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Neuroactive compounds are crucial tools in drug discovery and neu-
roscience, but it remains difficult to discover neuroactive compounds
with new mechanisms of action. To address this need, researchers
have developed mid-throughput phenotype-first approaches using
zebrafish. This study introduces an open, non-commercial, and ex-
tensible hardware/software platform that captures and analyzes drug-
modulated phenotypic responses larval zebrafish. We provide full
specifications, computer-aided design (CAD) documents, and source
code. Accompanying this study, we are also publicly depositing phe-
notypic data on 3.9 million animals and 34,000 compounds. The data
include a high-replicate benchmark set on 14 compounds, a well-
controlled reference set of 648 known neuroactive compounds, 20
specialized reference sets, a library of 1,520 FDA-approved drugs, 3
screening libraries. This open data resource is curated, structured,
tied to extensive metadata, and available under a Creative Commons
CC-BY license.
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Introduction

Disorders of the central nervous system (CNS) affect 100
million Americans at an economic burden of $920 billion per
year (1). Despite this, CNS drug discovery rates have declined
(2). Most projects screen for high-affinity interaction with one
target (3). Although extremely high-throughput, these screens
require prior knowledge of the disease-linked targets, which
is limited for CNS disorders (4, 5). Although most projects
are target-first, most first-in-class drugs approved by the U.S.
Food and Drug Administration (FDA) from 1999–2008 were
discovered phenotype-first (6), suggesting that many CNS
drug discovery projects would benefit from phenotype-first
screens.

In contrast to target-based screens, phenotypic screens rely
less on established pathogenesis and can identify compounds
with previously unknown and multitarget pharmacological
actions. In many historical cases, a drug was discovered first,
and its mechanism only later (7, 8). For example, the an-
tidepressant activities of tricyclics and monoamine oxidase
inhibitors were discovered in psychiatric hospitals by observing
patients. These discoveries implicated serotonin in depression
and lent to the development of selective serotonin reuptake
inhibitors (SSRIs) (9). Such phenomenological discoveries are
responsible for many prototypical neuroactive drugs. Conse-
quently, we and others have sought to scale phenomenological
discovery to higher-throughput using animal models for CNS
drug discovery.

Zebrafish larvae and embryos have long been used to assay
environmental toxicants (10, 11) and as models for vision (12–
16), threat response (17), memory (18), algesia (19–21), and
sleep (22–24). These successes in the laboratory have extended
to the clinic: In a rare example of bench-to-bedside, the FDA

approved lorcaserin as an antiepileptic, based significantly
on evidence in zebrafish (25). More recently, a zebrafish
model was used in the life-saving treatment of a 12-year-old
patient (26). Genetic and compound-induced disease models
in zebrafish larvae have shown promising consistency with
rodent models (27, 28).

Zebrafish are well-suited for phenotypic profiling, a quantita-
tive, high-throughput approach to phenotype-first compound
discovery (23, 29). Profiles are quantitative readouts of aggre-
gate animal movements in multiwell plates. These experiments
often employ acoustic, photic (light-based), and other stim-
uli to perturb the animals’ behavior in an effort to reveal
more compound-induced behavioral changes. Previous screens
identified new neuroactive compounds and predicted their tar-
gets, later supported by in vitro assays (23, 30–33). Diverse
compounds have been identified, including photoactivatable
transient receptor potential channel A1 (TRPA1) ligands (34),
antiepileptics (35), antipsychotics (36), appetite modulators
(37), and anesthetic-like compounds (38, 39).

One way to predict the pharmacology of a mechanistically
novel compound is by association to a compound of known
pharmacology. This guilt-by-association approach links novel
compounds to known ligands, but it requires both reference
profiles for compounds with known pharmacology and a way
to measure similarity between profiles.

Here, we describe the SauronX platform in detail. We
benchmark the system in a machine learning approach, first
on 14 quality–control (QC) compounds, then on a chemical
library of 648 known CNS ligands, all of which we release
within a 3.2 million zebrafish, 34,000 compound phenotypic
screen public dataset.

Results

An open platform enables high-throughput capture of pheno-
typic data. We sought to develop an open platform for behav-
ioral profiling. We defined 3 criteria: the ability to screen
without interruption, reproducibility of analyses, and exten-
sibility to add or remove hardware. We modified an existing
system to achieve this (36). The new hardware–software plat-
form has been used to assay N,N-Dimethylaminoisotryptamine
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(isoDMT) analogs (40), a non-hallucinogenic ibogaine analog
with therapeutic potential (41), and toxicants at the U.S.
Army Medical Research Institute of Chemical Defense (US-
AMRICD).

