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ABSTRACT 37 

Evaluation often involves integrating dissimilar determinants of value. A brain region can 38 

therefore be placed either before or after a presumed evaluation stage by measuring whether 39 

responses of its neurons depend simultaneously on multiple determinants of value. A brain 40 

region could also, in principle, show partial integration, which would suggest that it occupies a 41 

middle position between (pre-evaluative) non-integration and (post-evaluative) full integration. 42 

Existing mathematical techniques cannot distinguish full from partial integration and therefore 43 

risk misidentifying regional function. Here we use a new Bayesian regression-based approach to 44 

analyze responses of neurons in dorsal anterior cingulate cortex (dACC) to risky offers. We find 45 

that dACC neurons only partially integrate across outcome dimensions, indicating that dACC 46 

cannot be assigned to a purely post-evaluative position. Neurons in dACC also show putative 47 

signatures of value comparison, suggesting that comparison processes do not require evaluation 48 

to be complete to proceed.   49 

  50 
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INTRODUCTION 51 

To evaluate an option, we must consider all of the aspects of the option that influence 52 

value and then combine them to generate an integrated value signal (Rangel et al., 2008; Kable & 53 

Glimcher, 2009; Busemeyer et al., 2019; Tversky, 1969; Tversky & Kahneman, 1974). For 54 

example, a risky prospect (a gamble) may involve two possible outcomes, both of which have 55 

some influence on our likelihood of choosing the gamble itself. To evaluate the gamble, we must 56 

decide how appealing each of those outcomes is and then somehow combine those component 57 

evaluations. This could involve a process of multiplication and addition, as dictated by normative 58 

approaches, or could be any of a number of satisficing heuristic approaches (Stewart et al., 2006; 59 

Busemeyer and Townsend, 1998; Tversky and Kahneman, 1974; Farashahi et al., 2019). Clearly, 60 

this integration process must be reified in the brain—we necessarily process dimensions 61 

separately and our actions reflect only the integrated value, so combination has to occur 62 

somewhere in the middle (Bowman et al., 2012; Roesch and Olson, 2003; Roesch and Olson, 63 

2004). How it occurs remains an important problem in neuroeconomics.     64 

One important goal in neuroeconomics is identifying where this integration occurs 65 

(Rangel et al., 2009). Scientists therefore often seek to categorize brain regions as either 66 

preceding or following the integration process. A standard approach is to probe the responses of 67 

single neurons and test whether their responses are driven by multiple determinants of value 68 

(Padoa-Schioppa and Assad, 2006; Kahnt et al., 2011; Hosokawa et al., 2013; Kennerley et al. 69 

2009; Blanchard et al., 2015; So and Stuphorn, 2010; O’Neill & Schultz, 2018; Raghuraman & 70 

Padoa-Schioppa, 2014). Simultaneous selectivity for multiple factors that determine value/utility 71 

has therefore become a hallmark of cross-dimensional integration (Padoa-Schioppa, 2011; Hunt 72 

et al., 2015; Fellows, 2006; Kim et al., 2008; O’Neill and Schultz, 2018; Strait et al., 2014). 73 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2020. ; https://doi.org/10.1101/2020.01.01.892380doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.01.892380
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 4 

However, this interpretation relies on the assumption that the process of evaluation is 74 

anatomically discrete. Another possibility would be that it unfolds gradually across many 75 

regions, much as complex form is gradually built up over multiple regions of the ventral visual 76 

stream (Yoo and Hayden, 2018; Hunt and Hayden, 2017; Chen and Stuphorn, 2015; Cisek, 77 

2012). That is, reward-sensitive regions may be aligned along a hierarchy, and the dimensions 78 

may become gradually more united the further we travel along it. Critically, the standard 79 

statistical approach of detecting dependence on multiple determinants of value does not 80 

distinguish full (i.e. complete) from partial integration. We recently developed a method that 81 

makes use of Bayesian regression and cross-validation that can distinguish partial from complete 82 

correlations across dimensions in neural ensemble regressions, although we used it for a different 83 

purpose (Azab and Hayden, 2017). Here we use that methods to address this question. 84 

This approach also allows us to address a question about how evaluation relates to 85 

comparison. Conventional approaches choice assume the completion of evaluation before the 86 

start of comparison (Rangel et al., 2008, Padoa-Schioppa, 2011). For example, competitive 87 

inhibition models, the dominant models of economic choice, involve separate pools of integrated 88 

(i.e. post-evaluation) value neurons competing (Chau et al., 2014; Rustichini and Padoa-89 

Schioppa, 2015; Hunt et al., 2012; Hunt et al., 2015; Louie et al., 2011). However, there is no 90 

special reason why comparison must wait until evaluation is complete (Yoo and Hayden, 2018). 91 

In distributed choice systems, such as beehives, comparison processes can progress even in the 92 

absence of full cross-dimensional integration. For example, individual bees that participate in a 93 

swarm decision may sample only a subset of available determinant dimensions and nonetheless 94 

contribution directly to comparison (Seeley, 2009; Seeley & Buhrman, 1999). It is not clear, in 95 

the human brain, whether evaluation is complete before comparison can begin, or whether 96 
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comparison starts soon after evaluation does (Hunt et al., 2014; Cisek, 2012; Chen & Stuphorn, 97 

2015; Strait et al., 2015; Azab & Hayden, 2018; Balasubramani et al., 2018). Cognitive models 98 

of value-based decision-making have, in fact, often proposed that the evaluation and comparison 99 

stages occur in parallel (Busemeyer et al., 2019; Noguchi & Stewart, 2018). Knowing whether 100 

signatures of integration across dimensions is partial or complete can help shed light on this 101 

question. 102 

These questions are especially interesting to ask in the dorsal anterior cingulate cortex 103 

