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Abstract: 

Single cell transcriptome sequencing has become extremely useful for cell typing.  However, 

such differential expression data has shed little light on regulatory relationships among genes.  

Here, by examining pairwise correlations between mRNA levels of any two genes under steady-

state conditions, we uncovered correlated gene modules (CGMs), clusters of intercorrelated 20 

genes that carry out certain biological functions together.  We report a novel single-cell RNA-seq 

method called MALBAC-DT with higher detectability and accuracy, allowing determination of 

the covariance matrix of the expressed mRNAs for a homogenous cell population.  We observed 

a prevalence of positive correlations between pairs of genes, with higher correlations 

corresponding to higher likelihoods of protein-protein interactions.  Some CGMs, such as the 25 

p53 module in a cancer cell line, are cell type specific, while others, such as the protein synthesis 

CGM, are shared by different cell types.  CGMs distinguished direct targets of p53 and exposed 

different modes of regulation of these genes in different cell types. Our covariance analyses of 

steady-state fluctuations provides a powerful way to advance our functional understanding of 

gene-to-gene interactions. 30 

 

Main Text: 

Single-cell RNA-seq (scRNA-seq) has greatly expanded our knowledge of gene expression.  

However, significant advances are still necessary to reach its full potential.  Many methods have 

been developed for single cell amplification (1-13), but all suffer from various combinations of 35 

poor counting accuracy, low detection sensitivity, or low throughput.  While these methods have 

been successful in cell typing (5, 6, 14-17), their ability to shed light on the roles of particular 

genes has been more limited.  To further our understanding of how genes interact to produce 
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complex cellular behaviors, a technique with high accuracy, sensitivity, and throughput is 

required.  Such an understanding is critical to a wide range of biological problems, for example 

unraveling the networks of genes controlling cellular differentiation and identifying drug targets, 

to name only a couple. 

To meet these unique technical demands, we designed a novel single-cell mRNA amplification 5 

method called Multiple Annealing and Looping Based Amplification Cycles for Digital 

Transcriptomics (MALBAC-DT) (Figure 1A).  Our method improves upon several aspects of 

our prior work for amplifying DNA and RNA from single cells (4, 18).  We improved transcript 

detection efficiency by optimizing reverse transcription to increase the amount of full length 

first-strand cDNA produced.  First-strand cDNA then is amplified linearly by directly annealing 10 

MALBAC random primers along the cDNA strand, followed by exponential amplification by 

PCR. 

Because amplification by MALBAC-DT, in contrast to most single cell amplification methods, 

does not rely on template switching, we had greater flexibility to choose reverse transcriptases 

and optimize reaction conditions to maximize first strand cDNA production.  Furthermore, with 15 

MALBAC-DT it is possible to successfully amplify transcripts that are only partially reverse 

transcribed, either due to their length or secondary structure.  As a result, we detect ~20% more 

genes from single-cell amounts of RNA compared to Smart-seq2 and obtain a lower percentage 

of reads corresponding to ERCC synthetic spike-ins which may be shorter or less complex than 

typical genes (Table S1). 20 

To improve accuracy, we developed a novel unique molecular identifier (UMI) design that can 

correct previously unrecognized UMI artifacts that occur during amplification and sequencing 

(Supplementary methods).  Although Smart-seq2 does not contain a UMI for absolute 

quantification of transcripts, we modified the protocol to incorporate the same UMI design to 

compare with MALBAC-DT and observed approximately twice and many transcripts detected 25 

when using MALBAC-DT (Table S2).  Finally, our assay incorporates combinatorial cell 

barcoding to reduce the cost of preparing many single cells.  Although we have opted to use 

UMIs and sequence only the 3’ ends of transcripts to improve quantification and reduce costs 

associated with library preparation and sequencing, we note that it is also possible to perform full 

length sequencing without UMIs by following standard library preparation protocols. 30 

To demonstrate the ability of our method to generate unique insights into gene function, we 

amplified and sequenced 768 cells from the U2OS human osteosarcoma cell line, with 738 cells 

passing quality filters.  As expected for a homogenous cell culture, clustering of cells based on 

gene expression using t-stochastic neighbor embedding (tSNE) (19, 20) did not reveal distinct 

subpopulations of cells (Figure 1B).  However, clustering genes by tSNE did reveal distinct sets 35 

of genes that displayed similar patterns of expression across cells (Figure 1C).  Clusters of genes 

that showed similar expression patterns across cells were also revealed by hierarchical clustering 

(Figure 1D). 

To further investigate these clusters of genes, we computed the correlation coefficients for each 

pair of genes across all cells.  Upon hierarchical clustering of the correlation matrix (Figure 2A), 40 

we observed 148 correlated gene modules (CGMs), or clusters of 10-200 genes that are highly 

correlated with each other.  Many of these modules consist of genes pertaining to a specific 

biological function.  These include general housekeeping functions—such as cell cycle control 

and cholesterol (Figure 2B) and protein synthesis (Figure 2C)—as well as functions pertaining 
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specifically to this cell type such as bone growth and extracellular matrix remodeling (Figure 

2D).  A full list of CGMs and their associated functional enrichments is provided in Table S3. 

It is evident that many CGMs have genes related to specific functions.  For example the protein 

synthesis module (Figure 2B, Table S3 module 45), includes genes responsible for synthesizing 

tRNAs and amino acids, as well as the machinery required to initiate transcription and 5 

translation.  The same is true for cholesterol synthesis (Figure 2C, Table S3 module 27).  We 

note gene-to-gene correlation measurements have been widely used, but almost exclusively by 

means of the perturbative approach (21-24), i.e. evaluation of the correlations after introduction 

of a new experimental condition.  This perturbative approach is bound to affect a large number 

of genes in the cell, usually resulting in large groups of correlated genes.  Our method of 10 

evaluating correlations of steady state fluctuations of single cells reveals CGMs with a smaller 

number of intrinsically correlated genes. 

While analysis and normalization of cell cycle dependencies is important for cell typing and 

differential expression analyses (25), the CGMs we observed are largely unaffected when 

expression levels are adjusted to control for cell cycle, with the exception of those CGMs that are 15 

directly related to cell cycle activity (Figure S1).  Although genes representing different phases 

of the cell cycle become uncorrelated after normalization, we observe that genes within cell 

cycle related CGMs remain correlated, as would be expected due to correlations in the stochastic 

fluctuations that are not removed by normalization. 

Detecting CGMs relies on precise measurements of correlations between genes.  This requires 20 

large numbers of cells, accurate quantification of transcripts, and high detectability.  To our 

knowledge, this is the first study that satisfies all of these criteria.  Low cell numbers add 

sampling noise to the correlation coefficients (Figure 2E), while low detection sensitivity 

attenuates the correlations (Figure 2F).  Simulations demonstrate that neither high cell numbers 

nor high detection sensitivity alone is sufficient (Figure S2-3), and that the CGMs detected were 25 

not the result of spurious correlations due to limited sample size (Figure S4).  Previously 

published data (8) generated by 10x Genomics, which has high throughput but low sensitivity is 

unable to reveal CGMs (Figure S5), further confirming that large cell numbers cannot 

compensate for low sensitivity.  A dataset more recently made available by 10x Genomics is able 

to detect a small number of modules (40 vs 178 CGMs identified by MALBAC-DT using the 30 

same cell line).  Of these 40 modules, 53% (21/40) are found to be significantly correlated by 

MALBAC-DT (q < .05, Supplementary methods), while of the 178 CGMs identified by 

MALBAC-DT, only 9.6% (17/178) are able to be detected as significantly correlated in the 10x 

Genomics data. 

Weighted Gene Correlation Network Analysis (WGCNA) has long been used to identify 35 

networks of genes using differential expression data across many cell types and conditions (26, 

27).  While this method of inference is logically distinct from our approach of using correlations 

within a uniform population, we found that the tools developed for WGCNA could also identify 

modules in our data.  Adding further weight to the biological significance of the CGMs, the 

modules identified by WGCNA were highly similar to the CGMs we identified (Figure S6, 40 

Supplemental methods), although only 19 modules were identified by WGCNA.  Modules such 

as tRNA aminoacylation, mitochondria, translation, and cell cycle are consistently found using 

both methods.  However, modules like glycerolipid metabolism can only be identified with our 

analyses of the MALBAC-DT data. 
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Although it is widely understood that related genes will have similar differential expression 

levels across cell types or in response to perturbations, less consideration has been given to using 

steady state fluctuations to identify related genes.  In general, the transcript levels of two genes 

under steady state conditions may be correlated if their transcription or degradation rates are 

correlated.  This can arise from a number of biological mechanisms.  Overall anabolic and 5 

catabolic activity of the cell will affect most genes indiscriminately but is largely removed by 

normalization.  One gene-specific mechanism resulting in correlated transcription rates is 

coregulation either by a common transcription factor or multiple transcription factors which are 

themselves coregulated, possibly post-transcriptionally.  Other possibilities include correlated 

changes in epigenetic states such as DNA methylation, histone modifications, or spatial position 10 

within the nucleus.  Gene-specific mechanisms resulting in correlated degradation rates include 

common regulatory features in the untranslated regions (UTRs) or regulation by correlated 

miRNAs. 

In light of these mechanisms that potentially result in gene correlations, we expect that genes that 

are involved in a common function, and hence are coregulated, would exhibit correlations such 15 

as those in Figure 2B-D.  We examined whether a simple model of coregulation of gene 

expression is sufficient to produce the magnitude of correlations we observe in the CGMs.  Due 

to the small number of DNA molecules present in a single cell, transcripts and proteins undergo 

stochastic fluctuations in expression level over time.  When a regulatory protein controls the 

expression of multiple genes, it is natural to expect that fluctuations in the regulator will flow 20 

through to its targets, causing the targets to fluctuate in sync with one another.  When their 

expression is measured across many cells, these genes would then be observed to be correlated 

(Figure 2H).  Indeed, we find that conservative assumptions about the regulatory mechanisms 

underlying transcription and degradation are sufficient to produce correlations of the magnitude 

that we observe (Supplemental text, Figure S7).  In our data, we observe significantly more 25 

positively correlated than negatively correlated pairs of genes, indicating that coregulation is a 

more widespread mechanism of regulation (Figure S8). 

More generally, we observed that highly correlated genes were more likely to have been 

previously identified as being related in databases (28) of protein associations, including direct 

protein-protein interactions (PPI) and inferred functional relations (Figure 2G).  Consistent with 30 

the observation of function-specific CGMs, this indicates that steady state correlations can 

indicate functional relationships between genes, and raises the possibility of identifying 

mechanistically related sets of genes from such measurements. 

One CGM we chose for further investigation consists of targets of the key tumor suppressor 

protein p53 (Figure 3A).  This CGM contains 197 genes, most of which have been identified by 35 

ChIP-seq studies to contain p53 binding sites.  Moreover, all p53 targets identified by a previous 

ChIP-chip study (29) of this cell line are contained in this module. 

We performed an shRNA knockdown of p53 followed by MALBAC-DT in order to examine the 

effect of this module as well as the transcriptome as a whole.  Mean p53 transcript levels 

decreased 15-fold in the knockdown cells compared to the control cells (Figure 3B), and 1337 40 

genes were significantly up- or down-regulated as a result (Figure 3C). 

If correlations between genes in our homogenous population of cells reflect coregulatory 

relationships, then we should expect that these genes would respond similarly to perturbations.  

Indeed, we find that genes that are strongly correlated in our original dataset tend to be either 
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both upregulated or both downregulated in response to p53 perturbation, while anticorrelated 

genes tend to have opposite responses to the perturbation (Figure 3D). 

Because correlations reflect regulatory relationships, they have the potential to identify novel 

genes that act in the same regulatory pathway.  Indeed, several genes exhibited a high correlation 

with p53 expression and were perturbed by p53 knockdown, despite not previously being 5 

connected to p53 to our knowledge.  As a concrete example, we observed that the deubiquitinase 

JOSD1 is strongly anticorrelated with p53 activity.  Although JOSD1 had not been previously 

associated with p53, other deubiquitinases are known to modulate p53 activity either directly or 

through Mdm2.  Moreover, a structurally related protein ATXN3 was recently shown to stabilize 

p53 via deubiquitination (30).  We therefore hypothesized that JOSD1 might play a role in the 10 

p53 pathway.  Indeed, JOSD1 was observed to be upregulated upon p53 inactivation, consistent 

with their anticorrelation in the unperturbed system, and indicating a possible negative feedback 

loop in which p53 inhibits JOSD1 transcription, while the Josd1 protein stabilizes p53. 

The large number of genes that are differentially expressed in response to a perturbation often 

hinders meaningful analysis of such data, and providing meaningful classifications of these 15 

genes for further experiments remains an open challenge.  CGMs potentially offer a way to 

organize these differentially expressed genes into fine-grained modular units.  To this end, we 

looked at the correlations in our original dataset among the 1337 genes which were differentially 

expressed in response to p53 knockdown (Figure 3E). 

These differentially expressed genes clustered into ~10 CGMs, several of which are associated 20 

with distinct pathways.  One of these CGMs consists almost entirely of genes from the original 

p53 CGM.  Moreover, nearly all of the differentially expressed genes with p53 binding sites are 

contained in this CGM, indicating that by analyzing correlations we are able to distinguish the 

direct targets of p53 knockdown from its downstream effects.  Strikingly, correlations in our 

steady-state dataset were able to predict the genes that would be perturbed by p53 knockdown 25 

more accurately than ChIP-seq studies.  Whereas 49% of genes in the p53 module were 

downregulated upon knockdown of p53, this was only the case for 33% of genes from a 

consensus of ChIP-seq studies (31), and 9% of genes identified by a ChIP-chip study of the same 

cell line (29).  Additionally, genes within CGMs are consistently upregulated or consistently 

downregulated upon p53 knockdown, in agreement with our model in which correlations among 30 

genes arise from coregulation. 

Finally, we asked how CGMs compare across cell types.  We amplified and sequenced 748 

single cells from the HEK293T human embryonic kidney cell line.  As expected for dramatically 

different cell types, several thousand genes were differentially expressed between these two cell 

lines (Figure 4A-B). 35 

While existing methods are unable to provide meaningful classification of these genes, we find 

that CGMs provide a natural way to understand the differences between these two cell types.  Of 

the 148 CGMs identified in U2OS, 22 CGMs were also observed to be significantly correlated in 

HEK293T cells, representing housekeeping machinery shared across vastly different cell types.  

For many CGMs, the genes are up- or down- regulated as a group (Figure 4C-D).  In some of 40 

these cases, the CGM is absent in one cell type (Figure 4C), indicating that the module has been 

switched off.  In other cases (Figure 4D), the CGM is present in both cell types, indicating that 

the genes remain coregulated but at different expression levels. 
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CGMs can also identify changes in regulatory architecture across cell types even in the absence 

of differential expression.  Although HEK293T is known to lack p53 activity (32, 33), target 

genes of p53 are not consistently down-regulated in HEK293T compared to U2OS (Figure 4E), 

possibly indicating their roles in other pathways.  Despite the similar expression levels of the 

component genes, the p53 CGM is absent in HEK293T. 5 

Although in this work we have presented proof of principle analyses on cell lines using CGMs, 

our results shed light on critical biological processes relevant to many cell types.  We expect the 

analysis of CGMs in a diverse set of cell types and tissues using methods with high sensitivity 

will produce a wealth of insights not obtainable using differential expression analyses alone. 
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Fig. 1. (A) MALBAC-dt protocol and experimental workflow.  A homogenous cell population is 

trypsinized and sorted into individual wells of 96-well plates by flow cytometry.  Reverse 

transcription is carried out using a poly-T primer containing a cell-specific barcode and unique 

molecular identifier (UMI).  First strand cDNA is amplified by random primers using MALBAC 

thermocycling to ensure linear amplification followed by additional cycles of exponential 5 

amplification by PCR.  After amplification, samples are pooled together for library preparation 

and sequencing.  (B) Clustering of 738 U2OS cells by t-Stochastic Neighbor Embedding (tSNE).  

Cells were obtained from a homogenous culture and cDNA was amplified by MALBAC-dt.  

Consistent with a homogenous culture, no sub-clusters of cells are apparent.  (C) Clustering of 

genes by tSNE.  Genes were clustered based on their expression levels across the 738 U2OS cells.  10 

Many clusters are present, representing sets of genes that have similar expression patterns.  (D) 

Hierarchical clustering of gene expression data from 738 U2OS cells.  As with clustering by tSNE, 

several sets of genes with similar expression patterns are observed. 

Fig. 2. (A) Correlation matrix for ~11,000 genes that were detected in at least 10% of the 738 

U2OS cells. Genes are ordered by hierarchical clustering to reveal numerous modules of highly 15 

correlated and/or anti-correlated genes. Inset provides an enlarged view to highlight the detail 

present in many of these clusters.  The genes in many of these Correlated Transcriptional Modules 

(CGMs) are enriched for particular biological function or contain binding sites for specific 

transcription factors. (B) A CGM related to protein synthesis, with genes responsible for specific 

processes indicated by arrows.  (C and D) CGMs related to sterol synthesis (C) and extracellular 20 

matrix remodeling (D).  Genes with known functional roles in these processes are labeled in red. 

