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Abstract  
 
Despite decades of intensive search for compounds that modulate the activity of particular 
proteins, there are currently small-molecule probes available only for a small proportion of the 
human proteome. Effective approaches are therefore required to map the massive space of 
unexplored compound-target interactions for novel and potent activities. Here, we carried out a 
crowdsourced benchmarking of the accuracy of machine learning (ML) algorithms at predicting 
kinase inhibitor potencies across multiple kinase families. A total of 268 ML predictions were  
scored in unpublished bioactivity data sets. Top-performing algorithms used kernel learning, 
gradient boosting and deep learning, with predictive accuracy exceeding that of target activity 
assays. Subsequent experiments carried out based on the the top-performing model predictions 
demonstrated that these models and their ensemble can improve the accuracy of experimental 
mapping efforts, especially for so far under-studied kinases. The open-source ML algorithms 
together with the novel dose-response data for 905 bioactivities between 95 compounds and 
295 kinases provide a unique resource for extending the druggable kinome. 
 
  
Introduction  
 
Despite many years of target-based drug discovery, chemical agents inhibiting single protein 
targets are still rare.1 For instance, most approved drugs have multiple targets, suggesting their 
therapeutic efficacy as well as adverse side-effects originate from polypharmacological effects.2 
Even if agents with narrow target profile often present with less toxic effects, multi-targeted 
approaches may provide improved efficacy for treating complex diseases. Systematic mapping 
of the target binding profiles is therefore critical not only to explore the therapeutic potential of 
promiscuous agents, but also to better predict and manage their possible adverse effects prior 
to further development and clinical trials (i.e., speeding-up and de-risking the drug development 
process). Novel off-target potencies of approved drugs could also extend the therapeutic 
application area of repurposed agents. However, the massive size of the chemical universe 
makes experimental mapping of the full space of compound-target interactions infeasible, even 
with automated high-throughput profiling assays. 
 
To address this problem, we implemented the IDG-DREAM Drug-Kinase Binding Prediction 
Challenge, a crowd-sourced competition that evaluated the power of machine learning (ML) 
models as a systematic and cost-effective means for predicting novel compound-target 
potencies that warrant experimental evaluation (i.e., target prioritization). The Challenge focused 
on kinase inhibitors, since kinases are tractable in drug development and play a role in a wide 
range of diseases, such as cardiovascular disorders and cancers. However, protein kinase 
domains share structural and sequence similarity, and most kinase inhibitors bind to conserved 
ATP-binding pockets, which leads to prevalent target promiscuity and polypharmacological 
effects.3–5 Such promiscuity requires effective target deconvolution approaches, including ML or 
AI approaches, that can leverage the information extracted from similar kinases and compounds 
to predict the activity of so far unexplored interactions.  
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The Challenge was implemented in a screening-based, pre-competitive drug discovery project in 
collaboration with the NIH-supported Illuminating the Druggable Genome (IDG) program 
(https://commonfund.nih.gov/idg ), with the common aim to establish kinome-wide target profiles 
of small-molecule agents, and thereby to extend the druggability of the human kinome space by 
providing activity information on under-studied proteins. The specific questions this Challenge 
sought to address were: (i) What are the best computational modelling approaches for predicting 
quantitative compound-target activity profiles?;  (ii) What are the optimal molecular and chemical 
descriptors for maximal prediction accuracy?; and (iii) What are the most predictive bioactivity 
assays and publicly available datasets? The Challenge attracted 212 active participants, and a 
total of 268 predictions were scored, covering a wide range of ML approaches, including deep 
and kernel learning and gradient boosting decision trees. Here, we describe the benchmarking 
results from the Challenge, and the use of top-performing models for identifying novel kinase 
inhibitor activities. 
 
Results 

 
Challenge implementation  
To develop their predictive models, the participants had access to a wide variety of bioactivity 
data for model training and cross-validation through open databases such as ChEMBL 6, 
BindingDB7  and IDG Pharos8 (Fig. 1). For training data collection, integration, management and 
harmonization, the Challenge made use of an open-data platform, DrugTargetCommons (DTC).9 
DTC is a community platform that facilitates the annotation and curation of bioactivity data, and 
provides a comprehensive and standardized interface to retrieve compound-target profiles and 
related information to support predictive modelling (Suppl. Fig. 1). The Challenge infrastructure 
was built on the Synapse collaborative science platform10, which supported receiving, validating 
and scoring of the teams’ predictions as well as long-term management of the test bioactivity 
data and submitted Challenge models as a benchmarking resource (Fig. 1).  
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Figure 1 . Overview of the IDG-DREAM Drug-Kinase Binding prediction Challenge . The 
heatmap on the left is for illustrative purposes only (see Suppl. Fig. 2 for the actual test data 
matrices, and Suppl. Fig. 3 for the Challenge timeline). 
 
Challenge test datasets 
Evaluation of the model predictions was based on unpublished target activity data generated by 
the IDG Kinase Data and Resource Generation Center, conducted over a series of “rounds” 
based on availability of validation datasets (Suppl. Fig. 3). Generation of the test data for Round 
1 was based on a single-dose kinome scan of a library of multi-targeted compounds.5,11 This 
was followed by a dose-response determination of the dissociation constant (Kd) values for 430 
compound-kinase pairs between 70 inhibitors and 199 kinases that were not available in the 
public domain (see Methods). An additional set of completely new Kd data was generated for 
Round 2, consisting of 394 multi-dose assays between 25 inhibitors and 207 kinases with 
single-dose inhibition >80%. Together, these 824 Kd assays in the two Rounds spanned a total 
of 95 compounds and 295 kinases (Fig. 2A-B), consisting of promiscuous compounds targeting 
multiple kinases at low concentrations, compounds with narrow target profiles, as well as 
compounds with no potent targets among the tested kinases (Suppl. Fig. 2). 
 
