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Abstract

In malaria and several other important infectious diseases, high prevalence occurs
concomitantly with incomplete immunity. This apparent paradox poses major challenges
to malaria elimination in highly endemic regions, where asymptomatic Plasmodium
falciparum infections are present across all age classes creating a large reservoir that
maintains transmission. This reservoir is in turn enabled by extreme antigenic diversity
of the parasite and turnover of new variants. We present here the concept of a threshold
in local pathogen diversification that defines a sharp transition in transmission intensity
below which new antigen-encoding genes generated by either recombination or migration
cannot establish. Transmission still occurs below this threshold, but diversity of these
genes can neither accumulate nor recover from interventions that further reduce it. An
analytical expectation for this threshold is derived and compared to numerical results
from a stochastic individual-based model of malaria transmission that incorporates the
major antigen-encoding multigene family known as var. This threshold we call Rdiv; it
is complementary to the one defined by the classic basic reproductive number of
infectious diseases, R0, which does not easily apply under large and dynamic strain
diversity. This new threshold concept can be exploited for effective malaria control and
applied more broadly to other pathogens with large multilocus antigenic diversity.

Introduction 1

The reproductive number of an infectious disease, R0, quantifies its epidemic growth 2

potential and provides a threshold condition for the spread and control of pathogens [1]. 3

This number has been applied extensively to pathogens with either no antigenic 4

variation or a typically low number of genetically defined strains that are relatively 5

stable in space and time. It becomes problematic how to evaluate and even to define it 6

when antigenic variation is large and dynamic, challenging the actual definition of a 7

strain. This is particularly the case for Plasmodium falciparum as well as for other 8

pathogens with multigene and multilocus encoding of antigens, combined with extensive 9

recombination [2–5]. Furthermore, R0 does neither predict the turnover rate of new 10

genes encoding antigens, nor explain how transmission characteristics and accumulation 11

of these new genes influence each other and responses to control. 12

Under high transmission of P. falciparum, the major antigen-encoding gene family of 13

the blood stage of malaria infection, known as var, acquires vast antigenic diversity via 14

large gene copy numbers as well as ectopic recombination. Laboratory experiments have 15

shown that a näıve infection can generate about sixty new recombinants per year [6, 7] 16
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although this has not yet been demonstrated to occur in nature. A parasite typically 17

harbors 40 to 60 gene copies across its chromosomes, with a large pool of gene variants 18

within local populations reaching the tens of thousands [8, 9]. Thus, parasites share 19

locally only a few common var genes between different strains [9–11], and across 20

seasons [12]. Spatial diversity in var genes has also been documented [8, 13,14] 21

indicating that migration from surrounding areas also contributes to new diversity and 22

to the immunological challenge. 23

The accumulation and turnover of new antigenic variants constitutes a major 24

impediment to control in regions of high endemism, where it underlies the large 25

reservoir of chronic asymptomatic infections that sustains transmission. Today the 26

global burden of Plasmodium falciparum is concentrated in these high transmission 27

endemic areas within fifteen countries, mainly in sub-Saharan Africa (WHO 2017). A 28

similar reservoir is found in other vector-borne diseases that exhibit a high prevalence of 29

infection with no clinical symptoms in domestic and wildlife hosts [15–17]. Nonsterile 30

specific immunity is common to all these pathogens as a result of extreme antigenic 31

variation encoded by multigene families [18,19]. 32

We present here a reproductive number complementary to R0 that defines a 33

threshold for parasite antigenic diversification, below which the accumulation of new 34

antigen-encoding genes no longer occurs even though they are consistently produced. 35