The setup is shown in Fig. 1a. Plates are positioned on a flat
translucent stage, fixed in a groove so that sound propagated
through the stage contacts the plate uniformly. The plates are
illuminated from the bottom with infrared light through an
acrylic diffuser and recorded with an overhead camera while
light and sound stimuli are applied (Fig. 1a and SI, Fig. S1).
The digital camera is mounted to a telecentric lens with an
infrared pass filter so that the photic stimuli do not affect the
video. The lens eliminates parallax, resulting in all wells having
the same apparent dimensions, simplifying feature calculations
and eliminating parallax corrections as potential confounding
variables. The camera captures 1 Mpx to 6 Mpx (16-bit depth)
images at a preset frame rate of 100 Hz to 150 Hz (SI, Movie
S1). Nanosecond-resolved timestamps corresponding to the
image sensor acquisition are used to precisely synchronize
captured frames with stimuli. Computer-aided design (CAD)
files (SI, Fig. S1) and related information are available in the
Data Repository (42).

To expand the repertoire of observable behavioral responses,
stimuli are applied during capture. Photic stimuli are deliv-
ered via 6 overhead LED arrays (SI, Table S1). Acoustic
stimuli from audio files are delivered through surface trans-
ducers mounted on the stage. A microphone, photosensor,
and secondary camera verify the delivery and timing of stim-
uli. These stimuli evoke compound-dependent behaviors that
would not otherwise be observed. For example, we observed
a compound-modulated ‘step’ response to 355 nm ultraviolet
light, which is visible to zebrafish (43). This response differs
markedly from 400 nm light (SI, Fig. S3 and SI, Movie S2).

We use a 4-step workflow (Fig. 1b). Animals are anes-
thetized in cold water and dispensed into the wells of a mul-
tiwell plate, dosed, and incubated for 1 hr. The plates are
placed in the instrument, and the animals are acclimated in
darkness for 5 minutes. A battery of stimuli is then applied
while video is recorded. Videos can be analyzed in many ways,
including tracking of animals. For the experiments in this
manuscript, we used multiple (8) animals per well and calcu-
lated a simple feature (motion-trace) of aggregate locomotor
activity over time (SI, Equation 1). Although using multiple
animals per well complicates per-animal tracking, it resulted in
much higher algorithm performance (discussed later). Fig. 1c
and SI, Fig. S3 show example traces under a standard battery
for vehicle (DMSO solvent) or the antipsychotic clozapine.

We use a web interface to design plate layouts, stimulus
batteries, and experiments, as well as to organize and search
for genetic constructs and compound stocks. A custom lan-
guage called Gale can be used to design assays from simple
expressions (but is not required). The hardware is driven
by custom software, which we have released as open source.
Post-processing of data is not coupled to capture, allowing
many plates to be run in sequence without interruption. Af-
ter a run completes, the videos are compressed and archived
permanently, and data is inserted into a relational database
on a remote server.

The database incorporates coarse-grained and fine-grained
data. The coarse-grained data, such as hierarchical grouping
of experiments, simplifies search. The fine-grained data is in-

cluded for reproducibility and post-hoc diagnostics. For exam-
ple, compound treatments are indicated by ‘batch’, with sup-
plier information and lot numbers. In developing the system,
we identified information required to conduct reproducible,
audit-able analyses. In accordance, we propose a minimum
information standard (44) at https://osf.io/nyhpc/.

These data are used in an open source analysis plat-
form (sauronlab), which provides tools for search and anal-
ysis. Analyses include quantifying the strength of pheno-
types, classifying and clustering phenotypes, analyzing mech-
anism of actions (MOAs), and searching for similar pheno-
types. All analyses are tied to a timestamp that restricts
the data queried from the database, ensuring that results
do not change when new data is added. Notebooks illus-
trating these analyses with code and output are available at
https://github.com/dmyersturnbull/sauronlab-publication.

