 
assessment was done for C. elegans, D. melanogaster, and D. rerio (Table S1). Accuracy of prediction of major 
isoforms may be of special interest. Notably, in each gene locus a major isoform is expressed in higher volume than 
other (minor isoforms) (24). 
 
Methods 
 
Integration of genomic sequence patterns and protein homology into gene prediction 
The GeneMark-EP, -EP+ algorithm goes step-by-step through the following tasks: i/ selection of genomic regions, 
seed regions, containing gene candidates (the seed genes); ii/ identification for each seed region a set of homologous 
proteins iii/ processing splice alignments of homologous proteins to each seed region and creating hints for 
exon-intron structure; iv/ running itereative semi-supervised training with selection of most reliable elements of 
predicted genes in each iteration; v/ gene prediction with an option (-EP+ mode) of enforcing high confidence hints 
in predicted exon-intron structures (Fig. 1). 

The first three tasks i/-iii/ are devoted to generating protein hints and are resolved by the ProtHint pipeline 
(Fig. 2). Particularly, to determine seed regions within a long genomic sequence (task i/) we run unsupervised 
training of GeneMark-ES models (20) and generate ab initio gene predictions. Each predicted gene, the seed gene, is 
expanded upstream and downstream by 2,000 nt margins to create a seed region. To identify proteins homologous to 
a seed protein, task ii/, we run DIAMOND similarity search (25) with a seed protein as a query against a protein 
sequence database (e.g. a section of OrthoDB). A set of proteins with statistically significant hits define a set of 
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target proteins presumed to be homologous to the query, the seed protein. The task iii/ is to generate spliced 
alignments  of multiple protein targets to the seed region (done by either Spaln (9) or ProSplign (8)) and to process 
the alignments results to infer elements of exon-intron structures (introns, splice sites, translation starts and stops) 
characterized by reliability scores. Mapped gene elements with reliability scores exceeding chosen thresholds are 
designated as high-confidence hints. The final tasks (iv) and (v) correspond to training and prediction steps of 
GeneMark-EP and -EP+. At these steps we use the extrinsic hints to exon-intron structure co-ordinates as an input to 
an expectation-maximization type algorithm that simultaneously finds compositional patterns of protein-coding and 
non-coding regions along with the most likely parse of genomic sequence into coding and non-coding regions. 

Iterative training of the GeneMark-EP statistical model (tasks iv and v) works as follows. In the first iteration 
splice sites and introns mapped by ProtHint with scores exceeding a stringent threshold (high confidence elements) 
are used to estimate parameters of splice sites models as well as branch point site models (particularly important for 
intron models of fungal genomes). The site models together with the heuristic models of protein-coding and 
non-coding regions make a complete set of models of a semi-Markov HMM (20). The models are used in the first 
run of the Viterbi-like algorithm (see (14)) that generates a parse of genomic sequence into coding and non-coding 
regions, the first set of genes predicted by GeneMark-EP. Next, we analyze available data to make updated training 
sets and re-estimate model parameters. We compare co-ordinates of exons predicted by GeneMark.hmm and exons 
determined by ProtHint within the seed regions. This comparison leads to selection of ‘anchored’ elements, the 
exons with at least one splice site identified by both GeneMark.hmm and ProtHint. A set of anchored exons along 
with a set of predicted single exon genes (with length > 800nt) comprise an updated training set for the three-matrix 
model of protein-coding region (26). Sequences of introns bounded by two anchored splice sites as well as 
intergenic sequences bordered by anchored terminal and initial exons of adjacent genes (Fig.3) are used for updating 
parameters of the non-coding region model. The set of updated models is used by the Viterbi algorithm to generate a 
new set of predicted genes. A new update of anchored elements and the next round of parameter re-estimation 
follows.  

Several probability distributions used in GeneMark-EP, such as length distributions of exon, intron and 
intergenic regions, are initially defined as uniformed ones. More accurate estimation of these distributions is done in 
subsequent steps of iterative training (Fig. 1). Also, in the later steps we estimate parameters of the three-phase 
models of splice sites indexed by a nucleotide position after which the intron divides a codon triplet. In the final 
iterations we update estimates of the HMM transition probabilities that affect frequencies of genes with specific 
number of introns. Experimental runs done for genomes of different length were made to verify that the seven 
iterations are sufficient for GeneMark-ES and six iterations for GeneMark-EP and -EP+ to reach convergence in 
terms of co-ordinates of predicted genes and values of model parameters. Gene predictions made with the final 
model are reported output of GeneMark-EP.  

Running the Viterbi algorithm (in logarithmic mode) could be done with enforcing high confidence elements 
mapped by ProtHint. Particularly, it is done by modifying components of the object functions of the Viterbi 
algorithm associated with chosen hidden states (sites). The sites that must be enforced receive high values of 
objective function to ensure their addition to a path selected by the optimization algorithm seeking the maximum 
value of the log Viterbi objective function. This mode of execution of GeneMark-EP we call GeneMark-EP+.  
 