Round 1 enabled the teams to carry out initial testing of various model classes and data 
resources, whereas Round 2, implemented 6 months later, was used to score the final 
prediction models and to select the top-performing teams. Round 1 and 2 test data had very 
similar Kd distributions (Fig. 2C), which provided comparable binding affinity outcome data to 
monitor the improvements made by the teams between the two rounds. Compounds in the test 
sets were mutually exclusive between rounds (Fig. 2A), with Round 2 including less selective 
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compounds with broader target profiles (Fig. 2D), and therefore fewer inactive compound-target 
pairs (pKd=5). Round 1 and 2 kinase targets were partly overlapping, and covered all major 
kinase families and groups (Fig. 2B,E). Taken together, these two test datasets provided a 
standardized and sufficiently large quantitative bioactivity resource to evaluate the accuracy of 
predicting on- and off-target activities. 
  

 

 
Figure 2. Challenge test datasets. (A) The overlap between Round 1 and Round 2 test 
compounds and kinases, and their distributions in the kinome tree (B) and across kinase groups 
(E). (C) The quantitative dissociation constant (Kd) of compound-kinase activities was measured 
in dose-response assays (see Methods), presented in the logarithmic scale as pKd = -log 10(Kd). 
The higher the pKd value, the higher the inhibitory ability of a compound against a protein kinase 
(Suppl. Fig. 2 lists the compounds and kinases in Round 1 and Round 2). (D) The selectivity 
index for compounds was calculated based on the single-dose activity assay (at 1000 nM) 
across full compound-kinase matrices before the Challenge. The kinome tree figure was created 
with KinMap, reproduced courtesy of Cell Signaling Technology, Inc. 
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Overall performance of the models 
The competition challenged the participants to predict blinded Kd profiles between 95 
compounds and 295 kinases. A recently published and experimentally validated kernel 
regression approach for compound-kinase activity prediction was used as the “baseline 
model”12. The accuracy of the predictions improved from Round 1 to Round 2 submissions as 
measured by Spearman correlation (two-sample Wilcoxon test, p<0.005; Fig. 3A) and Root 
Mean Square Error (RMSE, p<10 -6; Fig. 3C). Comparison against the baseline model  indicated 
that the Round 2 dataset was marginally easier to predict (Suppl. Fig. 4), partly due to a smaller 
proportion of inactive pairs in Round 2 (pKd = 5, Fig. 2C). To take into account this shift, we 
compared the submissions against a set of random predictions . Using Spearman correlation, 
we observed that 48% of the submission were better than random in Round 1, compared to 61% 
in Round 2 (Fig 3B). Using RMSE, 71% of the submissions in Round 1 were better than random, 
compared to 76% in Round 2 (Fig 3D).  
 
The 20 teams that participated in both rounds improved their Kd predictions (p<0.05 and p<0.001 
for Spearman and RMSE, paired Wilcoxon signed-rank test), but when comparing against the 
baseline model, the overall improvements became insignificant (p>0.05). However, there were 
individual teams (like Zahraa Sobhy) that were able to improve their predictions considerably 
between the two rounds. The practical upper bound of the model predictions was defined based 
on experimental replicates of Kd measurements (Fig. 3B,D). The predictive accuracy of the 
top-performing models in Round 2 was relatively high based on both of the winning metrics, 
Spearman correlation for rank predictions and RMSE for activity predictions; these metrics 
showed less correlated performance over the less-accurate models in Round 2 (Fig. 3F). The tie 
breaking metric, averaged area under the curve (AUC), provided complementary information on 
prediction accuracies when compared to RMSE but not to Spearman correlation (Suppl. Fig. 5).  
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Figure 3. Overall performance of the submissions . (A, C) Performance of the submissions in 
terms of the two winning metrics in Round 1 (n=169) and Round 2 (n=99). The colors mark the 
baseline model and top-performing participants in Round 2. The empty circles mark the 
submissions that did not differ from random predictions. The baseline model 12 remained the 
same in both of the rounds. (B, D) Distribution of the random predictions (based on 10000 
permuted pKd values) and replicate distributions (based on 10000 subsamples with replacement 
of overlapping pKd pairs between two large-scale target activity profiling studies3,4) in Round 1 
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(top panel) and Round 2 (bottom). The points correspond to the individual submissions. (E, F) 
Relationship of the two winning metrics across the submissions in Round 1 and Round 2. The 
shape indicates submissions based on deep learning in Round 2 (F). For instance, team 
DMIS_DK submitted predictions based on both random forest (RF) and deep learning (DL) 
algorithms in Round 2, where the latter showed slightly better accuracy (triangle). Overall, DL 
approaches did not perform better than the other learning approaches used in Round 2.  
 
 
Analysis of the top-performing models  
The top-performing models were selected in Round 2 based on 394 pKd predictions between 25 
compounds and 207 kinases. Only those participants who submitted their Dockerized models, 
method write-ups and method surveys were qualified to win the two sub-challenges. To select 
the top-performers for the two winning metrics, Spearman correlation and RMSE, we conducted 
a bootstrap analysis of each participant’s best submission, and then calculated a Bayes factor 
(K) relative to the bootstrapped overall best submission for each winning metric (Suppl. Fig. 6). 
Considering Spearman correlation, the top-performer was team Q.E.D (K<3; Fig. 4A). For the 
RMSE metric, the top-performing teams were AI Winter is Coming (AIWIC) and DMIS_DK (K<3; 
Suppl. Fig. 6 ), with AIWIC having a marginally better tie-breaking metric (average AUC of 0.773; 
Fig. 4B). Only two non-qualifying participants (Gregory Koytiger and Olivier Labayle ) showed a 
comparable performance. Overall, these five teams performed the best when considering the 54 
teams in Round 2 (Suppl. Fig. 7).  
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Figure 4 . Top-performing models and their ensemble combination. (A) Spearman 
correlation sub-challenge top-performer in Round 2, Q.E.D. (B) RMSE sub-challenge 
top-performer in Round 2, AI Winter is Coming. (C) Ensemble model that combines the top four 
models selected based on their Spearman correlation in Round 2. The points correspond to the 
394 compound-kinase pairs between 25 inhibitors and 207 kinases in Round 2. (D) The mean 
aggregation ensemble model was constructed by adding an increasing number of 
top-performing models based on their Spearman correlation, until the ensemble correlation 
dropped below 0.45. The peak performance was reached when aggregating four teams (marked 
in the legend, see Suppl. Fig. 8 for names of all the teams). 
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Notably, the top-performing models were based on various ML approaches, including  deep 
learning, graph convolutional networks, gradient boosting decision trees, kernel learning and 
regularized regression (Table 1). To study whether combining predictions from multiple ML 
approaches could improve prediction accuracy, we constructed an ensemble model by simple 
mean aggregation of an increasing number of top-performing models in Round 2. The 
combination of the four best performing models resulted in the peak Spearman correlation (Fig. 
4C), demonstrating complementary value of these predictions. After adding more models, the 
ensemble prediction accuracy started to decrease rather rapidly, both in terms of Spearman 
correlation and RMSE (Fig. 4D). However, an ensemble prediction from a total of 21 best teams 
had a significantly better correlation than the best single model alone (K>5; Suppl. Fig. 8). This 
suggests that combination of various ML approaches using an ensemble model leads to 
accurate and robust predictions of kinase inhibitor potencies across multiple kinase families. 
 