(dACC). Among value-sensitive or economic regions, there is a broad consensus that this is an 104 

anatomically or hierarchically late region (Heilbronner and Hayden, 2016; Rushworth et al., 105 

2011; Schall et al., 2002; Wunderlich et al., 2009). That is, it may serve as a repository for feed-106 

forward signals generated by other value-sensitive regions, such as orbitofrontal cortex and 107 

ventromedial prefrontal cortex, and have a direct role in influencing motor and premotor 108 

processing that other economic regions lack. As a consequence, it stands to reason that, among 109 

value-sensitive regions it should be most likely to carry fully-integrated signals. Indeed, current 110 

debates about the economic function of the dACC are generally split between (late) post-111 

comparison selection role and (middle) post-evaluative comparison role (Hare et al. 2011; 112 

Wunderlich, Rangel & O’Doherty, 2009; Rangel & Hare, 2010; Azab & Hayden, 2017).  113 

Here, we analyzed responses of neurons in dACC during a two-option token gambling 114 

task (Azab & Hayden, 2017; Azab & Hayden, 2018). We find that while neurons encode both 115 

large and small prospective outcomes of each gamble, their tuning functions for these outcomes 116 

are similar but are demonstrably not identical. In other words, dACC responses reflect partial 117 

integration across dimensions, not complete integration. We also observed putative signatures of 118 

comparison in these neurons, suggest that comparison does not require evaluation to be complete 119 
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to proceed. These results suggest that dACC, even though it is normally placed late in the choice 120 

hierarchy, does not follow the completion of integration. Moreover, we believe these results are 121 

more consistent with distributed than with highly modular accounts of economic choice.   122 

123 
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 124 
 Figure 1: A: Example trial from token-gambling task. B. Behavior for each subject, fit to a 125 
sigmoid function. Subjects choose the left option more often as its value increases, as would be expected 126 
given understanding of the task. EV: expected value of gamble. C: Regions of interest (for exact 127 
coordinates, see Methods). Figure adapted with permission from Azab & Hayden, 2018. 128 
 129 
  130 
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RESULTS 131 
 132 

Behavior is informed by integrated value 133 

Details of the token risky choice task are provided in the Methods and are illustrated in 134 

Figure 1A (see also Azab and Hayden, 2017 and 2018). On each trial, a macaque subject chose 135 

between two gambles. Gambles offered the possible gain or loss of virtual tokens. Tokens 136 

accumulated across trials; once subjects accrued six, they received a large water reward. 137 

Gambles consisted of two possible outcomes (which we denote “large” and “small”—the small 138 

one was most often negative or zero). Gambles appeared asynchronously; this staggered 139 

presentation allowed us to examine neuronal responses to the first gamble independent of the 140 

value of the second. 141 

 142 
Gamble values influence subjects’ choices 143 
 144 

 Subject B (n = 66 sessions) Subject J (n = 74 sessions) 

Regressor Mean regression 
coefficient 

Wilcoxon sign-
rank Z-statistic 

(p-value) 

Mean regression 
coefficient 

Wilcoxon sign-
rank Z-statistic 

(p-value) 

Left offer – win 1.40 7.06 (p = 1.64 x 
10-12) 

1.15 7.47 (p = 7.773 x 
10-14) 

Left offer – loss 0.486 6.97 (p = 3.26 x 
10-12) 

0.293 7.22 (p = 6.35 x 
10-13) 

Left offer – 
probability of 

win 

5.12 7.06 (p = 1.64 x 
10-12) 

3.70 7.47 (p = 7.73 x 
10-14) 

Right offer – 
win 

-1.33 -7.06 (p = 1.65 x 
10-12) 

-1.33 -7.47 (p = 1.67 x 
10-12) 

Right offer – 
loss 

-0.412 -6.83 (p = 8.37 x 
10-12) 

-0.237 -7.06 (p = 1.67 x 
10-12) 
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Right offer – 
probability of 

win 

-4.85 -7.06 (p = 1.64 x 
10-12) 

-4.09 -7.47 (p = 7.73 x 
10-14) 

 145 
Table 1: Subjects’ choices were influenced by all values characterizing both gambles. 146 

Average regression coefficients from a multiple logistic regression model of choice (left=1, 147 
right=0) against the variables in the regressor column, for each behavioral session. The 148 
distribution of regression coefficients across sessions for every behavioral variable listed 149 
deviated significantly from zero. A ‘loss’ within a gamble was always less than or equal to the 150 
win outcome of that gamble, and may or may not be a negative value. The magnitude of the 151 
regression coefficient indicated the extent to which this variable influenced choice, while its sign 152 
indicated whether higher values of this variable (positive vs. negative) favored choice of the left 153 
vs. right gamble, respectively. Adapted with permission from Azab & Hayden, 2018. 154 

 155 
Details of the subjects’ behavior are provided elsewhere (Azab and Hayden, 2017; Azab 156 

& Hayden, 2018; Farashahi et al., 2018). Briefly, both subjects preferred the option with the 157 

higher expected value (subject B: 80.3%; subject J: 75.1%; two-sided binomial test: both P < 158 