In contrast to commercial phenotyping systems, the hard-
ware, data storage, and analysis are uncoupled. Videos are
efficiently compressed and can be stored indefinitely and
analyzed with additional methods at any point. Although
the hardware is larger than most commercial systems at
61 cm×61 cm×114 cm, this simplified construction and enabled
rapid iteration between analyzing data and adapting hard-
ware. As part of an effort to develop an open alternative to
commercial systems, we benchmarked the platform’s ability
to distinguish compound-induced phenotypes.

Compound-induced phenotypes are reliably detected and dis-
tinguished in a benchmark. We wanted to evaluate the plat-
form in a way that is not constrained to a single phenotype.
Specifically, we sought to test the ability to detect compound-
induced phenotypes (detection criterion), identify phenotypes
caused by the same compounds while distinguishing those
caused by different compounds (distinction criterion), and
group compounds with similar mechanisms or effects (group-
ing criterion).

First, we curated a set of 14 compounds with diverse struc-
tures and MOAs (Table 1 and SI, Table S2). The lethal control
used a high dose of the anesthetic eugenol, which is routinely
used as a humane method to euthanize fish (45, 46). These 14
compounds and 2 controls formed the QC set. Experiments
were run using 7-day-old wild-type zebrafish 1 h post-treatment
under a standard battery (Fig. 1c).

For each compound, we selected a 5-point logarithmic con-
centration gradient to capture the range between phenotypic
inactivity and lethality. 8 replicate plates were screened, with
all compounds and concentrations on each plate in random
positions. For each compound and concentration, a binary
treatment–vehicle Random Forests (RF) classifier was trained
to assign the motion vectors as either treatment or vehicle. The
same procedure was used for treatment–lethal models. We plot-
ted the resulting out-of-bag accuracy values in concentration–
response curves. Due to the high dimensionality, such curves
are not expected to be sigmoidal or even monotonically in-
creasing. For most compounds, treatment–vehicle accuracy
increased with concentration, while treatment–lethal accuracy
dropped sharply at high concentrations (Fig. 2a, SI, Fig. S2,
and SI, Table S3). Notably, treatment–lethal accuracy was
high even for sedating doses of the anesthetic etomidate (38),
indicating that sedation and lethality were distinguished.

Seeking a way to identify lethal compound treatments that
could be interpreted more directly, we trained You Only Look
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Fig. 1. Overview of methods. (A) Front view of the instrument. (B) Stages of the experimental/computational pipeline. (C) Example motion-trace for wells treated with
vehicle (dimethyl sulfoxide (DMSO)) or clozapine at 50 µM. Top: motion within the well as a function of time. Bottom: stimuli applied over time. The shaded colors represent
high-intensity LED light application, the black lines depict the waveforms of audio assays, and the gray vertical lines (at the end) denote the application of acoustic stimuli by
solenoids. N = 12 wells / condition.
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Table 1. Quality–control compounds with optimal concentrations.

Compound Conc. (µM) Primary mechanism of action

almorexant 90 OX1, OX2 antagonist
bromocriptine 16 D2, D3 agonist
clozapine 50 D2, 5-HT2A antagonist
donepezil 16 AChE inhibitor
endosulfan 0.32 GABAA antagonist
etomidate 6.25 GABAA agonist
haloperidol 25 D2 antagonist
indoxacarb 6.25 NaV inhibitor
(S)+ketamine 100 NMDAR antagonist
lidocaine 1200 NaV inhibitor
optovin 6.25 TRPA1 opener
(+)-sertraline 25 SERT inhibitor
tiagabine 100 GAT inhibitor
tracazolate 25 GABAA modulator

Conc. (concentration); OX, orexin receptor; D1/D2/D3, dopamine receptors 1/2/3;

5-HT1/5-HT2, serotonin receptors; AChE, acetylcholinesterase; GABAA, GABA

ionotropic receptor; NaV, voltage-gated sodium channel; NMDAR, N-Methyl-D-

aspartate receptor; TRPA1, transient receptor potential channel A1; SERT, serotonin

transporter; GAT, GABA transporter.

Once v5 (YOLOv5) (47, 48) deep-learning object-detection
models. Single frames from 46 wells were annotated by drawing
rectangles around individual animals and labeling them alive
or deceased, based on morphology. For potential future appli-
cations, we also included other phenotypes, labeling lateral
orientation (as a sign of loss of righting reflex) and curvature
(as a sign of active motion). Considering only live/deceased,
live were detected with 93% precision (SI, Fig. S4), and de-
ceased with 57%. The low precision for deceased likely resulted
from a relative paucity of training examples (lethal concentra-
tions are preferentially avoided), but an estimate Ed for the
number of deceased animals can be counted as Ed = 8 − Nlive.