A Team 
 
Algorithm Type Algorithm Names 

Combined 
Models  Training Strategy 

 DMIS_DK Deep learning Graph Neural Networks 12  Train test split 

 
AI Winter is 

Coming 
Gradient boosting decision 
trees XGboost 5 per target  

K-fold nested cross 
validation, boosting 

 Q.E.D Kernel learning CGKronRLS 440  Boosting 

 Gregory Koytiger Deep learning Not applicable 6  Fixed hold out 

 Olivier Labayle Ridge regression Not applicable Not applicable  
K-fold cross 
validation 

 Baseline Kernel learning CGKronRLS 1  
K-fold nested cross 
validation 

 
 

B Team Training Data Sources 
 Compound- 
Protein Pairs Bioactivity Types 

Protein 
Representation 

Chemical 
Representation 

 DMIS_DK 
DrugTargetCommons, 
BindingDB 953521 Kd, Ki, IC50 None 

2D molecular 
graphs 

 
AI Winter is 

Coming 
DrugTargetCommons, 
ChEMBL 600000 Kd, Ki, IC50, EC50 None 

ECFP5, ECFP7, 
ECFP9, ECFP11 

 Q.E.D 
DrugTargetCommons, 
ChEMBL, Uniprot 60462 Kd, Ki, EC50 

Amino acid 
sequences ECFP4, ECFP6 

 
Gregory 
Koytiger ChEMBL 250000 Kd, Ki, IC50 None None 

 Olivier Labayle 
DrugTargetCommons, 
ChEMBL, Uniprot 18200 Kd K-mer counting ECFP 

 Baseline DrugTargetCommons 44186 Kd 

Amino acid 
sequences 

Path-based 
fingerprints 

 
Table 1. Characteristics of the Round 2 top-performing methods and the baseline model 12.  
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Comparison against single-dose activity 
We next investigated how well the top-performing ML models compare against the single-dose 
activity assays when predicting the pKd measurements. The practical problem of many target 
screening studies is how to reduce the number of false positives and false negatives when 
selecting most potent compound-target activities for more detailed, multi-dose Kd profiling. For 
this classification task, we defined the ground truth activity classes based on the measured Kd 
potencies, which provide a more direct prediction outcome, compared to the rank correlation 
analyses that already demonstrated predictive rankings from the top-performing models (Fig. 4). 
Using the activity cut-off of measured pKd = 6 and an single-dose inhibition cut-off of 80%, 
similar to previous studies,5,11,13  the positive predictive value (PPV) and the false discovery rate 
(FDR) of the single-dose assay were PPV = 0.66 and FDR = 0.44 in the Round 2 dataset. When 
using the mean aggregation ensemble of the predicted pKd values from the top-performing 
models and the same cut-off of pKd > 6 for both the predicted and measured activities, we 
observed an improved precision of PPV = 0.76 and FDR = 0.24. 
 
We further repeated the activity classification with multiple cut-off levels, and ranked the Round 
2 pairs both using the model-predicted pKd values and the measured single-dose inhibition 
assay values, and then compared these rankings against the measured dose-response assay 
(pKd > 6 indicates positive activity class). The ROC analyses demonstrated an improved activity 
classification accuracy using the mean ensemble of the top-performing models (Fig. 5A), 
especially when focusing on the most potent compound-target activities with the highest 
specificity that are important in practice when prioritizing a subset of most potent activities for 
multi-dose validation. This improvement in both sensitivity and specificity was achieved without 
making any additional activity measurements, and it became even more pronounced with the 
precision-recall analysis, which showed that the precision of the prediction models remained 
above PPV=75% level even when the recall (sensitivity) level exceeded 75% (Fig. 5B). As 
expected, the prediction accuracy decreased when using more stringent activity cut-off of pKd > 
7 (Suppl. Fig. 9), since these extreme activities are more challenging to predict.  
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Figure 5. Top-performing model predictions compared against single-dose assays. (A) 
Receiver operating characteristic (ROC) curves when ranking the 394 compound-kinase pairs 
from Round 2 using both the ensemble of the top-performing models (average predicted pKd 
from Q.E.D, DMIS_DK and AI Winter is Coming) and the experimental single-dose inhibition 
assays (the true positive activity class includes pairs with measured pKd > 6). The area under 
ROC curve values are shown in the parentheses and the diagonal dotted line shows the random 
prediction accuracy of AU-ROC=0.50. (B) Precision-recall (PR) curves for the same activity 
classification analysis as shown in panel A. The area under the PR curve values are shown in 
parentheses and the horizontal dotted line indicates the precision of 0.75 level. 
Sensitivity=Recall. Precision=PPV. 
 