(E) Measurement error associated with estimating correlation from a limited number of cells.  The 

Plotted are the distributions of correlations that would be measured for a pair of uncorrelated genes 

if a given number of cells were sampled.  (F) Impact of detection efficiency on correlation 

measurements.  For a pair of genes with a given true correlation, the correlation that would be 25 

measured by sampling an unlimited number of cells is plotted as a function of the efficiency of 

detecting individual transcripts. (G) Genes with high correlations are more likely to be identified 

as related in protein-protein interaction databases.  Gene pairs are binned based on their correlation 

coefficient.  For each bin, the fraction of pairs identified by StringDb is plotted. (H) A schematic 

model depicting how gene regulatory interactions can result in correlations in a steady state 30 

population.  Stochastic fluctuations in a transcription factor will result in fluctuations in its target 

genes, causing them to be correlated.  Independently regulated genes, on the other hand, will 

exhibit no correlation. 

Fig. 3. (A) CGM related to p53 activity.  Genes with significant literature support (31) for being 

targets of p53 are indicated by red arrows, while genes with limited literature support are indicated 35 

by black arrows.  (B) Distribution of p53 transcript levels in control and shRNA knockdown cells.  

(C) Mean expression levels of transcripts in p53 knockdown cells vs. control cells.  Red points 

indicate genes which are significantly differentially expressed.  (D)  Correlation among genes in a 

homogenous cell population is predictive of their response to perturbation.  Genes differentially 
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expressed in response to p53 knockdown are categorized as strongly anticorrelated (less than -0.2), 

moderately anticorrelated (between -0.2 and -0.1), weakly anticorrelated (between -0.1 and 0), 

weakly correlated (between 0 and 0.1), moderately correlated (between 0.1 and 0.2), and strongly 

correlated (greater than 0.2).  For each category, the fraction of gene pairs which are concordantly 

regulated (both upregulated or both downregulated) or discordantly regulated (one upregulated 5 

while the other downregulated) are shown.  (E) Hierarchical clustering of genes differentially 

expressed upon p53 knockdown.  Genes cluster into ~10 CGMs.  Genes within a CGM have the 

same directional response to p53 knockdown, consistent with their regulation as a functional unit.  

Direct p53 targets, indicated by red and black arrows as in (A), are predominantly found in a single 

CGM, as are the genes originally identified as a CGM related to p53 function.  CGMs thus 10 

distinguish direct p53 targets from downstream pathways. 

Fig 4. Shared and cell-type specific CGMs between the U-2 OS and HEK293T cell lines.  (A) 

Mean expression levels of genes in HEK293T vs U2OS.  (B) Hierarchical clustering of expression 

across HEK293T and U2OS cells reveals ~6000 up- and down-regulated genes.  (C-F) CGMs 

organize genes into biologically relevant pathways in a manner that is distinct from and not 15 

apparent by differential clustering.  In some cases (C) differentially expressed genes correspond 

to differentially correlated modules. However, CGMs provide a further separation of differentially 

expressed genes into distinct functional units.  In other cases (D), a set of differentially expressed 

genes can be resolved into a common CGM between multiple cell types. Moreover, differential 

correlation between cell types can occur without differential expression (E), possibly indicating 20 

multiple modes of regulation of the component genes. Finally, correlations can be consistently 

observed across cell types and organized into distinct CGMs in the absence of differential 

expression (F). 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Supplementary Materials 

Cell culture and handling 

U2OS and HEK293T cell lines were obtained from ATCC and cultured at 37°C in RPMI-1640 

medium with 10% Fetal Bovine Serum and 1% Penicillin-Streptomycin.  To form single cell 

suspensions for flow sorting, culture medium was removed, cultures were rinsed with 5 

Dulbecco’s phosphate-buffered saline (D-PBS), and incubated with 1mL of 0.25% trypsin for 5 

minutes.  Detached cells in D-PBS were pelleted by centrifugation at 300g for 5 minutes and 

resuspended in D-PBS.  Single cell suspensions were kept on ice until flow sorting. 

shRNA knockdowns were performed by incubating ~30% confluent U2OS cells with 1ug of 

either 11653 C3 plasmid for TP53 knockdown cells or with TransIT-LT1 plasmid for control 10 

cells.  Cells were incubated for 48 hours followed by flow sorting to isolate single cells in lysis 

buffer. 

MALBAC-DT protocol 

Cells were flow sorted into 3uL of lysis buffer consisting of 1uL H2O, 0.6uL 5x SSIV buffer, 

0.15uL 10% ICA-630, 0.8uL 5M betaine, 0.05uL SUPERase In, 0.2uL 50uM RT-An primer, and 15 

0.2uL 10mM dNTP mix.  Plates are stored at -80°C until ready for amplification.  Plates are kept 

on ice while pipetting and vortexed and briefly centrifuged after all pipetting steps. 

To perform reverse transcription, plates are incubated at 72°C for 3 minutes, then 1uL of RT mix 

is added consisting of 0.264uL H2O, 0.16uL 5x SSIV buffer, 0.2uL 100mM DTT, 0.152uL 

SUPERase In, 0.024uL 1M MgSO4, and 0.2uL SuperScript IV.  Plates are incubated for 10 20 

minutes at 55°C. 

Next, excess reverse transcription primers are degraded by exonuclease digestion.  1uL of 

exonuclease mix is added consisting of 0.1uL ExoI buffer, 0.1uL H2O, 0.6uL ExoI, and 0.2uL 

50uM RT-Bn primer.  Plates are incubated for 30 minutes at 37°C and then 20 minutes at 80°C. 

Amplification is performed by adding 24uL of amplification mix consisting of 18.64uL H2O, 25 

3uL ThermoPol buffer, 0.4uL 10mM dNTP mix, 0.16uL 100mM MgSO4, 0.4uL 50uM GAT-

7N, 0.4uL 50uM GAT-COM, and 1uL Deep Vent (exo-).  The following thermocycle program is 

run: 

Step Temperature Time 

1 95 5:00 

2 4 0:50 

3 10 0:50 

4 20 0:50 

5 30 0:50 

6 40 0:45 

7 50 0:45 

8 65 4:00 
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9 95 0:20 

10 58 0:20 

11 Goto 2 10x 

12 95 1:00 

13 95 0:20 

14 58 0:30 

15 72 3:00 

16 Goto 13 17x 

17 72 5:00 

18 4 0:00 

Finally, amplification is completed by adding 0.4uL 50uM Tru2-Gn-RT primers and running an 

additional 5 cycles of PCR steps 12-15.  Amplified plates are stored at -20°C until library 

preparation. 

In early versions of the protocol, a total of 8 RT3-An primers were used per 96 well plate, with 

one primer corresponding to one row of the plate.   During the final amplification step, 12 Tru2-5 

Gn-RT primers were used, with one primer corresponding to one column of the plate.  In later 

versions of the protocol, 96 RT3-An primers were used, with a distinct primer corresponding to 

each well.  In the final step, a single Tru2-Gn-RT primer could then be used.  While the former 

method requires lower upfront costs to synthesize primers, the later method simplifies preparing 

plates at larger scales and eliminates the possibility of cross-contamination of samples during 10 

amplification. 

To prepare libraries for sequencing, 1uL from each of the wells are combined and purified using 

0.8x Ampure beads.  The Nextera library preparation kit is used to add Illumina adapters by 

tagmentation.  During subsequent PCR steps, Ix-Tru2 primers are substituted for Nextera S5XX 

primers in order to select the 3’ ends of transcripts containing cell barcodes and UMIs. 15 

Sequence processing 

Separate fastq files are generated for each cell based on the outer and inner barcode sequences.  

Barcodes not matching a cell exactly are discarded.  Barcodes, adapter sequences, and UMIs are 

stripped from the reads, and reads are aligned to the human GRCh38.p7 reference using STAR 

2.5.2.  For each gene, a list of UMIs is obtained for all reads mapping to that gene, excluding 20 

regions masked by RepeatMasker.  To remove extraneous UMIs resulting from amplification or 

sequencing errors, UMIs for a particular gene are represented as nodes in a graph, with 

connections between UMIs differing at no more than 7 bases.  Connected components are 

identified, and the consensus sequence within each component is determined.  Consensus 

sequences matching the (HBDV)5 RT-An pattern and differing from the (VDBH)5 RT-Bn pattern 25 

at at least three bases are retained.  To avoid potential cross-talk between wells, UMIs observed 

for the same gene in multiple cells are discarded. 

After obtaining UMI counts for all genes and cells, cells for which more than 1% of transcripts 

are from ERCC spike-ins or contain fewer than 1000 total transcripts are discarded, as are genes 
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which are observed in fewer than 10% of cells.  Counts are normalized relative to the total 

number of transcripts in each cell prior to computing the correlation matrix. 

Hierarchical clustering is performed using the SciPy function scipy.cluster.hierarchy.linkage 

using method “average,” and with a distance metric of 1 − 𝑎𝑏𝑠(𝜌𝑖𝑗), where 𝜌𝑖𝑗 is the correlation 

between genes 𝑖 and 𝑗.  To test the robustness of this clustering algorithm, we randomized the 5 

umi counts across all cells for each particular gene and recomputed the correlations between 

gene pairs, resulting in a distribution of correlation coefficients that would be expected due to 

limited sample size alone.  On top of this background of uncorrelated genes, we set a group of 

genes to have a stronger correlation and examined whether these genes could then be identified 

by clustering.  We found that for the magnitudes of correlations typically observed in our data, 10 

groups of correlated genes could be reliably recovered (Figure S9). 

Cell cycle correction 

Pseudo-time inference and cell-cycle correction 

Pseudo-time was inferred for each cell by assuming that the expression of cell-cycle genes 

followed a sinusoidal function along the time trajectory. The actual expression of each cell-cycle 15 

gene was further modeled as follows, a normal distribution centered around the level predicted 

by sinusoidal function, with variance aggregated from both stochastic expression variance and 

technical noise.  

 

 20 

 

𝑦𝑔,𝑐: actual expression of gene g for cell c. 

𝜇𝑔,𝑐: expected expression of g for c from sinusoidal function. 

𝑣𝑔
2: gene specific variance from stochastic expression for g. 

𝑣𝑡𝑒𝑐ℎ
2 : common technical noise. 25 

𝐴𝑚𝑝𝑔, 𝐴𝑚𝑝𝑆ℎ𝑖𝑓𝑡𝑔: amplitude of the sinusoidal function for g.  

𝑇𝑝𝑒𝑎𝑘,𝑔: The peak time of g, in the time scale of percentage into the cell-cycle. Retrieved from 

Cyclebase.org (34).   

𝑡𝑐: The pseudo-time of cell c. 

 30 

The transcriptome was fitted against the described model, with a pseudo-time optimized for each 

cell to maximize the overall likelihood estimation. The MLE process was done using PyTorch.  

In order to correct the covariance matrix for cell-cycle effect, cells were then ordered by the 

assigned pseudo-time, and the expression of each gene was corrected by subtracting the mean of 

the surrounding rolling window. 35 

𝑦𝑔,𝑐  ~ 𝒩(𝜇𝑔,𝑐 ,  𝑣𝑔
2 + 𝑣𝑡𝑒𝑐ℎ

2 ) 

𝜇𝑔,𝑐 = 𝐴𝑚𝑝𝑔 ∗ (cos( 𝑡𝑐 − 𝑇𝑝𝑒𝑎𝑘,𝑔) + 1 ) + 𝐴𝑚𝑝𝑆ℎ𝑖𝑓𝑡𝑔  
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Correlations between coregulated genes 

We consider the case of two genes that are regulated by the same transcription factor 

(Supplementary Figure 1A) with dynamics described by: 

𝜕[𝐶]

𝜕𝑡
= 𝑣𝑐[𝐵] − 𝑑𝑐[𝐶] 

𝜕[𝐷]

𝜕𝑡
= 𝑣𝑐[𝐷] − 𝑑𝑐[𝐷] 5 

[𝐵] = 𝑓(𝑡) 

For simplicity we have taken the transcription rate 𝑢 and degradation rate 𝑣 to be the same for 

transcripts C and D.  The transcription factor B is allowed to fluctuate in time arbitrarily. 

The lifetimes of mRNAs are often short relative to those of proteins.  In this case, as B 

fluctuates, transcripts C and D rapidly adjust and fluctuate independently from one another 10 

around the steady state concentration [𝐶]𝑠𝑠 = [𝐷]𝑠𝑠 = [𝐵] 𝑣𝑐/𝑑𝑐, and these fluctuations will 

follow a Poisson distribution. 

Under these assumptions, the covariance between [𝐶] and [𝐷] is: 

〈𝛿𝑐𝛿𝑑〉 = ∑⟨𝛿𝑐𝛿𝑑|𝑏⟩𝑝(𝑏)

𝑏

 15 

= ∑⟨𝛿𝑐|𝑏⟩⟨𝛿𝑑|𝑏⟩𝑝(𝑏)

𝑏

 

= ∑
𝑣𝑐

2

𝑑𝑐
2

𝛿𝑏2𝑝(𝑏)

𝑏

 

=
𝑣𝑐

2

𝑑𝑐
2

𝜎𝐵
2 

Following a similar procedure to obtain 〈𝛿𝑐2〉 and 〈𝛿𝑑2〉, we obtain the correlation coefficient 

𝜌𝐶𝐷 =
〈𝛿𝑐𝛿𝑑〉

√〈𝛿𝑐2〉〈𝛿𝑑2〉
=

𝜇𝐶cv𝐵
2

1 + 𝜇𝐶cv𝐵
2  20 

where 𝜇𝐶 is the mean of C, and cv𝐵 is the coefficient of variation of B. 
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Analysis of 10x Genomics datasets 

Datasets were downloaded from the website of 10x Genomics.  The datasets from Zheng et al (8) 

consisting of ~2800 HETK293T cells and the newer dataset consisting of a mixture of ~10,000 

HEK293T and mouse NIH3T3 cells were used.  For the later dataset, only HEK293T cells were 

used for further analysis.  BAM files were downloaded and filtered according to the same 5 

mappability criteria used for MALBAC-DT datasets.  To determine whether a CGM detected 

with one method was significantly correlated in the other, genes within a given module were 

randomly substituted for genes with similar expression levels (among the 50 genes with nearest 

mean expression), and the average of the absolute value of the correlations in this randomized 

module were calculated.  This randomization was repeated 10,000 times and a Bonferoni-10 

corrected p-value was obtained by comparing the average correlation in the true module to the 

distribution of average correlations in the randomized modules. 

Comparison to WGCNA 

Hierarchical clustering of the correlation matrix is performed using the “hclust” function of R 

software, with the “average” method and a distance metric of 1-abs(ρ_ij), where ρ_ij is the 15 

correlation between genes i and j. Sub-clusters are obtained by cutting the dendrogram using the 

“cutree” function with parameter h=0.9. Sub-clusters containing more than 10 genes are 

identified as CGMs. We also compare our module detection method with a widely used gene co-

expression analysis package, WGCNA1,2. Modules are identified by the “blockwiseModules” 

function, with “power = 1, TOMType = “unsigned”, minModuleSize = 10” and the other default 20 

parameters. Gene set enrichment analysis is performed using the R package “enrichR” with p-

value threshold of 1e-5 to associate gene sets in modules with “KEGG_2019_Human”, 

“GO_Biological_Process_2018”, “GO_Cellular_Component_2018”, 

“GO_Molecular_Function_2018”, and “Reactome_2016” databases. For the U2OS cell line, only 

19 modules are identified by WGCNA, and nearly 9,000 genes do not form any module. We use 25 

the Dice coefficient as a measure of similarity between modules detected by both methods and 

found that CGMs and WGCNA modules are highly similar. 

Supplementary Figures 

Figure S1. Effect of cell cycle on CGMs.  Correlations are shown before (upper right) and after 

(lower left) adjusting expression data for cell cycle differences across cells.  Nearly all CGMs are 30 

unaffected by the correction, with individual pairs of genes exhibiting similar correlations before 

and after adjustment.  Genes specifically related to the cell cycle are the exception.  Related cell 

cycle genes generally exhibit weaker correlation after adjustment, and the negative correlations 

between M and S phase genes are largely eliminated. 

Figure S2.  Large numbers of cells are needed to observe CGMs.  Correlations in the full U2OS 35 

dataset (upper right) are compared with correlations calculated using a random subset of 100 

cells (lower left).  The 100 cell subset is significantly noisier than the full dataset.  In many 

cases, CGMs identified in the full dataset (A) are observed to also be correlated in the 100 cell 

subset.  However, the larger noise in this dataset prevents CGMs from being identified using this 

reduced dataset alone.  When genes are clustered according to their correlation in the 100 cell 40 

dataset (B), many spurious clusters are identified.  The correlations within such clusters result 
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solely from measurement error and are not observed in the larger dataset, which has lower 

measurement error due to the larger number of cells. 

Figure S3.  High detection efficiency is necessary to detect CGMs.  Correlations between genes 

are shown for the full U2OS dataset (upper right), and a randomly downsampled dataset 

simulating a 67% lower detection efficiency (lower left).  Many correlations are absent or 5 

severely attenuated at lower detection efficiency. 

Figure S4.  CGMs do not result from measurement error.  To examine the effect of measurement 

error in the correlation coefficients on clustering, we randomly permuted the expression counts 

across all cells for each gene.  As a result, there is no expected correlation between genes, and 

any observed correlation is due to sampling a finite number of cells.  In our full U2OS dataset 10 

(A), no CGMs are observed after random permutations.  Spurious clusters are observed when the 

permutation is applied to a random subset of 100 cells (B). 

Figure S5.  Methods with low sensitivity cannot detect CGMs.  Correlations are displayed for 

data generated by MALBAC-DT (upper right) and 10x Genomics (lower right) for the HEK293T 

cell line.  Although 2800 cells were sequenced with 10x compared to 748 cells with MALBAC-15 

DT, correlations and CGMs are only apparent in the MALBAC-DT data. 

