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Abstract:  
Metastasis, the leading cause of death in cancer patients, requires the invasion of tumor cells 
through the stroma in response to migratory cues, such as those provided by the extracellular 
matrix (ECM). Recent advances in proteomics have led to the identification of hundreds of ECM 
proteins which are more abundant in tumors relative to healthy tissue. Our goal was to develop a 
pipeline to easily predict which of these ECM proteins is more likely to have an effect on cancer 
invasion and metastasis. We evaluated the effect of 4 ECM proteins upregulated in breast tumor 
tissue in multiple human breast cancer cell lines in 3 assays. We found there was no linear 
relationship between the 11 cell shape parameters we quantified when cells adhere to ECM 
proteins and 2D cell migration speed, persistence or 3D invasion. We then used classifiers and 
partial-least squares regression analysis to identify which metrics best predicted ECM-driven 2D 
migration and 3D invasion responses. ECM-driven 2D cell migration speed or persistence did not 
correlate with or predict 3D invasion in response to that same cue. However, cell adhesion, and 
in particular cell elongation and irregularity accurately predicted the magnitude of ECM-driven 2D 
migration and 3D invasion in all cell lines. Testing predictions revealed that our models are good 
at predicting the effect of novel ECM proteins within a given cell line, but that ECM responses are 
cell-line specific. Overall, our studies identify the cell morphological features that determine 3D 
invasion responses to individual ECM proteins. This platform will help provide insight into the 
functional role of ECM proteins abundant tumor tissue and help prioritize strategies for targeting 
tumor-ECM interactions to treat metastasis.   
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Insight Box 
 
Metastasis, the dissemination of tumor cells, is driven by the interaction of invading tumor cells 
with their local environment, in particular with the ECM, which provides structure and support to 
our tissues. This study presents an integrated approach to predict the effect of individual ECM 
proteins on 3D invasion and metastasis based on simple adhesion assays which quantify cell 
shape. Machine learning classification and partial-least squares regression models reveal that 
ECM-driven 2D cell migration metrics are not predictive of 3D invasion, and that cell shape of 
cells adhered to ECM can predict that protein’s effect on 3D invasion. These data provide a 
pipeline for predicting the effect of ECM proteins on breast cancer cell invasion and metastasis.  
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Introduction  
 
Metastasis, the dissemination of cells from the primary tumor to secondary organs in the body, is 
the leading cause of death in cancer. Metastasis involves the local invasion of tumor cells into the 
surrounding tissues, intravasation into the vasculature and lymphatics, and colonization of a 
distant site. All steps within tumor progression require cell migration – growth, invasion (1) and 
metastatic outgrowth (2). Understanding the mechanisms that drive cell migration in cancer is 
essential to identify strategies to treat cancers more effectively. Within tumors, several chemical 
and biophysical cues have been shown to promote local invasion (3). In particular, the 
extracellular matrix (ECM), which provides structure and support to our tissues, drives local 
invasion of tumor cells and metastasis, as well as colonization of secondary sites. For example, 
the glycoprotein Fibronectin, which is produced by both tumor and stromal compartments in 
breast tumors (4), can drive directional migration of breast cancer cells to drive metastasis (5). 
The optimization of protocols to characterize the ECM of tumors has led to the identification of 
multiple ECM proteins abundant in tumor tissue that may be involved in promoting metastatic 
phenotypes (4, 6). The present study aims to develop a pipeline to easily assess which of these 
ECM proteins, alone or in combination, are more likely to affect invasion and metastasis, and are 
therefore better targets as biomarkers or for drug development.  
 
Breast cancer cells sense ECM cues within their environment via cell surface receptors and the 
extension of actin-rich protrusions such as lamellipodia and filopodia. The activation of 
downstream signaling pathways and the formation of focal adhesions promotes cytoskeletal 
dynamics which help the cell propel itself forward, eventually retracting its tail via disassembly of 
focal adhesions (7-10). Cell-ECM interactions and their impact on cell behavior can be studied in 
different contexts. Cell responses to ECM cues have been measured as alterations in cell shape 
following adhesion to a substrate, 2D migration on a substrate, and 3D invasion into a matrix 
containing the ECM substrate. However, we still do not understand the relationship between 
adhesion to, 2D migration on, and 3D invasion in a given ECM substrate. Therefore, there is a 
critical need to create a predictive model to use cell morphology to predict cell invasion responses 
to ECM cues.  
 
Existing models that predict cell migration have focused on cell morphology or signaling pathways 
and mostly focused on a single cue. First, cell morphology or shape is commonly used to 
characterize cellular phenotypes, because it can be easily visualized and quantified using 
traditional immunostaining and basic microscopy. Epithelial keratocytes from fish skin have been 
used to generate various models due to their characteristic and homogeneous fan-like shape. 
Various models have been published linking cell shape and geometry with cell migration and 
speed (11, 12). This has been more challenging for cancer cells given their more complex and 
heterogeneous cell morphologies. There have been efforts to identify signaling pathways that 
regulate cell morphology. One study linked breast cancer cell morphology in vitro in 3D Matrigel 
with gene expression to identify dominant genes that are predictive of morphological features 
(13). Quantitative morphological profiling has also been used to evaluate the role of individual 
genes in regulating cell shape using genetic screens in drosophila cells, leading to the 
identification of signaling networks that regulate cell protrusion and adhesion (14). However, 
these studies all focus on a single ECM cue, and there are currently no studies predicting 
mesenchymal 3D cell movement in response to ECM cues. 
 
The goal of this study is to understand how ECM cues in the tumor microenvironment promote 
invasion and metastasis of cancer cells from the primary tumor. Using classifier-based and partial-
least square regression models trained on cell morphology, 2D migration, and 3D invasion data, 
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we find that cell shape in response to a particular ECM protein can predict the ability of a cell line 
to invade through that ECM protein in 3D.  
 
 
Methods: 
 
ECM substrates 
Reagents were purchased from Fisher Scientific (Hampton, NH) or SIGMA (St. Louis, MO) unless 
otherwise specified. We used the following ECM proteins: Collagen I protein (CB-40236; Fisher 
Scientific, Hampton, NH), Fibronectin protein (F1141; SIGMA, St. Louis, MO), Tenascin C (R&D 
systems, 3358TC050), Collagen IV protein (Abcam, ab7536) and Matrigel (growth-factor reduced, 
Corning, CB-40230C).  
 
