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Abstract 

Over the past decade, studies of the human genome and microbiome have deepened our              

understanding of the connections between human genes, environments, microbes, and disease. For            

example, the sheer number of indicators of the microbiome and human genetic common variants              

associated with disease has been immense, but clinical utility has been elusive. Here, we compared the                

predictive capabilities of the human microbiome versus human genomic common variants across 13             

common diseases. We concluded that microbiomic indicators outperform human genetics in predicting            

host phenotype (overall Microbiome-Association-Study [MAS] area under the curve [AUC] = 0.79 [SE =              

0.03] , overall Genome-Wide-Association-Study [GWAS] AUC = 0.67 [SE = 0.02]). Our results, while              

preliminary and focused on a subset of the totality of disease, demonstrate the relative predictive ability                

of the microbiome, indicating that it may outperform human genetics in discriminating human disease              

cases and controls. They additionally motivate the need for population-level microbiome sequencing            

resources, akin to the UK Biobank, to further improve and reproduce metagenomic models of disease. 

 

Main Text 

We have come to know the human microbiome, or metagenome, as our “second genome,”(Grice and               

Segre 2012) and, indeed, the human genome and metagenome share many features (Figure 1A). Both               

are, at their cores, networks of genes that affect host health and vary across human populations                

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 2, 2020. ; https://doi.org/10.1101/2019.12.31.891978doi: bioRxiv preprint 

https://paperpile.com/c/hJUwyf/oOcLg
https://paperpile.com/c/hJUwyf/oOcLg
https://doi.org/10.1101/2019.12.31.891978


 
(Thingholm et al. 2019; Morgan et al. 2012; Vatanen et al. 2016; Minot and Willis 2019; Boyle, Li, and                   

Pritchard 2017). However, there are striking dissimilarities as well, notably in terms of scale (~20,000               

human genes vs. tens of millions of microbial genes across thousands of species), the transient nature                

of human microbiota, and the sensitivity of the microbiome to the host’s environment(Rothschild et al.               

2018; Tierney et al. 2019; Moraes and Góes 2016; Theriot et al. 2014) We hypothesized that since the                  

microbiome may be viewed as a hub that captures host environmental factors, microbial features may               

provide sources of variation not captured by static host common variants. Therefore, a natural question               

arises when reflecting upon our “first” and “second” genomes: how are microbiome and human genome               

different (or complementary) in their ability to characterize host phenotype, and which one is superior               

at doing so overall?  

 

Answering these questions would have vast implications for our understanding of the genome’s and              

microbiome’s respective diagnostic and therapeutic potentials. Rothschild and colleagues have          

documented a way to measure the total variance explained of metagenomic indicators in complex traits               

called the “microbiome-association-index” (b2) (Rothschild et al. 2018). This measure quantifies the            

total variance explained between microbiota and host phenotype after accounting for genetic variation             

and is analogous to heritability (h2) (Peter M Visscher, Hill, and Naomi R Wray 2008), which describes                 

variation in a phenotype attributable to genetics.  

 

However, the comparison between the predictive capability of metagenomics and common variants of             

the human genome has been only anecdotal to date. Here, to begin to address this gap, we aimed to                   

quantify differences in the ability of the metagenome versus common variants of the human genome to                

predict the presence of specific host phenotypes in case-control studies. 

 

We meta-analyzed the predictive capacity of the metagenome from disparate investigations (Figure            

1B).(Kavvoura and Ioannidis 2008) A number of teams over the past decade have associated host               
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phenotype from either metagenomic or human single nucleotide polymorphism (SNP) data via            

Microbial-Association-Studies (MAS) or Genome-Wide Association Studies (GWAS)       

respectively.(Timpson et al. 2018) For the purposes of this investigation, an MAS is a study that                

associates microbiome features, like species abundance, with disease presence in a case-control            

study. A GWAS aims to associate millions of common genetic variants with disease task (for a full                 

table of definitions relevant to this work, see Supp. Table 1). Common variants have a higher                

prevalence in the population (1-10%). Current GWAS arrays measure on the order of millions of               

common variants; however, the thousands of species and metabolic MAS elements used in our              

aggregated predictors are not constrained by prevalence.  