0.0001). Behavior was significantly influenced by all three components (the two outcomes and 159 

the probability) of both gambles (see Table 1).  160 

We first tested whether choices reflect the integrated values of the gambles or the 161 

components of each gamble independently. That is, whether the weighted product of outcome 162 

magnitudes and probabilities explained behavior over and above these gamble components 163 

individually. We fit choices to two multiple linear regression models, one including the three 164 

individual components of each gamble and another that included their interaction. For both 165 

subjects, inclusion of the integrated value predictor improved model fit (Wilcoxon sign-rank test 166 

between Akaike Information Criterion, AIC, subject B: z=7.06; subject J: z=7.47; p<0.0001 for 167 

both subjects). These results provide important evidence that our subjects behaviorally integrate 168 

the values. In other words, they indicate that the final common pathway (the oculomotor control 169 

neurons) encode integrated value, and therefore indicate that the integration must occur before or 170 

at that point (Roesch and Olson, 2003; Roesch and Olson, 2004). 171 
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 172 
Figure 2: Neural responses to gamble components. A: Responses of example neurons to 173 

the large outcome (left), probability of large outcome (middle), and small outcome (right) of the 174 
first gamble. Gray region: period of significant modulation. B: Proportion of neurons modulated 175 
by the components of the first gamble throughout the course of the trial. This fraction was 176 
computed by fitting a stepwise regression model to the normalized firing rate over a 500 ms 177 
sliding window against the components of the attended gamble (left) or the chosen gamble 178 
(right), along with other task-relevant variables (see Methods). Apparent effects before time zero 179 
reflect the width of the analysis window. 180 
 181 

Responses of dACC neurons carry value-relevant information 182 

We recorded 129 neurons from dACC in two subjects (subject B: 55 neurons, subject J: 183 

74 neurons; see Figure 1B for region of interest). Basics of modulation in response to task-184 

relevant variables are presented in detail in previous manuscripts and are not repeated here (Azab 185 

& Hayden, 2017 and 2018). We use the same epoch we used in our previous papers, a 500 ms 186 

window starting 100 ms after events. Example cells are shown in Figure 2. For the first example 187 

cell, lower low values result in higher firing rates (t-test on firing rates, p<0.001). For the second 188 

example cell, higher high values result in higher firing rates (p<0.005). For the third example 189 

cell, firing depended on the probability of the large outcome (p<0.001). 190 

Responses of 17.05% of neurons were affected by the size of the large outcome 191 

(n=22/129, one-sided binomial test: p<0.0001). Responses of 20.2% were affected by the 192 
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probability of that outcome (n=26/129, p<0.0001), and 8.53% were affected by the small 193 

outcome (n=11/129, p=0.059) of the same gamble in the first epoch. Note that the lack of a 194 

significant effect for the small outcome raises the possibility that dACC simply does not encode 195 

this parameter. However, more sensitive tests do show an effect. Specifically, we performed a 196 

stepwise linear regression model; a significant fraction of neurons showed dependence on the 197 

small outcome in both epochs (epoch 1: 34.1%, n = 44/129, P < 0.0001; epoch 2: 55.0%, n = 198 

71/129, two-sided binomial test: P < 0.0001).  199 

 200 

 201 
Figure 3: Large and small outcomes are encoded in partially-separable formats in the 202 

recorded population. A: Correlation between formats of large and small outcomes for the first 203 
gamble in the first epoch. (left) Scatter-plot showing the correlation between regression 204 
coefficients for large and small outcomes for each neuron. Red line indicates the positive 205 
correlation between regression coefficients. Shaded red region indicates the 95% credible 206 
interval on the data correlation. Black dashed line indicates the estimated ceiling correlation 207 
between these variables in this epoch. (right) Results of permutation test. Black histogoram 208 
indicates the distribution of the estimated ceiling correlation from permuted data. Red dashed 209 
line indicates degree of correlation observed in the data. B: Correlation between variable 210 
formats for the second gamble in the second epoch. C. Correlation between variable formats for 211 
the first gamble in the second epoch. D: Correlation between variable formats for the chosen 212 
gamble in the pre-choice epoch. *: p < 0.05, ** p < 0.01. 213 
 214 

 215 

 216 
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dACC neurons use partially integrated formats to encode gamble outcomes 217 

We have used the term ensemble coding format (or just format) to refer to the vector of 218 

tuning coefficients for all recorded neurons (Strait et al., 2014; Wang and Hayden, 2017). We 219 

then correlate formats across conditions to determine how they relate. Bayesian regression 220 

allows us to draw samples from the likely format (rather than the single estimate conventional 221 

regression provides, Gelman et al., 2013). All correlations below use Spearman (i.e. rank-order) 222 

correlation, which is more robust to outliers than Pearson correlation, and is thus a more 223 

conservative method. This analysis approach has a good deal of conceptual resemblance to 224 

representational similarity analysis (RSA; Kriegeskorte et al., 2008); the main practical 225 

difference is that it uses parameter tuning (specifically, regression weights) rather than raw 226 

response (e.g. firing rates), making it more appropriate for the questions we want to ask here (see 227 

Discussion). 228 

We found that ensemble coding formats for large and small outcomes of each offer are 229 

positively correlated (r=0.28, p<0.001, 1000 samples). That is, our population uses overlapping 230 

(i.e. more similar than expected by chance) neural codes to signal the values of the large and 231 

small outcomes; this is a signature of cross-dimensional integration (Strait et al., 2014; 232 