We introduce the concept for infectious agents in general, derive an analytical 36

expectation for the rate of generation of “successful” new genes for the var system in P. 37

falciparum, and demonstrate the existence of the predicted analytical threshold in 38

numerical simulations of a stochastic agent-based model that incorporates var genes and 39

the acquisition of immunity by individual hosts. We then investigate the epidemiological 40

and evolutionary factors that influence this diversification rate analytically. We show 41

that this rate for the accumulation of genetic novelty, we call Rdiv, maps onto 42

transmission intensity, separating at a threshold a regime in which new genes are able to 43

accumulate from one in which they are unable to do so, despite transmission still 44

occurring (i.e., R0 remaining above one). We discuss implications for malaria control 45

and elimination, future directions to estimate and monitor distance to this quantity in 46

high transmission endemic regions, and its applicability to other infectious diseases. 47

Results 48

Consider genes of a parasite whose mutation generates new antigenic variation during 49

transmission and infection. Parasite populations should accumulate these new gene 50

variants when they are produced at a sufficient rate for their lifespans to overlap with 51

each other (S1 Fig). Novelty per se guarantees neither the establishment nor the 52

persistence of the genes. Even under high absolute fitness, new variants need to survive 53

initial drift to establish in the parasite population [20]. Their accumulation further 54

requires that the rate at which they are generated, Gnew, be on average larger than that 55

of their loss, given by the inverse of their lifespan, Tnew. In other words, at least one 56

beneficial gene needs to be produced and become established in the population during 57

the typical lifespan of a previously generated new gene. We denote by Rdiv the 58

expected number of new genes produced during the average lifespan. This reproductive 59

or innovation number should be greater than 1 for new variants to accumulate, namely 60

Rdiv = GnewTnew = NµpinvTnew > 1 (1)

where N denotes the population size of the parasite, µ, the mutation rate of the 61

genes, and pinv, the invasion probability of a low-frequency variant. Importantly, the 62

average lifespan of a new gene Tnew is under frequency-dependent selection from hosts’ 63
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acquisition of immunity, with immune selection conferring an advantage to the rare and 64

a disadvantage to the common [11,21]. New variants are generated through either 65

mutation or ectopic recombination (Methods), and therefore µ generically refers to the 66

rate of novelty generation regardless of specific mechanisms. 67

Equation (1) establishes an expectation for the existence of a threshold, whose 68

expression we proceeded to further develop next, to be able to verify it computationally. 69

The factors that determine the spread and establishment of a new antigenic variant 70

consist of its selective advantage and the rates of innovation and transmission. We first 71

consider the probability pinv that a new gene survives its initial low frequency and 72

invades. Based on birth-death processes in the Moran model with selection [22], the 73

establishment probability of a low-frequency variant is largely determined by its relative 74

fitness advantage over other genes. The fitness of genes in a transmission model is 75

essentially given by their effective reproductive number Reff or the number of copies 76

they produce via transmission events during their lifetime. Thus, 77

pinv ≈ (Rnew/R̄eff ) − 1 (2)

Equation (2) holds in general for any infectious disease that generates new antigens. 78

To proceed further, we considered the specifics of Plasmodium falciparum and its 79

multicopy var genes (typically about 40-60 per genome), whose expression is sequential 80

during the blood stage of infection [23]. Reff for a given var gene is the product of the 81

epidemiological contact rate of the disease (β) and the typical infection duration (τ) of 82

parasites that carry the given gene (Methods). If we consider that genes are equivalent 83

in transmissibility (i.e., their products are functionally equivalent in their ability to bind 84

host receptors), an assumption we later relax in numerical results, fitness differences 85

between variants are only determined by the duration of infection these genes can 86

typically sustain. 87

Because only those genes towards which the host has not yet built immunity are 88

expressed, the average duration of infection will equal the number of genes per genome 89

times the average proportion of susceptible (non-immune) hosts per gene, 90

τ̄ = dg
k∑
i=1

Sifi (3)

where d is the duration of infection for a given gene in a naive host, g is the number of 91

genes per genome, and fi is the population frequency of a given gene. We rewrote 92

equation (2) using (3) (Methods), to obtain 93

pinv ≈
Snew − S̄

S̄g
(4)

where the mean number of susceptible hosts for a gene is given by S̄ =
∑k
i=1 Sifi. This 94

expression for the invasion probability shows that a new gene is likely to invade when it 95