 

While MAS and GWAS are important to find individual variants or microbial genes associated with               

disease, the aggregate total variants they identify may be clinically informative in their predictive utility,               

for example in exceptional individuals identified in a “polygenic risk score” (Khera et al. 2018). Different                

groups have published on the same diseases in independent cohorts and populations, assessing             

microbial/SNP predictive capability with area under the receiver operator curve (AUC). An AUC of 1.0               

implies perfect classification of disease cases and controls, whereas an AUC of 0.5 means the model is                 

performing no better than random choice. While individual studies may be biased by small sample sizes                

or methodological variation, meta-analyzing across independent studies allow investigators to          

synthesize evidence.(DerSimonian and Laird 2015)  

 

Naturally, GWAS is bound to outperform the microbiome for certain phenotypes (e.g., sex, height) and               

vice versa (e.g., Clostridium difficile infection). Therefore, we chose to focus on exclusively complex               

diseases known to arise from a mixture of environmental and genetic factors, systematically searching              

the literature for microbiome and SNP-based genomic studies that built predictive models host disease.              

In total, we identified 30 publications, 47 distinct MASs and 24 GWASs (Supp. Table 2). 
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We found that metagenomic predictors outperform human common genomic variants in classifying            

hosts based on phenotype (Table 1, Figure 2). The standard-error weighted average AUC for the               

aggregated metagenomic predictors was 0.79 (SE = 0.03), compared to 0.67 (SE = 0.02) for GWAS                

(Figure 2). The phenotype with the broadest discrepancy between meta-analytic metagenomic and            

genomic predictors was colorectal cancer (metagenomic AUC = 0.83 [SE = 0.021], genomic AUC =               

0.56 [SE = 0.012]). The only disease where GWAS outperformed the metagenome in our meta-analytic               

estimates was Type 1 Diabetes (metagenomic AUC = 0.75 [SE = 0.031], genomic AUC = 0.80 [SE =                  

0.075]).  

 

Findings from meta-analyses may be biased due to selective publication biases. We found that both               

metagenomic and genomic studies exhibit publication bias for both the metagenomic and genomic             

studies (metagenomic p-value of p = 0.0003, genomic p-value of p < 0.0001), with the latter                

demonstrating increased slightly funnel plot asymmetry (Supp Fig 2).  

 

We used alternative measures to compare MAS and GWAS to complement our systematic review.              

First, we compared, using published estimates,(Rothschild et al. 2018; “Heritability of >4,000 Traits &              

Disorders in UK Biobank” n.d.) the microbiome-association-index (b2) to estimates of common variant             

heritability (h2) for a series of quantitative traits (Supp Table 3). We found b2 to explain more variance in                   

phenotype than h2 for 6/8 traits, with the only exceptions being height and total cholesterol. As a second                  

method of comparison, we analyzed cohort data from the UK Biobank(Sudlow et al. 2015) to build our                 

own predictors of disease using GWAS-significant common variants (Supp Table 3). We found the              

literature-based metagenomic estimators to universally outperform the genomic AUCs (overall genomic           

AUC = 0.57, SE = 0.0091). Finally, we estimated the maximum AUC (Max_AUC_G) a set of SNPs                 

could theoretically generate for a given disease prevalence and heritability.(Wray et al. 2010) The              

theoretical maximum AUCs assume that the association sizes for all variants have been identified.              

Given that each individual variant explains a small amount of disease risk, large sample sizes are                
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required to extract signal from noise. We found that the microbiome literature-based estimates             

approached the theoretical maximum genetic AUCs. (Supp Table 3). 

 

In short, based on an exhaustive search through a decade of literature and a range of measures (AUC,                  

h 2, and b 2), we conclude that the metagenome is a better predictor of human disease status than                 

common variants of the human genome. We additionally have identified that published metagenomic             

predictors are approaching the theoretical limit of predictive power for genomic common variants – a               

feat not even attained by any of the genomic predictors in our literature review and potentially                

impossible to attain with the largest sample sizes. The major limitations of our study arise from 1) the                  

available literature and its associated publication bias, 2) the predominant reliance of metagenomic vs.              

genomic studies on different tools for prediction with assumptions on the mode of association (linear               

regression and non-linear random forests, respectively), 3) lack of consideration of the changing nature              

of the microbiome, 4) the more established methodology of GWAS, specifically regarding the use of               

validation cohorts in most studies (this is not universally the case for the microbiome), and relatedly, 5)                 

the comparably lower sample size in microbiome studies may have led to “overfitting” in the initial                

studies(Topçuoğlu et al. 2019) and susceptibility to “Winner’s Curse” bias, phenomena that are             

exemplified by inflated initial and non-replicated findings (Ioannidis, Thomas, and Daly 2009).            