Cell culture 
MDA-MB-231, MDA-MB-468 and BT549 cells were obtained from ATCC (Manassas, VA). MDA-
MB-231 and MDA-MB-468 cells were cultured in DMEM with 10% serum and Pen-Strep 
Glutamine and BT549 were grown in RPMI +10%PBS +Insulin (1μg/mL). Cells were checked 
every 2 months for the presence of mycoplasma by a PCR based method using a Universal 
Mycoplasma Detection Kit (30-1012K; ATCC, Manassas, VA). Only mycoplasma negative cells 
were used in this study. Cell lines were made to stably express GFP by lentiviral transduction and 
labeled as 231-GFP or 468-GFP.  
 
Adhesion assay 
Plastic-bottomed dishes (Thermo Fisher Nunc, 96 Well Optical-Bottom Plates, 165305) were 
coated with 20μg/ml ECM protein for 1hr at 37°C and then washed with PBS. Cells were 
trypsinized, resuspended in media and plated on the coated plates at 4,000 cells/per well. After 
2hrs, cells were then fixed for 15 min in 4% paraformaldehyde, then permeabilized with 0.2% 
TritonX-100, blocked with 3% BSA and incubated with primary antibodies overnight at 4°C. Cells 
were DAPI (D1306; Thermo Fisher Scientific, Waltham, MA) and Phalloidin (A12390; Thermo 
Fisher Scientific, Waltham, MA) stained along with incubation with fluorescently labeled 
secondary antibodies at room temperature for 2 hours. Imaging was performed using a Keyence 
BZ-X710 microscope (Keyence, Elmwood park, NJ) and CellProfiler v3.1.8 was used for imaging 
analysis using a custom pipeline(15). Cells were first identified from the nucleus, and the outline 
of each cell was determined from the cytoplasm staining. Cells at the edge of an image were 
discarded. 2D Adhesion was quantified by 11 parameters: area/cell (number of sq um in the cell 
cytoplasm), aspect ratio (the ratio of the major axis length and the minor axis length of the cell), 
compactness (mean squared distance of the cell cytoplasm from the centroid divided by the area, 
where a filled circle has a value of 1, and an irregular shape has a value greater than 1), 
eccentricity (ratio of the distance between the foci of the ellipse and its major axis length, where 
a perfect circle has a value of 0, and more elongated cells have a value of 1), extent (proportion 
of pixels in the bounding box that are also in the cell cytoplasm, where larger values indicate more 
spread out cell cytoplasm), form factor (calculated as 4*π*Area/Perimeter2, where a perfect circle 
has a value of 1), max. and min feret diameter (minimum and maximum distance between two 
parallel lines that are tangent to the cell cytoplasm edge), mean radius, perimeter, and solidity 
(proportion of pixels that are in the convex hull that are also in the cell cytoplasm, where a perfect 
circle has a value of 0). Data are the result of 3 independent experiments with 3 technical 
replicates per experiment.  
 
2D migration assay  
For 2D migration, 12-well glass-bottomed dishes (MatTek, Ashland, MA) were coated with 
20μg/ml ECM protein for 1hr at 37°C. ECM was washed off with PBS, and cells were plated at 
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7,500 cells/well on and allowed to adhere. After 1hr, the plate was placed on the microscope and 
cells were imaged overnight with images acquired every 10 min for 16 hours in an environmentally 
controlled chamber within the Keyence BZ-X710 microscope (Keyence, Elmwood park, NJ). Cells 
were then tracked using VW-9000 Video Editing/Analysis Software (Keyence, Elmwood park, NJ) 
and both cell speed and persistence calculated using a custom MATLAB script vR2018a 
(MathWorks, Natick, MA). 2D migration was quantified by 2 parameters: cell migration speed and 
persistence. Data are the result of 3 independent experiments with 6 fields of view per experiment 
and an average of 6 cells tracked per field of view.  
 
Spheroid invasion and migration assay 
Cells were seeded in low-attachment plates in media (Corning™ 96 Well Ultra-Low Attachment 
Treated Spheroid Microplate, 12-456-721), followed by centrifugation at 3,000 rpm for 3 mins to 
form spheroids. Spheroids were grown for 3 days after which ECM was added to each well, which 
included (depending on the condition) Collagen I protein to a 1mg/ml concentration, ECM protein 
of interest at 20μg/ml, 10mM NaOH, 7.5% 10x DMEM and 50% 1x DMEM. The spheroids in ECM 
were then spun down at 3,000 rpm for 3 mins, and the ECM gel left to polymerize for 1hr at 37°C.  
After this, a further 50μl of media added to each well. Following another 5 days of growth, 
spheroids were imaged as a Z-stack using a Keyence BZ-X710 microscope (Keyence, Elmwood 
park, NJ) and Z-projection images analyzed using a Hybrid Cell Count feature within the BZ-X 
Analyzer software v1.3.1.1 (Keyence, Elmwood park, NJ). 3D invasion was quantified by 1 
parameter: increase in surface area on Day 5 of ECM relative to Day 1. Data are the result of 3 
independent experiments with 6 technical replicates per experiment.  
 
Clustering Analyses 
SPRING plots were constructed from single cell adhesion quantification using the methods 
described in Weinreb et al. (16). For large scale quantification of cell adhesion on different ECM 
substrates, each profile was averaged and mean centered. The ECM factors and adhesion 
metrics were clustered by rank correlation and mean linkage, using the seaborn package for 
Python. Cell adhesion shape metrics were compared by calculating the Spearman correlation 
between each pair of metrics. 
 
Machine Learning Classification 
ECM-driven effects on 2D migration and 3D invasion were classified as either low or high (see 
Fig 5). For classification of 2D migration in MDA-MB-231 and MDA-MB-468 cells, ECM substrates 
that caused a mean cell migration speed of above 0.5µm/min were classified as high. For 
classification of 3D invasion in MDA-MB-231 cells, ECM substrates that caused a mean fold 
change in spheroid area of above 10 were classified as high. For classification of 3D invasion in 
MDA-MB-468 cells, ECM substrates that caused a mean fold change in spheroid area of above 
8 were classified as high. Machine learning algorithms, Support Vector Machine (SVM), Linear 
Support Vector Machine (Linear SVM), Random Forest (RF), and Logistic Regression (LR), were 
trained and validated using the classified data, and model parameters optimized in cross 
validation using a grid search. AUROC area under the curve was used to assess the accuracy of 
the classifiers. The optimized models were tested using a new unknown ECM protein. All machine 
learning classification was performed using Python. 
 
Principal Component Analysis and Partial Least-Squares Regression 
Principal component analysis and partial least-squares regression were performed as described 
previously (17). Model predictions were made by introducing a new condition (ECM protein or cell 
line). Model fitness was calculated using R2, RMSE, and percent error, previously described (18). 
VIP scores were calculated from reference (19). Adhesion parameters with VIP scores above 1 
were considered as important cell adhesion parameters for prediction. All data was scaled to 
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nondimensionalize the different metrics. PCA was performed using Python, and PLS model was 
implemented using Matlab. 
 