ProtHint: generating footprints (hints) of multiple homologous proteins for a genomic locus  

General logic. The ProtHint role (Fig. 2) in GeneMark-EP, - EP+ is two-fold. This pipeline generates two sets of 
protein hints. The smaller one, the set of high confidence hints, includes hints with high scores that ensure their high 
specificity. The larger one includes hints that have scores exceeding a liberally set threshold, thus these hints have 
lower specificity but larger sensitivity. In the process of hint generation ProtHint takes a seed protein and uses it as a 
query in similarity search for homologs of a true protein presumably encoded in the seed region. Next, ProtHint 
constructs spliced alignments of the detected homologs (target proteins) to the seed region. The whole set of 
multiple spliced alignments is then processed together to identify the protein hints, mapped co-ordinates of the 
candidate splice sites, translation start and stop sites. Hints scoring system is discussed in detail in Supplementary 
Materials.  

Technically, for a given seed protein, ProtHint runs DIAMOND (25) against a relevant section of the OrthoDB 
database and retains in the output up to 25 target proteins (with hit E-value better than 0.001). Next, the target 
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proteins are spliced aligned by Spaln (9) back to the seed region. Notably, the hints are defined by ProtHint 
processing Spaln raw pairwise alignments rather than by annotation of exons in the Spaln output. Multiple target 
proteins spliced aligned to a given seed region may map out the same sequence fragment as an intron. Such an 
outcome defines an intron hint with a higher confidence than if an intron candidate is mapped only once.  

Score system for introns. As described above the expected evolutionary conservation between the structures of 
target proteins and the protein encoded in the seed region has to be quantified and used for accurate identification of 
the new gene. To facilitate this quantification, we define three types of scores for introns and adjacent exons (AEE, 
IBA and IMC, see below) and two types of scores for initial and terminal exons (SMC and BAQ, see below).  
Alignment of Entire Exon (AEE) score is defined as a score of the Spaln (or ProSplign) alignment of exon translation 
and a target protein (see Supplementary Materials). 
Intron Borders Alignment (IBA) score is computed for two adjacent exons with more weight given to parts close to 
the splice sites (within a window of length w). The score is computed as follows. 
For downstream (and upstream) exon defined in the Spaln spliced alignment we compute ��  (and ��) as 
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Here ����� , ��� is a substitution score for target protein amino acid ��  and a codon defined amino acid ��; 
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where ���� is the kernel value for position � counting in codons from a splice site. In a linear kernel: 
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Then we take a geometric mean of values of ��  and ��. 
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Finally, a joint IBA score is obtained by normalizing the ���	
��  score into $0, 1% range:  
IBA score � ���	
��  / max����, where max���� is a maximum score among elements of the BLOSUM62 matrix 
Intron Mapping Coverage (IMC) score counts how many times an intron was exactly mapped in spliced alignments 
of target proteins. Notably, introns with identical coordinates are represented by a single intron characterized by the 
maximum of individual IBA scores among all collapsed introns. 
     Application of the intron scores. For target proteins mapped into a particular seed region we use the three types 
of scores (AEE, IBA and IMC) as follows: 
a/ we select introns with both upstream and downstream exons having AEE ≥ Et selected as a threshold. For Et =25 
we observed relatively high Sn value of the candidate introns (Fig. S1). Further increase of Et eliminated true introns 
while not significantly improving Sp value. 
b/ from the set of selected introns we further choose ones with IBA score > It. For It = 0.1 we observed further 
increase Sp of the candidate introns without noticeable change in Sn (Fig. S1). 
Thus identified set of introns represents a set of all mapped introns; it is used as external evidence to generate 
anchored introns for GeneMark-EP training steps as described above. 
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Within the set of all mapped introns we select a narrower set of high-confidence introns. These introns must have 
canonical GT-AG splice sites, an IMC score ≥ 4, and an IBA score ≥ 0.25 (Figs. 4, S2). Notably, the IMC score is 
computed only from the set of all mapped introns. 
We use high-confidence introns to estimate initial parameters of the GeneMark-EP intron model. Importantly, these 
introns are enforced in the prediction steps of all iterations in GeneMark-EP+ mode.  
     Score system for translation starts and stops. Similarly, to scores introduced for intron mapping we define a 
Border Alignment Quality (BAQ) score for initial and terminal exons. This score is computed for w amino acids 
downstream (upstream) of start (stop) codon, weighted by a linear function (Eq. 1). The second type of score is the 
Site Mapping Coverage (SMC) score. This score is a count of N-terminals (C-terminals) of target proteins aligned to 
a particular start (stop) codon position of a candidate gene. 
If a set of target proteins for a given seed region generates footprints situated more upstream than others, alternative 
start candidates situated downstream are removed from consideration (Fig. S3, details in Supplementary Materials). 
We have observed that using these rules leads to increase in accuracy (Table 3, S2). 
     Application of start and stop scores. All over, selection of a set of all translation start and stop hints is done by 
the following rules:  
a/ stop codon candidates are selected from alignments of terminal exons of target proteins to stop codons in the seed 
region; start codon candidates are selected as ATG in an initial exon that aligns to N-terminal methionine in a target 
protein. 
b/ the candidate initial (terminal) exons should have AEE score Et ≥ 25 and BAQ score ≥ 0. 
To select a narrower set of high-confidence hints we choose stop codon hints with SMC score ≥ 4 as well as start 
codon hints with SMC score ≥ 4 and no overlap by longer target proteins. The SMC scores are computed only from 
the set of all translation starts and stops. This set of high-confidence hints is used to estimate parameters of 
GeneMark-EP models of translation initiation and termination sites. Also, the high-confidence hints are directly 
enforced in prediction steps GeneMark-EP+.  
 