Figure S6. CGMs are consistent with the modules detected using WGCNA. A) Left panel: 

hierarchical clustering of gene-gene correlation across U2OS cells. Modules associated with 

specific functions are highlighted using color bars for both methods.  Right panel: heatmap of 

Dice’s coefficient indicates the similarity between the CGMs and the WGCNA modules. 20 

Modules associated with specific functions are detected by both methods with shared gene sets 

over 40% of the average number of genes in the two modules. 84% of the modules detected by 

WGCNA can be found in CGMs with Dice’s coefficient > 0.4. B) Hierarchical clustering of 

gene-gene correlation across HEK293T cells. The four function-associated modules share gene 

sets over 40% of the average number of genes in the two modules. 87.5% of the modules 25 

detected by WGCNA can be found in CGMs with Dice’s coefficient > 0.4. 

Figure S7. Model of correlations resulting from shared transcriptional regulation (see also 

supplementary note).  A)  A transcription factor B regulates the transcription of genes C and D, 

with the rate of transcription given by [𝐵]𝑣𝐶 .  Transcripts C and D are degraded with rate 𝑑𝐶.  

The protein B fluctuates in time, driven by an arbitrarily complex mechanism regulating its 30 

production and degradation.  Under the assumption that the mRNA lifetimes of C and D are 

short relative to the timescale of fluctuations of B, the correlation between the two genes is given 

by 𝜌𝐶𝐷 =
𝜇𝐶cv𝐵

2

1+𝜇𝐶cv𝐵
2 .  B) Heatmap showing the magnitude of correlation coefficients that are 

obtained for various values of the coefficient of variation of B (cv𝐵 ) and mean expression level 

of C and D (𝜇𝐶).  C) Correlations under a particular model in which fluctuations in B are driven 35 

by a simple model of transcription and degradation at constant rates with no bursting.  In this 

case, under the assumption that the protein B is long-lived relative to its transcript A, the 

coefficient of variation is given by 𝑐𝑣𝐵
2 =

1

𝜇𝐵
(1 +

𝑣𝐵

𝑑𝐴
). 

Figure S8. Distribution of correlation coefficients.  A) Histogram of measured correlation 

coefficients for all pairs of genes.  The portion of the distribution corresponding to genes with 40 

positive correlation is show in red, and the portion corresponding to negatively correlated genes 

is shown in blue.  The distribution is roughly symmetrical with most gene pairs being 
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uncorrelated.  B) Zoomed in view of panel (A) highlighting the tails of the distribution.  Negative 

correlations are displayed on the positive axis for better contrast with positive correlations, and 

the frequency is displayed on a log scale.  Strongly correlated gene pairs are significantly more 

prevalent than strongly anticorrelated gene pairs. 

Figure S9.  Clustering is robust at the magnitudes of correlation observed in our data.  A set of 5 

100 genes are set to have a fixed correlation against a background of correlations due entirely to 

sampling error.  Clustering is performed, and the fraction of pairs of genes which are in the same 

cluster is recorded.  The mean fraction is plotted across 10 simulations over different random 

backgrounds. 
  10 
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Figure S1 
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Figure S2 
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Supplementary Tables 

Sample Mapped 

reads 

Exonic 

fraction 

ERCC 

fraction 

Genes 

detected 

MALBAC-DT Replicate 1 250000 89% 0.2% 4984 

MALBAC-DT Replicate 2 250000 88% 0.2% 5567 

Smart-seq2 Replicate 1 250000 92% 2.6% 4326 

Smart-seq2 Replicate 2 250000 93% 2.8% 4605 

Table S1.  Performance characteristics of MALBAC-DT compared to Smart-seq2.  All samples 

have been downsampled to 250,000 mapped reads for comparison.  In order to prevent inclusion 

of ambiguously mapped reads and inflated gene counts, reads have been stringently filtered to 

exclude regions flagged by RepeatMasker. 5 

 

Sample Mapped reads Transcripts detected 

MALBAC-DT Replicate 1 380,000 48,389  

MALBAC-DT Replicate 2 380,000 47,736  

MALBAC-DT Replicate 3 380,000 47,711  

MALBAC-DT Replicate 4 380,000 49,830  

Smart-seq2 with UMIs, Replicate 1 380,000 24,664  

Smart-seq2 with UMIs, Replicate 2 380,000 20,946  

Table S2.  Performance of MALBAC-DT compared to a modified Smart-seq2 protocol 

containing the same UMI design as for MALBAC-DT.  All samples have been downsampled to 

380,000 mapped reads for comparison, and the number of transcripts is presented after correcting 

for amplification and sequencing artifacts. 10 

 

Table S3.  Functional enrichments of CGMs identified in U2OS.  For each of the 148 CGMs 

identified in the U2OS dataset, the set of genes comprising the CGM is presented along with the 

enriched pathways and transcription factors identified by Enrichr (35, 36). 
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Table S3 

 

Cluster 
ID 

Number 
of Genes Gene Names 

Enrichment 
(Pathway or transcription factor, 

database, and false-discovery-corrected 
q-value) 

1 15 CERK, TMEM109, CNDP2, AK4, SLC35A1, TCF3, 
HDAC1, ECHDC1, SCP2, EXT2, TMED10, DCTN1, 
ELOVL5, DDOST, RNF10 

Asparagine N-linked glycosylation_Homo 
sapiens_R-HSA-446203 (Reactome_2016 
q=0.001630) 

2 436 EFHD2, MIEF2, PEX26, PIM1, INPPL1, TNKS1BP1, 
EEF1A2, ZNF224, GEMIN7, JRK, TSC2, GMPPB, 
EVA1C, CIRBP, LMNB2, YOD1, PPP1R14B, 
RPS3P7, LMNA, GLRX5, MAML1, AMBRA1, 
HACD2, C12orf29, IKBKAP, WWP1, TRMT6, 
DRAP1, PUS1, RP11-95D17.1, SMPD1, PTOV1, 
TTC38, RSRC2, ATF7, MSRB1, RASAL2, ATF7IP, 
POP1, RWDD1, SEPT9, PNKD, MGRN1, EPHA1-
AS1, VPS37C, SEPN1, COG7, HIRIP3, RRAGB, 
FAM160B2, SLC25A39, SF3A1, RRP7A, TTLL12, 
SLC29A1, TBRG4, GCDH, TXN2, OGFOD3, SDC1, 
CST3, PLCD1, APLP2, CES2, RPL17P25, FAM58A, 
SLC7A5, DCXR, RRP8, AK2, METTL5, PDLIM7, 
ADCK2, TMEM256-PLSCR3, VAPB, LDLRAP1, 
RASL10B, MARCKSL1, PMVK, PTPRS, VASP, 
RRAS, REL, PSMD7, TBCC, CLPP, NCOA5, 
SLC39A13, PLEKHG3, LIN7B, CCDC152, DIAPH3, 
COA6, CSNK1G3, IFFO2, ADGRL1, NUP62, 
MGME1, HSPA9, MATR3, NLGN2, PDXDC1, 
FGFR1, C11orf58, TOR4A, CD2BP2, NAT14, 
ADD1, VPS39, PRKAR1B, FAM234A, COA5, PIGU, 
MKKS, FBLN1, MTMR14, RANBP10, PCBD1, 
PMM1, CAD, MRPS16, RRP9, SNX8, EIF3B, ETV4, 
SMYD5, RRP12, SNRPC, TIMM23, ZNF511, RCC1, 
COA4, NFIX, WASF2, RAD23A, BRD4, SLC35F2, 
SRRM2, CAPRIN1, UBR4, EPB41L2, HECTD3, 
PPP1R7, HDLBP, C12orf43, SMARCA4, PDCD5, 
RBM3, AP003068.18, ST13, APH1A, SYNGR2, 
KRT18P29, CTD-2349P21.1, LRR1, KRT18P57, 
KRT18P18, NDUFB2, DSTN, PSMD8, EDF1, 
PSMB6, B4GALT2, PQLC1, ADRM1, KIAA2013, 
TMEM248, HN1, TMEM222, KRT18P31, HAGH, 
DOCK6, JMJD4, HS6ST1, HK1, RECQL4, ATF5, 
EVA1A, NME4, SUMO3, DRG2, SGO1, TACC3, 
ACSF3, FN3KRP, SLC38A10, MKNK2, FAM65A, 
CTDNEP1, EXOC3, CEP72, NISCH, FMNL3, 
R3HDM4, SNX17, VPS28, CDK16, KRT18P43, 
KRT18P37, KRT18P20, IVD, SEPT8, SPCS2, SPG7, 
MAFG, ZNF574, AGTRAP, CYB5D2, KIF1C, AAMP, 

Metabolism_Homo sapiens_R-HSA-
1430728 (Reactome_2016 q=0.009233), 
TNF-alpha NF-kB Signaling Pathway_Mus 
musculus_WP246 (WikiPathways_2016 
q=0.033119), Metabolic pathways_Homo 
sapiens_hsa01100 (KEGG_2016 
q=0.017831), JARID1A_20064375_ChIP-
Seq_MESCs_Mouse (ChEA_2016 
q=0.000000), MAX_ENCODE 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.000000) 
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Cluster 
ID 

Number 
of Genes Gene Names 

Enrichment 
(Pathway or transcription factor, 

database, and false-discovery-corrected 
q-value) 

RCC1L, NPRL3, POMGNT1, C19orf33, SLC29A2, 
CBX6, ZFYVE19, MPV17, JMJD8, CIC, PI4KA, 
MRPL2, APRT, NCS1, SLC10A3, POLD2, FTSJ1, 
C7orf61, GNPTG, IP6K1, ACTR5, KRT18P28, 
KRT18P5, ERI3, ASL, YIF1A, IMPA2, P3H1, 
UTP23, LLGL1, TNNT1, APBB1, KRT18P60, 
ATP6V0D1, ATPAF2, KCNN4, SPHK1, MRPL54, 
HSPB1, ALYREF, RPL18, EEF1DP5, KRT18P6, 
R3HCC1, KEAP1, CHCHD1, ALKBH2, TMEM9, 
PLD2, DUS2, DDRGK1, PLAUR, MDK, USP11, 
SLC27A4, ZNF618, UPF1, LYAR, SYNCRIP, PDXK, 
TSPAN17, MAPK12, ATN1, EPB41L3, MAP7D1, 
AKIRIN1, NDUFA11, KLHDC3, PYGB, TAX1BP3, 
BCAT2, ZNF316, RPS15, UBL4A, CINP, PAK4, 
NAA38, ADCY3, HTT, ZDHHC18, KAT2A, E2F4, 
UNC119, TADA3, SHISA5, FLOT2, MRPL21, 
ANAPC11, CAPN2, DAP, HEXA, DLGAP4, MRM3, 
COMMD4, RANGAP1, CLTB, KRT18P51, ZYX, 
SMTN, GRB2, CENPT, TK1, YKT6, KRT18P8, 
EPHA2, TIMM13, PSMG3, EXTL3, NINJ1, 
PLEKHJ1, MGAT1, NADSYN1, CHID1, CHMP1A, 
PTTG1IP, FKBP3, GNAI2, AP3D1, PAFAH1B3, 
TP53I11, CHST10, TNIP2, KMT2B, KRT18P38, 
KRT18P11, KRT18P52, EEF1DP1, PGS1, PRKD2, 
RUVBL1, QDPR, RBFA, C19orf48, TPD52L2, 
PABPC4, PSMA7, KRT18P10, WBSCR22, RP5-
1056L3.3, PRPF6, POLR3H, RPS14, TUBB4B, 
CHMP3, PHPT1, TUBG1, TNIP1, MISP, ROMO1, 
ZNHIT1, LAMTOR4, TRIP6, MRPS34, POLR2L, 
FKBP2, ARPC4, BRMS1, SART1, COX5B, UXT, 
EXOSC5, MED10, RPP25L, AMPD2, C12orf10, 
CUEDC1, ILF3, NF2, TUBB2A, KIF22, NDUFA13, 
NECTIN2, PPP2R1A, KRT18P25, ARAF, MAD2L2, 
CCNY, MCM5, ETFB, SNHG6, CKB, THY1, CPSF1, 
ACADVL, GTF3C5, TRPC4AP, PLOD3, MYBL2, 
SNRPN, PPP4C, SMG5, STRA13, NPLOC4, 
MTCH1, TPM2, ELOF1, SNF8, NUDT1, ACTN1, 
IPO4, NARF, FAM168B, NUDC, FLII, RPL28, 
GUK1, PQBP1, FAU, NDUFV1, CIZ1, KRT18P17, 
KRT18, CLPTM1L, NAA10, GSTP1, UBXN1, 
ACOT7, RHOC, CCT7, ALDOA, HDAC7, PSMD4, 
CYC1, PSMC3, TNFRSF12A, INPP5K 

3 550 AP3B1, CEP83, ASH1L, PPIP5K2, AC004893.11, 
FAM199X, EID1, UBC, DDX5, ATXN2, ZNF609, 

GTP hydrolysis and joining of the 60S 
ribosomal subunit_Homo sapiens_R-HSA-
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Cluster 
ID 

Number 
of Genes Gene Names 

Enrichment 
(Pathway or transcription factor, 

database, and false-discovery-corrected 
q-value) 

MSI2, EIF2AK2, WWC2, NDUFB6, COX6C, 
NDUFB9, EIF3E, EIF3H, RPL26, RPL38, PAICS, 
VDAC1, GLUD1, PGRMC1, POLDIP2, MRPL51, 
PHB2, PSMF1, FKBP1A, ATP5O, CCT8, SOD1, 
MTHFD1, EIF2S1, GGCT, ENY2, H2AFV, LSM5, 
SLIRP, PSMA2, CYCS, HNRNPA2B1, CBX5, 
ARHGAP35, CHD3, NUCKS1, NUCKS1P1, 
ERCC6L2, SMC2, SMC1A, CEP152, RNF213, AQR, 
PBRM1, UTRN, MIB1, RBBP8, ANKRD12, ROCK1, 
CEP192, SMCHD1, DEK, ESCO2, CDK5RAP2, 
KIAA0368, HECTD1, WNK1, ERC1, KIF13B, 
MAN1A2, GNAS, PPP1R9A, PTPRM, UACA, 
ZC3H7A, KIAA1109, KIF13A, SNAP23, RAI14, 
PCM1, RMDN3, EIF2AK4, OIP5-AS1, RTF1, 
ZNF106, ARID2, ZMYM2, ZCCHC11, ARHGAP5, 
COL12A1, AHNAK, FAT1, MACF1, DST, FBN2, 
PHLDB2, SPTAN1, IL6ST, TRIO, SACS, KIAA0586, 
SLC11A2, ATP2B1, POLR2H, SDHA, CHD2, 
C5orf51, RAB29, UVRAG, C5orf42, RB1CC1, 
MYCBP2, DCAF5, NR1D2, PHF21A, KIDINS220, 
SOS1, USP33, HOOK3, MSL2, PIBF1, COL4A3BP, 
SLU7, DDB1, PLEKHA5, ANKRD28, DCAF1, 
AC022182.2, GTF3C1, NFIA, DNMT1, SMC5, 
SMC3, PSME4, ATP1B1, CANT1, MTIF2, ZFR, 
GPATCH4, CCAR1, CCDC59, SLTM, DIEXF, LTN1, 
U2SURP, SUPV3L1, HEATR1, UTP20, MRPL24, 
PPFIA1, STX17, YIPF6, FAF2, NSD1, ATP5F1, 
USP47, NCBP3, HELZ, ATXN7, KDM5A, CIR1, 
FARSA, MSL1, SAFB2, MIA3, CEP290, CEP350, 
TAF3, TYW3, ATP1A1, FXR1, TMED9, MFGE8, 
CRTAP, LAMP1, TMED3, TMEM219, MTDH, 
SETX, SF3B5, RNF20, HEXB, RNASEH2A, ROCK2, 
CCDC88A, ENAH, CDC42BPA, MAP1B, TUSC2, 
SMARCC2, PCID2, HUWE1, SETP14, BAZ1B, 
PRKDC, PAPOLA, YBX1, CSDE1, PABPC1, SET, 
EIF4G2, STAU1, TPM3, HDGF, MPHOSPH10, 
WDR43, BIRC6, CEBPZ, GNL3L, SASS6, CNTLN, 
CCDC93, MYO5A, ARIH2, PHF14, SPATS2, GCC2, 
ZCCHC7, RAD50, EFL1, LSG1, NSRP1, SIN3A, 
NCOR1, SPOP, ZNF281, ZC3H13, RPL22, TICRR, 
BPTF, SMG1, CNOT1, ATP5I, RAB5C, SNRNP70, 
NCAPH2, MED13L, TAOK1, AC016739.2, 
TOMM7, GLTSCR2, BCL11A, CHD7, UBR5, 
UBAP2L, PHF3, BAZ1A, SPEN, CHD1, POGK, 

72706 (Reactome_2016 q=0.000000), 
Cytoplasmic Ribosomal Proteins_Homo 
sapiens_WP477 (WikiPathways_2016 
q=0.000000), Ribosome_Homo 
sapiens_hsa03010 (KEGG_2016 
q=0.000000), MYC_19030024_ChIP-
ChIP_MESCs_Mouse (ChEA_2016 
q=0.000000), TAF1_ENCODE 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.000000) 
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Cluster 
ID 

Number 
of Genes Gene Names 

Enrichment 
(Pathway or transcription factor, 

database, and false-discovery-corrected 
q-value) 