affords a wider host niche than that of older genes (by encoding for epitopes that are 96

new given the immunity of the host population). In other words, the available number 97

of hosts for its expression should be higher on average than that for existing genes. In 98

addition, the invasion probability of a single gene decreases with increasing genome size 99

g, as the importance of a single gene also decreases. 100

We can now evaluate the existence of the threshold behavior indicated by the above 101

analytical argument. To this end, we computed Rdiv from a stochastic agent-based 102

model of malaria transmission [11,24] that tracks var evolution and immunity and is 103

described in detail in [11]. A number of extensions were also considered here to address 104

the generality of the argument, including distinct major var gene groups with 105

associated differential fitness and constrained recombination (Methods). We specifically 106
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examined how the accumulation of new variants over a given period of time varies as a 107

function of Rdiv. We calculated Gnew according to Eq. (2) and (4) by obtaining S̄, N , 108

and µ directly from the simulations, and Tnew from the average lifespan of all the new 109

variants that are produced during this time period. 110

Results showed that the transmission system naturally falls into two regimes 111

separated by a threshold at Rdiv = 1 (Fig. 1A). Below this transition, new antigenic 112

variants are generated but do not accumulate or persist (Fig. 1C), whereas above it, 113

they are able to accumulate and experience a continuous turnover rate (see shifting 114

shades of colors in Fig. 1D). The transition between these regimes occurs around the 115

proposed boundary where the rate of generation of genes surpasses the average lifespan 116

of new antigenic variants (Rdiv > 1). This threshold is robust to differences in specific 117

assumptions about the transmission and genetic systems (including processes of 118

within-host dynamics, functional differences between genes, values of the recombination 119

and biting rates), as each point in Fig. 1A represents a simulation with different model 120

assumptions and parameter combinations (Methods; S1-2 Table). 121

Importantly, we found that the quantity Rdiv scales monotonically with the intensity 122

of transmission measured here as the entomological inoculation rate (or EIR, the 123

number of infectious bites per person per year) (S2 Fig, Fig. 1B), a practical empirical 124

measure from field epidemiology. The association with Rdiv should hold more generally 125

with any other measure of transmission intensity. This association implies that the 126

transition between regimes also occurs as a function of transmission intensity (Fig. 1A, 127

C, D), and therefore, that the malaria system can be pushed below threshold by 128

changing this control variable. 129

The transition examined so far represents the behavior of the system for different 130

values of Rdiv or transmission intensity. Its existence should influence the temporal 131

response of the malaria system to intervention events that reduce transmission at a 132

given point in time. In particular, interventions that take the transmission system above 133

threshold should lead to distinct responses than those that fail to do so. This is 134

illustrated in Fig. 1 (G and H), where we numerically introduced a transient reduction 135

of the biting rate to lower levels (respectively 30 and 50% of its original value). New 136

genes cease to accumulate only when Rdiv goes below threshold (Fig. 1G), whereas they 137

continue to invade and accumulate following a temporary decrease otherwise (Fig. 1H). 138

In order to further understand how epidemiological and genetic factors influence 139

Rdiv, we examined with a simple theoretical model the equilibrium values of S̄ and N , 140

which enter prominently in the expression for Gnew (Methods). At equilibrium, 141

increasing contact rates (β) via mosquito bites, result in higher parasite population sizes 142

(N) and a lower average number of susceptible hosts (S̄, S2 Fig). More specifically, S̄ is 143

mostly determined by β and g, whereas parasite population size strongly scales with the 144

diversity ratio (i.e., gene pool size G over genome size, G/g). A lower S̄ favors invasion 145

of a new variant (i.e., increases pinv), and a higher parasite population size (N) and a 146

genome with a higher number of unique genes (g) generate new variants faster. 147