Furthermore, all of these predictors (GWAS and MAS) may not be as useful as existing tools for clinical                  

risk prediction, such as the Framingham Risk Score (Wang et al. 2012). If MAS predictors are deployed                 

en masse, what can be done after reporting to patients their microbial disease prediction? Currently,               

not much. The path to medical decision consists of many more steps beyond evaluating AUCs, such as                 

understanding if they are informative of intervention or even if they patients fare better after them. New                 

approaches will be needed to assess MAS predictors in the context of existing predictors and decision                

pathways (Bossuyt et al. 2006). 
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A way to address these problems holistically is to invest in population-scale and longitudinal resources               

for the microbiome, as we have for human genetics (i.e. the UK Biobank). Increasing patient               

observation window lengths and sample sizes from thousands (the scale of the Human Microbiome              

Project(Human Microbiome Project Consortium 2012)) to hundreds of thousands (the scale of the UK              

Biobank) will enable researchers to test the predictive limits of the human microbiome. The difference in                

predictive performance between MAS and GWAS is further amplified when considering this difference             

in resource allocation – with increased investment in large-scale microbiome resources, we           

hypothesize the gap between MAS and GWAS AUCs will further increase. 

 

It is worth investigating further the optimal data types for predicting host phenotype from              

metagenomic/genomic data. For example, the microbiome can be viewed in terms of microbial species,              

metabolic pathways, individual genes, or even in individual SNPs. The metagenomic space contains             

millions of genes(Tierney et al. 2019) and encompasses complex structural variation on top of simple               

single nucleotide polymorphisms (SNPs). Host genetic features, on the other hand, are not limited to               

exclusively the common variants measured on a GWAS chip, which only measures the ~0.1% of where                

the human genome contains variation (1000 Genomes Project Consortium et al. 2015). Feasibly, GWAS             

AUCs could also increase if they incorporated rare features or other genomic elements (i.e.              

insertions-deletions or copy-number variants). While we have shown here that on average            

metagenomics outperforms SNP-based arrays, future work should include doing comparisons between           

all of these different data types, as they will likely perform differently in terms of their predictive                 

capability. 

 

Finally, it is worth noting that predictive performance does not imply causality. Currently, determining              

causality in the human microbiome is challenging and addressed largely through model system             

experimentation. Identifying causal variants is less intense as the human genetic variants are static and               

randomly assorted (Ioannidis et al. 2009). Further, in genetic studies, Issues of confounding via             

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 2, 2020. ; https://doi.org/10.1101/2019.12.31.891978doi: bioRxiv preprint 

https://paperpile.com/c/hJUwyf/0HZlO
https://paperpile.com/c/hJUwyf/zLpHw
https://paperpile.com/c/hJUwyf/tBL09
https://paperpile.com/c/hJUwyf/3IsQd
https://doi.org/10.1101/2019.12.31.891978


 
population stratification (Price et al. 2006) have largely been solved, but identifying confounders in             

dynamic variables are elusive (Manrai, Ioannidis, and Patel 2019). Therefore, while the metagenome            

may outperform GWAS for predicting disease, determining causal relationships between the           

microbiome and disease is potentially more difficult. 

 

Our work is only a gateway study; as we have noted, there is a need for future efforts and                   

methodological development. With increased metagenomic sequencing, we will be able to further this             

work and test the limits of the microbiome in its ability to characterize all manners of host phenotypes.                  

Hopefully, a day is coming soon where metagenomic resources are merged with genomics and clinical               

histories on par, in terms of scale, with those that currently exist for genomics. Only then will we                  

seriously be able to move the microbiome into the clinic en masse. 