PDS5A, CLINT1, NPC2, CHP1, ANKRD17, G3BP2, 
C17orf89, SFN, S100A10, S100A2, CHD8, 
SUPT4H1, CUEDC2, RBX1, TMEM43, SRFBP1, 
MYO1B, CUL3, GIGYF2, TRIP12, ARPC2, LRRFIP1, 
TBCA, ATP5L, ATP5J, ATP5G3, NDUFC2, RBM25, 
NAF1, TMEM258, ARF1, DDX6, NDUFA10, 
CDC5L, IQGAP1, GOLIM4, GALNT1, MTR, MNS1, 
TOPBP1, KIF21A, PRIM1, MYH10, SMC6, PSIP1, 
BRCA1, TPR, TOPORS, NEMF, PPP4R3A, NIN, 
KTN1, PPP4R2, UBTF, ZNF638, DNAJC7, BAZ2A, 
ACIN1, SBNO1, THOC2, PNISR, ITSN2, AFF4, SLK, 
ARID4B, PTGES3, NIPBL, RSF1, GOLGB1, FNBP4, 
MALAT1, CD2AP, AKAP13, DNAJC21, PPA1, 
FAM208B, ZEB1, KIF5B, MAP4K4, SMARCC1, 
TLN1, TMEM14A, STMN1, H2AFZ, VOPP1, 
PSMC5, ICE1, YLPM1, QSER1, TXNDC12, SKA3, 
RBM28, NIFK, RPF2, UTP14A, NOL8, ESF1, 
PMM2, DNTTIP2, GTPBP4, PRPF40A, PPIG, 
PRPF38B, MDN1, TXLNG, SSB, GOLGA4, IWS1, 
RIF1, CHD4, EIF4G1, STIP1, HSPH1, NOLC1, 
EIF3A, SRP72, DDX21, SON, PRRC2C, EIF5B, NCL, 
THRAP3, HNRNPU, GNL2, LTV1, NASP, PNN, 
CWC22, LEO1, RP11-435F13.2, NDUFAB1, RP11-
234A1.1, STOML2, HSBP1, CHRAC1, NDUFB8, 
TGS1, ZNF24, MRPL37, LAMTOR1, QSOX1, 
HNRNPM, XRN2, TUBB, PTMA, ACTG1, PTRF, 
ACTB, BCAP31, TAGLN2, LGALS1, TMSB10, 
NDUFS6, RPS13, EIF3I, RP11-478C6.4, GPX1, 
RPL36, PRDX5, EEF2, IRAK1, RPS2, RPS19, 
RPL29, PKM, COTL1, SNRPD3, CHCHD2, ERH, 
SUB1, TOMM22, NPM1, RACK1, RPS24, RPL34, 
RPL34P31, RPS3, TPT1, RPL24, UBA52, RPL10A, 
RPLP0, RPL32, RP11-69M1.6, RPL35, RPL12, 
RPL3P4, RPL27, RPS8, RPL31, RPL37A, RPS11, 
RPS16, ENO1, RPS20, RPL11, RPL8, RPS4X, 
RPL23, RPL19, NACA, RPL5, RPS6, RPL4, RPS27A, 
RPL27A, RPLP2, RPS21, RPS12, RPLP1, COX7A2, 
CD63, NME1, SNRPD2, NDUFS5, COX7C, 
UQCRQ, PFDN5, ERP29, AHCY, PRDX4, FIP1L1, 
SMARCA5, HMGN2, ST13P15, PTGFRN, PLAGL2, 
NSMCE1, SERPINB6, MTCH2, CDK5RAP3, 
PSME2, QARS, PSME1, BRK1, ARF3, NRDC, 
MLEC, UBA1, PGD, SND1, MAOA, LAS1L, 
SRRM1, SRSF11, TCOF1, FUS, RAB34, UQCRC1, 
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Cluster 
ID 

Number 
of Genes Gene Names 

Enrichment 
(Pathway or transcription factor, 

database, and false-discovery-corrected 
q-value) 

TUFM, CTNNA1, SPARC, AP2M1, SKP1, HADHA, 
PAGE2, RAB13, STRAP, LDHB, SERF2, RUVBL2, 
RPS5, AKR1B1, ATP5B, RHOA, CAPNS1, TIMM10, 
TPI1, ANXA2, PSMD2, MYL6, NEDD8, RTFDC1, 
C1QBP, EIF6, GPI, PGK1, UBL5, WBP11, PSMB4, 
PARK7, UQCRH, POMP, DAD1, ATIC, SNRNP200, 
MAP4, MAGOH, STARD7, LARP1, UTP18, COASY, 
MRPS7, SF3B2, CCT3, PSMA4, TRMT112, ILF2, 
BIRC5 

4 10 UPF2, CEP250, GSE1, MAP3K2, UBXN4, MLLT10, 
TNRC6B, SEPT11, SCAF11, TOP1 

 

5 11 TTC3P1, TMEM255A, SWAP70, SLIT2, 
RAB11FIP1, PDIA3P1, PDIA6, PDIA3, CALR, 
NEDD1, GINS1 

Calnexin/calreticulin cycle_Homo 
sapiens_R-HSA-901042 (Reactome_2016 
q=0.000931), Protein processing in 
endoplasmic reticulum_Homo 
sapiens_hsa04141 (KEGG_2016 
q=0.000651) 

6 27 SFT2D1, KIAA0100, PEF1, SAR1A, YRDC, AHCYL1, 
H3F3C, H3F3B, CCSER2, LCOR, PDCD6, VPS13B, 
SLC39A10, TTC3, JMY, MXI1, PAFAH1B1, 
MAD2L1, RPA1, NOC3L, BCCIP, LARS, CWC27, 
NLN, ABI1, RNF168, REST 

ZNF384_ENCODE 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.002830) 

7 17 CCND1, PSMB5, EIF2B3, DYNC1I2, ZFYVE9, 
RBBP9, ACVR1B, BRWD1, TFDP1, SAE1, GNL3, 
AP1M2, SEPT7, PPP2R5E, MED1, WDR36, 
RSL1D1 

Cell Cycle, Mitotic_Homo sapiens_R-HSA-
69278 (Reactome_2016 q=0.009275), TGF-
beta Signaling Pathway_Homo 
sapiens_WP366 (WikiPathways_2016 
q=0.009286), TGF-beta signaling 
pathway_Homo sapiens_hsa04350 
(KEGG_2016 q=0.002329), 
TCF7L2_ENCODE 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.005646) 

8 10 EPS15, CMTR1, NUP107, JAK1, RBM19, ATAD2B, 
STRN, C17orf53, RP11-157G21.2, MPHOSPH8 

Antiviral mechanism by IFN-stimulated 
genes_Homo sapiens_R-HSA-1169410 
(Reactome_2016 q=0.041208), EGFR1 
Signaling Pathway_Mus musculus_WP572 
(WikiPathways_2016 q=0.036474) 

9 12 MT2A, MT1E, GLRX, RPS4XP8, EHBP1, BNIP3, 
SOAT1, GSTO1, NRIP3, CD59, SSR3, CD44 

Metallothioneins bind metals_Homo 
sapiens_R-HSA-5661231 (Reactome_2016 
q=0.000380), Zinc homeostasis_Homo 
sapiens_WP3529 (WikiPathways_2016 
q=0.003041), Mineral absorption_Homo 
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sapiens_hsa04978 (KEGG_2016 
q=0.006623) 

10 12 GPHN, ZNF711, SIPA1L1, DICER1, KLHL9, EEA1, 
GAN, POC1A, FLNC, CHD9, DDX46, AHI1 

EGR1_ENCODE 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.011357) 

11 40 RPL7P13, RPL7P50, SNHG8, UQCRB, SNHG5, 
GAS5, ZFAS1, RPL37, RPS29, ZCRB1, RPL34P6, 
RPS20P2, RPLP1P6, RPSAP54, ATP5H, MRPL11, 
RPL13AP7, TSFM, NUDT5, COPS3, MRPL33, 
WSB2, NDUFB1, TMEM14B, NDUFA8, CMPK1, 
COX17, THOC3, ARPC3, SRP9, SLC25A5, PSMA3-
AS1, ANXA5, BANF1, NDUFB3, MINOS1, PEBP1, 
CYB5A, CNN3, CD9 

Respiratory electron transport, ATP 
synthesis by chemiosmotic coupling, and 
heat production by uncoupling 
proteins._Homo sapiens_R-HSA-163200 
(Reactome_2016 q=0.000409), Electron 
Transport Chain_Homo sapiens_WP111 
(WikiPathways_2016 q=0.000000), 
Oxidative phosphorylation_Homo 
sapiens_hsa00190 (KEGG_2016 
q=0.000004), TAF1_ENCODE 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.029773) 

12 15 USP4, FAM13B, COQ9, SETD5, COPB1, TP53BP2, 
AEBP2, SOCS4, FBXW7, HIPK3, FRYL, SMAP1, 
TBC1D16, TGOLN2, ARFGEF1 

Histone Modifications_Homo 
sapiens_WP2369 (WikiPathways_2016 
q=0.009858), UBTF_ENCODE 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.004239) 

13 18 P4HA1, SSR2, ANAPC16, FURIN, ATP6V0E1, 
USB1, MTPN, KNOP1, GABARAPL2, SLC5A6, 
C8orf82, CLNS1A, TIMM50, DENR, DAZAP1, 
GNS, COX7A2L, SPG21 

 

14 81 LA16c-329F2.2, UBA2, XPO1, ZBTB2, TARDBP, 
TIMM17A, PPP1CC, GAR1, PLEKHB2, DDX3X, 
NOL4L, MN1, HMGB3, PTTG1, CDKN3, DYNLL1, 
CDC25B, CDC20, CCNB1, CALM2, CCNB2, 
PSMC6, RBMX, CBX3, SFPQ, SRSF2, HNRNPDL, 
SRSF3, GRPEL1, EXOSC3, SSH1, CXorf23, 
WDR77, SNX12, PHACTR4, MRFAP1, NAA50, 
CNBP, SRSF5, PPM1G, FAM136A, BOD1L1, 
RALGAPA2, SH3BP4, GTF2A2, PGAM5, P4HB, 
LL22NC03-80A10.6, EIF2S3, PSMA1, NELFCD, 
HNRNPD, HNRNPK, NONO, DUT, MORF4L1, 
SSBP1, TCEB1, KHDRBS1, AGPS, KDM4A, 
HNRNPH1, HNRNPA3, CACYBP, HNRNPF, SRSF1, 
CCT6A, HSPE1, RAN, HNRNPH3, SNRPD1, DHX9, 
SMS, RP11-20O24.4, TMEM167A, RPL26L1, 
SNRPE, BTF3, MAGOHB, RBM8A, CKS1B 

mRNA Splicing - Major Pathway_Homo 
sapiens_R-HSA-72163 (Reactome_2016 
q=0.000000), mRNA Processing_Homo 
sapiens_WP411 (WikiPathways_2016 
q=0.000000), Spliceosome_Homo 
sapiens_hsa03040 (KEGG_2016 
q=0.000000), FOXM1_23109430_ChIP-
Seq_U2OS_Human (ChEA_2016 
q=0.000003), TAF1_ENCODE 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.000000) 
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15 28 KATNAL1, DTNA, MRPS23, YTHDF1, SH2D5, 
ZNF207, NET1, SNHG1, MRPS27, SNHG16, 
RPL13A, KRIT1, PTP4A2, PRDX6, INTS10, 
SNHG17, RSL24D1, PFDN2, SLC39A14, PCNT, 
RTKN2, CTCF, SETD2, PPP1R12A, TBC1D23, 
KIF1BP, ARID1A, NEXN 

YY1_ENCODE 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.041173) 

16 11 ANKRD36C, ANKRD36, OTUD4, NBN, BAHD1, 
NUP93, ZBTB43, BACH1, SPR, CEP135, RPGR 

 

17 13 AGO2, ZFP91, DOT1L, NF1, PPP1R15A, YWHAZ, 
IPO7, NFAT5, USP10, XPO4, KPNA3, PUM3, 
ATP6V1E1 

 

18 165 RP11-592N21.1, RFXANK, MEMO1, KLHDC8B, 
RP11-114H7.1, ASTN2, RP11-133K1.1, RPLP0P6, 
RPS19P1, CREBL2, UNKL, NKIRAS2, C1orf43, 
ACAT2, AHSA1, PYCR2, LASP1, SALL2, CMC2, 
CH17-472G23.2, MAGEA6, MKS1, RP11-
296P7.4, RP5-1014D13.2, EIF4H, PLP2, MRPL32, 
RP11-272G22.3, SH3BGRL3, IFRD2, CDC42, 
GNG12, YWHAQ, PPP1CB, LUZP1, AXL, BOD1, 
TTF1, CAPZB, SEC62, RP11-36C20.1, RP11-
667M19.2, RP11-730G20.2, TTC5, RNASEH1, 
DESI2, HSP90AB2P, RPL5P8, YBX1P2, 
GAPDHP40, MLLT3, PPIH, DBI, ATP6V1G1, 
SRP14, HMGB1, KCNN3, MORF4L1P1, RPL3, 
RP11-1036F1.1, RP11-129B9.1, RPL14P3, 
RPL14P1, CLP1, YBX1P10, YBX1P1, HLA-B, 
FTH1P16, RP11-257P3.3, FTH1P2, FTH1P20, 
FTH1P3, FTH1P8, RP11-270C12.3, DHRS7, 
MAT2A, CCT5P2, RP11-8H2.1, TMEM177, IMP3, 
RNF11, FUNDC2, IMMT, RPL23A, RPL7L1, 
TATDN1, SF1, RBM8B, RAC1P2, MIF4GD, 
NT5DC2, MAGED2, ARFGAP2, RPS11P5, P4HA2, 
RPUSD3, YWHABP1, PHF10, CTD-2192J16.15, 
RPSAP12, CDKN1A, FADS1, OST4, SMARCE1, 
CTSA, RP11-393N4.2, RP11-552O4.2, PLIN3, 
PXN, S100A16, RAC1, KDELR2, SNRPA1, TCP1, 
PSMB1, SNRPG, RP11-372E1.1, RPL7P47, 
RPS17P5, SC22CB-1E7.1, DALRD3, RPL7P9, 
NME7, POLR2B, B2M, ZWINT, HARS, 
TRMT112P6, CTD-2256P15.4, PGAM1, CCT4, 
CCT5, RP1-278E11.3, RP11-778D9.4, EEF1GP5, 
MRPS18C, UBQLN4, RPS7, RP11-425L10.1, 
RPL13, EIF4B, UBB, HNRNPAB, HSPA8, FKBP4, 
RPS3P6, SUV39H1, RPS23P8, HNRNPC, NACA3P, 

GTP hydrolysis and joining of the 60S 
ribosomal subunit_Homo sapiens_R-HSA-
72706 (Reactome_2016 q=0.000004), 
Cytoplasmic Ribosomal Proteins_Homo 
sapiens_WP477 (WikiPathways_2016 
q=0.013495), Ribosome_Homo 
sapiens_hsa03010 (KEGG_2016 
q=0.002718), TAF1_ENCODE 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.000002) 
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XRCC6, COX4I1, EIF3F, RCN1, MEA1, RPL10, 
RPSA, RP11-371A22.1, DHPS, ZNF354C, HMGN1, 
EIF3M, CCDC73, RPS20P10, MYL6B 

19 122 CFDP1, MTCO1P40, VPS54, CENPN, CUL4A, 
CDC16, AVEN, RP11-169F17.1, MTND4P35, MT-
TG, MT-TL2, MT-TH, MT-TS2, MT-TT, RP11-
809N8.5, MT-TC, MT-TY, MT-ATP8, MT-ND4L, 
MT-CO2, MT-CO3, MT-ATP6, MT-CYB, 
MTRNR2L3, MTCO1P12, MTRNR2L8, 
MTRNR2L1, MTRNR2L12, MT-RNR2, MT-CO1, 
MTATP6P1, MT-TD, MT-TP, MT-ND3, MT-TR, 
MT-TV, MTND4P12, MTND5P11, MT-RNR1, 
MTND2P28, MT-ND2, MT-ND6, MT-ND1, MT-
ND4, MT-ND5, LRRC42, KDELR1, MFAP1, 
YTHDF3, NORAD, VAMP3, VMP1, SNX1, 
MAGEA8, ATG3, UBA5, PANK3, MTMR2, PDHB, 
PSMD6, METAP1, LCMT1, ECE1, MRPL40, 
GEMIN6, TSEN2, FHOD1, MRPS25, SS18L2, PHB, 
FTSJ3, MPZL1, DCAF13, SAMM50, DRG1, RTCB, 
POLR1E, EIF3D, ADSL, PPIF, SNU13, ZC3H15, 
CCNH, NAA15, POLR1C, XPO5, KPNB1, PSMD1, 
HSP90AB1, SRSF7, HSPA4, DNAJA1, BMS1, 
DKC1, FUBP1, NOP58, NOL9, WDR12, ASUN, 
GRSF1, UBE2D3, MRPL22, TXNL1, MORF4L2, 
MAGEA12, ANXA7, NCOR2, LAMTOR5, 
TMEM126B, FAF1, DDX1, PTDSS1, OLA1, 
CCDC58, MSANTD3, DARS, ODC1, EBNA1BP2, 
REXO2, RPL14, SSRP1, RANBP1 

Gene Expression_Homo sapiens_R-HSA-
74160 (Reactome_2016 q=0.006011), TNF-
alpha NF-kB Signaling Pathway_Mus 
musculus_WP246 (WikiPathways_2016 
q=0.046194), MYC_ENCODE 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.000000) 