 
Since the Round 2 multi-dose Kd measurements were pre-selected among all the 5100 
compound-kinase pairs to include mostly those pairs with single-dose inhibition>80%, Round 2 
dataset enables systematic analysis of false positive predictions made based on single-dose 
assays or model predictions. However, these 394 pairs selected for Kd profiling were more 
limited for a comprehensive analysis of false negative predictions (i.e., those with measured pKd 

> 6, but single-dose inhibition<80% or predicted pKd < 6). This means that the above comparison 
between single-dose inhibition assays and model-predicted pKd is biased in the sense that the 
inhibition values were used to select the pairs for the Round2 Kd profiling, which therefore 
misses the more challenging compound-kinase pairs that had lower single-dose inhibition. This 
is why in the next section we carried out further experimental validations of the model-predicted 
pKd profiles in a more unbiased manner to investigate false negative predictions from both 
single-dose assays and ML models. 
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Model-based target predictions  
To explore the compound-kinase pairs across the full spectrum of single-dose inhibition levels, 
we experimentally profiled 81 additional pairs, which were not part of Round 1 or 2 datasets, 
based solely on the pKd predictions from the three top-performing models. These follow-up 
experiments were carried out in an unbiased manner, regardless of the compound class or 
selectivity, kinase target families, or inhibition levels of the pairs, to investigate whether it is 
possible to use predictive models to identify potent inhibitors of kinases showing less than 80% 
single-dose inhibition; this activity cut-off is often used when selecting pairs for multi-dose Kd 

testing 5,11,13. Most of the measured pKd values of these 81 pairs were distributed as expected, 
according to the expected single-dose inhibition function (Fig. 6A, black trace). However, this 
model-based approach also identified unexpected activities (pKd > 6) that could not be predicted 
based on the inhibition assay only; those with pKd > 7 are discussed below. 
 
As an example of a potent activity missed by the single-dose assays, the top-performing models 
predicted PYK2 (PTK2B) as a high affinity target of a PLK inhibitor TPKI-30 (Fig. 6A). The new 
multi-dose pKd measurements validated that TPKI-30 indeed has an activity against PYK2 close 
to its potency towards PLK2 (Fig. 6B, left panel). This is rather surprising and novel result that a 
PLK inhibitor targets PYK2, and with a somewhat lesser potency also its paralog, FAK (PTK2). 
Neither PYK2 or FAK would have been predicted to be potent targets based on the single-dose 
testing alone, which led to multiple false negatives (Fig. 6B, right panel). Similarly, the single 
dose-testing had a relatively low predictivity of actual potencies for TPKI-30, since kinases other 
than PLKs with high single-dose activity were reported as non-potent targets based on 
dose-response Kd testing, resulting in false positives. In contrast, the model predictions turned 
out to be relatively accurate, except for a few receptor tyrosine kinases (Fig. 6B, left panel).  
 
Another unexpected target activity was predicted for GSK1379763 that showed high potency 
against DDR1 based on the Kd assays, exceeding that of the AURKB (Fig. 6C, left panel). The 
single-dose testing suggested that this compound would not have potency against DDR1 or 
AURKB (Fig. 6C, right panel), whereas multi-dose assays confirmed potency towards DDR1 at a 
higher level as against the Round 2 highest affinity target MEK5 (MAP2K5). Notably, both of 
these high affinity predicted targets, PYK2 and DDR1, are less-explored kinases with only a few 
bioactivity data values available in DTC or ChEMBL. This suggests that the prediction models 
can identify potent inhibitors for under-studied kinases that would have been missed when using 
single-dose assays alone. The third high predicted activity between AKI00000050a and FLT1 
could have been predicted based on its relatively high single-dose activity (Fig. 6A). This 
compound was confirmed to be a potent KDR (FLT2) inhibitor with quite similar potency as that 
against FLT1.  
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Figure 6. Machine learning-based target predictions. (A) Comparison of single-dose 
inhibition assay (at 1 µM) against multi-dose Kd assay activities across 475 compound-target 
pairs (394 Round 2 pairs and 81 additionally profiled pairs). The red points indicate false 
negatives and blue points false positives when using cut-offs of pKd = 6 and inhibition=80% 
among the Round 2 pairs (including 75 pairs with inhibition>80% but that showed no activity in 
the dose-response assays, i.e, pKd = 5). The green points indicate the new experimental 
validations based solely on model predictions, regardless of inhibition levels. Both the 
single-dose and dose-response assays were carried out as competitive binding assays similar to 
previous studies.11 The black trace indicates the expected %inhibition rate based on measured 
pKd’s, estimated using the  maximum ligand concentration of 1 µM both for the single-dose and 
dose-response assays. (B) Multi-dose (left) and single-dose (right) assays for kinases tested 
with TPKI-30. Green points indicate the new experimental validations based on model 
predictions, whereas black points come from Round 2 data. Blue points indicate false positive 
predictions based either on predictive models or single-dose testing. Single-dose testing 
predicted TPKI-30 to be relatively potent PLK1/2/3 inhibitor, whereas the dose-response testing 
confirmed it as PLK1 selective. (C) Multi-dose (left) and single-dose (right) assays for kinases 
tested with GSK1379763. Green points indicate the new experimental validations based on 
model predictions, whereas black points come from Round 2 data. Blue points indicate false 
positive predictions based either on predictive models or single-dose testing. (D) Predictive 
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accuracy of the ensemble of top-performing models (average predicted pKd) and single-dose 
assay (at 1 µM) when classifying various subsets of 475 pairs into those with measured pKd less 
or higher than 6. The y-axis indicates the  area under the receiver operating characteristic curve 
(AUC) as a function single-dose inhibition cut-off levels, x-axis indicates the pairs with 
inhibition>x%, and the dotted black curve the percentage of all pairs that passed that activity 
cut-off threshold.The combined model trace corresponds to the average of measured and 
expected inhibition values, where the latter was calculated based on the mean ensemble of the 
top-performing model pKd predictions (Q.E.D., DMIS_DK and AI Winter is Coming). (E) Receiver 
operating characteristic (ROC) curves (left) and precision-recall (PR) curves (right), when 
ranking all the 475 pairs either using the top-performing model-predicted pKd values or the 
measured single-dose inhibition assays (the true positive activity class includes pairs with 
measured pKd > 6). The AUC values are shown in parentheses, and the diagonal dotted line 
indicates the random prediction accuracy of AU-ROC=0.50 (left), and the horizontal dotted line 
indicates the precision level of 0.75 (right). Sensitivity=Recall. Precision=PPV.  
 