Statistical analysis 
GraphPad Prism v7.04 was used for generation of graphs and statistical analysis. All statistical 
comparisons were done between no ECM condition and each ECM condition individually. A one-
way ANOVA was used with a corrected p-value of ≤ 0.05 considered significant.  
 
 
Results 
 
ECM impacts breast cancer cell adhesion  
 
We chose to build our model using 4 ECM proteins known to be abundant in breast tumors: 
Collagen I, Collagen IV, Fibronectin, and Tenascin C.  Indeed, these components were identified 
in xenograft 4T1 breast tumors (6) and in highly metastatic LM2 tumors (4). Collagen I and the 
glycoprotein Fibronectin are two of the most abundant ECM proteins in mammary tumors, and 
both are known to  contribute to breast cancer invasion and metastasis (5, 20). Another 
glycoprotein, Tenascin C, has also been shown to contribute to breast cancer metastasis (21). 
Collagen IV is a major component of the basement membrane, which breast cancer cells must 
break down to invade surrounding tissues (22, 23). To investigate the effects of these ECM 
proteins, we used two human triple-negative breast cancer cell lines, MDA-MB-231 and MDA-
MB-468. MDA-MB-231 is mesenchymal, with high metastatic potential in mouse models, while 
MDA-MB-468 is epithelial, with lower metastatic potential (24, 25). 
 
First, we performed an adhesion assay, which has been commonly used to study cell-ECM 
interactions, where cells are plated on a 2D ECM-coated surface and left to adhere for 2hrs. The 
cells are then fixed and immunostained to assess cell shape. We focused our efforts on the actin 
cytoskeleton, given that cell shape is associated with adhesion and cell migration (Fig 1A). We 
quantified 11 cell shape parameters via Cell Profiler, and established effects of all 4 ECM proteins 
on these parameters. Collagen I, Fibronectin and Collagen IV led to increased cell area, 
eccentricity, which characterizes cell elongation, and compactness, which quantifies cell shape 
irregularity. Tenascin C decreased cell area, eccentricity and compactness (Fig 1B-D). While 
MDA-MB-468 cells had a smaller cell area on average, the effect of individual ECM proteins had 
similar relative effects on cell morphology (Fig 1E-H). These data comprehensively characterize 
the effect of 4 ECM proteins upregulated in breast tumor tissue on breast cancer cell shape.  
 
To better visualize the effects of ECM proteins on shape parameters, we used SPRING, a pipeline 
for data filtering, normalization and visualization using force-directed layouts of k-nearest neighbor 
algorithms (Fig 2A). SPRING has been shown to reveal more detailed biological relationships 
than existing approaches, with plots being more reproducible than those of stochastic 
visualization methods such as tSNE (16). Individual ECMs were mapped onto the individual cells 
on the SPRING plot (Fig 2B). For the MDA-MB-231 cells, as was seen in the clustering, cells on 
Tenascin C and no ECM cluster together. Interestingly, cells on Collagen I are seen as very 
distinct from cells on no ECM, with little overlap. Cells on Collagen IV are also distinct from cells 
on no ECM, but are also separate from the cells on Collagen I. Finally, the cells on Fibronectin 
are homogeneously distributed throughout the cluster.  
 
Initial analysis of the entire dataset by unsupervised clustering demonstrated that ECM-driven 
effects on shape parameters cluster into 3 main groups: one with compactness, aspect ratio and 
eccentricity, which quantify how elongated is a cell is, a second group with solidity, form factor 
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and extent, which describe how irregular the shape of the cell is or how protrusive a cell is; and a 
third group with the ferret diameters, radius, perimeter and cell area, which quantify how large a 
cell is. Both cell lines clustered in these groups (Fig S1A,B). While the effect of the different ECM 
proteins on these parameters clustered differently in each cell line, it is clear that Tenascin C 
shape quantifications are more similar to the no ECM shapes, while Fibronectin and Collagen IV 
shape characteristics tend to cluster with each other (Fig 2C,D). Overall, these clustering methods 
demonstrate ECM proteins have distinct effects on cell shape.   
 
ECM-driven 2D migration does not correlate with cell shape 
 
We then investigated the effect of these same ECM cues on 2D cell migration, by evaluating cell 
speed and persistence. Cell speed measures how fast a cell is moving over a given distance, 
while persistence, the Euclidian distance between start and finish over the total distance traveled, 
informs whether the cell is moving in a straight line (closer to 1) or taking a more winding path. In 
MDA-MB-231 cells, we find that Collagen I and Collagen IV increase both cell migration speed 
and persistence (Fig 3A-C). Fibronectin has no effect on cell speed or persistence; Tenascin C 
decreases cell migration speed while increasing persistence. We find that for all ECM conditions 
there was no significant correlation between cell migration speed and persistence (Fig 3D), or 
between cell area and cell migration speed (Fig 3E). Similar results were obtained with the MDA-
MB-468 cell line, where Collagen I and Collagen IV increased cell migration and persistence, with 
Tenascin C reduced cell migration and persistence (Fig 3F-H). There was also no significant 
correlation between cell migration speed and either persistence or cell area (Fig 3I-J). Overall, 
these findings suggest that ECM-driven effects on cell speed and persistence are distinct, and 
that effects on cell shape may not correlate with effects on cell migration speed.  
 
ECM-driven 3D invasion does not correlate with 2D migration  
 
It is well established that 3D invasion is a more physiologically relevant model of in vivo cell 
migration, therefore we quantified the effect of the individual ECM proteins on 3D invasion in 
Collagen I gels. We used a spheroid model of 3D invasion, which constitute microtumors 
recapitulating various clinically important characteristics like hypoxia, nutrient- and pH gradients 
and deposition of ECM. All spheroid gels contain Collagen I as matrix to support spheroid 
formation, given that it is the most abundant ECM component of breast tissue, and that all ECM 
proteins present in tumors would be in the presence of Collagen I. We find that all 4 ECM proteins 
drive a significant increase in invasion relative to Collagen I only in MDA-MB-231 cells (Fig 4A,B). 
However, we do not find a significant correlation between the effect of these proteins on 2D 
migration and 3D invasion (Fig 4C). Similarly, the 4 ECM proteins also increase invasion of MDA-
MB-468 cells (Fig 4D,E), although these cells migrate more individually than the MDA-MB-231 
cells. There is also no significant correlation between ECM effects on 2D cell migration and 3D 
invasion (Fig 4F).  
 