Blanchard et al., 2015).  233 

But does it reflect a full cross-dimensional integration? Mathematically speaking, why is 234 

the measured correlation coefficient less than 1.0? It could reflect intermediate levels of 235 

integration or it could reflect complete integration that appears intermediate due only to 236 

measurement noise. (Recall that neurons are inherently noisy, so we can be certain that such 237 

noise is a major factor). To differentiate these possibilities, we repeated the same analysis on a 238 

shuffled dataset (where the values of the two variables of interest are shuffled within trial). This 239 
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tells us the maximum correlation observable between the encoding of two variables given the 240 

noise in our data, which we call the ceiling correlation.  241 

The ceiling correlation for large and small outcomes in the first epoch was r=0.45 242 

(standard deviation = 0.047; Figure 3A). This result indicates that noise is high in our dataset (as 243 

it is in most neural recordings) and that good deal of the explanation for the low correlation we 244 

observed is simply noise. However, our observed correlation (r = 0.28, see above) is nonetheless 245 

significantly lower than this value (p=0.001, bootstrap significance test, 1,000 permutations). 246 

Thus, although large and small outcomes are encoded in similar formats, these formats are not 247 

identical, as one would expect if dACC outputs reflected a completed value computation. 248 

Mathematically speaking, the difference in formats necessarily reflects a qualitative (non-affine) 249 

difference in tuning—a consistent gain shift or baseline shift would not be detected by our 250 

method and would not generate a correlation significantly different from ceiling. In other words, 251 

dACC neurons show evidence simultaneously of vectors corresponding integration and non-252 

integration, and these vectors are combined in our sample of neurons. 253 

We found a similar pattern when considering the second gamble in the second offer 254 

epoch (t=100 to 600 ms after the second offer appears). Specifically, although we did not find 255 

evidence of integration across the two dimensions (r=0.059, p=0.060, compared to zero), we 256 

found that whatever integration existed was less than the ceiling correlation value (r=0.17; 257 

p=0.028; Figure 3B). Thus, it appears that dACC does not fully integrate either offer. (Note that, 258 

because it is a null result, the lack of integration observed for the second offer does not prove no 259 

integration occurred, although it is consistent with that possibility.) 260 

We next asked whether full integration occurs when the information about the gamble is 261 

transferred to working memory. It appears not. The coding of the first offer during the second 262 
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offer epoch (when it was no longer on screen) resulted in the same pattern: partial but not 263 

complete integration (r=0.18, p<0.001 for comparison with zero. Ceiling correlation was r=0.27, 264 

which was larger than the observed value, p=0.031; Figure 3C).  265 

 266 

dACC continues to show partial integration around the time of choice 267 

We next examined the 500 ms immediately preceding choice fixation (pre-choice epoch). 268 

Whereas above we focused on offered gambles, here we focused on the chosen gamble, with the 269 

reasoning that identifying an option for choice would potentially result in full integration. The 270 

formats for integration of the two stakes is, indeed, positive (r=0.16, p<0.001). However, as like 271 

in previous epochs, this correlation is less than ceiling (r=0.25, p=0.047; Figure 3D). These 272 

results thus show that separation in large- and small-outcome formats persists at least until right 273 

before choice is indicated. 274 

 275 

 276 
Figure 4: Large outcomes and their probabilities are encoded in integrated formats in 277 

the recorded population. A: Correlation between formats of large outcomes and probabilities for 278 
the first gamble in the first epoch. (left) Scatter-plot showing the correlation between regression 279 
coefficients for large outcomes and probabilities for each neuron. Red line indicates the positive 280 
correlation between regression coefficients. Shaded red region indicates the 95% credible 281 
interval on the data correlation. Black dashed line indicates the estimated ceiling correlation 282 
between these variables in this epoch. (right) Results of permutation test. Black histogoram 283 
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indicates the distribution of the estimated ceiling correlation from permuted data. Red dashed 284 
line indicates degree of correlation observed in the data. B: Correlation between variable 285 
formats for the second gamble in the second epoch. C. Correlation between variable formats for 286 
the first gamble in the second epoch. D: Correlation between variable formats for the chosen 287 
gamble in the pre-choice epoch. 288 

 289 
 290 

Formats used to encode stakes and probabilities are consistent with full integration 291 

for those dimensions 292 

For the first gamble in the first epoch, we find that the large outcome and its probability 293 

were encoded in similar formats (r=0.54, p<0.001). This degree of correlation was not 294 

significantly less than our estimated ceiling (ceiling r=0.58, p=0.135; Figure 4A). While we 295 

cannot definitively conclude that there is full integration of these variables, the difference 296 

between these results and the previous ones is striking. Indeed, for the first offer in the second 297 

epoch (i.e. when it is in working memory), large outcomes and probabilities are also encoded in 298 

similar formats (r=0.44, p<0.001) that are no different from ceiling (r=0.46, p=0.39; Figure 4B). 299 

For the second offer, large outcomes and their probabilities are also encoded in similar formats 300 

(r=0.37, p<0.001), and again no different from ceiling (r=0.41, p=0.22; Figure 4C). The chosen 301 

gambles’ large outcomes and probabilities are encoded in similar formats in the 500 ms 302 

preceding choice (r=0.49, p<0.001), and again no different from ceiling (r=0.47, p=0.63; Figure 303 