 
Surprisingly, the single-dose inhibition assays and model-based pKd predictions were almost 
uncorrelated (Suppl. Fig. 10, Spearman correlation 0.24), and they showed opposite trends for 
Kd prediction accuracy when increasing the inhibition cut-off level (Fig. 6D). To combine these 
two activity estimators, we calculated for each compound-kinase pair an average of the 
measured and expected inhibition values based on the single-dose assay and the 
top-performing models, respectively. This combined predictor showed improved activity 
classifications beyond that of the model predictions alone, across various inhibition levels, and 
identified a larger number of potent compound-target interactions with lower single-dose activity, 
compared to the standard 80% cut-off (Fig. 6D, dotted line). The combined model improved both 
the sensitivity and specificity of the pKd predictions among all the 475 pairs (Fig. 6E, left panel), 
and especially the precision of the top-activity predictions that are prioritized for further 
experimental validation (Fig. 6E, right panel).  
 
Discussion  
Experimental mapping of compound-target interactions is critical for understanding compounds’ 
mode of action (MoA), but biochemical target activity profiling experiments are both time 
consuming and costly. Moreover, the enormous size of the chemical universe, estimated to 
consist of approximately 10 20 molecules exhibiting good pharmacological properties,14,15 makes 
experimental bioactivity mapping of the full compound and target space quickly infeasible in 
practice. ML models are aimed at guiding  data-driven decision making, and these models have 
shown their potential to reduce failure rates and accelerate several phases of drug discovery 
and development.16 The IDG-DREAM Drug Kinase Binding Prediction Challenge sought to 
benchmark state-of-the-art ML algorithms in the task of exploring the druggable kinome space 
by combining predictive modelling with experimental target activity profiling. In particular, the 
Challenge participants applied supervised ML models in the task of guiding biochemical 
mapping efforts by systematic prioritization of the most potent compound-target activities for 
further experimental evaluation. The ML model-guided approach has the potential to help both 
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(i) phenotype-based drug discovery (e.g. mapping the active target space of lead compounds), 
and (ii) target-based drug discovery (e.g. identification of candidate compounds that selectively 
inhibit a particular disease-related target).  
 
Although previous work has already demonstrated the potential of ML algorithms for filling in the 
gaps in existing drug-target interaction maps,12 there are no systematic benchmarking 
comparisons of the algorithms in blinded, comprehensive datasets. The participants were 
therefore encouraged to explore various statistical and machine learning modelling approaches. 
In the Round 2 results, no particular method class, training data source or bioactivity type stood 
out. Rather, the top-performing teams used relatively different approaches (Table 1). Some of 
the top-performing models used protein sequence as target feature, but no structural 
information. Furthermore, none of the top-performing models require 3D or other detailed 
chemical information, making the ML models rather straightforward to apply for many compound 
and target classes. Recently, many advanced deep learning (DL) algorithms have been 
proposed for compound-target interaction prediction,22–24 but our results did not find DL 
outperforming other learning approaches. The Spearman correlation sub-challenge top- 
performer (Q.E.D) actually used the same modelling approach as the baseline model,12 yet 
showing markedly better performance (Fig. 3F), indicating that careful feature selection, method 
implementation, or other domain knowledge, could result in marked performance improvement.  
A number of other models also outperformed the baseline model in Round 2 (Suppl. Fig. 7). 
 
To get a more global picture, at the end of the Challenge we asked all the teams to fill in survey 
questionnaires to explore whether there would be any broad method classes or chemical or 
target features shared among the models. Among the 31 teams that answered the surveys, 
none of the method classes had a very strong contribution to the accuracy (Suppl. Fig. 11), 
similarly as has been seen also in other DREAM challenges.17–19 A rather surprising observation 
from the survey was that the Kd prediction accuracies could be somewhat improved by using 
also other types of multi-dose bioactivity data (e.g. Ki, IC50, EC50), compared to using Kd data 
alone (Suppl. Fig. 11). This provides a further opportunity for ML models that often require 
relatively large training datasets, as these bioactivity types are among the most common ones 
so far used in multi-dose target profiling, and more common than Kd in DTC database (Suppl. 
Fig. 11G). Another observation was that the teams that used DTC alone as training bioactivity 
data source tended to have somewhat decreased predictive accuracy, perhaps because of more 
heterogeneous bioactivity data stored in DTC, compared to BindingDB7 or ChEMBL.6 This 
suggests that further annotation and harmonization of the various types and sources of 
bioactivity data will be needed to make the most of these data for predictive modelling, ideally in 
the form of a crowdsourced community effort.  
 
Many previous DREAM Challenges have demonstrated that ‘wisdom of the crowds’ may also 
improve the predictive power of the individual models through combining the models as 
meta-predictors or ensemble models.17–19 The ensemble model constructed in this Challenge 
based on the Round 2 submissions showed that the critical point came rather quickly after which 
adding more models led to rather rapid decrease in accuracy (Fig. 4D). This suggests that in 
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drug-target interaction prediction a better strategy may be to use merely the ‘wisdom of the best 
teams’. The combination of the top-performing ML models improved both the sensitivity and 
specificity, compared to single-dose target activity assays, without requiring any additional 
experiments (Fig. 5). None of the top-performing models used single-dose inhibition assay data, 
and we showed how by combining the inhibition measurements with ML models, one can reach 
higher prediction accuracy than using either one alone, while identifying an increased number of 
potent compound-kinase activities than when using the standard 80% inhibition cut-off (Fig. 6). 
The best-performing models were not dependent on the number or type of available bioactivity 
data, provided the training data have sufficient structural diversity for the kinase families being 
predicted. Subsequent experiments carried out based on the the top-performing model 
predictions demonstrated that these models can guide the experimental mapping efforts,25  
especially for so far under-studied kinases (Fig. 6B,C). 
 