Generation of classifier-based model suggests that cell adhesion can be used to 
categorize 2D migration and 3D invasion 
 
To dissect the relationship between ECM-driven cell adhesion, 2D migration, and 3D invasion 
and develop methods to predict ECM-driven effects on breast cancer cells, we first used machine 
learning classifier models. Our goal was to evaluate the ability of different learning algorithms to 
predict 2D migration based on cell adhesion parameters and 3D invasion based on either 
adhesion parameters or 2D migration. We assigned each ECM protein as either as ‘low’ or ‘high’, 
based on its ability to induce 2D cell migration or 3D invasion. Based on the results in Figure 3, 
2D cell migration speed of MDA-MB-231 cells on no ECM, Fibronectin, and Tenascin C was 
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classified as low (Fig 5A). Based on the results from Figure 4, 3D invasion of MDA-MB-231 cells 
embedded in no ECM and Collagen I was classified as low, while 3D invasion in Fibronectin, 
Tenascin C and Collagen IV was classified as high (Fig 5C,E). We used 4 different commonly 
used machine learning algorithms to classify the data.  First, we used Logistic Regression (LR), 
a statistical method for analyzing a dataset in which there are one or more independent variables 
that determine an outcome through fitting a logistic function; this outcome is measured as one of 
2 outcomes. We used a support-vector machine (SVM) algorithm, which is a classification method 
that samples hyperplanes to separate between two classes. We used a linear SVM and SVM in 
our analysis, where the linear SVM assumes that the data set distribution can be linearly divided. 
Finally, we used Random Forest (RF), which creates decision trees on randomly selected data 
samples. This algorithm takes averages of predictions from each tree and uses them to further 
refine the model to improve results while also minimizing over-fitting. The ability of an algorithm 
to accurately predict whether an ECM protein has a low or high effect is assessed via the Area 
Under the Curve Receiver Operating Characteristic (AUROC) score, a performance 
measurement for classification problems. 
 
First, we assessed the predictive relationship between cell adhesion and 2D cell migration in 
response to different ECM proteins. Interestingly, using all 11 cell shape parameters were able to 
predict 2D migration, with an AUROC score higher than 0.75. (Fig 5B). We then tested whether 
any of the groups of cell features identified in Figure 2, cell size, irregularity and elongation could 
independently predict 2D migration. We found that the cell size parameters (area/cell, perimeter, 
mean radius, min and max feret diameter) could also accurately predict 2D migration speed with 
AUROC scores above 0.75, while cell elongation and irregularity could not. While all 4 algorithms 
performed similarly, the SVM algorithm performed the best. We found similar results with the 
MDA-MB-468 cells, where for 2D cell migration, we classified no ECM, Tenascin C and 
Fibronectin as low, and Collagen I and Collagen IV as high (Fig S4A). All 11 parameters were 
able to accurately predict 2D cell migration with an AUROC over 0.75 (Fig S4B). These data 
demonstrate that cell shape of cells adhered to a particular ECM protein is a reliable metric for 
predicting how this protein will impact 2D migration speed. 
 
Next, we determined the predictive relationship between 2D cell migration and 3D invasion in 
response to different ECM proteins. For both MDA-MB-231 and MDA-MB-468 cells, the AUROC 
scores for the optimized classifier models are insignificant (around 0.5) suggesting that the 
classifiers were operating with a similar accuracy to that of a random classification assignment 
(Fig 5D, Fig S4D). Interestingly, for both cell lines, models using cell migration speed alone tended 
to have higher AUROC scores than those using persistence, suggesting that of the two 
parameters, speed was better at predicting 3D invasion. This result further supports initial 
regression analysis that suggests there is no clear predictive relationship or correlation between 
2D migration and 3D invasion. 
 
Finally, we assessed the predictive relationship between cell adhesion and 3D cell invasion in 
response to different ECM proteins. For both MDA-MB-231 and MDA-MB-468 models, using all 
shape parameters yielded the highest AUROC scores (Fig 5F, Fig S4F). Models constructed with 
cell size parameters, cell irregularity parameters, and cell elongation parameters did not have 
significant AUROC scores. For the binary classification of MDA-MB-468 cells, the most promising 
result was an AUROC score of .775 when using all parameters and the SVM classifier. It is notable 
that the results from classifying with all parameters were all higher than the AUROC scores 
obtained from just relying on parameters associated with cell size. This demonstrates that cell 
adhesion can classify 3D cell invasion more accurately than 2D cell migration. 
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PLS models suggest that cell adhesion accurately predicts 3D invasion 
 
We used data-driven modeling to more precisely determine the relationship between ECM-driven 
cell adhesion, 2D migration and 3D invasion. First, we used principal components analysis (PCA) 
to reduce the dimensionality of the cell adhesion data set. The PCA creates a new set of principal 
components which maximize the covariance captured between the parameters {Janes, 2006 
#416}. Using two principal components, over 80% of the variation in cell adhesion is described, 
and the distinct effects of each ECM substrate can be identified (Fig S5A-D). The PCA shows 
similar ECM-specific distributions of cell adhesion seen in the SPRING plots, indicating that even 
with reducing the data dimensionality the important trends are captured. 
 
Next, we used a partial least-squares regression (PLSR) to identify covariation between cell 
adhesion and 2D migration and 3D invasion. The PLS model reduces the data to a set of principal 
components to optimally describe the proposed relationship between the input, cell adhesion, and 
the outputs, 2D migration and 3D invasion {Janes, 2006 #416}. We constructed the PLS model 
with MDA-MB-231 cells only (Fig 6), MDA-MB-468 cells only (Fig S6), and a combination of both 
cell lines (Fig S7). The scores plot of principal component one (PC1) and PC2 describes how 
strongly each ECM factor projects on each principal component (Fig 6A). For example in MDA-
MB-231 cells, Collagen I and Collagen IV project negatively on PC1, whereas no ECM, 
Fibronectin, and Tenascin project positively on PC1. Therefore, using both PC1 and PC2, we can 
distinguish the variation between the effects of different ECM substrates. For the combined model, 
both PC1 and PC2 are required to describe variation between different cell lines and ECM 
substrates (Fig S7A). For no ECM, FN, and TNC, both cell lines project similarly onto the principal 
components. However, for Collagen I and Collagen IV, the cell lines project differently onto the 
principal components. To understand the effects of cell adhesion parameters in the model, we 
projected the loading vectors, which describes how strongly each parameter projects onto each 
principal component (Fig 6B). We find that cell size, irregularity and elongation project in distinct 
clusters, where cell irregularity projects positively on PC1 and cell size and elongation project 
negatively. To evaluate model fitness, we calculated the R2 to measure the percent of variance 
captured by the model and root mean square error (RMSE) to measure the deviation between 
the data and model prediction (Fig 6C). We determined the ideal number of principal components 
to use such that the RMSE is minimized and R2 is maximized, without overfitting. For the individual 
cell line models, we used 2 principal components, and for the combined cell line model we used 
6 principal components. 
 