4D). Although the lack of a difference is not sufficient to prove identity, the matching patterns 304 

for all four conditions, and their striking differences with the stakes analyses above, suggest that 305 

large stakes and probability may be fully integrated in dACC.  306 

These results are important because they indicate that the lack of integration observed for 307 

large and small stakes is not a consequence of our task design, of the psychology of our subjects, 308 

or of a limitation in our analysis approach. It appears that dACC is capable of fully integrating 309 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2020. ; https://doi.org/10.1101/2020.01.01.892380doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.01.892380
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 16 

some variables and maintaining some separation in others, and our methods are capable of 310 

detecting this partial integration when it occurs.  311 

This final point is further emphasized by our next analysis. In the first epoch, the small 312 

outcomes and probabilities were encoded in similar formats (r=0.11, p=0.002), which are less 313 

correlated than ceiling (r=0.30, p=0.001). Results are not conclusive for the same gamble in the 314 

second epoch: there is no correlation between the formats for small outcomes and large-outcome 315 

probabilities (r=0.050, p=0.11), but this correlation is no different from our estimated ceiling, 316 

which is very low (r=0.13, p=0.057). The small outcome and large-outcome probability of the 317 

second gamble are encoded in weakly-correlated formats in the second epoch (r=0.063, 318 

p=0.049), and this correlation is no less than our estimated ceiling (also low, ceiling r=0.13, 319 

p=0.12). The low stakes and probability components of the chosen gamble were encoded in 320 

positively-correlated formats in the pre-choice epoch (r=0.17, p<0.001); no less than ceiling 321 

(r=0.15, p=0.65). The lack of full integration between small outcomes and probabilities in the 322 

first epoch (which is highly significant and survives Bonferroni correction) highlights the 323 

qualitatively different way in which large and small offer outcomes are treated. 324 

  325 
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DISCUSSION 326 

We examined the neural encoding of risky offers in dACC. We made use of a recently-327 

developed statistical method that can disambiguate variable encodings that are partially 328 

correlated from ones that are fully correlated but different due solely to noise (Azab and Hayden, 329 

2017). We find, first, that while dACC neurons encode both large and small prospective 330 

outcomes of individual gambles on the screen and in working memory, the population tuning 331 

formats for the two outcomes are only partially correlated—neither orthogonal nor collinear.  332 

The “mid-evaluation” signal we observe is a type that is predicted by hierarchical 333 

(sometimes called serial) models of value, which involve multiple small steps leading from a 334 

space of options to one of actions rather than a single value estimation locus (Hunt & Hayden, 335 

2017; Yoo & Hayden, 2018). In such models, reward and value processing occur along an 336 

anatomical hierarchy and computation within that hierarchy implements a gradual transformation 337 

from stimulus information to motor commands, rather than a series of categorical steps (Hunt et 338 

al., 2012; Hunt & Hayden, 2017;  Cisek, 2012; Chen & Stuphorn, 2015; Cisek & Kalaska, 2010). 339 

More specifically, we have proposed that the relationship between different hierarchical levels 340 

may be one of untangling—of rotating representations into a format more usable for effector 341 

systems, while retaining information (Yoo and Hayden, 2018; DiCarlo et al.. 2012). In the 342 

domain of economic choice the tangled format involves the two non-integrated dimensions and 343 

the untangled format is an integrated value representation. The untangling theory, which is based 344 

on how the visual stream works, proposes that each anatomical stage untangles information from 345 

the earlier stage and allows for intermediate amounts of untangling. 346 

The first major effect we observe suggests that dACC follows the initiation of value 347 

integration but precedes its completion. Together these results suggest that dACC cannot be 348 
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assigned either a purely pre- or post-evaluation stage in choice. Moreover, in conjunction with 349 

other results showing evidence for value comparison in dACC (e.g. Azab & Hayden, 2017; Azab 350 

& Hayden, 2018; Klein-Flugge & Bestmann, 2012; Hare et al. 2011; Wunderlich et al., 2009; 351 

Rangel & Hare, 2010), these findings indicate that value integration does not need to be 352 

complete before value comparison begins (Hunt et al., 2014).  353 

These results complement our recent findings using this dataset (Azab & Hayden, 2017). 354 

In that study, we concluded that dACC occupies a middle role in the comparison of values. Our 355 

complementary results here suggest that dACC occupies a middle role in the computation of 356 

values. Juxtaposed, the two results have a larger implication: that the completion of integration is 357 

not essential to the initiation of comparison. That is, it may be impossible, even in theory, to 358 

draw a line, either in anatomical space or in time, between evaluation and comparison stages of 359 

choice (Yoo & Hayden, 2018).  360 

The identification of abstract amodal value signals is a desideratum of neuroeconomics 361 

(Shizgal, 1997; Padoa-Schioppa, 2011; O’Doherty, 2014; Montague & Berns, 2002; Levy & 362 

Glimcher, 2012). Our results suggest that, if these exist, they are most likely to occur only 363 

downstream of dACC. We envision two major possibilities about this site of value 364 

representation. First, value representations may only be complete in the premotor or motor 365 

system (see Cisek, & Kalaska 2010, Cisek, 2007, and Thura & Cisek, 2016 for related 366 

arguments). Second, that may be no single location at which value is represented abstractly and 367 

completely (Chen & Stuphorn, 2015; Cisek, 2012; Yoo & Hayden, 2018; Hunt et al., 2015; 368 

Balasubramani et al., 2018).  369 

Ours is not the first study to consider representations of multi-attribute offers (O’Neill & 370 

Schultz, 2018; Raghuraman & Padoa-Schioppa, 2014; Kennerley et al., 2009; Strait et al., 2014; 371 
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Blanchard et al., 2015; Padoa-Schioppa & Assad, 2006; Hunt et al., 2015). A broad finding from 372 

these studies is that neurons in several regions show some overlap in the way they encode the 373 

multiple dimensional determinants of value. The major difference is that we show that 374 

integration of attributes into value representations is not an all-or-none phenomenon. The 375 

distinction between attributes that are not integrated vs. somewhat integrated may not be 376 

meaningful for readout, since this information is extractable in either case—future work is 377 

needed to know what information is read out of dACC responses.  378 

We have proposed that what we call a value may be better thought of as evidence in favor 379 

of the proposition that the option will be chosen (Azab & Hayden, 2017; see also Hayden & 380 