Do introns mapped by ProtHint tend to hit gene regions coding for conserved domains? 
To address this question we use the following procedure. Annotated genes are translated to proteins and used as 
queries in RPS-BLAST (27) to search (E-value =0.01) against NCBI Conserved Domains Database (CDD) (28). 
Results of the RPS-BLAST searches are processed with rpsbproc utility (28) to generate a map of conserved 
domains for each query. Finally, coordinates of the conserved domains are mapped back to a seed region of genomic 
DNA and compare with ProtHint output to find out how many introns are mapped into regions coding for conserved 
domains. We conducted this analysis for genes of D. melanogaster, C. elegans, and D. rerio genomes annotated in 
the APPRIS database (24) as genes coding for principal protein isoforms (see Results).  
 
Assessment of GeneMark-EP gene merging and gene splitting errors  
Instances of gene splitting could be due to the current GeneMark-ES, -EP, -EP+ algorithms design for predicting 
non-overlapping genes with no alternative isoforms. Some types of errors are unavoidable due to this algorithm 
setting. Therefore, we excluded some genes from the test set: i/ genes fully overlapping shorter genes present inside 
introns situated in the same or in the opposite strand; ii/ genes with isoforms combining shorter alternative 
components (Fig. S4); iii/ genes with introns longer than 10,000nt (the default maximum intron length). For genes 
with annotated multiple alternative isoforms we used the longest one as a representative. Overlapping genes present 
in annotation (e.g. a gene within an intron) were merged into a single gene prior to evaluation of merging events in 
order to exclude such cases from being counted as merged genes.  
 
Results  
We have compared gene prediction accuracy of GeneMark-EP, -EP+ with accuracy of GeneMark-ES. In addition, 
we also made an accuracy assessment of hints generated by ProtHint. We selected six species N. crassa, C. elegans, 
A. thaliana, D. melanogaster, S. lycopersicum and D. rerio (Table 1). All the species but S. lycopersicum were 
model organisms with genomes expected to have sufficiently accurate annotation. Therefore, for the five model 
organisms we made comparisons between predicted and annotated gene co-ordinates on a whole genome scale. In 
case of S. lycopersicum we used a test set of genes validated by RNA-Seq data.  
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Regions of annotated pseudogenes known in genomes of C. elegans, A. thaliana, D. melanogaster, and D. rerio, 
were excluded from accuracy assessments. In case of D. rerio we excluded annotated partial exons (ubiquitous in 
this genome) from exon level accuracy estimations; also, the gene level sensitivity was computed only for genes 
with all alternative annotated transcripts being complete. 
A source of protein sequences was OrthoDB v10 (23) partitioned into relevant taxonomic divisions; particularly, we 
used plants for A. thaliana, arthropods for D. melanogaster, etc. (as shown in Table 2).  
A salient feature of the new algorithm is use of multiple homologous proteins for hints generation. In practical 
application, an average evolutionary distance from a protein of interest to a set of homologs could vary significantly. 
To model these variations in our tests, we introduced restrictions on how evolutionary close possible target proteins 
could be to a given query. These restrictions were implemented by removing from the database: i/ proteins 
originated from the species of interest per se; ii/ proteins originated from all species from the same subgenus; iii/ - 
from the same genus; iv/ - from the same family; v/ - from the same order; vi/ - from the same phylum. Notably, the 
distributions of numbers of species within the genus, family, etc. were species specific (Table 2). Given a genomic 
sequence and a set of reference proteins from a segment of protein database, we did run GeneMark-ES to generate 
seed proteins and then the ProtHint pipeline to generate whole set of mapped introns and sites along with the 
high-confidence subsets. Then, the remaining steps of GeneMark-EP, -EP+ were executed.  
 