Using these data, we set an ‘optimal’ concentration per
compound by balancing phenotypic strength with non-lethality
(Table 1). This optimal-concentration set was screened in 15
replicate plates, with 6 replicates of each compound per plate
(SI, Fig. S3). In compound–vehicle models, the mean accuracy
was 93%. By contrast, a straw man analysis on randomly false-
labeled controls yielded 49% for vehicle–vehicle comparisons.
This established that compounds could be separated from
controls, meeting the detection criterion.

We then visualized the phenotypes together using t-
distributed stochastic neighbor embedding (t-SNE) (49). Each
compound generated a cloud of replicate profiles generally
separate from the controls and other compounds (Fig. 2c),
indicating an ability to identify phenotypes caused by the
same compounds and distinguish them from others. A RF
multiclass classifier was trained to quantify this.

The out-of-bag predictions were visualized in a confusion
matrix (Fig. 2d). The labels were sorted by an algorithm that
maximized block–diagonal structures, grouping like pheno-
types. The diagonal was high (mean=94%), reflecting accurate
self-classification and phenotypic uniqueness. The classifier
distinguished several compounds, such as almorexant and
tiagabine, that were poorly separated in Fig. 2c. As an adver-
sarial experiment to test for shortcut learning or memorization,
we collected a dataset of only vehicle-treated wells and false-
labeled them to mimic the real dataset. Classifiers were unable

to distinguish the false-labeled treatments (Fig. 2e), supporting
the distinction criterion.

Grouping of compounds (grouping criterion) was harder
to assess with few compounds. Although generally distin-
guishable, lidocaine, etomidate, and tracazolate were sorted
nearby. These compounds reduced movement, analogous to
their effects in humans, but they evoked noticeably distinct
responses to stimuli (SI, Fig. S3). This offered anecdotal but
encouraging support for grouping.

Benchmarks guided the optimization of experimental proto-
cols and computational methods. We hypothesized that this
approach of classification on a QC set served as a general
evaluation method to guide experimental design. We applied
it to design a stimulus battery, optimize experimental and
computational methods, and quantify the impact of potentially
confounding variables.

In a data-driven approach to design a battery, we compared
53 different 30 s to 60 s behavioral assays (Tables S4, S5). As-
says that provided high classification accuracy were included
in the final battery. Background (stimulus-free) assays had
notably low performance and most of the acoustic assays with
pure tones yielded little information. While pure tones are
commonly used (50), acoustic assays generated from complex
environmental sounds resulted in higher accuracy. Assays
with high-frequency light stimuli and those with simultaneous
photic and acoustic stimuli also performed well. Likewise, for
the optimal-concentration classifier (Fig. 2d), heavily weighted
frames occurred near stimuli (Fig. 2h), directly highlighting
their importance. Although these experiments were based on
a small set of well-characterized compounds, this data-driven
approach eliminated assays that provided low phenotypic in-
formation and suggested that complex assays may be more
useful for resolving compound-induced phenotypes, in contrast
to the stimuli more typically used in such assays.

Next, we evaluated how performance changed under differ-
ent experimental conditions. Using a separate data set, we
evaluated using 3, 4, 6, 8, and 10 animals per well. Accuracy
increased with the number of animals (Fig. 2f). These two
results showed a trade-off between higher performance and
the logistics and ethics of using more animals.

Similar to this optimization of experimental protocols, com-
putational methods could be benchmarked. We benchmarked
several classification models, testing across hyperparameter
sets (Fig. 2g). Neural networks, random forests, and sup-
port vector machines (SVMs) outperformed simple models
like linear classifiers and k-nearest neighbors (k-NNs). These
experiments pointed to a general procedure to compare and
optimize protocols.

Finally, we considered the impact of potentially confound-
ing variables such as time of day and exact treatment duration
(deviation from 1 h). The 15 variables we tested were not sig-
nificantly predictive in this highly controlled regime (SI, Fig.
S5). However, well locations can be predictive in experiments
that lack positional randomization. In addition, some variables
may become predictive if their variance increases; for example,
time of day may be predictive in an experiment if data collec-
tion continues overnight. We posited that this approach could
be used to assess confounding for diverse experimental setups.