Moreno-Bote, 2018). From this perspective, there is no reason to expect that valuation must be 381 

complete before comparison can begin. Each dimension can provide its own evidence in favor or 382 

against the choice of an option. That evidence can be summed in one specific place or it can be 383 

fed into a slowly evolving action plan without ever being integrated in one place. We and others 384 

have previously argued that the analogy to bee swarm decision-making is helpful for 385 

understanding choice (Hunt & Hayden, 2017; Eisenreich et al., 2017; Couzin, 2009; Passino et 386 

al., 2008; Seeley et al., 2012; Pirrone et al., 2018). Individual bees evaluate hive sites in an 387 

extremely noisy fashion (Seeley, 2009; Seeley & Buhrman, 1999). Indeed, an individual scout 388 

may only assess one or two of the several dimensions along which hives vary. Even if no 389 

individual bee performs a full cross-dimensional integration, the hive as a whole can still make a 390 

good decision—without ever computing anything like value—through a quorum sensing 391 

procedure. And the hive as a whole takes several days to select a hive site. In the middle of this 392 

time, the hive may be said to have made a partially-complete evaluation process.  393 
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Similarly, some cognitive (rather than neural) models of value-based decision-making do 394 

not make this assumption of discrete, serial stages; ordinal within-attribute comparisons 395 

oftentimes contribute to the construction of each option’s value. In this framework, comparison 396 

would, in some sense, precede evaluation, and all value signals are entirely relative (Noguchi & 397 

Stewart, 2018; Busemeyer et al., 2019). These models—also ones of value-based decision-398 

making, albeit at a different level of granularity—clearly demonstrate the importance of 399 

integrating different levels of analysis when exploring the inner workings of a cognitive process, 400 

and the many ways that a system (biological or otherwise) could potentially instantiate it. 401 

  402 
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MATERIALS AND METHODS 665 
 666 

The data used here were analyzed and summarized in other manuscripts (Strait et al., 667 
2015; Azab & Hayden, 2017; Azab & Hayden, 2018; Farashahi et al., 2018). 668 

  669 
Surgical Procedures 670 
All procedures were approved by the University Committee on Animal Resources at the 671 

University of Rochester and were designed and conducted in compliance with the Public Health 672 
Service’s Guide for the Care and Use of Animals. Two male rhesus macaques (Macaca mulatta: 673 
subject B age 5y. 7mo.; subject J age 6y. 7mo. at the start of recording) served as subjects in both 674 
studies. We used standard procedures, as described previously (Strait et al., 2014). A small 675 
prosthesis for holding the head was used. Animals were habituated to laboratory conditions and 676 
then trained to perform oculomotor tasks for liquid reward. A Cilux recording chamber (Crist 677 
Instruments, Hagerstown, Maryland, USA) was placed over the dACC and attached to the 678 
calvarium with ceramic screws. Appropriate anaesthesia was used at all times; induction was 679 
performed with ketamine and isoflurane was used for maintenance. For surgical induction, we 680 
used 10–15 mg/kg of ketamine, 0.25 mg/kg of midazolam, and 2– 4 mg/kg of propofol. For 681 
maintenance, we used isoflurane, ad lib level, set depending on active monitoring procedure. For 682 
systemic antibiotics, we used cefazolin and for topical application, we used standard veterinary 683 
triple antibiotic. For analgesics, we used meloxicam, and, when judged necessary by veterinary 684 
staff, buprenorphine. Post-operative care included close monitoring and restoration of fluid 685 
intake. Animals received appropriate analgesics and antibiotics after all procedures. Position was 686 
verified by magnetic resonance imaging with the aid of a Brainsight system (Rogue Research 687 
Inc., Montreal, Quebec, Canada). Throughout both behavioral and physiological recording 688 
sessions, the chamber was kept sterile with regular antibiotic washes and sealed with sterile caps. 689 

  690 
Recording Site 691 
We approached dACC through a standard recording grid (Crist Instruments). We defined 692 

dACC according to the Paxinos atlas (Paxinos et al, 2000). Roughly, we recorded from a ROI 693 
lying within the coronal planes situated between 29.50 and 34.50 mm rostral to interaural plane, 694 
the horizontal planes situated between 4.12 to 7.52 mm from the brain’s dorsal surface, and the 695 
sagittal planes between 0 and 5.24 mm from medial wall (Figure 1B). Our recordings were made 696 
from a central region within this zone. We confirmed recording location before each recording 697 
session using our Brainsight system with structural magnetic resonance images taken before the 698 
experiment. Neuroimaging was performed at the Rochester Center for Brain Imaging, on a 699 
Siemens 3T MAGNETOM Trio Tim using 0.5 mm voxels. We confirmed recording locations by 700 
listening for characteristic sounds of white and gray matter during recording, which in all cases 701 
matched the loci indicated by the Brainsight system. 702 

  703 
Electrophysiological Techniques 704 
Single electrodes (Frederick Haer & Co., Bowdoin, Maine, USA; impedance range 0.8 to 705 