Theoretical predictions underestimate S̄ because they neglect the higher-level of 148

organization of the genes into different genomes, also under immune selection [11]. This 149

indicates that such strain structure can significantly reduce the percentage of genes that 150

a host is immune to, especially under high competition and high diversity (see g = 60, 151

and G/g = 100 in S3B Fig). 152

An explicit expression for Tnew cannot be obtained analytically because this 153

quantity continuously changes as new genes enter the system and influence the 154

nonlinear dynamics of N , G, and S̄. To gain nevertheless an understanding for how 155

these variables affect Tnew, we approximated the average lifespan of a new gene on the 156

basis of an adapted diffusion equation [22] under the assumption that the system 157

remains constant and only this lifespan, we call t̄, varies (SI). The diffusion equation for 158
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t̄ requires consideration of how the frequency of a new gene x(t) varies in time (SI). 159

When applied to our model, the resulting analytical approximation for t̄ (Eq. S8-11) 160

showed that the expected lifespan of a new gene grows faster than exponential with 161

decreasing S̄, and surpasses the average time to fixation of a neutral gene (2N) when S̄ 162

is below a given value ( 40%) (Fig. 2). The mean Tnew evaluated numerically will 163

always be shorter than that predicted from the diffusion approximation t̄, especially as 164

S̄ becomes smaller and persistence times rapidly increase. This is because the stochastic 165

simulations can only track lifespan within a finite time period (which places an upper 166

bound on its value), and because the assumption of constant S̄ does not apply. 167

Nevertheless, the theoretical trend of increasing Tnew with decreasing S̄ and therefore, 168

higher transmission intensity, does apply to the numerical system. 169

In summary, by evaluating whether Gnew < 1/Tnew (or equivalently, Rdiv < 1), one 170

can predict whether the system has a relatively stable antigen-encoding gene pool, or 171

whether alternatively, new variants continuously enter into it. We have shown that 172

whether new genes can successfully establish in the population is most tightly linked 173

with the average proportion of susceptible hosts (or the niche) available for existing 174

genes (S̄). When transmission rate is low, S̄ is large and new genes do not have a 175

significant advantage over older ones. New genes experience a small invasion probability, 176

and even when they invade, they experience strong drift, functioning as effectively 177

neutral. As transmission intensity increases, the selective advantage of new genes also 178

increases as S̄ decreases. Once S̄ is below a given value (0.4 in our simulations), new 179

genes are most likely to be maintained in the population indefinitely. Concomitantly, 180

the increase in gene diversity results in higher parasite population sizes N (S3A Fig). 181

The system thus enters a regime of positive feedback for new variants, as elevated 182

diversity boosts N and therefore also, Gnew, before reaching equilibrium. 183

Discussion 184

The concept of Rdiv arises from the interplay of immune memory and antigenic 185

variation at the population level, as a result of frequency-dependent selection. As such, 186

it differs from the antigenic diversity threshold previously proposed for the HIV virus 187

and its transition to AIDS, arising from the race between viral replication and immune 188

responses at the within-host level [25]. The concept itself and the associated transition 189

regime described here should apply more generally to other infectious diseases with 190

antigen-encoding multigene families, such as vsg genes in Trypanosoma brucei and msg 191

genes in Pneumocystis carinii [18]. Because the basic concept is independent of specific 192

consideration of multigene families and their properties, it should also be adaptable to 193

other pathogens in which large standing antigenic diversity at the population level 194

results from multilocus genetic variation [5]. By contrast in pathogens with sufficiently 195

well-defined strains, R0 would be sufficient because the characteristics of their 196

population dynamics and population genetics would keep them below the diversification 197

threshold defined by Rdiv equal one. For example, genetic variation in measles is largely 198

neutral antigenically and the effective mutation rates generating new antigens are 199

slow [26]. In seasonal influenza, bottlenecks in transmission constrain the emergence of 200

novelty [27], and so do mutations with largely deleterious effects [28]. 201

For falciparum malaria and pathogens with extensive antigenic diversity at the 202

population level, the proposed concept of a threshold behavior in the accumulation of 203

antigen-encoding genes has practical implications for overcoming the resilience of highly 204

endemic regions to intervention efforts. Although a decreasing trend in the diversity of 205

strains and underlying genes with transmission intensity is well known and expected 206

from both the biogeography and epidemiology of malaria, the actual form of this 207

reduction is much less clear. Our results predict the existence of a sharp transition 208
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below which the disease system should effectively respond as a typical low transmission 209

region, not just because of reduced transmission intensity but also because of much 210

lower antigenic diversity no longer able to rebuild. Failure to push transmission intensity 211

below this threshold would lead to a fast rebound in new antigenic variation, despite an 212

overall diversity reduction. The crossing of the threshold would instead provide an 213

indication that the system is now poised for further intervention with enhanced results. 214

