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Fig. 3. Distribution of prediction accuracy for treatment–vehicle (black, solid) and
vehicle–vehicle (blue, dashed) classifiers. The hit threshold is shown at x=63%
accuracy. N = 648 non-control compounds (treatment–vehicle). (N = 200 random
subsamples for vehicle–vehicle.)

diverse pharmacological actions. We used the screen-well
Neurotransmitter library (NT-650, Enzo Life Sciences), which
contained 648 CNS ligands. A fully randomized screen was per-
formed, generating approximately 7 replicates per compound
at 33 µM in a 648-compound reference set.

To identify hit compounds, per-compound treatment–
vehicle and treatment–lethal classifiers were trained as per
the QC set. Visualizing the accuracy values, vehicle–vehicle
values were centered near 50% (Fig. 3) as expected. Accord-
ingly, the treatment–vehicle values were long-tailed, indicating
that compounds falling within this tail were likely active. To
select phenotypically active compounds (hits), we applied an
accuracy threshold that excluded 99.5% of vehicle–vehicle
comparisons, yielding 106 nonlethal hit compounds. Only 1
compound, tetrahydrodeoxycorticosterone, was lethal at the
concentration tested, though other compounds may have been
toxic but nonlethal.

To assess which classes of compounds were more phenotyp-
ically active, we grouped compounds by the neurotransmitter
systems that they primarily target (Fig. 4). Dopaminergic
and serotonergic systems were enriched for phenotypic activ-
ity, while adenosinergic, purinergic, and glutamatergic were
depleted, although all 13 had at least one hit. Aside from
the GABA ionotropic receptor (GABAA), enriched protein
targets were mostly monoaminergic, including monoamine
transporters and dopamine, serotonin, histamine, and mus-
carinic receptors.

Multiclass models were then trained to distinguish between
the 104 treatments, along with controls. The results were visu-
alized in a sorted confusion matrix (Fig. 5). A strong diagonal
indicated that the compounds were phenotypically coherent.
Several clusters were observed, including GABAA, dopamine
transporter (DAT), and dopamine, glutamate, and melatonin
receptor ligands. These data indicate that the behavioral
screening paradigm is capable of distinguishing neuroactive
molecules that interact with discrete neurotransmitter sys-
tems. Importantly, multiple chemical scaffolds were present
per cluster, indicating scaffold hopping (51) and illustrating
the potential for this approach to be used to discover structural
starting points for new drugs.
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Fig. 4. Distribution of hits (opaque) and total compounds (translucent) per major neu-
rotransmitter system. N = 104 compounds. glut. (met.), metabotropic glutamatergic;
glut. (ion.), ionotropic glutamatergic.

Discussion

Here we presented an open platform for behavioral phenotyping
in zebrafish and posted complete specifications. To facilitate
data mining, we publicly deposited phenotypic data for 34,000
compounds and 3.2 million animals. Focusing on a high-
replicate, well-characterized quality-control subset of this data
repository, we found that machine learning classifiers can
readily detect, distinguish, and group known drugs using their
behavioral profiles.

Prior studies validate behavioral profiling as a way to dis-
cover and characterize neuroactive compounds. Different hard-
ware, zebrafish strains, and computational methods have been
applied, and this diversity calls for quantitative evaluations.
We found that classification in a quality–control set provided
an intuitive and powerful metric to summarize performance.
This approach has immediate applications, such as optimizing
protocols and assessing the impact of confounding variables.
In particular, positional confounding can significantly affect
results, supporting a need for treatment randomization. The
screen-well Neurotransmitter library provides compounds
physically arranged by their major pathways, illustrating how
this confounding could solely explain a promising result. We
provide a lower bound on performance and hope this will invite
comparisons using the same approach or the development of
superior or complimentary benchmarks.

Certain modifications could expand the observable sub-
set of compound-induced movement behaviors. First, we
used a concentration of 33 µM for the NT-650 screen, but
the concentration–response experiments indicated that some
compounds were phenotypically inactive below 100 µM. Sec-
ond, affecting complex states such as aggression, addiction, or
learning may improve resolution. We used a trivial readout for
high-dimensional movement behaviors, but tracking (52–54),
optical flow (55), probabilistic models (56), and deep learning
(57) have been successful in analyzing similar data.