20 91 DNMT3A, PPARA, TNRC18, CEBPB, RPL39, 
SERPINH1, CNOT2, RTN4, CKAP4, SDC4, ELK1, 
VWA9, ALKBH5, XRCC5, INTS5, TUBAP2, CCT2, 
C14orf166, SUMO2, PFN1, VIM, HNRNPA1P48, 
IMPDH2, SEC61G, PTBP1, NDUFS3, SNRPF, 
DPM1, MTCYBP18, UBE2I, AATF, IST1, ZNF573, 
RPL37P6, JDP2, NHSL2, SAMD4B, THOC7, LDHA, 
CASC3, MT-TE, FTH1P10, FBXO7, NPM1P27, 
AJUBA, GUCD1, YWHAH, POLDIP3, HMGB1P20, 
STIP1P3, HMGB1P8, HMGB1P16, RPL30, RP11-
832N8.1, NDUFV2, DSP, RPL10P3, GABARAP, 
RP3-445O10.1, RP11-404F10.2, SQSTM1, RP11-
563H6.1, ZNF302, NPM1P40, SRXN1, SH3KBP1, 
TPT1-AS1, RPN1, SENP7, RPL9, PTMAP5, 
TXNDC5, HNRNPA1, HLA-DQA1, RP11-87N24.3, 
UQCRHL, RPL13AP5, AC105399.2, RP3-

SRP-dependent cotranslational protein 
targeting to membrane_Homo sapiens_R-
HSA-1799339 (Reactome_2016 
q=0.000160), Cytoplasmic Ribosomal 
Proteins_Mus musculus_WP163 
(WikiPathways_2016 q=0.002008), 
Ribosome_Homo sapiens_hsa03010 
(KEGG_2016 q=0.034152), TAF1_ENCODE 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.003824) 
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370M22.8, NACAP1, RPLP0P2, RPS23, CTD-
3035D6.1, RPS10, PA2G4, ANP32B, EEF1GP1, 
PTMAP8, RP13-93L13.2, RPL5P4, YBX1P6 

21 12 PEX5L, GOLGA3, DARS2, NOTCH2, NUP37, 
PRPSAP1, RBM6, RBM5, TMEM69, MRPL48, 
HACL1, DCP1A 

Peroxisome_Homo sapiens_hsa04146 
(KEGG_2016 q=0.008745), 
GABPA_ENCODE 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.035503) 

22 18 GPN1, DPY30, GNAI3, ATP6V1C1, RAP1A, 
SAP18, SELT, FAM49B, PSMD14, PFN2, IARS2, 
ACTL6A, TOMM20, TMA7, DHX15, DDX23, 
CAMK2G, HNRNPH2 

Signaling by Insulin receptor_Homo 
sapiens_R-HSA-74752 (Reactome_2016 
q=0.014537), cAMP signaling 
pathway_Homo sapiens_hsa04024 
(KEGG_2016 q=0.030673) 

23 11 DDX31, TIMM21, UBA3, ZNF239, PTRH2, NDN, 
DENND4A, H2AFY, SNHG15, UTP3, PITPNB 

 

24 22 C8orf76, ZNF263, MRGBP, RAB22A, TST, 
TPRG1L, IPO5, RPP40, CNIH4, RPL36AL, WBP2, 
CDK9, CHTF8, RNPS1, AP1S1, C19orf52, GTF2H5, 
TGIF2, EPHB4, PRR34-AS1, SEC22B, UQCC2 

Infectious disease_Homo sapiens_R-HSA-
5663205 (Reactome_2016 q=0.012219), 
ZKSCAN1_ENCODE 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.017311) 

25 16 RIOK2, RINT1, TMA16, UPF3B, TFAM, TCERG1, 
UBE3A, MRPL18, CHORDC1, DDX18, MRPS9, 
CWC15, NAE1, CNKSR2, OMA1, CCDC66 

Organelle biogenesis and 
maintenance_Homo sapiens_R-HSA-
1852241 (Reactome_2016 q=0.045668), 
Spliceosome_Homo sapiens_hsa03040 
(KEGG_2016 q=0.023620), TAF1_ENCODE 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.014870) 

26 12 RFPL4A, RFPL4AL1, H1F0, NCOR1P3, NCOR1P1, 
DENND5B, RGS9, RPL7P48, MTFP1, 
HNRNPA3P6, DHRS2, ENO3 

 

27 175 ERLIN2, PROSC, THOC1, RP11-174O3.3, 
PLEKHA2, STK39, MAGEC1, SLC5A3, CASC10, 
CACUL1, INSIG1, SALL1, LPIN1, MSMO1, SQLE, 
FDFT1, DHCR24, SCD, RDH11, CA12, HMGCS1, 
JAKMIP2, HIST1H1C, HIST1H2AC, HIST1H2BD, 
HIST2H2BE, HIST1H2BJ, HIST2H4A, HIST1H4H, 
HIST1H2BC, MCM8, SLC25A40, TMEM245, 
CROT, ORAI2, CASP7, PCOLCE2, IL31RA, 
HSPA12A, ZNF395, CKMT1B, AGO1, FRA10AC1, 
PDZD8, ZSCAN21, PDE1C, SEMA3A, DDX60L, 
NUP153, ADNP2, PRPF4B, EXOSC1, TWSG1, 
RAB31, SPIRE1, FAM210A, RNMT, USP14, YES1, 
PPP4R1, PTPN2, AFG3L2, SEH1L, VAPA, NAPG, 

Cellular responses to stress_Homo 
sapiens_R-HSA-2262752 (Reactome_2016 
q=0.000219), Cholesterol 
Biosynthesis_Homo sapiens_WP197 
(WikiPathways_2016 q=0.000595), 
Alcoholism_Homo sapiens_hsa05034 
(KEGG_2016 q=0.008913), 
ER_23166858_ChIP-Seq_MCF-7_Human 
(ChEA_2016 q=0.000000), 
BCLAF1_ENCODE 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.000077) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2020. ; https://doi.org/10.1101/2019.12.31.892190doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.31.892190
http://creativecommons.org/licenses/by-nc-nd/4.0/


41 

 

Cluster 
ID 

Number 
of Genes Gene Names 

Enrichment 
(Pathway or transcription factor, 

database, and false-discovery-corrected 
q-value) 

SOD2, CCDC167, VCP, MRPL14, PPIL1, BYSL, 
CACNA2D1, WHSC1L1, ADAM9, RP11-64K7.1, 
GTPBP10, ABCE1, DCTD, NOL7, VCL, VAT1L, 
LINC00958, LINC01029, RNF7, SNW1, SNCA, 
RIMS2, MLF1, GRK3, SPCS3, POP7, MTERF1, 
IFT22, PRKRIP1, PLRG1, HP1BP3, ANXA3, 
PCYT1A, THOC5, ZNF3, ZKSCAN5, MEPCE, 
SDHAF3, TMEM14C, SRI, NEGR1, NNMT, CDK14, 
SYPL1, DLD, SPP1, MLLT11, MAP1A, COL6A3, 
SEPHS2, BZW2, NCBP2, TFRC, RPL35A, TACC1, 
SERPINE1, MYL12B, MYL12A, TUBB6, ELP3, 
FZD3, INTS9, CLU, GNAI1, HMBOX1, BAIAP2L1, 
TM9SF3, SERPINB7, CBR1, GHITM, MAGEA4, 
WAPL, GLO1, GTSF1, ZNF655, PMPCB, PCLO, 
CDK6, CCDC25, PSMC2, MCM7, SHFM1, COPS6, 
DCTN6, PBK, SARAF, LEPROTL1, TXNL4A, PDAP1, 
FIS1, ARPC1B, BRI3, TXN, ARPC1A, ATP5J2, 
SLC25A13, SRPK2, DNAJC2, PUS7, AKAP9, 
LAMB1, ZKSCAN1, TRRAP, CUX1, TRIM56, 
ANKIB1, KMT2E, SNX30, SETD7, MAGI2-AS3 

28 22 SUN1, WIPI2, NUDCD3, SIRPA, MFSD1, AZIN1, 
HPS4, PPP1R2, SVIL-AS1, PLEK2, NPC1, 
ATP6V1B2, OCIAD2, AEBP1, ELP6, AC018816.3, 
UQCR10, GRHPR, DKK3, MGST3, CLTA, CSTB 

 

29 14 ARID1B, PRKCE, SLC26A2, MAP4K5, YTHDC2, 
SPOCK1, TAX1BP1, SCRN1, PARD3, ARHGAP12, 
MAX, TRAPPC10, PTGFR, ARHGAP18 

SOX9_24532713_ChIP-Seq_HFSC_Mouse 
(ChEA_2016 q=0.007865) 

30 38 ATRAID, GTF2A1, SMURF2, ALCAM, ERBIN, 
UBAP2, TNRC6A, LUC7L3, EDEM3, USP34, 
CEP128, NOP10, NES, JPH4, OPA1, ZC3H14, 
RRP1B, SKIL, FAM114A2, DLG1, ALPK2, NTM, 
CCDC80, CABYR, CDH2, RBM18, PSMB7, 
ARPC5L, SEL1L, PNMA1, STX4, PPP2R3A, BICD1, 
PDRG1, MAPRE1, PRELID3B, RNF216, EIF2AK1 

ER Quality Control Compartment 
(ERQC)_Homo sapiens_R-HSA-901032 
(Reactome_2016 q=0.040380) 

31 10 CIAO1, NME2P1, RP11-234N17.1, OXSR1, 
MOB1A, STXBP5, UBE2E3, WRNIP1, CAMK2N1, 
POLE3 

ZBTB33_ENCODE 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.011742) 

32 11 FUT10, LGALS3BP, NDUFAF2, PAPSS2, TACC2, 
SFXN4, TIAL1, CUTC, MCMBP, OXR1, RPP30 

 

33 17 MTURN, ZNF181, F2RL2, CDR2L, MERTK, 
RASSF5, RAB11A, DNAJB11, NUCB2, CRELD2, 
AKR1C3, SEC11C, LMAN1, MAP2, ABLIM1, 
PDGFRB, DCLRE1A 

NR1H3_23393188_ChIP-
Seq_ATHEROSCLEROTIC-FOAM_Human 
(ChEA_2016 q=0.044362) 
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34 11 TOP2B, LZTFL1, MARCH6, TTC37, SUPT7L, 
GPATCH11, CTNNBL1, DNTTIP1, CBWD2, 
CHCHD3, SPATA5L1 

 

35 183 AUH, GOLPH3L, PPP1R13L, NAIF1, C3orf58, 
ADAMTS1, GPSM2, KPNA6, AGFG1, HAUS4, 
NAV2, ITFG2, FAM161A, EPB41L1, CTDSPL, 
AKIRIN2, OSBP, POC5, DDX10, PAFAH2, NIF3L1, 
TOMM70, DNMT3B, TTF2, CDKN1B, JADE1, 
ZNF404, STK17B, NRAV, RASSF1, FAM110A, 
SLC25A38, POLD3, WDHD1, MSH2, LIMK2, 
ZNF367, CHEK1, DCLRE1B, USP1, RFC4, RAD51, 
MCM2, WDR76, MASTL, CDC25A, TIPIN, DSCC1, 
GINS2, HELLS, CCNE1, PCNA, EXO1, FAM111B, 
CDC6, MCM6, MCM3, MCM10, CLSPN, ATAD2, 
DTL, UNG, MSH6, SLBP, SPRTN, ARHGEF39, 
CCSAP, TMEM138, NEIL3, ERCC6L, CDR2, WSB1, 
ATL2, TGIF1, ARL4A, KBTBD2, TMEM60, PHF19, 
ESPL1, JADE2, SMAD3, KATNA1, TRIM59, 
RHNO1, STIL, PNRC2, CCDC77, CDKN2C, 
NEURL1B, CDC27, DEPDC1B, ZMYM1, SCLT1, 
ZNF148, KIAA1524, SMC4, CIT, SPTBN1, LMO7, 
HYLS1, NCAPH, KDM5B, MCM4, CDC25C, 
SRGAP2, MZT1, SHISA3, TTK, BUB3, FAM64A, 
TROAP, PSRC1, SOGA1, VANGL1, AURKB, 
NCAPD2, PRR11, BRD8, NCAPG, RAD21, SPDL1, 
CKAP2L, KIF18B, HJURP, CDK1, CDCA3, 
MIS18BP1, KIF20B, KIF11, CEP55, CNTRL, ECT2, 
HMMR, HMGB2, NUSAP1, CDCA8, UBE2C, 
DCAF7, DBF4, NUF2, PIF1, DEPDC1, SHCBP1, 
GTSE1, RACGAP1, BUB1B, GAS2L3, UBALD2, 
G2E3, ANLN, KIF4A, CASC5, CKAP5, CKAP2, 
ASPM, MKI67, SGO2, KIF14, PRC1, KIF18A, 
KIF23, TOP2A, CENPE, CCNF, CCNA2, NDC80, 
AURKA, CENPF, TPX2, CDCA2, CENPA, FAM83D, 
BUB1, PLK1, SPAG5, NEK2, KIF2C, KIF20A, 
ARL6IP1, CKS2, KPNA2, DLGAP5, KNSTRN 

Cell Cycle_Homo sapiens_R-HSA-1640170 
(Reactome_2016 q=0.000000), Cell 
Cycle_Homo sapiens_WP179 
(WikiPathways_2016 q=0.000000), Cell 
cycle_Homo sapiens_hsa04110 
(KEGG_2016 q=0.000000), 
FOXM1_23109430_ChIP-
Seq_U2OS_Human (ChEA_2016 
q=0.000000), E2F4_ENCODE 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.000000) 

36 23 LYPD6, CCDC82, ZNF581, MELK, PARP2, TMPO, 
MCL1, UBE2T, NEDD9, SAV1, CARHSP1, 
HIST1H1A, HIST1H4C, FANCI, RRM1, FAM111A, 
SYNE2, DHFR, CDC45, RRM2, TYMS, FEN1, 
CDCA5 

G1/S-Specific Transcription_Homo 
sapiens_R-HSA-69205 (Reactome_2016 
q=0.000000), Fluoropyrimidine 
Activity_Homo sapiens_WP1601 
(WikiPathways_2016 q=0.000001), 
Pyrimidine metabolism_Homo 
sapiens_hsa00240 (KEGG_2016 
q=0.002374), AR_21909140_ChIP-
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Seq_LNCAP_Human (ChEA_2016 
q=0.004688), E2F4_ENCODE 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.000000) 

37 23 GMNN, ADNP, SP3, SPIN1, TBC1D7, C9orf64, 
ICE2, ERCC-00009, ARGLU1, ERCC-00108, ERCC-
00113, ERCC-00043, ERCC-00111, ERCC-00136, 
ERCC-00074, ERCC-00046, ERCC-00096, ERCC-
00002, ERCC-00130, LRRC58, RMI1, PIGT, ERCC-
00145 

 

38 26 RER1, TBCB, SLC31A1, CNIH1, SEC61A2, 
TMEM123, RPL24P8, RPL6, SEP15, PSMA3, 
ACP1, RRAS2, PPP1R15B, WDYHV1, NDUFAF5, 
MMADHC, RIPK2, DAXX, DCUN1D5, ALDH18A1, 
PRDX3, CDC123, VDAC2, UTP11, KARS, 
MPHOSPH6 

FAS pathway and Stress induction of HSP 
regulation_Mus musculus_WP571 
(WikiPathways_2016 q=0.017617), 
NRF1_ENCODE 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.003712) 

39 12 MKLN1, NSUN4, HOXB6, JMJD1C, CLIP1, 
TRIM33, SIRT1, NBEA, FEM1B, CDC37, PHF20L1, 
IREB2 

BRCA1_ENCODE 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.003763) 

40 16 SNRPB2, URB1, PPRC1, USP36, HOMER1, 
DYRK2, AKAP1, TBL1X, COA7, MGA, HK2, MINA, 
PTX3, PPARGC1B, RP11-259N19.1, SNTB2 

Transcriptional activation of mitochondrial 
biogenesis_Homo sapiens_R-HSA-2151201 
(Reactome_2016 q=0.000178), 
Mitochondrial Gene Expression_Homo 
sapiens_WP391 (WikiPathways_2016 
q=0.000961), MYC_ENCODE 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.000037) 

41 10 BLOC1S1, CHMP2A, NEFL, BEX3, CSNK2A1, 
NOP56, TCEAL8, RABEP1, PPAT, ZNF485 

Lysosome Vesicle Biogenesis_Homo 
sapiens_R-HSA-432720 (Reactome_2016 
q=0.014731), Ribosome biogenesis in 
eukaryotes_Homo sapiens_hsa03008 
(KEGG_2016 q=0.011192) 

42 52 SLC44A1, UGP2, CUL4B, KLF7, KLF6, PAPSS1, 
ZNF827, TUFT1, TNS1, TGFB2, DCBLD1, PRKCA, 
RHOBTB3, AMIGO2, MOB3B, TIMP3, PLK2, 
CPA4, DPYSL2, EHD2, SYNPO, TNS3, ZFHX4, 
MPP5, RHOBTB1, CGN, BMP4, FOXN3, TCF4, 
BMPR2, COL11A1, BAZ2B, ARHGAP29, RP11-
879F14.2, RHOB, REEP1, SCARA3, TGM1, 
TMOD3, DOCK5, ANXA8L1, FSTL1, SEMA3C, 
NEK7, CTSC, LAYN, TENM3, ANXA10, PALLD, 
LRRN1, ADAMTS12, PKP2 

PodNet: protein-protein interactions in 
the podocyte_Mus musculus_WP2310 
(WikiPathways_2016 q=0.012435), 
ESR1_22446102_ChIP-
Seq_UTERUS_Mouse (ChEA_2016 
q=0.000947), AR_CHEA 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.033172) 
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43 11 MAPK1IP1L, GPC4, SDC3, TLR4, RORA, 
C1orf198, LBH, MEIS1, KLHL42, IGF1R, ATP9A 