Assessment of accuracy of GeneMark-EP, -EP+ 
For each species (Table 1) the accuracy of ProtHint and GeneMark-EP, -EP+ was determined at gene level (Fig. 5) 
and exon level (Fig. S5) for several sets of reference proteins. More details on the accuracy assessment, of both 
GeneMark-EP (running without enforcement of high-confidence hints) and GeneMark-EP+ is given in 
Supplementary Materials (Table S3). 
The results could be divided into three classes: fungal genomes, compact eukaryotic genomes and large eukaryotic 
genomes.  
   Gene Level Accuracy: The pattern of accuracy change at the gene level (Fig. 5) was similar to the one observed at 
exon level (Fig. S5).  
   Fungal genomes: N. crassa. Accuracy of GeneMark-ES was high, as it is typical for fungal genomes (21). 
GeneMark-EP+ when supported by mapped proteins from the species outside genus/order improved Sn value only 
by ~2%  (Fig. 5a).  When supported by proteins from the species outside fungal phylum the accuracy of 
GeneMark-EP+ matched the accuracy of GeneMark-ES (Fig. 5a). This result complemented previous observations 
that GeneMark-ES with unsupervised training was highly efficient ab initio gene finder for fungal genomes (21).  
We have observed earlier that addition of information from splice-aligned RNA-Seq reads for fungal genomes did 
not improve accuracy of GeneMark-ET in comparison with GeneMark-ES. 
   Compact eukaryotic genomes: C. elegans, A. thaliana, and D. melanogaster. When GeneMark-EP+ used the 
largest set of reference proteins (just without proteins from the same species) we saw an improvement by ~20% in 
comparison with GeneMark-ES for both Sn and Sp in A. thaliana and D. melanogaster (Figs. 5c,d). When target 
proteins were situated at larger evolutionary distances, the accuracy did steadily decrease. In comparison with 
GeneMark-ES there was an increase by 5% in gene level Sn and Sp when target proteins could be selected outside 
the same phylum. For C. elegans GeneMark-EP+ improved the accuracy of -ES by ~10% when target proteins were 
outside the same species (Fig. 5b); this improvement became much smaller for targets outside the same family (Sn 
improved by 3%, Sp unchanged). Almost no difference between -ES and -EP+ was observed if the targets were 
outside the same phylum. Notably, the gene level accuracy for C. elegans was lower than for other compact 
genomes. 
   Large eukaryotic genomes: S. lycopersicum and D. rerio. The GeneMark-ES gene level accuracy was low for 
large genomes (between 5% and 20%). In S. lycopersicum, the accuracy was improved by GeneMark-EP+ by ~15%, 
when protein reference sets were outside species of the same genus or order (Fig. 5e). In D. rerio, exclusion of 
proteins from the same genus or the same order led to Sn and Sp improvement by ~20% and ~5%, respectively 
(Fig. 5f). The improvements were twice as low when target proteins were outside the same phylum. 
Lower prediction accuracy in large genomes could be partially attributed to incorrect and/or incomplete gene 
annotations. More detailed comparison with gene annotations in D. rerio and S. lycopersicum genomes established 
the following. 
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In S. lycopersicum, we observed that annotated genes supported by RNA-Seq are significantly better predicted 
by GeneMark-EP+ than genes without such support (Table S4). We used VARUS (29) to generate intron hints from 
RNA-Seq and divided annotated genes into two groups: a/ genes with all introns predicted by VARUS and b/ all 
other genes. GeneMark-EP+ sensitivity (with target proteins outside the S. lycopersicum genus) was by 40% better 
in set A than in set B, on gene, exon and intron levels. It is important to emphasize that RNA-Seq information was 
not used in GeneMark-EP+. Sensitivity measure defined for the set of introns mapped by ProtHint was also better by 
~40% (Table S4).  

In D. rerio annotation we noticed a number of partial exons that would create incomplete transcripts. We 
evaluated exon level Sn separately for exons within complete and incomplete transcripts (Table S5) and observed 
74.6% exon Sn in complete group vs 67.5% in incomplete group. Similarly, gene level sensitivity was better by 6% 
in genes with complete transcripts (Table S5). 
All over, we observed that for five out of six species, the accuracy of GeneMark-EP+ was better than accuracy of 
GeneMark-ES, regardless of the set of reference proteins used for spliced alignments (Table S3, Figs. 5, S5). Only in 
case of fungal genome (N. crassa) the improvement was negligible, the fact explained by high accuracy of an 
ab initio gene finder in fungal genomes. 
 
Sources of improvements in gene prediction 
Better performance of GeneMark-EP+ in comparison with GeneMark-ES, is expected due to i/ model 
parameterization on a better validated training set and ii/ enforcement of high confidence hints in gene predictions 
along the training process that becomes semi-supervised instead of unsupervised. Still, even when direct corrections 
are excluded (GeneMark-EP mode), for all the species but fungi GeneMark-EP showed improvement over 
GeneMark-ES. Surprisingly, GeneMark-EP showed only small fluctuations in accuracy with respect to increase in 
the size of the reference set of protein by including more evolutionary close species (Table S3).  

The accuracy of GeneMark-EP was comparable to accuracy of GeneMark-EP+ when the smallest reference set 
of proteins was used (species outside the same phylum). Accuracy of GeneMark-EP+ increases more sharply than 
-EP when proteins from more evolutionary close species are included. The only exception was C. elegans in which 
GeneMark-EP gene level accuracy dropped by ~3% for the reference set of species outside the same phylum in 
comparison with GeneMark-ES (GeneMark-EP+ increased the accuracy back to the level of GeneMark-ES, 
Table S3). 

These observations suggest that a relatively small number of anchored introns play a critical role in parameter 
estimation in GeneMark-EP. Further increase in the number of anchored introns does not improve parameters of 
GeneMark-EP. For the case of C. elegans, one could argue that the critical number of anchored introns was not 
reached when the reference set was limited to species ‘outside the C. elegans phylum’. 

To differentiate contributions into GeneMark-EP+ training, we compared use of only high-confidence intron 
hints with use of only high-confidence hints for gene starts and stops (Table S6).  This experiment showed that 
enforceable hints of both kinds contributed equally to overall accuracy improvement. However, these hints 
contribute unequally into reducing different types of error. Enforcement of high-confidence intron hints led to 
higher prediction accuracy of internal exons, while enforcement of hints to high-confidence gene starts and stops led 
to reduction of errors in initial and terminal exons. 

We observed that GeneMark-ES was more likely to generate gene merging than gene splitting errors (Table 4); 
for instance, in A. thaliana there were 134 split genes and 1945 merged genes. Use of GeneMark-EP (with target 
proteins outside the same genus) decreased frequency of errors in gene merging (a ~25% decrease in all species) 
however, it also caused a slight increase in gene splitting (Table 4). Transition to GeneMark-EP+ (the last column in 
Table 4) reduces gene merging dramatically.  

Enforcement of only high-confidence intron hints reduced the number of split genes (by enforcing introns in 
place of incorrectly predicted intergenic regions). Still these hints have little or no effect on the gene merging 
(Table 4). The most significant effect was observed for D. rerio - 1407 split genes in the -EP+ mode compared to 
2104 in the -EP mode. 