104 phenotypically active CNS ligands provide reference phe-
notypic profiles. To predict mechanisms for novel compounds,
we collected a set of reference profiles from compounds with
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Fig. 2. Results for the QC experiments. Abbreviations: NBC, naive Bayes classifier; MLP, multi-layer perceptron; RF, Random Forests; SVM, support vector machine; k-NN,
k-nearest neighbor; RR, ridge regression. (A) Concentration–response curves for treatment–vehicle (left axis; blue) and treatment–lethal (right axis; red) accuracy. Opaque
lines denote the median accuracy, and shaded regions denote a 95th percentile confidence interval by bootstrap. N = 8 wells/condition. (B) Treatment–solvent classification
accuracy by compound on the optimal-concentration QC set. N = 90 wells/condition. (C) T-SNE projection of motion vectors in the optimal-concentration QC set. Each
point denotes one well. N = 90 wells/condition. (D) Confusion matrix from a multiclass classification model (Random Forests) on the optimal-concentration QC set. N = 90
wells/condition. (E) Confusion matrix from a corresponding model trained on false-labeled vehicle-treated wells. N = 18 wells/condition. (F) Treatment–treatment accuracy
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Treatment–treatment accuracy as evaluated by different classification algorithms in the optimal-concentration QC set. The extents of the error bars mark the values for the two
individual plates. N = 90 wells/condition. NBC, naive Bayes classifier; MLP, multi-layer perceptron; RF, Random Forests; SVM, support vector machine; k-NN, k-nearest
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visual clarity. Bottom: Stimulus battery as in Fig. 1c. N = 90 wells/condition.
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diverse pharmacological actions. We used the screen-well
Neurotransmitter library (NT-650, Enzo Life Sciences), which
contained 648 CNS ligands. A fully randomized screen was per-
formed, generating approximately 7 replicates per compound
at 33 µM in a 648-compound reference set.

To identify hit compounds, per-compound treatment–
vehicle and treatment–lethal classifiers were trained as per
the QC set. Visualizing the accuracy values, vehicle–vehicle
values were centered near 50% (Fig. 3) as expected. Accord-
ingly, the treatment–vehicle values were long-tailed, indicating
that compounds falling within this tail were likely active. To
select phenotypically active compounds (hits), we applied an
accuracy threshold that excluded 99.5% of vehicle–vehicle
comparisons, yielding 106 nonlethal hit compounds. Only 1
compound, tetrahydrodeoxycorticosterone, was lethal at the
concentration tested, though other compounds may have been
toxic but nonlethal.

To assess which classes of compounds were more phenotyp-
ically active, we grouped compounds by the neurotransmitter
systems that they primarily target (Fig. 4). Dopaminergic
and serotonergic systems were enriched for phenotypic activ-
ity, while adenosinergic, purinergic, and glutamatergic were
depleted, although all 13 had at least one hit. Aside from
the GABA ionotropic receptor (GABAA), enriched protein
targets were mostly monoaminergic, including monoamine
transporters and dopamine, serotonin, histamine, and mus-
carinic receptors.

Multiclass models were then trained to distinguish between
the 104 treatments, along with controls. The results were visu-
alized in a sorted confusion matrix (Fig. 5). A strong diagonal
indicated that the compounds were phenotypically coherent.
Several clusters were observed, including GABAA, dopamine
transporter (DAT), and dopamine, glutamate, and melatonin
receptor ligands. These data indicate that the behavioral
screening paradigm is capable of distinguishing neuroactive
molecules that interact with discrete neurotransmitter sys-
tems. Importantly, multiple chemical scaffolds were present
per cluster, indicating scaffold hopping (51) and illustrating
the potential for this approach to be used to discover structural
starting points for new drugs.
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Discussion

Here we presented an open platform for behavioral phenotyping
in zebrafish and posted complete specifications. To facilitate
data mining, we publicly deposited phenotypic data for 34,000
compounds and 3.2 million animals. Focusing on a high-
replicate, well-characterized quality-control subset of this data
repository, we found that machine learning classifiers can
readily detect, distinguish, and group known drugs using their
behavioral profiles.