Defective EXT1 causes exostoses 1, TRPS2 
and CHDS_Homo sapiens_R-HSA-3656253 
(Reactome_2016 q=0.000615), 
Inflammatory bowel disease (IBD)_Homo 
sapiens_hsa05321 (KEGG_2016 
q=0.024137) 

44 37 ING5, IRS1, DNAJC5, PRTFDC1, WAC, LIMCH1, 
YME1L1, TRAM2, TLE1, UCP2, PPME1, FLJ22447, 
HAPLN1, CAV1, TLN2, C15orf52, CADM4, SOX9, 
DCBLD2, EZR, THBS1, ARL4C, PMEPA1, MFAP5, 
MYL2, SLC2A3, CTSV, ZBED2, KRT6A, EFEMP1, 
SEPT2, SRPX, FN1, SERPINE2, MMP2, RBP1, 
COL4A1 

Extracellular matrix organization_Homo 
sapiens_R-HSA-1474244 (Reactome_2016 
q=0.000008), Focal Adhesion-PI3K-Akt-
mTOR-signaling pathway_Mus 
musculus_WP2841 (WikiPathways_2016 
q=0.006482), Focal adhesion_Homo 
sapiens_hsa04510 (KEGG_2016 
q=0.000088), TRIM28_CHEA 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.038650) 

45 182 PXDC1, COPG1, FAM177A1, CHIC2, MIR6797, 
RBM38, COL17A1, ATP6V1D, KHDRBS3, CLDN1, 
CCDC50, ZNF674, DDIT3, TSC22D3, MXD1, 
NFIL3, GABARAPL1, YPEL5, NDRG1, MAP1LC3B, 
FAM24B, FOXF2, RP11-874J12.4, DLGAP1-AS2, 
IL1RL1, RPL13AP20, CLIP4, GCFC2, VPS41, 
THEM4, RBSN, PTER, MYZAP, WNT2B, PLXNA2, 
PID1, PTPN11, AP2B1, NCKAP1, GLT8D2, 
DNAJC10, CCNB1IP1, N4BP2L2, OGT, IFITM3, 
SPX, DOK5, PEA15, COMMD7, ETV5, BMP5, 
ITPR2, MSN, PSAP, GREB1, DUSP11, SLFN5, 
SESN2, LAMA1, UPP1, MMP3, CREBRF, HRK, 
GNPDA1, IFI16, GPNMB, THNSL2, BEX2, MCTP1, 
EPG5, TUBE1, RSPH3, SGPL1, XPOT, RAB3GAP1, 
CASP4, SLC48A1, CSTA, NLRP1, FAM21C, LARP6, 
LUCAT1, ZFP69B, TRIM25, NCK2, CCNI, CLIC4, 
TMBIM6, NMNAT2, GFPT1, ALDH2, VAT1, IDH1, 
ASS1, GRB10, MOCOS, CLTCL1, SLC38A2, 
SLC38A1, VEGFA, NCOA7, SEL1L3, OGFRL1, 
TARS, CARS, MTHFD1L, SLC7A1, ST6GALNAC3, 
DHRS3, CTH, FUT1, CHAC1, LMO4, IARS, 
PAPPA2, WARS, HERPUD1, EIF2S2, CEBPG, 
NUPR1, EIF1, ATF4, PSPH, SHMT2, PHGDH, 
EIF4EBP1, PCK2, SLC1A5, FKBP9, CCND2, EPRS, 
ALDH1L2, YARS, BCAT1, GPT2, XBP1, SLC1A4, 
UHRF1BP1, DDR2, GARS, MARS, SARS, PSAT1, 
MTHFD2, ASNS, HAX1, SUN3, NARS, RAB39B, 
AARS, TRIB3, SH2B3, ANKRD11, VLDLR, 

Cytosolic tRNA aminoacylation_Homo 
sapiens_R-HSA-379716 (Reactome_2016 
q=0.000000), Trans-sulfuration and one 
carbon metabolism_Homo 
sapiens_WP2525 (WikiPathways_2016 
q=0.000000), Aminoacyl-tRNA 
biosynthesis_Homo sapiens_hsa00970 
(KEGG_2016 q=0.000000), 
ATF3_27146783_Chip-
Seq_COLON_Human (ChEA_2016 
q=0.000000), CEBPB_ENCODE 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.000000) 
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FAM107B, IFRD1, FAM155A, DAB2, FYN, TNC, 
DYNC1H1, ZPR1, SERPINB8, PIR, MGST1, G6PD, 
URI1, CTSL, HTATIP2, HKDC1, ADK, GSR, ASPH, 
GCLM, APCDD1L-AS1, ME1, NQO1, FTL, TRIM16, 
TRIM16L, SLC7A11, TXNRD1 

46 10 NRAS, HNRNPA0, KIAA1551, BLMH, CCND3, 
GDI2, ATP5C1, XPO7, NEK4, KIAA0930 

 

47 31 PHF6, FAM127C, STX8, HTATSF1, SERINC1, 
TERF2IP, PPOX, UFC1, TANGO2, LAMC1, STT3B, 
FBLN5, RNPEP, CD46, ACOT9, SYNE1, ABCC9, 
SNX2, NDFIP1, RIOK3, POFUT2, SP100, ITPR1, 
SP110, AFF1, PHTF1, EDEM1, STK17A, UFD1L, 
RCAN1, ATP6AP2 

RUNX1_CHEA 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.042784) 

48 14 RAB7A, CDV3, TOMM34, HSPD1, HSP90AB3P, 
CAPZA1, API5, GAPDHP65, GAPDH, GAPDHP1, 
HSP90AB6P, CSE1L, PSMD11, PSME3 

Regulation of activated PAK-2p34 by 
proteasome mediated degradation_Homo 
sapiens_R-HSA-211733 (Reactome_2016 
q=0.004163), Proteasome 
Degradation_Mus musculus_WP519 
(WikiPathways_2016 q=0.005040), 
Proteasome_Homo sapiens_hsa03050 
(KEGG_2016 q=0.007619), TAF1_ENCODE 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.030891) 

49 23 C12orf65, LACTB, MNAT1, COPB2, FNDC3B, 
AIDA, MRPL35, DVL1, NDUFA12, WWC1, 
MRTO4, NOP16, DDX27, RAE1, CEP112, GPX8, 
NBR1, NDUFB5, SNAP29, ATRX, MT-TM, IMP4, 
ERGIC2 

YY1_ENCODE 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.003289) 

50 10 AUP1, UQCRFS1, HSPA14, SUPT5H, CCNL1, 
PSMD13, TMX2, WDR33, GOT1, CRTC3 

Parkin-Ubiquitin Proteasomal System 
pathway_Homo sapiens_WP2359 
(WikiPathways_2016 q=0.008005), 
YY1_ENCODE 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.031846) 

51 52 GSK3B, TJP2, NABP1, AREG, CYR61, EDN1, CTGF, 
VEGFC, FOSL1, ENC1, MYO10, NEDD4L, NRG1, 
SKAP1, CH17-472G23.4, PDE4DIP, RGS4, MET, 
DNMBP, NAV3, TGFBR2, KIAA1549L, PLCXD2, 
ITGA6, ITGA2, ESM1, HMGA2, PAX8-AS1, 
LINC00911, CPEB4, BIRC2, ADAMTS6, LAMB3, 
FRMD6, DGKI, ANTXR2, FGF5, KRT15, LAMC2, 
MYH16, TGM2, MAOB, RP11-78C3.1, NFATC2, 

Laminin interactions_Homo sapiens_R-
HSA-3000157 (Reactome_2016 
q=0.000101), Focal Adhesion_Homo 
sapiens_WP306 (WikiPathways_2016 
q=0.000000), Pathways in cancer_Homo 
sapiens_hsa05200 (KEGG_2016 
q=0.000000), SMAD4_19686287_ChIP-
ChIP_HaCaT_Human (ChEA_2016 
q=0.000015), SMAD4_CHEA 
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ADAM22, UAP1, UBASH3B, LSM6, CCNJL, 
CAB39, PHC2, EGFR 

(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.000000) 

52 57 ZNF185, ANXA1, DCLK1, CORO1C, GPR176, 
DYNLT1, DCTN2, PGM1, SNX7, SLC25A4, 
C9orf40, SAMD9L, LINC00862, SCN9A, NIPAL3, 
NCF2, AOX1, KCNQ3, PGM5, SRGN, 
AC013461.1, MATN2, MPP7, RNF144B, KCND3, 
STXBP6, TP53, ZHX3, CTNND2, KRT75, 
ANKRD13A, MIR137HG, DNAH11, CAMK2D, 
PHACTR2, SPATS2L, ABL2, SH3RF1, HRAT17, 
ZC4H2, EXT1, INPP4B, LIMA1, WDR1, ARPC5, 
LPP, ACTR3, CTPS1, TPM1, CALD1, CSRP1, 
TPM4, RP11-553A10.1, FGF1, MMGT1, 
PPP1R3B, SLC20A2 

Muscle contraction_Homo sapiens_R-HSA-
397014 (Reactome_2016 q=0.000319), 
PPARD_23208498_ChIP-Seq_MDA-MB-
231_Human (ChEA_2016 q=0.001014), 
PPARD_CHEA 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.012062) 

53 18 PRKD1, RP11-248J18.2, MB21D2, PDLIM5, 
USP53, C1GALT1, CREB5, HSPB8, ZBTB46, MAFF, 
DGKD, DUSP1, ANKRD1, CSRNP1, HBEGF, IER2, 
BHLHE40, KLF10 

Hypertrophy Model_Homo 
sapiens_WP516 (WikiPathways_2016 
q=0.002232), ESR1_21235772_ChIP-
Seq_MCF-7_Human (ChEA_2016 
q=0.049973), TCF3_CHEA 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.001043) 

54 20 TNFRSF9, INHBA, RELB, TNFAIP3, NFKBIA, 
NFKB1, CD83, IL32, NFKBIE, BIRC3, MYC, 
ZFP36L1, TRIB1, ERRFI1, DUSP5, GEM, PTHLH, 
GPAT3, ZNF697, ADD3 

Activation of NF-kappaB in B cells_Homo 
sapiens_R-HSA-1169091 (Reactome_2016 
q=0.001808), TNF-alpha NF-kB Signaling 
Pathway_Mus musculus_WP246 
(WikiPathways_2016 q=0.000001), 
Epstein-Barr virus infection_Homo 
sapiens_hsa05169 (KEGG_2016 
q=0.000001), RELA_24523406_ChIP-
Seq_FIBROSARCOMA_Human (ChEA_2016 
q=0.000000), RELA_ENCODE 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.000000) 

55 22 RP11-248J18.3, CALM1, WDR20, ZFYVE21, 
FERMT2, ARID4A, BAG5, YY1, PPP1R13B, SETD3, 
CDC42BPB, AHNAK2, RP11-144L1.8, 
HSP90AA2P, HSP90AA1, EIF5, MARK3, SIX4, 
ZNF174, PCNX4, HIF1A, SNAPC1 

eNOS activation_Homo sapiens_R-HSA-
203615 (Reactome_2016 q=0.006049), 
TCF3_ENCODE 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.013761) 

56 14 COPS7A, EARS2, SV2A, COL1A1, TMEM203, 
M6PR, VDAC3, CNOT7, EMG1, RPUSD4, AP3M2, 
METTL1, LCLAT1, ARL6IP5 

ECM-receptor interaction_Homo 
sapiens_hsa04512 (KEGG_2016 
q=0.033662), CREB1_ENCODE 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.001994) 
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57 10 NEIL2, MRPL15, ST3GAL1, ZNF275, RTN4IP1, 
EXOSC2, SLC7A2, SIX1, INPP5F, HACD3 

SOX17_20123909_ChIP-Seq_XEN_Mouse 
(ChEA_2016 q=0.028554) 

58 10 CMSS1, KMT2C, PRKCQ, ASXL2, ATP11A, RNF4, 
TDRD3, USF2, STAM, SP1 

Androgen receptor signaling 
pathway_Homo sapiens_WP138 
(WikiPathways_2016 q=0.022989), 
MYCN_18555785_ChIP-
Seq_MESCs_Mouse (ChEA_2016 
q=0.037390), ZNF384_ENCODE 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.000733) 

59 11 S1PR1, TNIK, RFX3, DDX50, OSBPL10, TRIB2, 
SPIN2B, MCC, MYOF, TAB3, ATP11C 

TNF-alpha NF-kB Signaling Pathway_Mus 
musculus_WP246 (WikiPathways_2016 
q=0.035536) 

60 102 PDCD4, MEX3B, PTPRU, AZI2, GPR87, PDGFC, 
CFAP58, RP11-1069G10.2, STOM, CEP76, FTO, 
GALNT5, F8, AEN, PMAIP1, ERFE, PRKAB2, BAX, 
KAT2B, TMED4, PPP1R3F, CTA-392C11.1, 
ZNF785, HOXC13, FAM46A, POLR2A, ISCU, 
SNHG12, CPE, LRP10, RP11-245D16.4, KLHL17, 
C3orf67, GADD45A, CYLD, FAM198B, PLK3, 
RP11-94H18.1, YBX3, ATF3, RNF19B, TP53I3, 
TSPYL2, EYA2, TRIM5, DGKA, LINC01468, 
COBLL1, MITF, TNFRSF10B, E2F7, TENM4, 
APOBEC3C, SLAMF7, WDR66, RP11-107M16.2, 
RNF182, MRPL49, EI24, SESN1, VAMP8, BBC3, 
BLOC1S2, KLHL5, AMZ2, NTPCR, RP11-421F16.3, 
MAST4, CSMD3, CCNG1, ERGIC3, MYLK, SUSD6, 
FBXO22, CCDC90B, RAD51C, PSTPIP2, ANXA4, 
FAM210B, PARD6G, FAM212B, PPM1D, FAS, 
CCDC148, ZMAT3, TP53INP1, TRIM22, TIGAR, 
CMBL, BTG2, RRM2B, NECTIN4, MDM2, FDXR, 
CYFIP2, SUGCT, TM7SF3, RPS27L, RP11-
115D19.1, TRIAP1, PTP4A1, RP11-363E7.4 

Transcriptional Regulation by TP53_Homo 
sapiens_R-HSA-3700989 (Reactome_2016 
q=0.000000), p53 signaling_Mus 
musculus_WP2902 (WikiPathways_2016 
q=0.000000), p53 signaling 
pathway_Homo sapiens_hsa04115 
(KEGG_2016 q=0.000000), 
TP53_22127205_ChIP-Seq_IMR90_Human 
(ChEA_2016 q=0.000000), TP53_CHEA 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.000000) 

61 11 SH3BP5-AS1, RP11-93H12.4, ACYP2, KLHL24, 
SDAD1P1, GPX3, F8A1, CARD6, ZNF12, 
AKR1B10, TMEM47 

Metapathway biotransformation_Homo 
sapiens_WP702 (WikiPathways_2016 
q=0.031965) 

62 35 NR3C1, USP27X, SRSF10, IRF2BPL, PSMD10, 
FUCA1, RP11-488P3.1, TEX9, LINC01560, 
LYRM1, AMZ2P1, BANK1, PRRX1, RP11-76C10.6, 
RNASEL, KCNK1, LRRC27, ZSWIM7, MICAL2, 
FHL2, CATSPER1, SPANXD, CREB3, SH3BGR, 
EDA2R, LINC01021, LURAP1L, NRP1, CDH13, 
EPHB1, IL20RB, CETN2, PHLDA1, CTSB, TIMP1 
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63 11 RPL15, NGLY1, TSHZ1, SNRNP48, FAM101B, 
FGF2, TMEM147, GAREM2, PYGL, UROD, 
RALBP1 

 

64 10 SNX18, PRKAR2A, SLC1A3, SRPK1, PTPN13, 
FKBP5, LYN, ZNF93, OSBPL6, LINC01579 

 

65 17 OLFML3, ILDR2, PLCE1, SGCB, FEZ1, NYNRIN, 
RP5-1172A22.1, PDLIM1, SEPW1, SRPX2, KRT17, 
TUBA1A, MAP3K7CL, FLG-AS1, PTPRR, LRP11, 
GLP2R 

 

66 10 ZNF516, APMAP, ZNF322, ZCCHC14, PLEKHA8, 
RNF114, ARF6, CDCA4, EIF4A2, LSM14B 

 

67 10 OBFC1, GSTCD, GJC1, PACS1, CENPI, KMT2A, 
MPHOSPH9, IL7R, ZNF217, CYP24A1 

Metapathway biotransformation_Mus 
musculus_WP1251 (WikiPathways_2016 
q=0.029939) 

68 11 IDH3B, VPS16, CCDC51, PTPA, ZSCAN2, S1PR2, 
SEC11A, UNC45A, MCF2L, GALT, ST3GAL2 

 

69 12 NUBP1, SKI, TP73-AS1, LINC01128, CCNL2, 
AURKAIP1, MRPL20, SSU72, GNB1, MORN1, 
SDF4, PP7080 

Mitochondrial translation 
elongation_Homo sapiens_R-HSA-
5389840 (Reactome_2016 q=0.023103), 
KDM5A_27292631_Chip-
Seq_BREAST_Human (ChEA_2016 
q=0.000283) 

70 10 RITA1, STK24, EIF4E2, NDUFAF3, ZCWPW1, 
DMKN, VGLL3, RAD51AP1, TNFAIP1, HOXB7 

 

71 10 NUDT2, FRMD8, FOXM1, HYPK, RRN3P3, 
GRWD1, SRPRB, C10orf2, IPO9, SAP130 

 