4 MU) were lowered using a microdrive (NAN Instruments, Nazaret Illit, Israel) until waveforms 706 
of between one and three neuron(s) were isolated. Individual action potentials were isolated on a 707 
Plexon system (Plexon, Inc., Dallas, Texas, USA). Neurons were selected for study solely on the 708 
basis of the quality of isolation; we never pre-selected based on task-related response properties. 709 
All collected neurons for which we managed to obtain at least 250 trials were analyzed. 710 
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  711 
Eye Tracking and Reward Delivery 712 
Eye position was sampled at 1,000 Hz by an infrared eye-monitoring camera system (SR 713 

Research, Ottawa, Ontario, Canada). Stimuli were controlled by a computer running Matlab 714 
(Mathworks) with Psychtoolbox (Brainard, 1997) and Eyelink Toolbox (Cornelissen, Peters & 715 
Palmer, 2002). Visual stimuli were colored rectangles on a computer monitor placed 57 cm from 716 
the animal and centered on its eyes. A standard solenoid valve controlled the duration of juice 717 
delivery. The relationship between solenoid open time and juice volume was established and 718 
confirmed before, during, and after recording. 719 

  720 
Behavioral Task 721 
Subjects performed a two-option gambling task. The task was conceptually similar to 722 

risky choice tasks we have used previously (Strait et al., 2014), with two major differences: (1) 723 
monkeys gambled for virtual tokens—rather than liquid—rewards, and thus (2) outcomes could 724 
be losses as well as wins. Previous training history for these subjects included a set shifting task 725 
(Sleezer et al., 2016), a simple choice task (Heilbronner and Hayden, 2016), an attentional task 726 
(Hayden and Gallant, 2013), and several foraging and foraging-inspired tasks (see Calhoun and 727 
Hayden, 2014; Hayden, 2018) 728 

Two offers were presented on each trial. Each offer was represented by a rectangle 300 729 
pixels tall and 80 pixels wide (11.35° of visual angle tall and 4.08° of visual angle wide). 20% of 730 
options were safe (100% probability of either 0 or 1 token), while the remaining 80% were 731 
gambles. Safe offers were entirely red (0 tokens) or blue (1 token). The size of each portion 732 
indicated the probability of the respective reward. Each gamble rectangle was divided 733 
horizontally into a top and bottom portion, each colored according to the token reward offered. 734 
Gamble offers were thus defined by three parameters: two possible token outcomes, and 735 
probability of the top outcome (the probability of the bottom was strictly determined by the 736 
probability of the top).  The top outcome was 10%, 30%, 50%, 70% or 90% likely on gamble 737 
offers. 738 

Six initially unfilled circles arranged horizontally at the bottom of the screen indicated 739 
the number of tokens to be collected before the subject obtained a liquid reward. These circles 740 
were filled appropriately at the end of each trial, according to the outcome of that trial. When 6 741 
or more tokens were collected, the tokens were covered with a solid rectangle while a liquid 742 
reward was delivered. Tokens beyond 6 did not carry over, nor could number of tokens fall 743 
below zero. 744 

On each trial, one offer appeared on the left side of the screen and the other appeared on 745 
the right. Offers were separated from the fixation point by 550 pixels (27.53° of visual angle). 746 
The side of the first offer (left and right) was randomized by trial. Each offer appeared for 600 747 
ms and was followed by a 150 ms blank period. Monkeys were free to fixate upon the offers 748 
when they appeared (and in our observations almost always did so). After the offers were 749 
presented separately, a central fixation spot appeared and the monkey fixated on it for 100 ms. 750 
Following this, both offers appeared simultaneously and the animal indicated its choice by 751 
shifting gaze to its preferred offer and maintaining fixation on it for 200 ms. Failure to maintain 752 
gaze for 200 ms did not lead to the end of the trial, but instead returned the monkey to a choice 753 
state; thus, monkeys were free to change their mind if they did so within 200 ms (although in our 754 
observations, they seldom did so). A successful 200 ms fixation was followed by a 750 ms delay, 755 
after which the gamble was resolved and a small reward (100 µL) was delivered—regardless of 756 
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the outcome of the gamble—to sustain motivation. This small reward was delivered within a 300 757 
ms window. If 6 tokens were collected, a further delay of 500 ms was followed by a large liquid 758 
reward (300 µL) within a 300 ms window, followed by a random inter-trial interval (ITI) 759 
between 0.5 and 1.5 s. If 6 tokens were not collected, subjects proceeded immediately to the ITI. 760 

Each gamble included at least one positive or zero-outcome, ensuring that every gamble 761 
carried the possibility of a win (or at least no change in tokens). This decreased the number of 762 
trivial choices presented to subjects, and maintained motivation. 763 

  764 
Statistical Methods 765 
Peri-stimulus time histograms (PSTHs) were constructed by aligning spike rasters to 766 

the presentation of the first offer and averaging firing rates across multiple trials. Firing rates 767 
were calculated in 20 ms bins but were generally analyzed in longer epochs. For latency 768 
analyses, we used PSTHs with firing rates calculated in 5 ms bins to grant us finer resolution to 769 
detect shorter latencies. 770 

Firing rates were normalized by subtracting the mean and dividing by the standard 771 
deviation of the neuron’s entire PSTH (i.e. z-scoring). 772 

We tested for correlations between variables of interest, since these could produce 773 
spurious results in our format and population correlation analyses. Although gamble values were 774 
chosen independently, safe gambles (where the large and small outcome were of the same value) 775 
introduced a spurious correlation between large and small outcomes. We thus exclude trials 776 
where the gamble of interest was a safe gamble, as we have done in previous manuscripts (refs). 777 