We then identified how different cell adhesion parameters contribute to prediction of 2D speed, 
2D persistence, and 3D invasion using the variance importance parameter (VIP) score for each 
cell adhesion parameter (Fig 6D-F). The VIP score reports the amount of variation in 2D speed, 
2D persistence and 3D invasion that is explained by each adhesion parameter. We find that in 
the MDA-MB-231 model, all the cell adhesion parameters rank similarly for predicting 2D speed, 
indicating that all parameters are important for prediction (Fig 6D). However, in the MDA-MB-468 
model, we find that mean radius, cell area, and min feret diameter, which are measures of cell 
size, are important for predicting 2D speed (Fig S6D). Similar to the MDA-MB-231 model, we find 
that in the combined cell line model, all parameters rank similarly for predicting 2D speed (Fig 
S7D). Interestingly, in the MDA-MB-231 and combined cell lines models, measures of cell 
irregularity and elongation are important for predicting 2D persistence and 3D invasion. In the 
MDA-MB-231 model, eccentricity, solidity, and compactness are important for predicting 2D 
persistence, and compactness, solidity, and extent are important for predicting 3D invasion (Fig 
6E,F). In the combined cell line model, compactness, form factor, and solidity are important for 
predicting 2D persistence, and eccentricity, compactness, and solidity are important for predicting 
3D invasion (Fig S7E,F). In the MDA-MB-468 model, we find that measures of cell size and 
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elongation are important for predicting 2D persistence and 3D invasion (Fig S6E,F). Mean radius 
and eccentricity are important for predicting 2D persistence, and eccentricity, aspect ratio, cell 
area, and min feret diameter are important for predicting 3D invasion. Overall, these models 
demonstrate the importance of individual shape parameters in predicting ECM-driven migration 
responses in 2D and 3D. 
 
Models can be used to accurately predict 2D and 3D ECM-driven responses 
 
We first tested the ability of our data-driven models to predict the effects of a new ECM protein, 
within the same cell line. We chose Matrigel, isolated from the Engelbreth-Holm-Swarm (EHS) 
mouse sarcoma, which is rich in basement membrane components laminin, collagen IV and 
heparan sulfate proteoglycans. We measured cell adhesion, 2D migration and 3D invasion of 
MDA-MB-231 and MDA-MB-468 cells in response to Matrigel (Fig 7A-B). First, we used the 
classifier models with all parameters to predict the cell responses to Matrigel, since using either 
all cell adhesion parameters or all cell migration parameters had the best AUROC scores (Fig 5). 
We find that the models accurately classify 2D migration and 3D invasion of cells on Matrigel from 
cell adhesion (Fig 7C, E). We also find that 2D migration accurately classifies 3D invasion (Fig 
7D). However, the AUROC scores for the classifier models using 2D migration to predict 3D 
invasion were low, indicating that although the prediction of Matrigel was accurate, the model has 
low confidence in that classification. We then used the PLS models to quantitatively predict cell 
responses to Matrigel using all cell adhesion parameters (Fig 7F,G). In MDA-MB-231 cells, we 
find that the model predicts the effects of Matrigel accurately, as demonstrated by the low percent 
errors (Fig 7F). Interestingly, we find that only 2D persistence and 3D invasion, but not 2D speed, 
are well predicted in the MDA-MB-468 model (Fig 7G). Prediction of Matrigel from the combined 
model has a larger error, indicating cell line specificity (Fig S8G). Additionally, using both cell 
adhesion and 2D migration to predict 3D invasion increased error (Fig S8H). 
 
We next tested the ability of our PLS models to predict the responses of new cell lines. For these 
experiments, we used BT-549, another human triple-negative breast cancer cell line. We 
evaluated the effects of Fibronectin, Tenascin C, and Matrigel on cell adhesion, 2D migration, and 
3D invasion of BT-549 cells (Fig 8A-D). We find that these ECM proteins have distinct effects on 
the shape, migration, and invasion of the cells, consistent with our previous data. Next, we 
evaluated how well the MDA-MB-231, MDA-MB-468, and combined models predict the BT-549 
responses to these ECM proteins. We did this with and without training the models with BT-549 
data (Fig 8E). We find that when we trained the original models with BT-549 response to no ECM, 
the error reduced. Training the models with BT-549 responses to both no ECM and Fibronectin 
also increases how accurately Tenascin C and Matrigel are predicted, as seen by the lower 
percent error (Fig 8E). Interestingly, the MDA-MB-231 model predicts BT-549 response to 
Tenascin C and Matrigel better than the MDA-MB-468 model. We also find that the models more 
accurately predicts responses to Tenascin C than Matrigel.  
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 1, 2020. ; https://doi.org/10.1101/2019.12.31.892091doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.31.892091
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

Discussion:  
 
Our goal was to identify the relationship between ECM responses in adhesion, 2D migration and 
3D invasion assays to develop strategies to easily predict the effect of novel ECM proteins on 3D 
cancer cell invasion, which is more relevant to the study of cancer metastasis. 3D invasion assays 
can be more complex, time consuming and more challenging for follow up analysis, while 2D 
migration and adhesion assays are quicker, easy to analyze, and to use with other experimental 
approaches such as cell sorting, atomic force microscopy or immunostaining. By evaluating the 
response of two TNBC breast cancer cell lines to 4 ECM proteins known to be upregulated in 
metastatic breast cancers, we found that there is no linear relationship between metrics used to 
quantify these 3 assays. Using machine learning algorithms, we found that cell adhesion can 
successfully and accurately classify 2D migration speed and 3D invasion, while 2D migration 
speed and persistence are unable to classify ECM-driven 3D invasion. ECM proteins have distinct 
effects on cell adhesion, which is characterized by features that characterize cell size, irregularity 
and elongation. Using data-driven modeling, we find that some shape parameters, such as those 
that quantify cell elongation and irregularity, are more important for predicting 2D migration and 
3D invasion. Finally, we show that both methods can be used to accurately predict the effect in 
2D and 3D of a new ECM protein, but that these predictions are cell-line specific and that models 
generated for one cell line cannot be used for another. Overall, these studies suggest that the 
shape a cell takes in response to an ECM protein, and not 2D migration speed, is more predictive 
of 3D invasion and our data provides a pipeline to predict the effect of novel ECM proteins in 
driving invasion and metastasis based on a simple adhesion assay. 
 