72 10 RNF103, BAMBI, HCN4, ASPHD2, MAP3K4, CTD-
2371O3.3, HEY1, CPM, FBXO32, MAF 

 

73 23 RNF149, RP11-408P14.1, RP11-791G15.2, 
MEGF8, MAP3K5, CKMT1A, PLEKHO1, EFNA1, 
DUSP10, ARRDC3, RNF13, CHKA, PGAP1, CPEB2, 
PKD1L1, DPP4, BHLHE41, HMOX1, RND3, 
CLEC2B, RBBP6, CITED2, ARID5B 

TCF4_18268006_ChIP-
ChIP_LS174T_Human (ChEA_2016 
q=0.028564), SALL4_CHEA 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.048302) 

74 160 ZNF765, ZNF761, GFM2, WDR27, TRAPPC6B, 
TP53BP1, ATF1, ACBD3, DMTF1, DDX60, 
ARHGEF12, TMEM184C, USP54, SOS2, VPS13C, 
LINC00467, TAF1A, RNU6-817P, C15orf57, 
KLHDC4, RNF185, TDRKH, POTEG, GATA3, 
IFNLR1, DUSP18, COG5, PHKA1, ATF2, PAM, 
STAM2, CRELD1, ABHD12, CHEK2, ERMAP, 
TOP3A, GPR156, GALNT10, ARV1, KCNC3, 
ASF1A, POLR2J, SLC35D1, ZNF319, SLC2A10, 
FAR2P1, HERC1, ZNF808, OXA1L, RP11-

ATM Signaling Pathway_Homo 
sapiens_WP2516 (WikiPathways_2016 
q=0.035431), GATA2_CHEA 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.044922) 
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488L18.4, ZFP1, KIRREL3, FAM49A, STON1, 
WDFY3, CTNND1, CASP6, FNIP2, TNFAIP8, 
IFNGR1, ATM, MTERF3, PURG, MAP3K9, RP11-
313J2.1, ARMCX4, OSER1, CD276, MYO18A, 
ANKRD62, ZNF101, CC2D1B, ASB13, ANO5, 
TRIM65, AASS, DHRS1, CPOX, PARP12, HEATR3, 
IL17RD, RP1-152L7.5, USP13, TRIM6, LMBR1, 
NCOA6, HMGB1P10, TET1, VASH2, THRA, 
FXYD6, UNC119B, RP5-890O3.9, DMRTA1, 
TUFMP1, HAUS2, POLA1, PDE6D, GPR180, 
STRIP2, CLMP, RP11-671C19.2, MFAP3L, SALL4, 
ST5, FAAP24, INTS8, UROS, GSDMB, FAM26E, 
NEAT1, HM13, CEPT1, TIGD2, RP11-529H20.3, 
SPPL3, TRMU, RP11-1023L17.1, ASNA1, 
DNAJC6, MGAT4A, NFRKB, ZNF720, TGFBR3, 
VPS8, SPAG16, ZNF624, SLC35B4, RAB30, 
SLC22A23, PLCB3, RPL35P1, GPR155, FARP1, 
PHLDB1, NREP, FLRT3, BZW1P2, FAM46C, 
ALDH1L1, WDR74, ZNF266, NAP1L4P1, GCNT2, 
TMEM170B, WDR60, PPP1R21, EPHA5, VWDE, 
UBE2D1, CDH11, ZNF449, OBSCN, RP11-
10C24.3, CPNE4, SETBP1, RP11-95M15.2, PKIG, 
R3HDM1, SOCS6 

75 12 GAB1, BTBD1, ZNF680, MON1B, ACBD5, ROS1, 
IDH3A, GSAP, RMND1, MINPP1, RPL36AP15, 
ADAMTSL1 

 

76 10 POLR1B, OXNAD1, PIGO, ZNF629, SCYL3, 
TUBGCP3, SRP72P2, IFIT5, FARSB, NUTF2 

FOXO3_22982991_ChIP-
Seq_MACROPHAGES_Mouse (ChEA_2016 
q=0.046592), ELF1_ENCODE 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.018095) 

77 22 BBS7, SASH1, RP11-113I24.1, NDUFA1, C4orf32, 
FOXC1, CALN1, CBWD5, R3HDM2, UQCR11, 
PSMD9, C12orf60, DDA1, PARD3B, MAN2A2, 
RRP1, PPARGC1A, DOCK9, PPM1H, PSMC3IP, 
C4orf19, EXOC6 

Huntington's disease_Homo 
sapiens_hsa05016 (KEGG_2016 
q=0.016663) 

78 11 ARHGEF11, TBC1D30, ZRANB3, RUNX1, CNKSR3, 
IFT46, ZNF814, PLEKHM3, DLST, AASDH, KCTD5 

 

79 12 USE1, C19orf54, ADCY9, PRCAT47, IPMK, 
WWP2, KBTBD6, SLCO4A1, KCNJ14, PACSIN2, 
ZFP36L2, CACNB3 

Calcium Regulation in the Cardiac 
Cell_Homo sapiens_WP536 
(WikiPathways_2016 q=0.010423), 
Oxytocin signaling pathway_Homo 
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sapiens_hsa04921 (KEGG_2016 
q=0.005050) 

80 17 GAPDHP72, CCDC126, GABRA2, BUD31, SNX16, 
GCH1, RB1, MYADM, GVINP1, AC091633.2, 
SRPK2P, AKAP10, IGFBP7, ZFP90, TOB1, ZBTB20, 
SYT1 

 

81 38 CAP2, ZNF391, PPIL4, HMGB1P39, UBE2L3, 
FAM175B, TMEM79, ZMIZ1, TAB2, QKI, GPN2, 
TNPO1, SYT14, RGS17, ZNF608, RP11-191L9.4, 
ERMP1, ZKSCAN4, TMEM168, NINL, C18orf32, 
MARK4, DNAJC16, PHC1, ATXN2L, MINK1, 
MIR29A, SIPA1L3, PA2G4P4, ZNF287, YWHAZP2, 
RP11-737O24.3, HMGB1P9, IGF2R, LNP1, 
LINC00909, RBM4, FBXO46 

Diurnally Regulated Genes with Circadian 
Orthologs_Homo sapiens_WP410 
(WikiPathways_2016 q=0.036275) 

82 45 PIGC, ANKRD39, RP11-196G11.5, ABHD10, 
SLAMF9, TMTC4, BRPF1, RPTOR, RP11-
152N13.16, SNAPIN, DNAJC9-AS1, ZNF91, 
PSMG1, PQLC2, RABEPK, CYB5R4, ARL13B, 
ZNF324, TPM3P9, EOGT, TMEM178B, TPK1, 
SERAC1, GRK2, UBAC2, KIAA1644, MLXIP, 
AKAP6, GPR108, ATRIP, ZNF829, ZNF112, 
PLA2G4A, ILKAP, DMWD, SLC25A18, RP11-
54H7.4, TBC1D10B, DNAJB2, ZNF26, RAB14, 
EDC3, TRNT1, SRRT, IGHMBP2 

 

83 42 PWWP2A, FNIP1, ZNF518A, CLHC1, HILPDA, 
COQ4, SETD1A, FLNA, SAMD1, MB21D1, 
COLGALT1, DDAH1, TRIM24, CTD-2366F13.1, 
EEPD1, AGK, ZNF117, SUMO4, ERCC-00022, 
RP3-399J4.2, SLC35E2, HMGB1P44, DPM2, 
TMEM161B, RP11-1281K21.1, PNPLA3, C3orf62, 
DBF4B, CLPTM1, RABL6, WAC-AS1, ARHGAP10, 
KCNC4, ZNF254, CTD-3145H4.1, RP11-66N5.2, 
DANCR, PIP4K2A, MOB1B, PABPC3, LRRFIP1P1, 
SNX6 

 

84 17 ARAP3, HOOK2, RNF145, FAM117A, CRLS1, 
TMSB15A, BEX1, USP37, RP11-83A24.2, CTD-
2515C13.1, HBP1, TDRD7, CCDC138, DNHD1, 
ERICH1, ZFAND2B, RAB27B 

 

85 16 TMEM181, NOVA1, FAM57A, SEMA3B, GANC, 
MTCO3P22, MXRA8, NXN, ZNF616, RP3-
394A18.1, TMEM173, DUSP22, ADGRL2, PGM3, 
AHCYL2, NLRP11 
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86 20 SDHB, PLEC, PCGF3, MYDGF, FAM185A, ATMIN, 
FADS2, ADA, RTKN, ERF, BCAR1, ZNF335, 
MAP3K6, KRT16, ST13P12, PHF11, ZADH2, 
ARFGAP3, TRA2A, RPL7P32 

 

87 11 S100A6, KHDC1L, SEC22A, NEMP1, ZSCAN20, 
ZNF19, LZTR1, KIF21B, GCLC, RP11-196G18.22, 
METTL12 

 

88 32 TMEM234, GUSBP1, SIRT7, FAM32A, NDUFV3, 
ARHGAP44, PDSS2, ENTPD5, SLCO3A1, ASB7, 
ZNF133, ZNF248, MAPK8IP1, MAP2K7, GJB3, 
LL0XNC01-237H1.2, NBPF3, TATDN1P1, 
MAP3K3, RP11-69E11.8, DNASE1, RPL21P4, 
CHI3L2, CTD-2017F17.2, PARVB, ZNF79, TTC31, 
SLC2A8, LDLRAD4, bP-2189O9.2, ISG20L2, 
KIAA0391 

MAPK Cascade_Homo sapiens_WP422 
(WikiPathways_2016 q=0.017642) 

89 10 C1orf52, ABHD15, ZNF70, VWA5A, FHDC1, 
CCDC102B, RCL1, METTL21B, SHTN1, RP11-
818F20.5 

 

90 30 LINC00888, FBXO25, RP11-30J20.1, ZNF318, 
COQ10A, IFI6, SESN3, ORAI3, HNRNPLL, FECH, 
WBP1L, MYL9, LTA4H, SEMA4F, HIGD1A, STK16, 
TMOD2, ABCC2, LINC-PINT, SNTB1, LL22NC03-
86G7.1, HPCAL1, ROBO3, RWDD2A, RP1-
140K8.5, RP11-356J5.12, MAGI2, STX3, ANGEL1, 
UBE2V1 

 

91 10 DCAF6, PPARG, NAB1, HAUS1, UXS1, ALG8, 
ANKH, BACH2, SLC24A1, UNC13A 

 

92 39 RP4-773N10.4, EXOSC4, ABCB7, RP11-2J18.1, 
TCTN2, SEPSECS, VWA8, PPFIBP2, CHST1, 
MFSD6, ABCG2, SLC15A4, DZANK1, GNG5, 
CBX1P2, CCDC102A, ZNF561, SNAP47, MRPL41, 
LYRM5, TRANK1, LMBRD2, POLH, MYO9B, 
BCAS3, SWT1, ZNF671, ELF2, SETP4, NHSL1, 
C9orf91, KDM7A, SMOX, RNASEH2B, CCNG2, 
TULP3, TMEM267, PXK, N4BP2 

 

93 12 C5orf34, C12orf76, SSR1, SCYL2, SAP30, 
CHST14, FNTA, ZNF605, AUTS2, METTL4, 
FAM229B, SPPL2A 

 

94 10 KIAA1715, ZBTB10, TEX30, TDP2, CTDSP2, 
CHTOP, RABIF, TOP1MT, TCEA1, FAM110B 

 

95 45 LURAP1, USP30, ELL2, ZNF569, KLF11, 
FAM160A1, RFX5, SETD4, PTMS, RP11-467J12.4, 
ZSCAN31, ZNF528, PPP2R2B, SPANXN5, RP11-
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295G20.2, SPCS1, ARMC9, MTND2P21, LETM1, 
RP4-756H11.5, CASD1, FRAS1, ULK3, C2orf69, 
LINC00526, DPYD, SEMA3E, ZNF519, IRF1, 
MMAB, AGPAT4, ELF1, ST3GAL6, GPR137C, 
RPL32P3, ALG11, RP11-655M14.13, PGM2L1, 
SPTB, ERCC-00131, LGI2, LINC00511, 
HNRNPUP1, CFAP46, NHS 

96 10 IKBKE, GXYLT1, IMMP1L, RASGRP3, SYTL5, 
C1orf226, PPP1R14C, NEK11, KANK1, CDS2 

 

97 11 CRYBG3, HAUS6, DOCK1, PABPC4L, HAUS6P1, 
RNF169, RP11-288C17.1, AC073109.2, PTN, 
STAG1, DIAPH2 

Regulation of actin cytoskeleton_Homo 
sapiens_hsa04810 (KEGG_2016 
q=0.047052) 

98 47 RIMKLA, USP51, ZNF362, METTL18, BDH2, 
CLGN, IDNK, AC083873.4, RANBP3, CENPH, 
BIVM, COQ7, FAM204A, DIP2A, PALB2, AGAP6, 
RILPL2, ZNF790-AS1, PDK1, ZBTB33, ELMOD3, 
AC019129.1, ZNF543, PPM1J, RP11-278C7.1, 
KIAA0513, ANKRA2, PCED1A, GNPTAB, ZNF276, 
EDARADD, ZNF8, CTC-505O3.1, RPL21P75, 
PSMG4, ABCC4, TSNAX, TOB2P1, RP1-308E4.1, 
BCAS4, NFATC2IP, MAP3K7, DHTKD1, RBM48, 
ORC5, BRD7P2, SMCR8 

 

99 82 OSBP2, CA13, ACCS, BROX, CRABP2, CMB9-
55A18.1, STX7, SGCE, TBC1D15, ZNF701, 
DUSP12, TCTA, DNPH1, PINX1, XK, FANCB, 
CDO1, RP11-973H7.4, RPL10AP6, PKD2, NRDE2, 
INTS6L, RASSF3, SUCLG1, CDC42EP1, MARC2, 
S1PR3, CTPS2, DOCK11, DTYMK, C16orf74, 
PCBD2, CHTF18, IP6K2, PPP1R9B, CRYZL1, 
RPL5P1, KCNG1, IQCC, OPA3, HES1, AADAC, 
ZNF582, RP11-94I2.4, SYNGR1, NCK1, C16orf13, 
RYR1, MIS12, C7orf26, EHD1, NUS1, PRDX1, 
PCMTD2, FXYD5, LGMN, CTD-2286N8.2, CECR5, 
L3MBTL3, FAHD2B, TUBA3C, MALSU1, SLC4A11, 
MCAT, MIR34A, DPP9, ITM2B, CNIH3, HECA, 
RORB, ARHGEF17, MYO3A, PTOV1-AS1, 
C2orf47, BRD1, PMPCA, SMIM8, C16orf87, 
LEPR, TMC7, FAM214B, KCTD12 

 

100 69 RGP1, OGDHL, TXNRD2, PITRM1, BCL6, TGFB3, 
SCO1, APP, ADCYAP1R1, RHOU, OSBPL1A, EDA, 
NAP1L5, RP11-347H15.5, PPP1R12B, RP11-
803D5.1, CHAMP1, DCAF12L1, NMU, ANKRD6, 
SCARNA2, LDB1, PMS2, PMS2CL, NPAS2, 
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PNMA2, RP11-30L15.4, HOXC10, C1orf112, 
PBX3, EMC3-AS1, MLK7-AS1, KIF5A, ZNF202, 
EBPL, FBXO42, IFT88, PAQR7, RP11-545M17.2, 
GUSBP11, CTB-89H12.4, DLL3, FAM81A, 
TMEM201, TADA2B, CISH, ALG10B, ABHD18, 
ZNF641, TKFC, EFEMP2, ADGRE5, VPS4A, GAS7, 
CBX2, PCYOX1L, VMA21, IFT20, CYB561D2, 
ZNF521, PLCG2, FGFBP3, ARSG, MRPS22, LTB4R, 
PER2, MYB, RAPH1, SH3BGRL2 

101 13 PLK4, ZNF234, EPDR1, EMP2, USP31, FUT11, 
CHAF1B, ZNF200, USP32, TAF7, AC005154.6, 
TTC28-AS1, SGSM3 

 

102 39 PIK3R3, HMGCR, ZNF461, TSHZ2, PLEKHG1, 
U2AF1L4, SFXN5, PACSIN3, ARMT1, KIF3C, 
MBNL2, PAPOLG, NCOA2, TTC9, CDK5R1, RP11-
643G16.4, EPHB2, POU2F2, GSTA4, RP11-
15A1.8, IFT80, SLC35B3, RP5-1136G13.2, 
RHEBL1, RP5-1065J22.8, DLG4, CNPY4, CDAN1, 
TPRN, RPL17, FMNL2, TMEM107, ROR1, 
IVNS1ABP, TMEM135, HOXB-AS4, PLEKHG2, 
CLK4, ORAI1 

 

103 11 DENND2C, TAOK3, TUBA1B, RP11-983G14.1, 
ERCC2, ZNF841, DEPDC5, EMB, RP11-128M1.1, 
DHRS4L2, LITAF 

 

104 11 TTBK2, RP11-367G18.2, CDHR3, ANKRD52, 
GATA4, ERBB3, KIF5C, LPAR1, RP13-88F20.1, 
CNOT6L, BRINP1 

Heart Development_Homo 
sapiens_WP1591 (WikiPathways_2016 
q=0.003520) 

105 25 QRFPR, GNG11, RUBCN, RP11-290D2.5, 
ZCCHC10, ACADSB, COX7B, FAM120AOS, 
C16orf91, NFYC, LRRC57, UHRF2, ARID3B, 
RGS16, PPM1L, ABCA5, H3F3AP5, NUDT13, 
PPP1R3E, FLVCR1-AS1, RP11-252K23.2, 
RPS20P14, STARD7-AS1, PAN3, FAM127B 