To enable the community to apply the ML models benchmarked in the Challenge to various drug 
development applications, we have made available the top-performing prediction models as 
containerized source code. Such Docker models enable continuous validation of the model 
predictions whenever new experimental kinase profiling data will become available, as well as 
enable the researchers to run the best performing models on private data that would otherwise 
remain closed and unavailable to the research community.20 This Challenge will, therefore, 
contribute to the further development and benchmarking of the current and future target activity 
prediction models on a much larger scale and for various precision medicine applications. For 
instance, for the prediction of selective inhibitors for new kinase targets, or off-target potency 
predictions for new investigational compounds. All the prediction models, new bioactivity data, 
and benchmarking infrastructure are openly available either on Synapse 
(www.doi.org/10.7303/syn15667962) or via DTC open-data platform 
(https://drugtargetcommons.fimm.fi/). We envision that the IDG-DREAM Challenge will provide a 
continuously-updated resource for the chemical biology community to prioritize and 
experimentally test new target activities toward accelerating many drug discovery and 
repurposing applications. 
 
 
Online Methods 

 
Challenge infrastructure and timeline  
The Challenge was organized and run on the collaborative science platform Synapse. All 
prediction files were submitted using the Challenge feature of this platform to track which teams 
and individuals submitted files, and to track the number of submissions per team. Challenge 
infrastructure scripts including code for calculating the scoring metrics are available at 
https://github.com/Sage-Bionetworks/IDG-DREAM-Drug-Kinase-Challenge . Teams were 
permitted to submit three predictions for Round 1, and two predictions for Round 2 (Suppl. Fig. 
3). For Rounds 1 and 2, we used a common workflow language-based challenge infrastructure 
to perform the following tasks: (1) validate a prediction file to ensure that it conformed to the 
correct file structure and had numeric pKd predictions and return an error email to participants if 
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invalid, (2) run a python script to calculate the performance metrics for a submitted prediction, 
and (3) return the score to the Synapse platform. For Round 1b, in which we permitted 1 
submission a day for 60 days, we implemented a modified Ladderboot21 protocol to prevent 
model overfitting. This was done by modifying step (2) above as follows: the scoring 
infrastructure receive a submitted prediction, check for a previous submission from the same 
team, and run an R script to bootstrap the current and previous submission 10000 times, 
calculate a Bayes factor (K) between the two submissions; the scoring harness would then only 
return an updated score if it was substantially better (K > 3) than the previous submission.  
 
Bioactivity data for model testing  
To generate unpublished test bioactivity data for scoring of predictions, we sent kinase inhibitors              
to DiscoverX (Eurofins Corporation) for the generation of new dose-response dissociation           
constant (Kd) values, as a measure of a binding affinity. In order to give a better sense of the                   
relative compound potencies, Kd is represented in the logarithmic scale, as pKd = -log 10(Kd),              
where Kd is given in molars [M]. The higher the pKd value, the higher the inhibitory ability of a                   
compound against a protein kinase. The 105 inhibitors used in the Challenge (70 for Round 1                
and 25 for Round 2) were a part of the kinase inhibitor collection at the SGC-UNC for which we                   
already had the single-dose inhibition screening done at DiscoverX across their large kinase             
panel. This scan MaxSM data (also called KINOMEScan) was collected at a screening            
concentration of 1 µM. A two-step screening approach was adopted, similar to the previous              
studies3–5,5, using the DiscoverX KINOMEscan standard protocol       
(https://www.discoverx.com/services/drug-discovery-development-services/kinase-profiling/kino
mescan ). The dose-response Kd values were generated for a range of compound-kinase pairs             
that had inhibition>80% in the single-dose assay. The compounds were supplied as 10 mM              
stocks in DMSO, and the top screening concentration was 10 mM.  
 
25 of the axitinib-kinase pairs generated for Round 2 were already profiled in previous published 
studies,5,11 and were therefore excluded from the Round 2 dataset. The Spearman correlation 
between these newly-measured pKd’s and those available from DTC was 0.701 (Suppl. Fig. 
12A), providing the experimental consistency of the Kd measurements for axitinib. We note this 
25 pKd’s is a rather limited set for such analysis of consistency, and therefore we extracted a 
larger set of 416 Kd values that overlapped with the Round 2 kinases from two comprehensive 
target profiling studies3,4 .including 104 pairs where pKd = 5 in both of the studies. The Spearman 
correlation of these replicate pKd measurements wa s 0.842 (Suppl. Fig. 12B), demonstrating a 
good reproducibility of the pKd measurements. These replicate measurements were also used 
when determining a practical upper limit for the predictive accuracy of the machine learning 
models in the scoring of their predictions (see below). 
 
To subsequently test the top-performing model predictions in additional compound-kinase pairs 
that were not part of Round 1 or 2 datasets, we selected a set of 88 pairs that showed most 
potency based on the average predicted pKd of the top-performing models (Q.E.D., DMIS-DK 
and AIWIC), regardless of their single-dose inhibition levels. These 88 pairs were scattered 
across the whole spectrum of single-dose inhibition levels, ranging from 0% to 78% 
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(Supplementary Fig. 10; note: pairs with inhibition >80% were Kd-profiled already in Round 2). 
One of the compounds (TPKI-35) was not available from IDG, so the predicted 7 kinase targets 
for  that compound could not be tested experimentally, resulting in a dataset of total of 81 
compound-kinase pairs that were shipped to DiscoverX for multi-dose Kd profiling. One of the 
compounds (GW819776) was shipped separately in a tube, whereas the other 14 compounds 
were supplied as 10 mM stocks in DMSO, and the Kd profiling done was done using the same 
KINOMEscan competitive binding assay protocol as for the Round 1 and Round 2 pairs. 
 
Scoring of the model predictions 
We used the following six metrics to score the predictions from the participants: 

● Root-mean-square error (RMSE): square root of the average squared difference 
between the predicted pKd and measured pKd, to score continuous activity predictions. 

● Pearson correlation: Pearson correlation coefficient between the predicted and 
measured pKd’s, which quantifies the linear relationship between the activity values. 

● Spearman correlation: Spearman's rank correlation coefficient between the predicted 
and measured pKd’s, which quantifies the ability to rank pairs in correct order. 

● Concordance index (CI)22: probability that the predictions for two randomly drawn 
compound-kinase pairs with different pKd values are in the correct order. 

● F1 score: the harmonic mean of the precision and recall metrics. Interactions were 
binarized by their pKd values into positive class (pKd > 7) and negative class (pKd ≤ 7). 