Prior studies validate behavioral profiling as a way to dis-
cover and characterize neuroactive compounds. Different hard-
ware, zebrafish strains, and computational methods have been
applied, and this diversity calls for quantitative evaluations.
We found that classification in a quality–control set provided
an intuitive and powerful metric to summarize performance.
This approach has immediate applications, such as optimizing
protocols and assessing the impact of confounding variables.
In particular, positional confounding can significantly affect
results, supporting a need for treatment randomization. The
screen-well Neurotransmitter library provides compounds
physically arranged by their major pathways, illustrating how
this confounding could solely explain a promising result. We
provide a lower bound on performance and hope this will invite
comparisons using the same approach or the development of
superior or complimentary benchmarks.

Certain modifications could expand the observable sub-
set of compound-induced movement behaviors. First, we
used a concentration of 33 µM for the NT-650 screen, but
the concentration–response experiments indicated that some
compounds were phenotypically inactive below 100 µM. Sec-
ond, affecting complex states such as aggression, addiction, or
learning may improve resolution. We used a trivial readout for
high-dimensional movement behaviors, but tracking (52–54),
optical flow (55), probabilistic models (56), and deep learning
(57) have been successful in analyzing similar data.

Finally, technologies like RNA-seq and mass spectrometry
could be applied in concert with behavioral experiments as
powerful, high-throughput, and high-dimensional approaches
to delineate the mechanisms underlying behavioral modifica-
tions. Future studies will likely leverage advances in many of
these areas to improve the resolution of behavioral profiling.

With the release of full open hardware and software plat-
form specifications, along with an accompanying data reposi-
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tory of 34,000 compounds on 3.2 million zebrafish spanning 7
years, we hope to spur analysis and development opportunities
of open systems for behavioral phenotyping and the discovery
of novel neuroactive compounds.

Methods

Animal husbandry. Zebrafish husbandry was as described (58).
Embryos were from group matings of wild-type zebrafish (Sin-
gapore, ZFIN:ZDB-GENO-980210-24) raised on a 14/10-hour
light/dark cycle in 28 °C egg water (Instant Ocean (003746)
with NaHCO3 to pH 7.0–7.4) (58) until 7 dpf. Animals were
maintained in a facility accredited by the Association for
Assessment and Accreditation of Laboratory Animal Care
(AAALAC). Experiments were performed in accordance with
protocols approved by UCSF’s Institutional Animal Care Use
Committee (IACUC) and in accordance with the Guide for
the Care and Use of Laboratory Animals (59).

Software and data availability. Hardware information, proto-
cols, links to software repositories, extended supplemental data,
and the full database are available at https://osf.io/3dp6x.
Software is released under an Apache 2.0 license.

Instrument. Components used in these analyses are docu-
mented in SI, Section A. Some were replaced afterward;
current recommendations are at https://osf.io/3dp6x. A
PointGrey Grasshopper GS3-U3-41C6M-C camera (FLIR In-
tegrated Imaging Solutions) and infrared pass filter were used
(LE8744 polyester #87, LEE Filters). Six high-intensity LED
arrays were positioned overhead, with 4 LEDs per array (Os-
ram Sylvania; LED Engin; New Energy). Two surface trans-
ducers were fastened on the stage (5 W transducer, Generic)
and used with a 150 W amplifier (APA150, Dayton Audio).
Two 36 V push–pull solenoids (SparkFun Electronics) were
positioned near the top of the plate, one contacting the stage
directly, and the other contacting a 1 mm-deep strip of syn-
thetic felt. Audio files (SI, Sound Files S1–3) are provided
along with sound pressure level (SPL) measurements (SI, Table
S6).

An Arduino Mega 2560 rev 3 (Arduino.cc) drove the LEDs,
solenoids, and small sensors while a computer directly con-
trolled the microphone, transducers, and camera. The camera
streamed raw data to a high-performance drive without buffer-
ing. Videos were 1600 × 1068 in 8-bit grayscale. Videos were
trimmed, compressed with High-Efficiency Video Encoding
(HEVC) using Constant Quantization Parameter (CQP) 15
and partitioned into region of interests (ROIs) for wells (SI,
Section B).

Data collection and filtration. Healthy larvae were sorted and
then immobilized with cold egg water with 25 mL of 4 °C
added to 12 mL room-temperature egg water in a 100 cm petri
dish containing about 1,000 fish. 8 larvae in 300 µL were
then distributed by pipette into the wells of 96-well plates,
using trimmed tips to avoid injuring the animals. Plates were
incubated at room temperature for 1 hr, at which animals were
mobile.