Control and even elimination efforts are indeed known to be most successful in 215

biogeographical regions of low transmission, such as those at the edge of the distribution 216

of the disease in Africa and in other continents [29]. Arresting the fast turnover of the 217

local antigenic pool typical of high endemism would significantly repress disease burden 218

and facilitate its further reduction. Concomitant control efforts at a regional level are 219

critical to stem immigration, as migrant genomes would exhibit higher invasion 220

probabilities than local ones, given their higher likelihood of harboring new antigens. 221

Monitoring the turnover of var gene diversity through molecular epidemiology in 222

response to control efforts should inform intervention evaluation in high transmission 223

regions. 224

Although the importance of host immune selection in shaping the antigenic variation 225

of P. falciparum and other pathogens is recognized [21,30–32], mathematical and 226

computational models typically evaluate intervention efficacy without explicit 227

consideration of antigenic diversity (e.g. [33, 34]) and openness of the system to 228

innovation [35]. Our results underscore the importance of these aspects. 229

Estimation of the diversification number, Rdiv, would provide general guidelines for 230

intervention evaluation where traditional application of R0 is unable to do so for highly 231

diverse pathogens [2, 21]. Future work should consider how to obtain this number from 232

an estimation of key parameters, including parasite population size, transmission rates, 233

and gene pool size, based on combined data from molecular and field epidemiology. 234

Parameterization of an agent-based stochastic transmission model that implements 235

immune selection and recombination explicitly (e.g., [11, 36]) could be used, which 236

represents a computational challenge (but see [37]). Estimating the viability of new 237

recombinants will require bioinformatic analyses of population-level var sequence data 238

for the DBLα portion of the gene [38]. 239

For simplicity, our analytical derivations treated each gene independently, even 240

though var gene composition in parasite genomes of local populations in regions of high 241

transmission has been shown to be non-randomly and non-neutrally structured, 242

exhibiting low overlap as the result of immune selection [11,13,24,39]. Hence, the fate 243

of a viable new antigen-encoding gene depends on its genomic background, which 244

ultimately determines the strength of competition among parasites. Comparisons of 245

analytical expectations with numerical simulations revealed an influence of such 246

population structure on the fate of new genes, and therefore, on components of Rdiv. 247

Future work should examine extensions of this work that account for this further 248

complexity of immune selection operating at different levels of organization. 249

In general, explicit consideration of a reproductive number for antigenic 250

diversification should enhance our understanding of transmission dynamics where large 251

standing pathogen diversity represents a major challenge to control efforts. 252

Materials and methods 253

Analytical derivation of Rdiv 254

We consider a population of hosts whose number is denoted by Nhost, receiving malaria 255

infections from a diverse set of parasites, each composed of g genes from a constant gene 256

pool of size G. One of the two main components of Rdiv is the rate at which new genes 257
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are generated, Gnew. Besides the mutation rate µ and the equilibrium parasite 258

population size N , its expression requires the invasion probability pinv, we derive below. 259

Invasion probability of a new variant, pinv 260

From birth-death processes according to the Moran model with selection [22], the 261

probability of establishment of a low frequency variant is determined by its fitness 262

advantage relative to that of other genes, and by the parasite population size. That is, 263

pinv =
1 − (W/Wnew)n

1 − (W/Wnew)N
(5)

where n denotes the number of copies of new genes, and W , the fitness of a gene. In 264

our case, n = 1 as new genes originate from a unique mutation or an ectopic 265

recombination event. When N >> 1, the invasion probability pinv is approximately its 266

initial selective advantage relative to established gene variants, provided the selection 267

coefficient remains the same. Since the fitness of each individual gene in a transmission 268

model is essentially given by their effective reproductive number Reff , we have 269

pinv ≈ (Rnew/R̄eff ) − 1. (6)