In this study, we found that both machine learning classifier models and data-driven PLS models 
could be used to accurately predict 2D and 3D responses of cells to a new ECM protein. However, 
we found that classifier models did not classify all cells of the new ECM protein data set accurately 
and the results varied per classifier algorithm used (Fig S8 A-F). Additionally, the algorithms that 
scored the highest ROC scores during training and validation would not necessarily predict with 
highest accuracy when tested. RF and LR algorithms performed the weakest for ECM prediction, 
which could be due to issues with overfitting or suitability for complex relationships with multiple 
parameters, respectively. We find that SVM algorithms worked best here, which can model non-
linear decision boundaries, are robust against overfitting, and work well for smaller datasets like 
ours. The limitations of predictions with classifier models could be addressed by using a more 
quantitative PLS model. We find that our PLS model was able to quantitatively define the 
relationships between cell adhesion and the 2D and 3D responses of cells by iteratively reducing 
the dimensionality of the training data set. With PLS modeling, we are able to extract which cell 
shape parameters are most strongly connected with cell responses in 2D and 3D, which allows 
us to generate hypotheses and quantitatively support them (17). Nevertheless, the PLS model 
still had important limitations. When predicting the effects of Tenascin C and Matrigel in the new 
cell line, the PLS model was more accurate at predicting the effects of Tenascin C. Matrigel is 
known to be a mixture of several growth factors and ECM proteins, suggesting that its effect on 
cell migration is more complex. Indeed, we have shown that there can be synergy between growth 
factors and ECM protein, suggesting that combinations of cues from multiple growth factors and 
ECM proteins can lead to more complex results (26). We also found that the PLS model 
constructed with MDA-MB-231 cells predicted ECM-driven effects in BT-549 cells better than the 
PLS model with MDA-MB-468 cells. MDA-MB-231 cells are known to be more mesenchymal, and 
it has been found that BT-549 cells express characteristics of more mesenchymal cells, as seen 
by lower surface levels of Integrin B4 (24). BT-549 was also found to have a similar metastatic 
potential to MDA-MB-231 cells, suggesting that the two mesenchymal cell lines would respond 
similarly to different ECM proteins (25). Therefore, our model may be best suited for studies within 
a single cell line and with individual ECM proteins. Future studies will have to address how 
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combinations of ECM cues, with and without other pro-migratory such as growth factors, impact 
cancer cell invasion.  
 
These studies also shed light on the heterogeneity of responses to ECM proteins in all these 
assays, particular for the adhesion and migration, where the data is quantified at the single cell 
level. Some ECM proteins, like Tenascin C and Collagen I, induce more homogeneous responses 
in terms of cell shape parameters, while others like Fibronectin and Collagen IV have a range of 
effect (Fig 2). Previous studies have linked heterogeneity of cell shape to metastatic potential. For 
example, lower variation in morphology is predictive of cells derived from metastatic sites, but not 
associated with any particular somatic mutations (27). In addition, the dynamics of breast cancer 
cell shape heterogeneity can impact response to therapy.  Indeed, time series modeling that 
captures the heterogeneous dynamic cellular responses can improve drug classification and 
provide insight into mechanisms of drug action (28). The mechanisms that govern this 
heterogeneity in breast cancer remain poorly understood. We have shown that changes in 
alternative splicing of the actin regulator Mena can impact sensitivity to FN gradients in vivo. 
Breast cancer cells that express the MenaINV isoform, which includes a 19 amino acid exon, are 
more sensitive to FN which increases their metastatic potential (5, 29). Expression of MenaINV is 
regulated by the acidity of local environment (30), suggesting that feedback between the tumor 
microenvironment and the cancer cells themselves is critical in regulating the signaling pathways 
that will impact cell shape heterogeneity. It will be important to evaluate how the heterogeneity of 
response to ECM proteins impacts metastasis and response to therapy.  
 