For QC experiments (SI, Table S2), compound plates and
aliquots were stored at −20 °C. 2.0 µL of solvent-dissolved com-
pound was then added to each well. Solvents were dimethyl sul-
foxide (DMSO) except for donepezil (water). Some donepezil

wells had less than 2.0 µL remaining due to evaporation (an-
notated in the database). Each concentration–response curve
included 5 concentrations on a logarithmic scale with an addi-
tional hypothesized ideal concentration (SI, Table S3). The
optimal-concentration QC set was replicated across 15 plates,
applying 6 replicates of the 14 compounds and 2 controls
(16 × 6 = 96). The vehicle-only adversarial control experiment
was collected with 3 plates using earlier hardware and a differ-
ent battery. However, optimal-concentration QC accuracy was
high when subsampled to 3 plates. 5/14 optimal-concentration
plates and 1/9 concentration–response plates were excluded
because hardware sensors flagged them for potential problems.

The screen-well Neurotransmitter library (Enzo Life Sci-
ences) was purchased in solution at 10 mM (peptides 100 µM)
in 2015 and stored at −80 °C. A Biomek FXP (Beckman
Coulter) was used for randomization.

For NT-650, 1 µL was added per well to yield 33 µM, except
for peptides at 0.33 µM. Treatments were randomized across
plates and wells. Each plate contained 14 DMSO, 8 water, and
6 lethal eugenol controls, except for 1 of every 7 plates due
to an uneven split. 7 replicates were screened per compound,
with deviation from 7 due to a subsequent filtration. 13/80
plates were excluded based on sensor readout. We also filtered
23/7680 wells that had insufficient volume of compound in the
daughter plate (SI, Table S7).

Phenotype analysis. Pre-interpolation motion vectors were:

m′(It) =
∑

ij
1

∣∣It
ij − It−1

ij ≥ 10
∣∣ [1]

Where It is the image matrix at 1-indexed frame t. The
threshold 10 was chosen by comparing a histogram of pixel
intensity changes in wells with and without fish. The final
motion m was then quantified by linear interpolation of m′

values and image sensor acquisition timestamps to align frames
and stimuli.

RFs were trained with scikit-learn 0.24.1
(RRID:SCR_002577) (60) with default hyperparame-
ters except for the number of estimators, which was 20,000
for treatment–vehicle and 40,000 for multiclass classification.
Reported accuracies were out-of-bag. YOLOv5 (Git tag v5.0;
commit f5b8f7d54c9f) models were trained on images at
time 16:55 from 11 plates, 46 wells, and 338 animals. Boxes
were drawn around animals and labeled using labelImg. Set
sizes were: 191 alive, 61 deceased (training); and 59 59, 27
deceased (training). Augmented images were generated under
D4 symmetry operations. Cross-validation was performed
with a 3:1 train:test split.

For NT-650 hit-calling, 4 replicate treatment–vehicle classi-
fiers were trained per compound. Per classifier, all replicate
treatment wells were compared with the same number of
randomly sampled vehicle wells, restricted to the plates con-
taining the compound treatment and with the same solvent
(DMSO or water). Amoxapine (CHEMBL1113) was dissolved
in N-methyl-2-pyrrolidone (NMP); it was compared to DMSO.
Lethality was detected by an analogous procedure. For the
NT-650 multiclass problem, the mean was taken over 5 confu-
sion matrices, each trained on a stratified subset with 4 wells
per compound.

Visualization. Motion-trace visualizations were smoothed
from 100 Hz to 10 Hz with a sliding window. T-SNE
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parameters were scikit-learn defaults. Concentration–
response curves were computed with 1,000 bootstrap sam-
ples. kernel density estimate (KDE) were Gaussian, cal-
culated with statsmodels 0.10 (RRID:SCR_016074) (61):
kdensityfft(kernel=gau, bw=normal_reference. Matrix
sorting used confusion matrix ordering (CMO) (62) via clana
version 4.0; simulated_annealing was called with default ar-
guments.

Control experiments and battery design. Assays subject to
constraints were generated exhaustively, using LED assays,
pure tones and environmental sounds, and combinations. As-
says were ranked by the 80th percentile of their accuracy over
the 16 unique treatments. The number-of-fish experiment
used 2 randomized plates, 2 plates / condition. The strain
comparison used 2 plates / strain.
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