Reff for a given var gene is in turn the product of the epidemiological contact rate 270

of the disease (β) and the typical infection duration (τ) of parasites that carry the given 271

gene, 272

Reff = β̄τ̄ (7)

The contact rate β is equal to the product of the transmission rate (b) and the 273

‘transmissibility’ or infectivity of the given var gene (i.e., the functionality of the gene, 274

f). Because we do not model vectors explicitly in the numerical stochastic model, the 275

contact rate (β) refers to the rate at which a transmission event occurs, with a ‘donor’ 276

host transmitting infection to a ‘recipient’ one (detailed description in section on “the 277

modified var evolution model”). 278

Different groups of var genes may vary in their binding affinities to host receptors 279

and therefore in their transmissibility. For simplicity, we consider that all genes exhibit 280

the same transmissibility and therefore, the same absolute fitness, as we are most 281

interested in estimating the fate of a new variant as a result of immune 282

(frequency-dependent) selection. (We do explore later the effect of fitness differences 283

numerically with the agent-based stochastic model, described in the section on “the 284

modified var evolution model”). 285

With (7) for Reff , we can write 286

pinv ≈
τnew
τ̄

− 1

=
S̄ × (g − 1) + Snew

S̄ × g
− 1

(8)

Numerical evaluation of Rdiv 287

With equation (8) (or its equivalent (4)), we can now compute Gnew = Nµpinv in 288

equation (1) from the output of our numerical simulations (described below under the 289

The modified var evolution model). We also obtained from the simulations the other 290

major component of Rdiv, the mean lifetime of the genes in the system, Tnew, by 291

directly tracking their fate individually. Although an analytical expression for Tnew was 292

not achievable for this nonlinear and stochastic transmission system, we considered gene 293

lifetime under simplifying assumptions, as explained next. 294
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Analytical derivation of t̄ 295

The simplifying assumptions are that the system has reached an equilibrium ((i.e., 296

parasites get transmitted and die at the same rate), and that only the average lifetime 297

of a gene varies, with all other variables remaining unchanged, including N and the 298

average proportion of hosts S̄ susceptible to an average gene. To differentiate gene 299

lifetime under these conditions from Tnew itself, we call it t̄. An expression for t̄ is 300

derived by considering the frequency-dependent selection experienced by a new gene 301

variant entering the system at equilibrium. We specifically approximate the dynamics of 302

t̄ on the basis of an adapted diffusion equation [22] (Supplementary Text). 303

The modified var evolution model 304

We used an extended implementation of the agent-based model developed in [11], where 305

a complete description can be found. Here, we first briefly summarize the main features 306

of the computational model, and then document the specific changes implemented in 307

this study, including different transmission scenarios and rules of within-host dynamics. 308

(Parameter combinations and specific rules are listed in Table S1-2 ). 309

The computational model is an individual-based, discrete-event, continuous-time 310

stochastic system in which the infection and immune history of each host are tracked 311

individually. In the numerical implementation of the simulation, all possible future 312

events are stored in a single event queue along with their putative times, which may be 313

fixed or drawn from a probability distribution. When an event occurs, it may trigger 314

the addition or removal of future events on the queue, or changes of their rates, leading 315

to a recalculation of their putative time. The implementation is adapted from the 316

next-reaction method [40], which optimizes the Gillespie first-reaction method [41] and 317

allows for faster simulation times. 318

Transmission events are sampled at the rate, Nhostβ, in which a donor and a 319

recipient host are sampled randomly from the host population. If the donor harbors 320

parasites, then each parasite has a probability of being transmitted to the mosquito that 321

is proportional to the functionality of the var gene that is currently under expression. 322

var genomes picked up by the mosquito will recombine with another genome to produce 323

sporozoites. Specifically, if there are n parasite genomes, each genome has a probability 324