 
 

 
Figure 1: Overview. A) Key differences and similarities between the human genome and metagenome.              
B) Meta-analytic process for comparing predictive capacities of human microbiome vs. human genome. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 2, 2020. ; https://doi.org/10.1101/2019.12.31.891978doi: bioRxiv preprint 

https://paperpile.com/c/hJUwyf/9Mz8C
https://paperpile.com/c/hJUwyf/aLidN
https://doi.org/10.1101/2019.12.31.891978


 

 
 
Figure 2: Results from literature-review-based meta-analysis of genomic vs. metagenomic predictors. 
 
 

Phenotype Meta-Analytic Metagenomic 
AUC 

N, 
Metagenomic 

Meta-Analytic Genomic 
AUC 

N, Genomic 

Asthma 0.76 (0.013) 1 0.632 (0.004) 1 
Colorectal Cancer 0.865 (0.021) 10 0.56 (0.012) 1 
Hypertension 0.84 (0.055) 2 0.696 (0.007) 2 
Obesity 0.663 (0.07) 6 0.585 (0.01) 2 
Parkinson's Disease 0.736 (0.045) 3 0.6 (0.019) 1 
Prostate Cancer 0.64 (0.054) 1 0.604 (0.035) 2 
Rheumatoid Arthritis 0.852 (0.062) 5 0.766 (0.007) 1 
Schizophrenia 0.837 (0.037) 1 0.589 (0.009) 2 
Type 1 Diabetes 0.75 (0.031) 3 0.795 (0.075) 3 
Type 2 Diabetes 0.86 (0.101) 2 0.674 (0.04) 2 
(Overall) Inflammatory Bowel Disease 0.802 (0.034) 6 0.782 (0.029) 5 

Ulcerative Colitis 0.92 (0.018) 1 0.765 (0.065) 2 
Crohn's Disease 0.863 (0.072) 3 0.793 (0.034) 3 

Table 1: Meta-analysis of genomic vs. metagenomic predictors. Standard errors are in parentheses,             
followed by the number of models used for a given disease. 
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Supplementary Figure 1: Summarized literature review in terms of A) number of models per disease               
aggregated and B) distribution of prediction methods. 
 

 
Supplementary Figure 2: Funnel plots of AUCs from literature review for A) genomic predictors and B)                
metagenomic predictors. 
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Supplementary Table 1: Table of definitions used in study. 
 
Supplementary Table 2: Literature review process and raw findings. 
 
Supplementary Table 3: Alternative estimations of common variant AUCs, including AUC_PRS           
estimation, h2 versus b2 comparison, and Max_AUC_G estimation. 
 
Supplementary Table 4: Relevant information for phenotyping from the UK Biobank and mapping             
ICD9/10 to PHEWAS codes. 
 
Methods 

Overview of the approach 

We aimed to compare the predictive capacity of the microbiome and the human genome via a                

meta-analytic approach. We identified studies that predicted disease state (versus non-disease           

controls), with the input being either common human genetic variants or metagenomic data. By              

performing a systematic meta-analysis, we aimed to minimize variation due to individual study bias or               

batch effects (i.e. due to model choice, cohort characteristics, or other methodological variation). 

 

We selected studies that 1) clearly reported their methods and sample sizes and 2) used area under                 

the receiver-operator (sensitivity/specificity) curve (AUC) as their summary statistics measure for           

classification accuracy. AUC is used to quantify model performance regarding discriminating between            

the two groups. An AUC of 1 means a model is perfectly separating cases and controls, whereas 0.5 is                   

no better than randomly guessing.  

 

As a further point of comparison, we additionally utilized three alternative methods for computing the               

maximum possible AUC genomic information could provide in predicting disease incidence. Extensive            

research in the genomic space has identified a link between disease heritability – the amount of                

variation in disease explainable by genetic factors – and AUC. Therefore, using prior published              

methods, we were able to compute theoretical maximum AUC values using heritability estimates             

derived from GWAS common variants (referred to as Max_AUC_G). Second, we compared the             
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“microbiome-explainability” statistic (b 2)(Rothschild et al. 2018) to heritability. Third, we built our own             

predictors for our traits of interest using the UK Biobank and reported the output AUCs. 

 

Metagenomic study aggregation 

We performed a systematic literature review with the aim of identifying any study that sought to                

associate host phenotype with microbiome contents. We searched broadly on PubMed for studies             

associated with the terms “(microbiome wide association and human) or (metagenome wide            

association study and human),” identifying 507 publications. We read the abstract and titles of              

each of these to identify if they were likely to report an AUC or perform any manner of prediction.                   