We tested for single-unit modulation using a multiple generalized linear regression 778 
model, including the following task-relevant variables: large outcomes, small outcomes, and 779 
probability of the large outcomes for gambles 1 (and two, if that gamble had been presented), the 780 
number of tokens collected as of the beginning of the trial, and the side the first offer appeared 781 
on. We also included the side of the chosen offer for analyses in the pre-choice and post-choice 782 
epochs. We use the same variables to fit stepwise linear regression models to assess small-783 
outcome modulation. 784 

 Analysis epochs were chosen a priori, before data analysis began, to align with epochs 785 
we have chosen for previous studies (Strait et al., 2014; Azab & Hayden, 2017; Azab & Hayden, 786 
2018). The first and second offer epochs were defined as the 500 ms epoch beginning 100 ms 787 
after the offer was presented. The pre-choice epoch was the 500 ms epoch before choice was 788 
indicated using an express saccade. The post-choice epoch was the 500 ms epoch immediately 789 
after choice fixation was complete, and before reward feedback was revealed. These epochs were 790 
chosen before data collection began; indeed, they originally were selected for a previous study 791 
on a different brain region, and to account for hypothesized delays in neural responding (Strait et 792 
al., 2014). We maintained the same epochs here as a mechanism to reduce the likelihood of p-793 
hacking. 794 

All fractions of neurons were tested for significance using a one-sided binomial test. 795 
When testing for significant encoding in the population, we use an alpha level of 0.05 to indicate 796 
chance (i.e. the number of neurons that would exhibit significant modulation at random).  797 

Format and population correlation analyses were performed in the following manner. 798 
We use beta correlation analyses to assess whether neurons represented two variables (or the 799 
same variable at different time periods) using similar / orthogonal / opposing formats, in 800 
overlapping / orthogonal / distinct populations. To do this, we first found the regression 801 
coefficient associated with the variable of interest per neuron. We estimate this using a multiple 802 
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linear regression model including the same variables detailed above (for spatial location 803 
analyses, we split trials by the side of offer appearance, and thus do not include that variable in 804 
our regression model). We then combined the regression coefficients associated with the variable 805 
of interest into a vector of the same length as the number of neurons in our sample. This vector 806 
indicates the relative strength (after normalizing) and direction of modulation for each individual 807 
neuron in the population, in response to a particular variable in a particular epoch. We call this 808 
the population “format”. We compared different formats by finding the Spearman correlation 809 
coefficient between them.  810 

Note that this approach provides a more sensitive method of examining population 811 
properties than conventional approaches, which involve determining which cells cross a 812 
significance threshold and then using those as focal cells for further analyses. By taking on all 813 
cells regardless of their response, our method accomplishes two things. First, it uses all available 814 
information, even that information that is not sufficient by itself to achieve significance. Second, 815 
it avoids introducing a hard categorical boundary, which can introduce false positives in data 816 
(Blanchard et al., 2017; Maxwell & Delaney, 1993). 817 

We extend this method to account for the noise inherent in estimating each neuron’s 818 
encoding of each variable of interest, which existing methods do not account for (Azab & 819 
Hayden, 2017). We used a Bayesian regression to obtain a probabilistic distribution over each 820 
regression coefficient for each neuron (rather than an individual coefficient estimate per neuron; 821 
this is akin to taking into account the confidence interval on each regression coefficient 822 
estimate). We sampled 1,000 regression coefficients from this distribution for each neuron, to 823 
obtain a probability distribution of (1,000) potential formats for the population, for each of two 824 
task conditions. We then performed the correlation analyses on each of these samples across task 825 
conditions, thus generating a probability distribution of (1,000) correlation coefficients. This is a 826 
more robust estimate of the correlation between formats, as it takes into account the uncertainty 827 
inherent in estimating any individual regression coefficient, and allows us to view the spread of 828 
the distribution of this correlation when this significant source of noise is taken into account.  829 

The Spearman correlation coefficient between signed regression coefficients indicated 830 
whether variables were represented in a similar format i.e. directionality of tuning across the 831 
population. (Note that we used Spearman instead of Pearson because it is more robust to outliers 832 
and is therefore more statistically conservative). A positive correlation indicated a preservation 833 
of directionality, while a negative correlation suggested variables were represented in opposing 834 
directionality of firing rate modulation. No correlation suggests orthogonal formats, but we draw 835 
no strong conclusions from these. 836 

Similarly, the correlation coefficient between unsigned regression coefficients indicated 837 
whether similar neuronal populations tended to be involved in encoding the two variables in 838 
question, regardless of their direction of modulation. A positive correlation indicated overlapping 839 
populations, while a negative correlation indicated separate ones. A lack of correlation suggests 840 
orthogonal populations (i.e. encoding one variable does not affect the neuron’s likelihood of 841 
encoding the other variable), although given the lack of interpretability of null results, it does not 842 
constitute evidence for lack of true correlation. 843 

It is important to note that the  analysis method we use here is rooted in previous analysis 844 
techniques used by our lab and others. The closest relative is Representational Similarity 845 
Analysis (RSA; Kriegeskorte, Mur & Bandettini, 2008; Hunt et al., 2018). In RSA, neural 846 
representations (vectors of neural responses) associated with different behavioral conditions are 847 
compared and their similarity characterized to facilitate comparison with different data sets, 848 
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sometimes collected using different means. Rather than comparing raw neural responses, though, 849 
our method relies on comparing regression coefficients; this allows us to hone in on the signal 850 
associated with a particular variable, allowing us to compare the neural responses to different 851 
variables at the same point in time.  852 

 853 
 854 
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