Enforcement of high confidence gene start and stop hints significantly reduced the number of merged genes and 
caused a slight increase in the number of split genes. Number of merged genes dropped by ~1,000 in A. thaliana 
(1501 merged genes in -EP versus 453 in -EP+ with enforcing high confidence gene start/stop sites); about 50% 
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improvement was observed for the other species except for C. elegans. All over, GeneMark-EP+ (Table 4, last 
column) achieved significant reduction in numbers of both merged and split genes in comparison with 
GeneMark-ES and -EP. 
 
Accuracy of GeneMark-EP+ vs gene annotation in the APPRIS database 
Comparison of GeneMark-EP+ gene predictions with the APPRIS annotation of major protein isoforms in 
C. elegans, D. melanogaster, and D. rerio genomes (24) did show (Fig. S6) an increase in exon level sensitivity (by 
~4% for C. elegans, by ~7% for D. melanogaster and D. rerio) and a decrease in exon level specificity (by ~1.5% 
for C. elegans, by 3% for D. melanogaster and by ~8% for D. rerio) in comparison with the accuracy assessed by 
comparison with the genome annotation made by a corresponding genomic community (Table 1). The decrease in 
Sp could be expected since the APPRIS annotation contains smaller number of exons. The increase in Sn is a 
positive news indicating that GeneMark-EP+ when making prediction of just one isoform per locus gets hits into 
genes for major protein isoforms. At gene level (Fig. S7), both Sn and Sp were reduced slightly in C. elegans and 
D. rerio, and by 5% in D. melanogaster. This result needs to be interpreted correctly in the context of conventional 
definition of gene level accuracy (a gene is counted as correctly predicted if the prediction matches all exons in at 
least one alternative transcript). Thus, prediction of one of the isoforms correctly (major or not) was all what was 
counted in the previously discussed results (Fig. 5, Table S3). This is a rather liberal way of computing the Sn value 
on gene level.  
 
Assessment of accuracy of ProtHint 
The main role of ProtHint is generation of a list of co-ordinates as well as confidence scores of potential borders 
between coding and non-coding regions in a novel genome. Specific thresholds on confidence scores could be define 
to select subsets of hints (e.g. high-confidence set). The GeneMark-EP training procedure can tolerate a high number 
of false positive intron hints since only a subset, the anchored introns, are used in training. It is important that the set 
of all mapped hints would have high Sn with respect to true gene elements while the Sp level could be lower. On the 
other hand, in the high-confidence hints—those utilized in initial GeneMark-EP+ parameter estimation as well as in 
the hints enforcement—have to have high Sp, as these hints are directly enforced in predictions.  
 
Sensitivity of hints generated via multiple spliced alignments 
When the set of reference proteins had the maximum size (all proteins outside the same species) the set of intron 
hints generated by ProtHint had Sn > 75% for exact introns and Sn ~70% for gene starts and stops (Tables 5, S7). 
The value of Sn went down steadily as the evolutionary distance to potential target proteins increased. Particularly, 
when the species of the same order were excluded, Sn was, on average, 65% for intron hints and 40% for gene start 
and stop hints. 
The largest reduction in reference set - excluding reference proteins from the same phylum - decreased Sn of the 
intron hints down to 40% on average. The largest fraction of correct intron hints was observed for N. crassa (60%), 
the lowest for C. elegans (25%). The value of start and stop Sn generated by reference proteins from the smallest set 
(outside the same phylum) varied greatly between species, from ~9% for S. lycopersicum to ~30% for N. crassa. 
The exception to the above trend was C. elegans. This is explained by the fact that it had only a few relatives within 
the same taxonomical phylum (Table 2). 
 
Specificity of high confidence hints generated via spliced alignments of multiple proteins 
The sets of high-confidence hints were observed to have high Sp, averaging over 95% over the six species. This 
level remained high even for the narrowest set of reference proteins, the species outside the same phylum 
(Tables 5, S7). In case of C. elegans, along with high Sp, we observed low Sn value of high-confidence hints (in all 
the reference sets – larger or smaller) which could be again explained by presence of just a few species with 
sequenced genomes in the C. elegans phylum (Table 2). In all other species, the decrease in Sn in transition from all 
mapped to high-confidence hints was small in comparison with the simultaneous increase in Sp. 
Distributions of IMC and IBA scores for introns mapped from target proteins (false and true as compared with 
annotation) are shown in Fig. 4a for N. crassa (the genus-excluded reference set). Fig. 4b shows Sn-Sp curves for 
filtering this set with IMC, IBA and their combination. 
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The distribution of score vectors shown in Fig. 4a as well as Sn-Sp curves (Fig. 4b) depend on the level of restriction 
on the set of reference proteins (Figure S2, left and middle panels). The IBA threshold for selection of 
high-confidence intron hints could affect the accuracy of GeneMark-EP+. We assessed the extent of this effect in 
A. thaliana, N. crassa, and S. lycopersicum (Figure S2, right panels). It was shown that the performance was stable 
with respect to changing IBA threshold; the best average prediction accuracy was achieved with IBA threshold set to 
0.25. Similar effect was observed for high-confidence hints to gene starts and stops (data not shown). 
More protein hints are generated in regions encoding conserved protein domains 
About 50% of the whole set of introns annotated in the APPRIS set of principal isoforms was found to be located 
within conserved protein domains (Table S8). 
In D. melanogaster, high-confidence introns mapped by ProtHint from the species-excluded reference set fell into 
regions coding for conserved domain in 55.8% of cases (Table 6). This fraction increased significantly as more 
proteins were excluded from the set of targets (e.g. outside the same genus) and reached 84.6% when only proteins 
outside the same phylum were considered (Table 6). Similar trends were observed for C. elegans and D. rerio 
(Table S9). In the set of all reported introns, the fraction of introns mapped to regions coding for conserved domains 
was lower than in the set of high-confidence intron hints (Table S9), however, the proportion of introns mapped into 
conserved domain regions also increased with removing proteins from closely related species.  
The same fractions for both high-confidence and for all reported introns were almost identical between D. rerio and 
D. melanogaster (Table S9). For C. elegans, however, the figure for high-confidence introns was not close to 
D. melanogaster (Table S9) apparently due to C. elegans having fewer target proteins from close relatives in the 
protein database (the factor significantly affecting intron coverage IMC score). 
 