● Average AUC: average area under ten receiver operating characteristic (ROC) curves 
generated using  ten interaction threshold values from the pKd interval [6, 8] to binarize 
pKd's into true class labels.  

 
The submissions in Round 1 were scored across the six metrics but the teams remained 
unranked. The Round 2 consisted of two sub-challenges, the top-performers of which were 
determined based on RMSE and Spearman correlation, respectively. Spearman correlation 
evaluated the prediction in terms of accuracy at ranking of the compound-kinase pairs based on 
the measured Kd values, whereas RMSE considers the absolute errors in the quantitative 
binding affinity profiles. The tie-breaking metric for both Rounds was averaged area under the 
curve (AUC) metric that evaluated the accuracy of the models to classify the pKd values into 
active and inactive classes based on multiple Kd thresholds. 
 
Statistical evaluation of the predictions 
Determination of the top-performers was made by calculation of a Bayes factor relative to the 
top-ranked submission in each category. Briefly, we bootstrapped all submissions (10000 
iterations of sampling with replacement), and calculated RMSE and Spearman correlation to the 
test dataset to generate a distribution of scores for each submission. A Bayes factor was then 
calculated using the challengescoring R package 
(https://github.com/sage-bionetworks/challengescoring ) for each submission relative to the top 
submission in each subchallenge. Submissions with a Bayes factor <= 3 relative to the top 
submission were considered to be tied as top-performers. Tie breaking for both subchallenges 
was performed by identifying submission with the highest absolute average AUC. 
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To create a distribution of random predictions, we randomly shuffled the 430/394 Kd values 
across the set of 430/394 compound-kinase pairs in the Round 1/Round 2 datasets, and 
repeated the permutation procedure 10000 times. Then we compared the actual Round 
1/Round 2 prediction scores to Spearman and RMSE calculated from the permuted Kd data. We 
defined a prediction as better than random if its score was higher than the maximum of the 
10000 random predictions (empirical p=0.0, permutation test).  
 
To determine the maximum possible performance practically achievable by any computational 
models, we utilized replicate Kd measurements from distinct studies that a pplied a similar 
biochemical assay protocol. We used the DrugTargetCommons to retrieve 863 and 835 
replicated Kd values for kinases or compounds that overlapped with the Round 1 and 2 datasets, 
respectively. These data originated from two comprehensive screening studies3,4. To better 
represent the distribution of pKd values in the test data, we subset the DTC data to contain 35% 
(Round 1) and 25% (Round 2) pKd=5 values, approximately matching the proportion of pKd = 5 
values in R1 and R2 test sets. For Round 1, we used 317 replicated Kds, including 111 
randomly selected pairs where pKd = 5. For Round 2, we used 416 replicated Kds, including 104 
randomly selected pairs where pKd = 5. We randomly sampled the replicate measurements of 
these compound-kinase pairs (with replacement), calculated the Spearman correlation and 
RMSE between the Davis and Fabian pKd’s for each 430 and 394 sub-sampled sets for Round 
1 and 2, respectively, and re peated this procedure for a total of 10000 samplings. 
 
Baseline model  
We used a recently-published and experimentally-validated kernel regression framework as a           
baseline model for compound-kinase binding affinity prediction 12. Our training dataset consisted           
of 44186 pKd values (between 1968 compounds and 423 human kinases) extracted from DTC.              
Median was taken if multiple pKd measurements were available for the same compound-kinase             
pair. We constructed protein kinase kernel using normalized Smith-Waterman alignment scores           
between full amino acid sequences, and four Tanimoto compound kernels based on the             
following fingerprints implemented in rcdk R package 23: (i) 881-bit fingerprint defined by            
PubChem (pubchem), (ii) path-based 1024-bit fingerprint (standard ), (iii) 1024-bit fingerprint          
based on the shortest paths between atoms taking into account ring systems and charges              
(shortestpath ), and (iv) extended connectivity 1024-bit fingerprint with a maximum diameter set            
to 6 (ECFP6; circular). We used CGKronRLS as a learning algorithm24 (implementation available             
at https://github.com/aatapa/RLScore ). We conducted a nested cross-validation in order to          
evaluate the generalisation performance of CGKronRLS with each pair of kinase and compound             
kernels as well as to tune the regularisation hyperparameter of the model. In particular, since the                
majority of the compounds from the Challenge test datasets had no bioactivity data available in               
the public domain, we implemented a nested leave-compound-out cross-validation to resemble           
the setting of the Challenge as closely as possible. The model comprising of protein kernel               
coupled with compound kernel built upon path-based fingerprint (standard ) achieved the highest            
predictive performance on the training dataset (as measured by RMSE), and therefore it was              
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used as a baseline model for compound-kinase binding affinity prediction in both Challenge             
Rounds. 
 
Top-performing models 
Supplementary write ups provide details of all qualified models submitted to the Challenge 
(http://www.doi.org/10.7303/syn21445941.1 ). The key components of the top-performing models 
are listed in Table 1 and summarized below. 
 
Team Q.E.D model 
To enable a fine-grained discrimination of binding affinities between similar targets (e.g., kinase 
family members), the team Q.E.D explicitly introduced similarity matrices of compounds and 
targets as input features into their regression model. The regression model was implemented as 
an ensemble version (uniformly averaged predictor) of 440 CGKronRLS regressors24,25, but with 
different choices of regularization strengths [0.1, 0.5, 1.0, 1.5, 2.0], training epochs [400, 410, 
…, 500], and similarity matrices: the protein similarity matrix was derived based on the 
normalized striped Smith-Waterman alignment scores26 between full protein sequences  
(https://github.com/mengyao/Complete-Striped-Smith-Waterman-Library). Eight different 
alternatives of compound similarity matrices were computed using both Tanimoto and Dice 
similarity metrics for different variants of 1024-bit Morgan fingerprints27(‘radius’ [2, 3] and 
‘useChirality’  [True, False], implementation available at https://github.com/rdkit/rdkit). Unlike the 
baseline method, which used only the available pKd values from DTC for training, the team 
Q.E.D model extracted 16945 pKd, 53894 pKi  and 3301 pEC50 values from DTC. After merging 
the same compound-kinase pairs from different studies by computing their medians, 60462 
affinity values between 13608 compounds and 527 kinases were used as the training data.  
 