Finally, technologies like RNA-seq and mass spectrometry
could be applied in concert with behavioral experiments as
powerful, high-throughput, and high-dimensional approaches
to delineate the mechanisms underlying behavioral modifica-
tions. Future studies will likely leverage advances in many of
these areas to improve the resolution of behavioral profiling.

With the release of full open hardware and software plat-
form specifications, along with an accompanying data reposi-
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Fig. 5. Confusion matrix of the 106 NT-650 hit compounds, plus vehicle and lethal controls. Sorting by MOA targets as provided by Enzo. Range from the 2nd percentile
to 98th percentile. Labels are ChEMBL IDs; axis colors indicate the class as per Fig. 4. Arbitrary colors on the diagonal are used to differentiate adjacent labels. N = 530
(compound-treated); 110 (vehicle-treated); 30 (eugenol-treated). GABAA, GABA ionotropic receptor; α-AR, α adrenergic receptor; β-AR, βadrenergic receptor; VAChT,
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tory of 34,000 compounds on 3.2 million zebrafish spanning 7
years, we hope to spur analysis and development opportunities
of open systems for behavioral phenotyping and the discovery
of novel neuroactive compounds.

Methods

Animal husbandry. Zebrafish husbandry was as described (58).
Embryos were from group matings of wild-type zebrafish (Sin-
gapore, ZFIN:ZDB-GENO-980210-24) raised on a 14/10-hour
light/dark cycle in 28 °C egg water (Instant Ocean (003746)
with NaHCO3 to pH 7.0–7.4) (58) until 7 dpf. Animals were
maintained in a facility accredited by the Association for
Assessment and Accreditation of Laboratory Animal Care
(AAALAC). Experiments were performed in accordance with
protocols approved by UCSF’s Institutional Animal Care Use
Committee (IACUC) and in accordance with the Guide for
the Care and Use of Laboratory Animals (59).

Software and data availability. Hardware information, proto-
cols, links to software repositories, extended supplemental data,
and the full database are available at https://osf.io/3dp6x.
Software is released under an Apache 2.0 license.

Instrument. Components used in these analyses are docu-
mented in SI, Section A. Some were replaced afterward;
current recommendations are at https://osf.io/3dp6x. A
PointGrey Grasshopper GS3-U3-41C6M-C camera (FLIR In-
tegrated Imaging Solutions) and infrared pass filter were used
(LE8744 polyester #87, LEE Filters). Six high-intensity LED
arrays were positioned overhead, with 4 LEDs per array (Os-
ram Sylvania; LED Engin; New Energy). Two surface trans-
ducers were fastened on the stage (5 W transducer, Generic)
and used with a 150 W amplifier (APA150, Dayton Audio).
Two 36 V push–pull solenoids (SparkFun Electronics) were
positioned near the top of the plate, one contacting the stage
directly, and the other contacting a 1 mm-deep strip of syn-
thetic felt. Audio files (SI, Sound Files S1–3) are provided
along with sound pressure level (SPL) measurements (SI, Table
S6).

An Arduino Mega 2560 rev 3 (Arduino.cc) drove the LEDs,
solenoids, and small sensors while a computer directly con-
trolled the microphone, transducers, and camera. The camera
streamed raw data to a high-performance drive without buffer-
ing. Videos were 1600 × 1068 in 8-bit grayscale. Videos were
trimmed, compressed with High-Efficiency Video Encoding
(HEVC) using Constant Quantization Parameter (CQP) 15
and partitioned into region of interests (ROIs) for wells (SI,
Section B).

Data collection and filtration. Healthy larvae were sorted and
then immobilized with cold egg water with 25 mL of 4 °C
added to 12 mL room-temperature egg water in a 100 cm petri
dish containing about 1,000 fish. 8 larvae in 300 µL were
then distributed by pipette into the wells of 96-well plates,
using trimmed tips to avoid injuring the animals. Plates were
incubated at room temperature for 1 hr, at which animals were
mobile.