Discussion 
The main reason to develop GeneMark-EP, was an expectation that iterative ab initio parameterization of statistical 
models (as done in GeneMark-ES) would become more precise, especially in case of long genomes, if we find an 
efficient method to add data on protein footprints into training and prediction steps. This project has grown into 
development of a whole pipeline, still with the name GeneMark-EP. Particularly, the new pipline included ProtHint, 
a new method to process results of mapping of multiple homologous proteins to a genomic locus.  
Currently, with millions of proteins in public databases, GeneMark-EP becomes a universal extension of 
GeneMark-ES, as its application to a novel eukaryotic genome will be facilitated by use of a vast volume of protein 
sequences.  
Earlier developed GeneMark-ET (2) makes an extension of GeneMark-ES when transcriptome sequence data, with 
short or long reads, is available along with a newly assembled genome. 
Existing methods, such as GenomeThreader (7), rely on mapping proteins from closely related species to produce 
accurate exon-intron structures. However, the accuracy of gene structure prediction using splice alignment of 
individual protein to genomic fragment is dropping significantly with increase in evolutionary distance between 
species (6).  
Mapping multiple homologous proteins neutralizes to some degree the effect of increase of evolutionary distance. 
Particularly, we saw enrichment of high-confidence introns in the regions coding for conserved domains due to 
corroboration of hits originated from multiple homologous proteins (Table 6).  
Use of anchored elements of gene structure was important for integration of signals coming from different sources 
(sites predicted from genomic sequence alone and sites predicteed by protein footprints). The mere principle of their 
selection facilitated filtering out ‘one-sided’ noise present in one or another source. Another important feature of the 
method was the use of partial protein footprints, when target protein mapping contributed less than full exon-intron 
structure. A partial contribution was still useful for improving training sets; it also could add confident corrections at 
the gene prediction step (Fig. S8). 
Use of anchored elements was most beneficial in large genomes (S. lycopersicum and D. rerio) where 
GeneMark-ES alone was observed to generate a larger rate of false positive errors due to longer on average 
intergenic regions.  
In comparison with the use of RNA-Seq reads, use of proteins allows for better discrimination between introns and 
intergenic regions. This occurs due to better prediction of intergenic regions with mapping of N- and C-terminals of 
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target proteins. We saw significant reduction of errors in gene merging (with intergenic regions predicted as introns) 
while error rate of gene splitting (introns predicted as intergenic regions) was less affected (Table 4).  
In computational experiments for all species but fungi, N. crassa, we observed the most significant improvement in 
comparison with GeneMark-ES to occur when GeneMatk-EP+ used the largest possible sets of reference proteins 
(Figs. 5, S5). For N. crassa, use of protein evidence never helped noticeably improve the accuracy as GeneMark-ES. 
High accuracy of GeneMark-ES in fungal genomes was demonstrated earlier as well (21). We assume that lower 
performance in case of C. elegans in comparison with Arabidopsis and Drosophila was related to a larger number of 
introns per gene and lower number of reference proteins within the C. elegans phylum. In tomato and fish genomes 
that have longer on average intergenic regions than other species we saw low exon level specificity (~50-55%) 
related to elevated false positive prediction of protein-coding genes in long intergenic regions (Fig. S5). Gene level 
accuracy for D. rerio, ~30% Sn and ~12% Sp, for any set of reference proteins beyond the D. rerio genus, was 
difficult to improve. Notably, genes in the fish genome have a rather large, 8.2, average number of introns per gene. 
Under independence of errors assumption, genes with large number of introns would be improbable targets for 
accurate prediction. Even though, the independence assumption does not hold in presence of external evidence, the 
pattern of gene error rate increase with the increase in number of introns was present (data not shown). 
For D. melanogaster, C. elegans and D. rerio that have genome annotations in APPRIS format (24) we have shown 
that GeneMark-EP+ makes more accurate predictions in terms of Sn when comparison is made with the APPRIS 
major isoforms than when comparison is made to annotation with all possible isoforms.  

Importantly, the second iteration of GeneMark-EP+ (with predictions generated by first iteration are used as the 
seed genes) has a small but positive effect on the final gene prediction accuracy. This additional run is recommended 
if there is no restriction on additional computational time. 