We additionally performed a suite of narrower, disease-specific, searches on Google Scholar,            

trying to identify studies published on specific diseases. Our full search terms are described in               

Supplementary Table 1. We only selected studies that did not adjust for age, sex, or any demographic                 

variables, instead only using microbiome feature to predict phenotype. 

 

Genomic study aggregation 

After identifying the set of diseases that had metagenomic-predictors built for them, we sought to               

identify a set of publications that build predictors the same phenotypes. We used targeted searches for                

each disease in Google Scholar (i.e. “genomic predictor AUC asthma”) that are reported in              

Supplementary Table 1. We additionally carried out a broad, systematic search in PubMed across 76               

studies using the search terms (“complex trait disease prediction genomic snp ”). We only selected               

studies that did not adjust for age, sex, or any demographic variables, instead only using common                

variants to predict phenotype. 

 

Meta-analysis of published AUCs 
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We extracted AUCs and sample sizes for each metagenomic and genomic study and computed              

standard errors on them via the auctestr (https://www.rdocumentation.org/packages/auctestr) package         

in R. When possible, we only took AUCs generated from testing or validation cohorts. For our                

random-effects meta-analysis, we used the metafor(Viechtbauer 2010) package to compute          

standard-error-weighted averages of our AUCs within each disease. 

 

Phenotype ascertainment from the UK Biobank 

We classified phenotypes based on self-reported data during an interview with a trained nurse as well                

as International Classification of Diseases (ICD-9 and ICD-10) diagnostic codes in the UK Biobank. We               

then used PHEWAS codes from the Phecode Map 1.2 (Wu et al. 2018) to map ICD codes to                 

phenotypes. The full list of PHEWAS to ICD code mappings are available in Supplementary Table 4.                

For a given PHEWAS code (i.e. Rheumatoid Arthritis), we identified all occurrences of its component               

ICD10 and ICD9 codes in the UK Biobank. We encoded individuals a 0 or 1, where 1 referred to the                    

presence of disease. We counted the presence of any 1 relevant ICD9/10 code at any point for a given                   

patient as the presence of that disease. 

 

Computing max genomic AUC (Max_AUC_G) 

To compute the theoretical maximum genomic AUC values that could be achieved from common              

GWAS variants, we implemented a method (Wray et al. 2010) (https://github.com/kn3in/genRoc) that            

converts between heritability on the liability scale and AUC. We estimated disease heritability with              

BOLT-REML V2.3.4 (Loh et al. 2018). In order to capture predictive capability only deriving from               

common SNPs, we did not adjust for age or sex in running BOLT-REML. Afterwards we converted                

observed heritability to the liability scale using disease prevalence within the sample population and the               

global population. We estimated these with prevalances from the UK Biobank and World Health              

Organization, respectively.  

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 2, 2020. ; https://doi.org/10.1101/2019.12.31.891978doi: bioRxiv preprint 

https://www.rdocumentation.org/packages/auctestr
https://paperpile.com/c/hJUwyf/PlJzh
https://paperpile.com/c/hJUwyf/Jbsh7
https://paperpile.com/c/hJUwyf/nRelO
https://github.com/kn3in/genRoc
https://paperpile.com/c/hJUwyf/etFNM
https://doi.org/10.1101/2019.12.31.891978


 
Computing genomic AUC (AUC_PRS) 

We computed the genomic AUC from a polygenic risk score (PRS) built from common GWAS variants.                

To do this, we separated the UK biobank White European population (N=418,114) into three cohorts in                

a 1:1:2 ratio. We conducted a simple GWAS without any covariates in group A. Next, we calculate                 

weights for each of the common variants using PRS-CS(Ge et al. 2019), which takes the GWAS                

summary statistics from group A and an external linkage disequilibrium (LD) reference panel to              

estimate effect sizes in group B. Using these weights, we calculated PRS’s for individuals in group C                 

using PLINK(Chang et al. 2015) with its built in allelic scoring procedure (--score). We report the                

average of 100 AUC’s (bootstrapped 1000 iterations) calculated in sampled populations of balanced             

cases and controls. AUCs were calculated using the ‘auc’ function in the pROC(Robin et al. 2011)                

package.  
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