1/n of recombining with itself, producing the same offspring genome, and a probability 325

1 − 1/n of recombining with a different genome, producing recombinants. The total 326

number of var genomes passed onto the receiver is kept the same as that received from 327

biting the infectious host. Parasites in a human host are not infectious until the 328

completion of a delay, representing altogether oocysts development in the mosquito 329

during the sexual stage and the initial liver stage in the receiver host. Since we do not 330

model mosquitoes explicitly, we implement this delay as a 14-day gap between a 331

transmission event and the genome becoming infectious. var genes within a genome 332

express sequentially in a random order, or according to their functional level from high 333

to low, depending on the specific rule (Table S1), with a switching rate of 1/d (with d 334

denoting the mean duration of expression). When the expression switches to a new gene, 335

immunity to the gene previously expressed is added to the host’s immune memory. The 336

infection ends when the expression of the whole var genome is completed. Mutation µ 337

and ectopic recombination r occur randomly during the infectious stage (see below). 338

Genome structure 339

The genome of an individual parasite is a combination of g var genes. Each var gene, in 340

turn, is a linear combination of two loci encoding epitopes that are connected linearly, 341

and each epitope can be viewed as a multi-allele locus with n possible alleles. The 342

May 15, 2020 8/15

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.01.01.892406doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.01.892406
http://creativecommons.org/licenses/by-nc-nd/4.0/


initial conditions for the simulation include g*2 alleles per epitope and g*20 343

combinations of these genes in the gene pool. A typical simulation starts by initializing 344

the local parasite population via a given number of transmission events with migrant 345

genomes whose composition is sampled randomly from a regional pool of genes, G. 346

Specifically, 20 hosts are infected with randomly assembled genomes, and one migrant 347

genome is introduced every day into the population to simulate exposure to all the 348

variants in the genome pool quickly. 349

Ectopic recombination during the asexual blood stage of infection 350

var genes often change their physical location and form new variants through ectopic 351

recombination and gene conversions. These processes occur during both sexual and 352

asexual stages. As ectopic recombination is observed more often during the asexual 353

stage where parasites spend most of their life cycle, and our model does not represent 354

the mosquito stage explicitly, we consider ectopic recombination among genes within the 355

same genome during the asexual stage. Two genes are selected from the genome 356

repertoire, with a breakpoint located along the gene randomly. Newly recombined genes 357

have a probability Pf to be functional (i.e., viable), defined by the similarity of the new 358

variant with its parental genes as in He et al. [11]. If the recombined gene is selected to 359

be non-functional, then the parental gene is kept. Otherwise, the recombined gene 360

substitutes the parental one and a new strain is formed. In the current implementation, 361

each recombination has a 50% chance to generate a new allele. 362

var gene groups and trade-offs 363

In the previous model, genes differed antigenically but not functionally. For increased 364

realism, each gene is assigned to either var upsGroup A or var upsGroup B/C to 365

represent existing differences in recombination rates and functionality of var gene 366

groups [42]. Ectopic recombination is only allowed to occur within each group, and 367

genes in upsGroup B/C have higher recombination rates than those in upsGroup A [6]. 368

Each gene is also assigned an intrinsic growth rate of the parasites f that express it 369