There were several options in how to select external protein data sets as well as tools for the protein data 
processing. We have verified that choice of OrthoDB as a protein database, DIAMOND for search for the seed 
orthologs (targets) in the database and Spaln for splice alignment of targets to genome were robust with respect to 
outcomes of ProtHint as well as GeneMark-EP and -EP+. Choices of DIAMOND, selection of at most 25 target 
proteins per seed protein (Fig. S9), and Spaln were practical from the standpoint of accelerating the overall speed of 
the pipeline execution. We also verified that choice of GeneMark-ES for generating seeds was a faster and efficient 
method in comparison with the six frame translation with Procompart and ProSplign tools (8). 

The discussion would be incomplete if we do not mention limitations of the new method. GeneMark-EP does 
not support a multiple model mode needed for genomes with heterogeneous nucleotide composition, like mammals 
and some plants (grasses, e.g. rice). While the current version of GeneMark-EP, -EP+ would outperform 
GeneMark-ES when running on such genomes, the overall accuracy could be significantly improved with more 
accurate modeling of genome heterogeneity.  

We realize that use of taxonomic divisions for reference proteins is just the first step in accurate modeling of 
real-life distribution of orthologues for genes and proteins existing in a novel species. There is room for 
improvement for generating both intron and gene start & stop hints when reference proteins are selected based on 
evolutionary distance measures. Similarly, one would expect effective use of rigorous gene specific evolutionary 
distance in selecting thresholds for intron mapping.  

Another limitation of the method is the search for a single optimal solution that leads to prediction of a single 
gene, single protein isoform in each locus. Importance of genes with alternative splicing has been debated recently, 
as the evidence was accumulated that alternative splicing mainly operates with UTR regions rather than with 
translated regions of pre-mRNA. Moreover, the claims were made that when a translated region could be 
alternativly spliced then only one among the protein isoforms, the major one, is expressed in significantly large 
number of copies than the minor ones. If gene prediction by GeneMark-EP, -EP+ is viewed as prediction of the 
major isoform, then the result should be naturally assessed in comparison with annotation of the major isoforms. 
Such annotation is provided by the APPRIS database and the comparison was done for C. elegans, D. melanogaster, 
and D. rerio. Nonetheless, general tools that use external information to predict alternative isoforms are of 
significant interest for community. Particularly interesting case is when external information representing 
alternative isoforms at RNA level. In this case, a pipeline, BRAKER1 (30) makes predictions of alternative isoforms 
by GeneMark-ET and AUGUSTUS. A new pipeline, BRAKER2 (paper in preparation) combines GeneMark-EP, 
-EP+ with AUGUSTUS to identify a set of alternative protein isoforms when variants of cross-species proteins are 
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given among references. A new tool, GeneMark-ETP, will use protein, and transcript data available for each locus 
(paper in preparation). 

 
Availability 
GeneMark-EP+, ProtHint, and all scripts and data used to generate figures and tables in this manuscript are available 
at https://github.com/gatech-genemark/GeneMark-EP-plus. Software is compiled for Linux 64 bit operating system. 
To give an example, the overall runtime of ProtHint and GeneMark-EP+ on D. melanogaster genome (of 134 MB 
and ~14,000 genes) with target proteins from species outside Drosophilidae family was ~5 hours on an 8CPU/8GB 
RAM machine. In our experiments the run time grew linearly with genome length and number of genes. 
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Figures 
 

 
 

 
 
Figure 1: GeneMark-EP training diagram. 
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Figure 2: An overview of the ProtHint pipeline. 
 
 
 
 
 

 
Figure 3: Selection of sequence regions for GeneMark-EP+ training with enforcement of High-Confidence (HC
hints. 

A. Target proteins 
B. Introns, start and stop sites defined by spliced alignments of target proteins to genome 
C. Genome sequence 
D. Gene prediction by GeneMark.hmm at a given iteration  
E. Selection of splice sites and protein coding regions for training (anchored elements) 
F. Selection of non-coding regions for training 
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Figure 4: ProtHint mapping of introns in case of N. crassa. Mapping is done from target proteins that belon
species beyond Neurospora genus (a) Distribution of the score vectors (IBA, IMC) of true positive (green) and f
positive (purple) introns mapped by spliced alignments. The black lines represent cutoffs at IMC = 4 
IBA = 0.25. Total numbers of false and true positives are shown in the upper left corner. (b) Sn and Sp of intron
selected by thresholds on intron borders alignment (IBA) score and intron mapping coverage (IMC) score. IM
computed for introns which have IBA score ≥ 0.1 and exon AEE score ≥ 25. Red Sn-Sp curve represen
combination of scores: The curve is generated by first, selecting all introns above IMC threshold changing from
4 and then selecting all the introns with IBA score changing from 0 to 0.25 and up to 1.0. The crossed position in
red curve represents IMC ≥ 4 and IBA ≥ 0.25 thresholds. Separate curves for IMC score (dashed blue) and IBA s
(dashed purple) are shown as well. 
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Figure 5: Comparison of GeneMark-ES and GeneMark-EP+ accuracy on gene level accuracy of GeneMark-EP
shown for cases when ProtHint works with different sets of reference OrthoDB proteins: from the largest (only
same species excluded) to the smallest (the whole same phylum excluded). A gene prediction is considered t
correct if it matches one of the annotated isoforms. Gene level Sn of D. rerio was computed only with respe
complete genes. 
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Tables 
 
 

 
 
Table 1: Genomes used for tests of GeneMark-EP and GeneMark-EP+. Introns per gene are computed for all genes, 
including single-exon genes. 
 