For QC experiments (SI, Table S2), compound plates and
aliquots were stored at −20 °C. 2.0 µL of solvent-dissolved com-
pound was then added to each well. Solvents were dimethyl sul-
foxide (DMSO) except for donepezil (water). Some donepezil

wells had less than 2.0 µL remaining due to evaporation (an-
notated in the database). Each concentration–response curve
included 5 concentrations on a logarithmic scale with an addi-
tional hypothesized ideal concentration (SI, Table S3). The
optimal-concentration QC set was replicated across 15 plates,
applying 6 replicates of the 14 compounds and 2 controls
(16 × 6 = 96). The vehicle-only adversarial control experiment
was collected with 3 plates using earlier hardware and a differ-
ent battery. However, optimal-concentration QC accuracy was
high when subsampled to 3 plates. 5/14 optimal-concentration
plates and 1/9 concentration–response plates were excluded
because hardware sensors flagged them for potential problems.

The screen-well Neurotransmitter library (Enzo Life Sci-
ences) was purchased in solution at 10 mM (peptides 100 µM)
in 2015 and stored at −80 °C. A Biomek FXP (Beckman
Coulter) was used for randomization.

For NT-650, 1 µL was added per well to yield 33 µM, except
for peptides at 0.33 µM. Treatments were randomized across
plates and wells. Each plate contained 14 DMSO, 8 water, and
6 lethal eugenol controls, except for 1 of every 7 plates due
to an uneven split. 7 replicates were screened per compound,
with deviation from 7 due to a subsequent filtration. 13/80
plates were excluded based on sensor readout. We also filtered
23/7680 wells that had insufficient volume of compound in the
daughter plate (SI, Table S7).

Phenotype analysis. Pre-interpolation motion vectors were:

m′(It) =
∑

ij
1

∣∣It
ij − It−1

ij ≥ 10
∣∣ [1]

Where It is the image matrix at 1-indexed frame t. The
threshold 10 was chosen by comparing a histogram of pixel
intensity changes in wells with and without fish. The final
motion m was then quantified by linear interpolation of m′

values and image sensor acquisition timestamps to align frames
and stimuli.

RFs were trained with scikit-learn 0.24.1
(RRID:SCR_002577) (60) with default hyperparame-
ters except for the number of estimators, which was 20,000
for treatment–vehicle and 40,000 for multiclass classification.
Reported accuracies were out-of-bag. YOLOv5 (Git tag v5.0;
commit f5b8f7d54c9f) models were trained on images at
time 16:55 from 11 plates, 46 wells, and 338 animals. Boxes
were drawn around animals and labeled using labelImg. Set
sizes were: 191 alive, 61 deceased (training); and 59 59, 27
deceased (training). Augmented images were generated under
D4 symmetry operations. Cross-validation was performed
with a 3:1 train:test split.

For NT-650 hit-calling, 4 replicate treatment–vehicle classi-
fiers were trained per compound. Per classifier, all replicate
treatment wells were compared with the same number of
randomly sampled vehicle wells, restricted to the plates con-
taining the compound treatment and with the same solvent
(DMSO or water). Amoxapine (CHEMBL1113) was dissolved
in N-methyl-2-pyrrolidone (NMP); it was compared to DMSO.
Lethality was detected by an analogous procedure. For the
NT-650 multiclass problem, the mean was taken over 5 confu-
sion matrices, each trained on a stratified subset with 4 wells
per compound.

Visualization. Motion-trace visualizations were smoothed
from 100 Hz to 10 Hz with a sliding window. T-SNE
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parameters were scikit-learn defaults. Concentration–
response curves were computed with 1,000 bootstrap sam-
ples. kernel density estimate (KDE) were Gaussian, cal-
culated with statsmodels 0.10 (RRID:SCR_016074) (61):
kdensityfft(kernel=gau, bw=normal_reference. Matrix
sorting used confusion matrix ordering (CMO) (62) via clana
version 4.0; simulated_annealing was called with default ar-
guments.

Control experiments and battery design. Assays subject to
constraints were generated exhaustively, using LED assays,
pure tones and environmental sounds, and combinations. As-
says were ranked by the 80th percentile of their accuracy over
the 16 unique treatments. The number-of-fish experiment
used 2 randomized plates, 2 plates / condition. The strain
comparison used 2 plates / strain.
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