Team DMIS_DK model 
Team DMIS_DK built a multi-task Graph Convolutional Network (GCN) model based on 953521 
bioactivity values between 474875 compounds and 1474 proteins extracted from DTC and 
BindingDB. Three types of bioactivities were considered, that is, pKd, pKi , and pIC50. Median was 
computed if multiple bioactivities were present for the same compound-protein pair. Multi-task 
GCN model was designed to take compound SMILES strings as an input, which were then 
converted to molecular graphs using RDKit python library (http://www.rdkit.org). Each node (i.e. 
atom) in a molecular graph was represented by a 78-dimensional feature vector, including the 
information of atom symbol, implicit valence, aromaticity, number of bonded neighbors in the 
graph, and hydrogen count. No protein descriptors were utilized. The final model was an 
ensemble of four multi-task GCN architectures described in the Supplementary writeups 
(http://www.doi.org/10.7303/syn21445941.1 ). For the Challenge submission, the binding affinity 
predictions from the last K epochs were averaged, and then the average was taken over the 12 
multi-task GCN models (four different architectures with three different weight initializations). 
Hyper-parameters of the multi-task GCN models were selected based on the performance on a 
hold-out set extracted from the training data. The GCN models were implemented using 
PyTorch Geometric (PyG) library28.  
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Team AI Winter is Coming model 
Team AI Winter is Coming built their prediction model using Gradient Boosted Decision Trees 
(GBDT) implemented in XGBoost algorithm29. Training dataset included 600000 pKd, pKi , pIC50, 
and pEC50 values extracted from DTC and ChEMBL (version 25), considering only 
compound-protein pairs with ChEMBL confidence score of 6 or greater for ‘binding’ or 
‘functional’ human kinase protein assays. For a given protein target, replicate compounds with 
different bioactivities in a given assay (differences larger than one unit on a log scale) were 
excluded. For similar replicate measurements, a single representative assay value was selected 
for inclusion in the training dataset. Each compound was characterized by a 16000-dimensional 
feature vector being a concatenation of four ECFP fingerprints with a diameter set to of 5, 7, 9, 
and 11. No protein descriptors were used in the XGBoost algorithm. A separate model for each 
protein target was trained using nested cross-validation (CV), where inner loops were used to 
perform hyperparameter optimisation and recursive feature elimination. The final binding affinity 
prediction was calculated as an average of the predictions from the cross-validated models 
based on five outer CV loops. 
 
Mean ensemble model construction  
Ensemble models were generated by combining the best-scoring Round 2 predictions from each 
team. We iteratively combined models starting from the highest scoring Round 2 prediction (e.g. 
ensemble #1 - highest scoring prediction, ensemble #2 - 2 highest scoring, ensemble #3 - 3 
highest scoring, and so on) for all 54 Round 2 submissions. Three types of ensembles were 
created using arithmetic mean, median, and rank-weighted summarization approaches. The 
rank-weighted ensemble was calculated by multiplying each set of predictions by the total 
number of submissions plus 1 minus the rank of the prediction file, summing these weighted 
predictions, and then dividing by the sum of the multiplication factors. The 54 ensemble 
predictions for each of the 3 summary metrics were bootstrapped and Bayes factors were 
calculated as previously described to determine which models were substantially different than 
the top ranked submission.  
 

Estimating the expected inhibition levels 
The KINOMEscan assay protocol utilized for both the single-dose and dose-response assays is             
based on competitive binding assays, where the maximum compound concentration tested was            
1000 nM in both of the assays. For a given compound-kinase pair, the Kd values calculated from                 
the dose-response assay were then used to estimate the expected single-dose %inhibition level             
(at 1000 nM of compound)  using the conventional ligand occupancy formula: 

  ligand occupancy/expected %inhibition  % = Maximum ligand concentration
Maximum ligand concentration (M ) + Estimated Kd (M )  

 
where  aximum ligand concentration 1e 6 MM =  − 0  

The expected %inhibition values based various measured pKd levels are shown in the table: 
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Measured pKd  Measured Kd [M] Expected inhibition [%] 

3 1e -03 0 

4 1e -04 1 

5 1e -05 10 

6 1e -06 50 

7 1e -07 91 

8 1e -08 99 

9 1e -09 100 

 
 
Activity classification analyses 
Standard confusion matrix was constructed using the measured pKd values to define the true              
positive and true negative classes for the 394 pairs in Round2, using either pKd > 6 and pKd > 7                    
for indicating true positive activity, and the predicted positive and negative classes for these              
pairs were defined based on either the single-dose activity measurement, using inhibition cut-off             
of 80%,5,11,13 or the Q.E.D model-predicted pKd values, using the same activity thresholds as with               
the measured pKd values (i.e., either pKd = 6 or pKd = 7). Positive predictive value (PPV) and                  
false discovery rate (FDR) were calculated as classification performance scores.  
 
To carry out a more systematic analysis of prediction accuracies, the 394 pairs in Round 2 were                 
ranked both using Q.E.D model-predicted pKd values and the measured single-dose %inhibition            
values, and then these rankings were compared against the ground-truth activity classification            
based on the dose-response measurements (using both pKd > 6 and pKd > 7 for indicating true                 
positive activity). The results were visualized using both receiver operating characteristic (ROC)            
and precision-recall (PR) curves, implemented in pROC and pRROC R-packages,          
respectively30,31. The area under the ROC and PR curves was calculated as summary             
classification performance. 
 
Data and code availability 
The Challenge test data will be made available at DTC (https://drugtargetcommons.fimm.fi/).           
The Docker containers of the best-performing teams are available on the Synapse project for              
this Challenge (www.doi.org/10.7303/syn15667962 ). The codes for reproducing the results and          
figures are available at GitHub     
(https://github.com/Sage-Bionetworks/IDG-DREAM-Challenge-Analysis/). Key R packages used     
for this work beyond those mentioned elsewhere in this section include tidyverse 32 and             
synapser33; all packages used and their versions can be found in the renv lockfile in the                
previously mentioned GitHub repository. 
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