Migration responses in 2D are quantified with two main metrics: cell migration speed and 
persistence, however, it is not clear what migration response is more relevant to metastasis. 
Interestingly, in the World Cell Race, speed and persistence correlated for the migration of over 
50 cell types on fibronectin coated lines (31). In a follow-up study, persistence was found to be 
robustly coupled to cell migration speed (32), however these studies were done in epithelial and 
myeloid cells and are not in response to a given cue. We find no correlation between ECM-driven 
cell speed and persistence, and that cell shape is more predictive for persistence than it is of cell 
speed. Persistence may be more relevant to study in response to a directional cues, such as in 
the context of haptotaxis or chemotaxis (3, 33). For example, directed migration of breast cancer 
cells to gradients of Fibronectin increases directional persistence to promote metastasis, without 
affecting cell speed (5). Therefore, the nature and organization of the cue driving cell migration 
may play an important role in determining which metric is more predictive of metastasis potential. 
Our studies further demonstrate that in the context of ECM responses, cell shape is predictive of 
3D invasion, with ECM-driven effects on 2D speed not predictive of 3D invasion. Interestingly, 
these data are similar to what was found for response to growth factors, another pro-migratory 
cue. Whereas 2D migration properties did not correlate well with 3D behavior across multiple 
growth factors, Meyer et al. found that increased membrane protrusion elicited by growth factor 
stimulation did relate robustly to enhanced 3D migration properties in several breast cancer cells 
(34). These studies further support the importance of considering the properties of the cue to best 
evaluate its role on breast cancer metastasis.  Future studies should address the importance of 
cell speed, persistence and invasion to metastasis in vivo.  
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Figures 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: ECM proteins upregulated in breast tumor tissue have distinct cell line-specific 
effects on tumor cell adhesion 
A) Representative images of MDA-MB-231 cells plated on plastic, Collagen I, Fibronectin, 
Tenascin C or Collagen IV for 2hrs, fixed and stained with Phalloidin (red) and DAPI (blue). Scale 
bar is 100µm. Quantification of cell shape features using Cell Profiler to evaluate effects on MDA-
MB-231: B) area/cell (103µm2), C) eccentricity and D) compactness. Results show entire 
distribution and significance by one-way ANOVA, ***p<0.005. E) Representative images of MDA-
MB-468 cells plated on plastic, Collagen I, Fibronectin, Tenascin C or Collagen IV for 2hrs, fixed 
and stained with Phalloidin (red) and DAPI (blue). Scale bar is 100µm. Quantification of cell shape 
features using Cell Profiler to evaluate effects on MDA-MB-468: F) area/cell (103µm2), G) 
eccentricity and H) compactness. Results show entire distribution and significance by one-way 
ANOVA, ***p<0.005, ns is not significant.  
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Figure 2: Clustering of adhesion parameters reveals ECM-specific effects on cell shape 
A) Visualization of continuum of cell adhesion of MDA-MB-231 cells on different ECM substrates 
based on all 11 cell shape parameters with SPRING plots. B) Plots showing localization of ECM 
factor-dependent cell adhesion shape on the combined SPRING plot. Mean centered cell 
adhesion of MDA-MB-231 (C) and MDA-MB-468 (D) cells plated on plastic, Collagen I, 
Fibronectin, Tenascin C or Collagen IV for 2hrs. Each cell adhesion parameter and ECM factor is 
clustered by rank correlation and mean linkage. 
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Figure 3: ECM-driven effects on 2D cell migration speed do not correlate with effects on 
persistence 
A) Representative roseplots for MDA-MB-231 cells plated on glass, Collagen I, Fibronectin, 
Tenascin C or Collagen IV for 16hrs and imaged every 10 mins. Each line represents an individual 
cell. Axis length is 500µm. Quantification of cell migration speed (µm/min) (B) and persistence 
(C). Correlation between 2D persistence and 2D cell migration speed (D) and between cell area 
(µm2) and 2D cell migration speed (E). F) Representative roseplots for MDA-MB-468 cells plated 
on glass, Collagen I, Fibronectin, Tenascin C or Collagen IV for 16hrs and imaged every 10 mins. 
Each line represents an individual cell. Axis length is 500µm. Quantification of cell migration speed 
(µm/min) (G) and persistence (H). Correlation between 2D persistence and 2D cell migration 
speed (I) and between cell area and 2D cell migration speed (J). Results show entire distribution 
and significance by one-way ANOVA, * p<0.05, ** p<0.01, ***p<0.005, ns is not significant.  Data 
pooled from at least 3 independent experiments, between 30-130 individual cells analyzed per 
condition. 
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Figure 4: ECM-driven 3D invasion does not correlate with effects on 2D cell migration  
A) Representative images of spheroids made from 231-GFP cells embedded in media, Collagen 
I, Fibronectin, Tenascin C or Collagen IV gels for 5 days. Scale bar is 200µm. B) Quantification 
of fold change in 231-GFP spheroid area on day 5 relative to day 1. Data pooled from at least 5 
biological replicates, with technical triplicates. *** p<0.001 by one-way ANOVA and Dunn’s 
multiple comparison test. C) Correlation between mean fold change in spheroid area and 2D cell 
migration speed for 231-GFP cells embedded in media, Collagen I, Fibronectin, Tenascin C and 
Collagen IV. D) Representative images of spheroids made from 468-GFP cells embedded in 
media, Collagen I, Fibronectin, Tenascin C or Collagen IV gels for 5 days. Scale bar is 200µm. E) 
Quantification of fold change in 468-GFP spheroid area on day 5 relative to day 1. Data pooled 
from at least 4 biological replicates, with technical triplicates. *** p<0.001 by one-way ANOVA and 
Dunn’s multiple comparison test. F) Correlation between mean fold change in spheroid area and 
2D cell migration speed for 468-GFP cells embedded in media, Collagen I, Fibronectin, Tenascin 
C and Collagen IV. 
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Figure 5: Adhesion classifies ECM-driven 2D migration and 3D invasion  
A) Cell adhesion to predict binary classification of 2D cell migration speed of MDA-MB-231 cells 
on plastic, Collagen I, Fibronectin, Tenascin C, or Collagen IV. B) AUROC scores of binary 
classifier models (A) using all 11 cell shape parameters, cell size parameters (area/cell, perimeter, 
mean radius, min feret diameter, max feret diameter), cell irregularity parameters (solidity, extent, 
form factor), and cell elongation parameters (eccentricity, aspect ratio, compactness). C) 2D cell 
migration to predict binary classification of mean fold change of spheroid area of 231-GFP cells 
embedded in media, Collagen I, Fibronectin, Tenascin C, or Collagen IV. D) AUROC scores of 
binary classifier models (C) using 2D cell migration (cell migration speed and persistence). E) Cell 
adhesion to predict binary classification of mean fold change of spheroid area of 231-GFP cells 
embedded in media, Collagen I, Fibronectin, Tenascin C, or Collagen IV. F) AUROC scores of 
binary classifier models (E) using all 11 cell shape parameters, cell size parameters, cell 
irregularity parameters, and cell elongation parameters.  
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Figure 6: A partial least squares regression model constructed to predict ECM-driven 2D 
migration and 3D invasion from cell adhesion 
A) Scores plot for PLS model with MDA-MB-231 cells. Principal components reflect covariation 
between adhesion, 2D migration and 3D invasion for each cell line on each ECM protein. B) PLS 
loading plot for 11 cell adhesion shape parameters and 3 cell responses. C) R2 and root mean 
square error (RMSE) for the PLS model built with increasing numbers of principal components. 
Ranked VIP scores for predicting 2D cell migration speed (D), 2D persistence (E), and 3D invasion 
(F). VIP score >1 indicates important cell shape parameters to predict cell invasion response.  
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Figure 7: Classifier and PLS models accurately predict response to Matrigel in breast 
cancer cells  
Representative cell adhesion, 2D migration, and 3D invasion of MDA-MB-231 (A) and MDA-MB-
468 (B) cells on or in Matrigel. Representative cell adhesion images show cells fixed and stained 
with Phalloidin (red) and DAPI (blue) after 2hrs on Matrigel. Scale bar is 100µm. 2D migration 
roseplots show individual cell tracks on Matrigel for 16hrs. Axis length is 500 µm. Representative 
3D invasion spheroids are made from 231-GFP and 468-GFP cells embedded in Matrigel gels for 
5 days. Scale bar is 200µm. Accuracy of classifier models to predict 2D cell migration of cells on 
Matrigel from all cell adhesion parameters (C) and 3D invasion of cells in Matrigel from 2D cell 
migration speed and persistence (D) and all cell adhesion parameters (E). Best classifier model 
was used to predict. Linear SVM for C, Linear SVM and SVM for D, and Linear SVM and RF for 
E. Prediction of 2D cell migration speed, 2D persistence, and 3D invasion of cells on Matrigel 
from MDA-MB-231 (F) and MDA-MB-468 (G) PLS models built with 2 principal components. 
Numbers represent the actual and predicted values for each metric. Colors represent percent 
error, where green is a low error and red is a high error, indicated by the color gradient. 
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Figure 8: ECM-driven predictions are cell-line specific  
Cell adhesion (A), 2D migration (B,C), and 3D invasion (D) of BT-549 cells on three ECM 
substrates: Fibronectin, Tenascin C, and Matrigel. A) Representative cell adhesion images show 
cells fixed and stained with Phalloidin (red) and DAPI (blue) after 2hrs on Matrigel. Scale bar is 
100µm. Quantification of cell migration speed (µm/min) (B) and persistence (C). D) Quantification 
of fold change in BT-549-GFP spheroid area on day 5 relative to day 1. Data pooled from 1 
biological replicate, with technical triplicates. *** p<0.001 by one-way ANOVA and Dunn’s multiple 
comparison test. E) Prediction of 2D cell migration speed, 2D persistence, and 3D invasion of BT-
549 cells on Tenascin C and Matrigel from MDA-MB-231, MDA-MB-468, and combined PLS 
models built with 2 principal components for one cell line and 6 principal components for combined 
cell lines. Predictions were done without BT-549 data, with the addition of BT-549 no ECM, and 
with the addition of BT-549 no ECM and Fibronectin. Numbers represent the actual and predicted 
values for each metric. Colors represent percent error, where green is a low error and red is a 
high error value, indicated by the color gradient. 
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Supplemental Figures: 
 