(Table S2), because antigens that better bind to host receptors result in a higher 370

parasite growth rate [43,44]. In an additional implementation of the model, genes with 371

higher growth rates are expressed first, followed in decreasing order by genes of lower 372

growth rates. Also, genes with higher growth rates are expected to be cleared faster by 373

the immune system, translating into a higher switch rate to the next gene, which is 374

controlled by the trade-off parameter tff. 375

Data Availability 376

The original C++ code for the var evolution model is available on Github 377

(https://github.com/pascualgroup/VarModel2). 378

Supporting information 379

S1 Appendix. Supplementary text for theoretical derivations. 380

S1 Fig. Schematic illustration of two possible scenarios. 381

S2 Fig. Relationship between transmission intensity and Rdiv. 382
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S3 Fig. Comparison between theoretical expectations from Eq. S1 (�) and 383

corresponding values from stochastic simulations (•) for N (A) and S̄ (B) 384

as a function of contact rate, β, genome size, g, and two levels of diversity 385

ratio, G/g = 10 or 100. 386

S4 Fig. The deterministic trajectory of a new gene variant invading a 387

system that is previously at equilibrium under a low (0.015, left panels) 388

and a high (0.05, righ panels) contact rate. 389

S5 Fig. Phase diagram of x(t) and Snew(t) from S4 Fig. 390

S6 Fig. Persistence of new genes according to t̄. 391

S1 Table. Epidemiological and genetic parameters used in stochastic 392

simulations. 393

S2 Table. Epidemiological, genetic and within-host dynamics rules varied 394

in the stochastic simulations. 395
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Fig 1. Numerical simulations reveal a
transition between two regimes of
antigenic diversity accumulation. (A) The
percentage of new genes in the local parasite
population at the end of a given simulation
period (200 years) remains negligible when the
reproductive number Rdiv for antigen-encoding
new genes is lower than one. By contrast, this
percentage increases rapidly above this threshold.
Because the time interval over which we
computed Rdiv = GnewTnew concerns long
transients, we evaluated the rate of generation of
new genes Gnew as a mean over this interval (by
averaging the values of N and S̄ every 180-day
interval), and the lifespan Tnew, as an average for
all the new genes that invaded during this time
(with this interval placing an upper bound on
individual lifespans). Each point represents a
simulation with different combinations of
parameters and assumptions (including variation
in rules of within-host dynamics, in strength of
the trade-off between transmissibility and
duration of infection, and in values and
seasonality of the transmission rates, Table S1-2).
(B) Because Rdiv increases monotonically with
transmission intensity (Fig. S2), the percentage
of new genes also exhibits the threshold behavior
with this variable, measured here by the
entomological inoculation rate (EIR, the number
of infectious bites per person per year). For
simplicity, when a transmission event occurs, our
model considers that all bites of an infected
‘donor’ host generate an infectious bite, and that
all infectious bites of the ‘recipient’ host result in
infection. This implies that the EIR values in the
graph should be adjusted for comparison to
actual field values (by dividing by the product of
the competence/transmissibility probabilities,
which will raise EIR). (C) New genes do not
accumulate below the transmission threshold
where they essentially follow neutral dynamics.
In contrast, they do accumulate and turn over at
a constant rate under frequency-dependent
selection above this threshold (D). Each color in
these two panels refers to a new gene in the
population. New genes that account for less than
five infections over the entire period are
combined and represented in red. (E) The
average lifespan of new genes is shorter below the
threshold than above it (F). (F) In addition, new
genes with a greater number of new alleles
(epitopes) live longer above the threshold,
whereas below the threshold, they experience
similar lifespans. Interventions that push the
system below the threshold are effective at
stopping the accumulation of new genes (G),
whereas those that do not, result in the rebound
and rebuilding of diversity (H). Red and blue
colors indicate genes that originate respectively
before and after the intervention.
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Fig 2. Theoretical expectation of the average lifespan of a new gene t̄. The
analytical expression shows that t̄, measured in units of Nτ̄ , increases faster than exponential
as the average number of available hosts S̄ decreases. The dashed line represents the time to
fixation of a neutral gene, which means that under small S̄, once established, the gene can be
maintained in the population for much longer than the typical epidemiological timescale (or for
much longer than the simulation period of 200 years in our model). The average lifespan Tnew

obtained from the computational model will always be considerably smaller than the
theoretical expectation t̄ derived under the assumption that other factors remain constant, in
particular the average number of hosts S̄ that are susceptible to the invading gene. The general
trend of increased persistence with lower S̄ will hold however for the full numerical system and
for finite time windows.
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