Calcium Regulation in the Cardiac 
Cell_Homo sapiens_WP536 
(WikiPathways_2016 q=0.048372) 

106 14 NECAB1, HCFC1, AC092835.2, RPL3P7, LRP8, 
TRERF1, SYCE1, ACSS3, MADD, PORCN, 
ANKRD42, CRAMP1, DUSP2, TTC19 

 

107 14 MARK1, STIM1, FAT4, FRG1DP, TCHH, TRUB1, 
DTWD2, LRRC1, SPIN4, SORT1, EDIL3, 
SEC14L1P1, HOXD8, AFP 

 

108 14 ATG4C, TRPS1, CUL5, DDX19B, RRP36, DCTN5, 
PCDHGC3, VPS26B, SLC30A5, BRI3BP, IRF8, 
MAF1, SYT2, ZNF235 
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109 12 CDKL3, RP11-817I4.1, BCKDK, MTRNR2L10, 
C14orf159, MTND1P23, PAXIP1-AS1, 
RPL23AP82, IFIH1, NIPAL4, GORASP1, DYM 

IRF8_22096565_ChIP-ChIP_GC-B_Human 
(ChEA_2016 q=0.048306) 

110 12 MPP4, TRMT10C, LIG1, ARHGAP20, ZNF256, 
TYW1, ANKRD36B, C6orf120, ZNF2, ZFP62, 
CETN3, THYN1 

tRNA processing_Homo sapiens_R-HSA-
72306 (Reactome_2016 q=0.034695) 

111 32 MSL3P1, IFT122, RP11-37B2.1, TBC1D8B, 
GPR158, DPF2, SNIP1, SNX22, ENPP1, SERGEF, 
LINC00339, ASNSP1, TOM1, UBL7, ZNF225, 
RP11-436D23.1, FRS2, C3orf38, CTBP1-AS2, 
MORN2, ZNF696, ZNF484, ALDH9A1, 
AP000580.1, OTUD5, SORBS2, WHAMMP3, 
RP11-755J8.1, LINC01278, ZNF552, MED7, 
ENPP4 

 

112 66 SVBP, BCDIN3D, RP11-262M14.2, MBTD1, 
FBXO48, SUSD5, LRRC37A16P, SRP72P1, 
NPM1P39, KCTD16, NGF, TSTD2, C18orf54, GS1-
309P15.4, MAP2K3, ID1, BTRC, LRRC8C, 
TBC1D24, RP11-324I22.4, EGLN3, METTL6, 
CNN2, CSPP1, NPIPB4, NPHP3, KANSL2, TRAF5, 
TMEM161B-AS1, ZNF510, PRR13, SLC25A36, 
ARNT2, GPRC5B, TRMT61B, LYPLAL1, ACOX3, 
LRCH1, ANK2, PCDH17, PTPRJ, SH3GL1, 
TMEM187, UBE2E2, DYNC1I2P1, NUFIP2, 
DNM2, KDM3B, BMP1, MECP2, HPSE, PALD1, 
DCLK2, RNF126, ZDHHC11, MBLAC2, FAM84B, 
CH507-9B2.5, KLHDC2, LRRC49, DHX36, RUFY2, 
FAM184A, DHX38, ZC2HC1A, SH3GL3 

 

113 13 NTNG1, ABL1, CHD6, ABI2, TUBGCP2, EPHA4, 
BMP6, RP11-956J14.2, MTA1, RFFL, C1orf143, 
DKK2, MKX 

RHO GTPases Activate WASPs and 
WAVEs_Homo sapiens_R-HSA-5663213 
(Reactome_2016 q=0.015288), Axon 
guidance_Homo sapiens_hsa04360 
(KEGG_2016 q=0.001161), TP53_CHEA 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.032671) 

114 10 TRIM38, KALRN, DDX58, PTPN9, ANK3, 
ANKRD30B, PYM1, DNAJC15, ABCB10, LGALS8 

IRF8_22096565_ChIP-ChIP_GC-B_Human 
(ChEA_2016 q=0.037540), IRF8_CHEA 
(ENCODE_and_ChEA_Consensus_TFs_fro
m_ChIP-X q=0.042728) 

115 26 ZFHX3, SLC9A7, AADAT, HIC2, RAPGEF1, KIZ, 
SPEF2, ELL, C15orf61, MRPL28, CNNM3, 
C7orf73, NOP14, ARRDC4, PDSS1, SLC16A9, 
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PARPBP, C8orf37, PIANP, RLF, RAB12, SF3B4, 
TRIP10, ZNF766, BBOF1, TIAF1 

116 14 ZC3H4, RPL7P20, GNB1L, MESDC1, SP6, FAT3, 
GOLGA8VP, LAMA3, VAV2, SLC9A8, SSNA1, 
PPP1R36, DBF4P1, TMEM87A 

 

117 86 FUK, MED27, ATAD3A, L1CAM, CD58, KANSL1L, 
IFIT3, ANO6, ATP8A1, TRIM41, HECW2, 
COL27A1, ZNF331, C18orf25, SDPR, CHMP2B, 
AC097374.2, AC068138.1, FRMPD4, 
ANKRD20A5P, KIAA1841, ABCA13, STX5, 
POLR3C, CHCHD6, CYSTM1, PLAG1, SLC35D2, 
IPO8, SLC41A1, ZNF165, PDP2, MTX3, MURC, 
HUS1, BECN1, NKX3-1, ZNF597, NENF, KCNMB3, 
PQLC3, TMEM64, KIAA0895L, FAM110D, 
ZNF576, KRT8, C17orf62, HSPE1P2, EPS8L1, 
GPCPD1, RP5-1085F17.3, DLG2, CHMP4A, 
NAXD, RBM15B, TMEM141, PVR, TMEM209, 
CTD-2550O8.7, KCNAB1, PCDH9, HIRA, LIPA, 
ERCC-00003, RP11-120B7.1, FGD1, ZNF860, 
NAT9, MMAA, DGKK, RP4-575N6.2, IFITM2, 
CHCHD5, WIZ, Y_RNA, B3GAT3, ASB9, MROH1, 
SND1-IT1, CACNB2, SUZ12P1, BBS10, RPL13AP2, 
XXyac-YM21GA2.4, SLC35C2, LIF 

 

118 19 ARNT, MCCC1, C19orf12, MFSD4B, RP11-
305B6.1, ACAN, CTC1, LDLR, ST13P6, C15orf40, 
NELL2, NAT1, ARHGAP28, CASP9, CTSD, RP11-
284F21.10, SMARCE1P1, SECISBP2L, RBM41 

Degradation of the extracellular 
matrix_Homo sapiens_R-HSA-1474228 
(Reactome_2016 q=0.048975) 

119 10 PNKP, EGF, RPS6KA2, DNAJC19, NR2C1, RCAN3, 
C1orf123, TM2D1, C2orf42, RP11-87H9.4 

EGFR1 Signaling Pathway_Mus 
musculus_WP572 (WikiPathways_2016 
q=0.045332) 

120 11 DCP2, DHX8, ARHGAP19, TRIM52, RNF6, 
LYPLA2, HELB, RELA, CMTM3, KBTBD8, ZDHHC7 

Androgen receptor signaling 
pathway_Homo sapiens_WP138 
(WikiPathways_2016 q=0.045116) 

121 20 PDE5A, KLF17, CTD-2510F5.4, C1RL, SP2-AS1, 
NOM1, ERI2, RP11-479G22.8, SOX6, TMEM53, 
PLEKHH1, MEX3A, SLCO2A1, EXPH5, IGF2BP1, 
TGFA, SPAG1, ZNF568, PBLD, ZNF850 

 

122 15 RBFOX3, FST, DHRS4, SETP2, RPL9P9, MYBL1, 
FGD4, SATB1, ERCC-00112, PLEKHH2, SCN4B, 
PFAS, AC005307.5, TBC1D8, ZCCHC2 

 

123 15 CCDC28B, DGKE, NUDT12, HIST1H1E, ARL15, 
AC004381.6, NCKIPSD, RASSF4, ALDH1B1, 
SPATA20, GPAT4, BRAP, BCAS2, TPCN1, MYO1E 

Glycerolipid metabolism_Homo 
sapiens_hsa00561 (KEGG_2016 
q=0.018405) 
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124 30 MAK16, IL1RAPL1, PLA2G7, SCAF4, DPY19L4, 
NXT2, SIN3B, ZNF718, FAM221A, CDKN2AIPNL, 
NR2C2AP, EDC4, DNAJC25, ZNF708, RGS7, 
FAM92A1, OGG1, IL15, ALAD, PRAF2, ARL10, 
CH17-360D5.3, AC098614.2, TBC1D2B, ZNF595, 
ARSK, LRRC37A17P, RP11-760D2.7, DNALI1, 
POLM 

 

125 26 PDLIM4, ANOS1, P2RY1, EXD2, ZNF525, H6PD, 
CTC-470C15.1, ZSCAN12P1, SETDB2, VGF, 
PABPC1L, MDM4, ANGEL2, BLZF1, RPS4XP6, 
PMFBP1, GOLGA8A, ADAP2, PTCHD4, SAC3D1, 
SNHG7, MOB3C, RUSC2, KLHL21, OSMR, SUGP2 

 

126 47 MSX2, DCP1B, MTRNR2L5, RPL41, RBMS1, 
METTL25, DDX59, GID4, AC079922.3, CTA-
204B4.2, KB-1732A1.1, RASGEF1A, TSGA10, 
TAF4B, MRPS21, GAK, HSP90AB4P, POLG, 
TMEM44-AS1, KIAA1328, RP3-522D1.1, RP11-
111M22.3, KCTD21-AS1, THAP6, MLLT1, PANK1, 
PIK3AP1, SLC25A24, CIB2, RPS6KA6, 
RPL36AP26, TMEM25, HOTAIRM1, KCNK6, 
RPS4XP16, ERCC-00092, DCLK3, ERO1B, IQCD, 
YIPF1, RAC1P5, RP11-889L3.1, TMEM44, TCEA2, 
STX6, ZNF639, ZNF594 

 

127 25 BRE, MAP2K5, RP11-284F21.9, ERAL1, ASAH2B, 
TRIM45, ATP6V1F, WFS1, SLC44A2, AAED1, 
APOLD1, ZEB1-AS1, CNOT6, FKTN, OLMALINC, 
ZNF285, FAM134C, FAM43B, C8orf48, ANKHD1-
EIF4EBP3, RHBDF2, RP5-1198O20.4, FLAD1, 
RP11-422P24.10, SIL1 

 

128 13 CHST12, ERCC5, RNF44, RPS4XP17, PML, 
ST6GALNAC2, RPS6KC1, RP11-298I3.4, 
ADORA2B, ING4, SPIN3, ABRACL, B3GALT5 

Globo Sphingolipid Metabolism_Homo 
sapiens_WP1424 (WikiPathways_2016 
q=0.001610) 

129 27 AC007238.1, ERAP1, KPNA5, SPIRE2, FAM167A, 
ZNF136, MYLK-AS1, NAP1L1P1, ZFYVE27, 
ZNF790, RP4-612B15.2, PIP4K2C, CTC-459F4.3, 
PHF5A, RP11-10C24.1, RAB20, MIER3, LIMK1, 
FKRP, STX18, RPL7P23, UPK3BL, FMN1, 
SLC25A43, SNRPA, GAS6, SLC7A6 

mRNA Processing_Homo sapiens_WP411 
(WikiPathways_2016 q=0.034694) 

130 14 ZNF678, NUP160, UBE3C, MRRF, TMED7, XYLT2, 
TFB2M, MEN1, RP11-379H18.1, FAM122A, 
AC008850.3, WLS, HOXA11, HOXA13 

Transcriptional misregulation in 
cancer_Homo sapiens_hsa05202 
(KEGG_2016 q=0.033350) 

131 21 FBXL2, UBE2D2, C6orf1, C20orf27, NBPF11, 
BLOC1S4, RALGDS, TIMM23B, DMAP1, 
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LINC00115, RP5-855D21.3, TESK2, GPM6A, 
WDTC1, PRRT3, PICSAR, ZFAT, THAP10, ZNF182, 
FKBP7, ZNF587 

132 10 RP11-551G24.2, PDCD5P2, VPS36, SRRM1P3, 
CDS1, AOC2, AGGF1, C11orf54, IFT172, VPS50 

 

133 26 ARFGEF3, LATS1, NGRN, CTC-444N24.11, 
ZNF107, TCHP, TNPO2, ATP5EP2, ATP5E, 
MAP2K2, AKAP5, CA2, TUSC1, RCE1, RP11-
84C10.4, ATP5D, GPER1, RNF26, C11orf31, 
PGBD5, PDE9A, KCNIP3, MAPK3, EMD, SLC45A4, 
THSD1 

Formation of ATP by chemiosmotic 
coupling_Homo sapiens_R-HSA-163210 
(Reactome_2016 q=0.018223), IL-7 
Signaling Pathway_Homo sapiens_WP205 
(WikiPathways_2016 q=0.006972), 
Estrogen signaling pathway_Homo 
sapiens_hsa04915 (KEGG_2016 
q=0.021663) 

134 28 C8orf44, FAM76B, FLVCR2, GATA6, AMOTL2, 
PAIP1, USP6NL, LDOC1L, RABGAP1, SLC38A7, 
TSTD1, SP2, SNHG3, TRMT13, LINC00116, 
STAT5A, C19orf81, PPP3CB-AS1, ELFN2, PLCB4, 
FAXC, UTP4, CTC-351M12.1, FLCN, ICA1L, 
MORN4, FKBP1B, SPTLC3 

 

135 13 ZNF620, TUBA1C, ZNF195, HMGB2P1, 
RNF144A-AS1, AC079922.2, FSIP1, NPM1P6, 
ZNF778, CACHD1, KBTBD3, RPL5P12, EIF3G 

 

136 12 RP11-15A1.3, MACROD2, TMEM154, C6orf203, 
LINC00941, PROS1, KIAA0753, HMGB1P31, 
FYCO1, TAF5, ADAMTS5, SPANXN3 

 

137 27 MTF2, NR6A1, PHF7, EFNA4, POR, RPL36AP21, 
ATP5L2, KLC4, CBX7, RPS13P2, CTC-518P12.6, 
AC009403.2, RPS3AP47, DRAM2, SLC25A51, 
PCDH18, TUBB2B, TALDO1, RPSAP75, RP11-
178H8.7, ADRA2C, PRKAG2, AMFR, TMEM231, 
AIFM1, RAB9A, LINC00630 

Integration of energy metabolism_Homo 
sapiens_R-HSA-163685 (Reactome_2016 
q=0.033976) 

138 11 ZFP41, NFYB, CASC4, CFLAR-AS1, LINC00476, 
RP11-401O9.3, TTC39C, DPM3, TOLLIP, LRRC40, 
ZNF619 

 

139 17 EFCAB11, ZFAND2A, IKZF4, RPL13AP3, 
EEF1B2P3, GAS2L1, CLCC1, RGS5, SEPT7P7, 
PTPN21, USP45, CHUK, RP11-368M16.5, 
COPG2, RP1-159A19.3, RPL4P4, XKR9 

 

140 13 AGFG2, PIGB, TSPAN2, SHISA9, RP11-500C11.3, 
KSR2, ATP6V0A4, CNN1, HSPBP1, RP11-283I3.6, 
RP11-51O6.1, ABCA4, HOXC6 

 

141 10 PIK3CA, DUBR, ZC3H10, TBX18, NKD1, SH3RF2, 
BNC2, RP11-54D18.4, CSMD2, RP11-688I9.4 
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142 10 SNX33, RP11-163E9.2, VSIG2, RP11-
1094M14.11, FKBP10, MTCO1P22, FAM222B, 
ZNF333, FCHO2, MYO18B 

 

143 19 RAD23B, ERCC6, SH3TC2, DACT1, SLIT3, 
LINC00689, CAPRIN2, ATP6V1H, GSN, 
AF230666.2, NSUN5P1, TSC22D1, FAM76A, 
LINC00470, RNF150, DIP2C, ECI1, C1orf50, 
MSTO1 

Nucleotide excision repair_Homo 
sapiens_hsa03420 (KEGG_2016 
q=0.014417) 

144 15 DEPDC4, MIATNB, TMOD1, APOBEC3B, NLRP3, 
AC002456.2, RAB15, ECE2, B4GALNT1, CORO2B, 
IL11, SIRT3, SULF2, HACE1, RP11-16K12.1 

 

145 11 DFFA, C8orf33, TAMM41, RP1-178F15.4, 
TMEM55A, ZSWIM1, LRRC71, TRAPPC1, TOX4, 
ZNF75A, NAA60 

 

146 14 ZNF394, SRC, RP11-282K24.3, CDK17, PFDN4, 
FSD1L, XIRP2, ADAMTS15, TP73, MTMR7, 
ADGRL4, SYDE2, FOXP1, CREM 

Alpha6-Beta4 Integrin Signaling 
Pathway_Mus musculus_WP488 
(WikiPathways_2016 q=0.047427) 

147 10 ELOVL1, USP38, ZSCAN25, CTDSPL2, ZNF746, 
GLUD2, RP6-65G23.3, RP11-674N23.4, FDPS, 
KIAA0922 

 

148 11 AMIGO1, TSPAN19, ABHD13, F3, PIGQ, 
DCUN1D3, PRDM1, AC010761.8, MAPKBP1, 
ZNF721, YWHABP2 
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