 
 
Figure S1: Analysis of cell shape parameters   
Correlation between 11 shape parameters for MDA-MB-231 (A) and MDA-MB-468 (B) cells. Each 
cell adhesion parameter is clustered by rank correlation and mean linkage. C) Visualization of 
continuum of cell adhesion of MDA-MB-468 cells on different ECM substrates based on all 11 cell 
shape parameters with SPRING plots. D) Plots showing localization of cell adhesion shape on 
each ECM factor on the combined SPRING plot. 
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Figure S2: ECM-driven effects on 2D cell migration speed and 2D persistence do not 
correlate for individual cells. 
Correlation between 2D cell migration speed and 2D persistence of each cell tracked for MDA-
MB-231 (A) and MDA-MB-468 (B) cells. Data pooled from at least 3 independent experiments, 
between 30-130 individual cells analyzed per condition. 
 
 

 
 
Figure S3: ECM-driven 3D invasion does not correlate with persistence or cell shape 
Correlation between mean fold change in spheroid area and 2D persistence for 231-GFP (A) and 
468-GFP (B) cells embedded in media, Collagen I, Fibronectin, Tenascin C and Collagen IV. 
Correlation between mean fold change in spheroid area and cell area for 231-GFP (C) and 468-
GFP (D) cells embedded in media, Collagen I, Fibronectin, Tenascin C and Collagen IV. 
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Figure S4: Adhesion classifies ECM-driven 2D migration and 3D invasion in MDA-MB-468 
cells 
A) Cell adhesion to predict binary classification of 2D cell migration speed of MDA-MB-468 cells 
on plastic, Collagen I, Fibronectin, Tenascin C, or Collagen IV. B) AUROC scores of binary 
classifier models (A) using all 11 cell shape parameters, cell size parameters (area/cell, perimeter, 
mean radius, min feret diameter, max feret diameter), cell irregularity parameters (solidity, extent, 
form factor), and cell elongation parameters (eccentricity, aspect ratio, compactness). C) 2D cell 
migration to predict binary classification of mean fold change of spheroid area of 468-GFP cells 
embedded in media, Collagen I, Fibronectin, Tenascin C, or Collagen IV. D) AUROC scores of 
binary classifier models (C) using 2D cell migration (cell migration speed and persistence). E) Cell 
adhesion to predict binary classification of mean fold change of spheroid area of 468-GFP cells 
embedded in media, Collagen I, Fibronectin, Tenascin C, or Collagen IV. F) AUROC scores of 
binary classifier models (E) using all 11 cell shape parameters, cell size parameters, cell 
irregularity parameters, and cell elongation parameters.  
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Figure S5: PCA analysis for MDA-MB-231 and MDA-MB-468 cells 
A) Principal component analysis (PCA) of covariance between different metrics to quantify MDA-
MB-231 adhesion on plastic, Collagen I, Fibronectin, Tenascin C or Collagen IV, indicated by the 
colors in the legend. B) PCA plot showing localization of each ECM substrate on same axes as 
A. C) PCA of covariance between cell adhesion metrics of MDA-MB-468 cells on plastic, Collagen 
I, Fibronectin, Tenascin C or Collagen IV. D) PCA plot showing localization of each ECM substrate 
on same axes as C. 
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Figure S6: PLS model constructed to predict ECM-driven 2D migration and 3D invasion 
from cell adhesion of MDA-MB-468 cells 
A) Scores plot for PLS model with MDA-MB-468 cells. Principal components reflect covariation 
between adhesion, 2D migration and 3D invasion for each cell line on each ECM protein. B) PLS 
loading plot for 11 cell adhesion shape parameters and 3 cell responses. C) R2 and root mean 
square error (RMSE) for the PLS model built with increasing numbers of principal components. 
Ranked VIP scores for predicting 2D cell migration speed (D), 2D persistence (E), and 3D invasion 
(F). VIP score >1 indicates important cell shape parameters to predict cell invasion response. 
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Figure S7: PLS model constructed to predict ECM-driven 2D migration and 3D invasion 
from cell adhesion of both MDA-MB-231 and MDA-MB-468 cells 
A) Scores plot for PLS model with both MDA-MB-231 and MDA-MB-468 cells. Principal 
components reflect covariation between adhesion, 2D migration and 3D invasion for each cell line 
on each ECM protein. B) PLS loading plot for 11 cell adhesion shape parameters and 3 cell 
responses. C) R2 and root mean square error (RMSE) for the PLS model built with increasing 
numbers of principal components. Ranked VIP scores for predicting 2D cell migration speed (D), 
2D persistence (E), and 3D invasion (F). VIP score >1 indicates important cell shape parameters 
to predict cell invasion response. 
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Figure S8: Classifier and PLS predictions for Matrigel-driven responses 
 
Accuracy of prediction of 2D migration (A, D) and 3D invasion (B, C, E, F) of MDA-MB-231 (A-C) 
and MDA-MB-468 (D-F) cells in Matrigel using binary classifier models. G) Prediction of 2D cell 
migration speed, 2D persistence, and 3D invasion of cells on Matrigel from cell adhesion using 
combined cell line PLS model built with 6 principal components. Numbers represent the actual 
and predicted values for each metric. Colors represent percent error, indicated by the color 
gradient. H) Percent error of 3D invasion prediction of 231-GFP and 468-GFP cells in Matrigel 
from both cell adhesion and 2D migration. Predictions are made within the same cell line and with 
the combined cell line PLS model. 
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