 
 
 

 
 
Table 2: Characteristics of the OrthoDB v10 taxonomical space for each of the species. The size of the largest 
sections of the database (OrthoDB root) used for each species is shown in bold.  
*For tests in the phylum-excluded mode, the kingdom was used as the root. 
 
 
 
 

 
 
Table 3: ProtHint sensitivity and specificity of all predicted and of the high-confidence starts. High specificity is 
achieved with filtering by site mapping coverage (SMC) scores as well as by removal of candidate starts overlapped 
by at least one target protein which suggests an alternative start upstream. Sensitivity is defined with respect to the 
full complement of starts, including alternative ones. The numbers were generated in the test in genus-excluded 
mode. Results for all test species are shown in supplementary table S2. 
  

Species Assembly version (NCBI) Genome size, Mb Annotation version # Genes in annotation Introns per gene

Neurospora crassa GCA_000182925 40 Broad Institute (2013) 10,785 1.7

Caenorhabditis elegans GCA_001483305 100 WormBase WS271 (May 2019) 20,172 5.7

Arabidopsis thaliana GCF_000001735 119 Tair Araport11 (Jun. 2016) 27,445 4.9

Drosophila melanogaster GCA_000001215 134 FlyBase R6.18 (Jun. 2019) 13,929 4.3

Solanum lycopersicum GCF_000188115 807 Consortium ITAG3.2 (Jun. 2017) 34,950 3.7

Danio rerio GCF_000002035 1,345 Ensembl GRCz11.96 (May 2019) 25,254 8.2

Number of species in the 
same taxonomical unit

Genus Family Order Class Phylum Kingdom
OrthoDB root used 
for tests

# of proteins
in the root

Neurospora crassa 0 1 7 96 364 548 Fungi 5,850,648

Caenorhabditis elegans 2 2 4 5 6 447 Metazoa 8,266,016

Arabidopsis thaliana 1 7 9 - 99 116 Plantae 3,510,742

Drosophila melanogaster* 19 19 55 147 169 447 Arthopoda 2,601,995

Solanum lycopersicum 1 9 10 - 99 116 Plantae 3,510,742

Danio rerio* 0 4 4 49 245 447 Chordata 5,003,104

All reported 
starts

Filtered with 
SMC >= 4

Filtered with 
SMC >= 4 and 
exon overlap =0

Sn 67.6 61.0 59.6

Sp 72.1 90.3 94.7
A. thaliana
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Table 4: Numbers of merged and split genes in predictions of GeneMark-ES, -EP and -EP+ with enforcement of 
(a) high confidence introns only, (b) high confidence starts and stops only (c) enforcement of both (a) and (b). All 
the numbers were obtained for reference sets of target proteins defined for the genus-excluded mode. 
 
 
 
 

 
 
Table 5: ProtHint protein mapping performance for D. melanogaster: Sensitivity and specificity of detection of 
introns, start and stop codons. The results are shown for the use of all reported hints or just high-confidence hints. 
The accuracy is computed based on genome annotation. The accuracy is defined with respect to the full complement 
of introns, starts and stops, including alternative splicing.  Results for all test species are shown in supplementary 
table S7. 
 
 
 

 
  

Genes ES EP
EP+

Introns
(a)

EP+
Starts/Stops

(b)

EP+
Full
(c) 

Merged 132 94 97 70 78

Split 73 85 82 92 85

Merged 2335 2047 2043 1896 1893

Split 283 396 351 405 355

Merged 1945 1501 1445 453 475

Split 134 175 137 201 145

Merged 945 759 742 513 514

Split 143 152 107 168 123

Merged 3213 2643 2572 1724 1753

Split 688 820 626 950 740

Merged 2603 1845 1749 1150 1143

Split 1667 2104 1407 2053 1383

S. lycopersicum

D.rerio

N. crassa

C. elegans

A. thaliana

D. melanogaster

D. mel. All reported High conf. All reported High conf. All reported High conf. All reported High conf. All reported High conf.

Intron Sn 78.7 73.3 71.9 61.6 65.4 53.4 48.9 33.8 35.2 20.5

Intron Sp 83.8 98.9 79.8 98.9 79.6 98.8 80.5 99.0 88.4 99.5

Start Sn 69.1 59.7 49.0 35.9 37.1 28.8 21.9 15.7 13.9 9.5

Start Sp 80.3 97.5 76.6 96.9 72.4 95.9 74.3 94.6 75.8 93.8

Stop Sn 74.0 67.0 55.7 44.3 43.8 36.2 26.1 19.4 15.5 11.0

Stop Sp 95.3 99.3 94.6 98.9 93.2 98.6 94.8 99.0 96.2 99.3

The level of exclusion of database proteins

Species Subgenus Family Order Phylum
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Table 6: Statistics for D. melanogaster genome. Fraction of high-confidence intron hints mapped into regions 
coding for conserved protein domains for different sets of reference proteins. Out of 41,010 introns in the APPRIS 
D. melanogaster genome annotation, 21,562 (52.6%) are located in regions encoding conserved protein domains. 
 

All

Species 33,334 18,616 (55.8%)

Subgenus 27,999 17,190 (61.4%)

Family 24,274 15,791 (65.1%)

Order 15,538 11,768 (75.7%)

Phylum 9,519 8,057 (84.6%)

Exclusion
level

High-confidence introns
matching  APPRIS introns

In domains
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