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Abstract11

Colourful ornaments often communicate salient information to mates, and theory predicts covariance between12

signal expression and individual quality. This has borne out among pigment-based signals, but the potential13

for ‘honesty’ in structural colouration is unresolved. Here I synthesised the available evidence to test this14

prediction via meta-analysis and found that, overall, the expression of structurally coloured sexual signals15

is positively associated with individual quality. The effects varied by measure of quality, however, with16

body condition and immune function reliably encoded, but not age nor parasite resistance. The relationship17

was consistent for both the chromatic and achromatic components of signals, and was slightly stronger for18

iridescent ornaments. These results suggest diverse pathways to the encoding and exchange of information19

among structural colours, while highlighting outstanding questions as to the development, visual ecology,20

and evolution of this striking adornment.21
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Introduction22

Colour is a ubiquitous channel of communication in nature and is showcased at an extreme in the23

service of mate choice [1,2]. Attempts to understand the function of colourful ornaments have often asked24

whether and how their expression is tied to individual quality, with empirical tests guided by indicator and25

handicap models of sexual selection [3,4]. These models argue that conspicuous ornaments are selectively26

favoured because they are difficult and/or costly to produce, and so encode honest information about an27

individual’s quality to potential mates. A central prediction is that signal expression should be condition-28

dependent, and the most robust support to date is found among carotenoid-based colour patterns [5,6]. As29

pigments that cannot be synthesised de novo, all carotenoids must ultimately be acquired via diet before30

being incorporated into signals directly or following bioconversion. This offers ample opportunity for selection31

to favour mechanistic links between foraging, metabolic performance, and sexual signal expression, which is32

now well established, at least among birds [7,8]. Relative to our knowledge of pigment-based colouration,33

however, the potential for structural colours to signal individual quality remains both understudied and34

poorly resolved.35

Unlike pigments, which are selectively absorbent, structural colouration results from the incoherent36

scattering, diffraction, and/or constructive interference of light by surface structuring at the nano-scale [9,10].37

Three general arguments have been articulated around their potential for honesty in sexual signalling. One38

is that if sufficient material is required to produce nano-architectures then it may establish a trade-off with39

other physiological needs, and so provide a tangible cost consistent with a handicap explanation [3]. A40

non-exclusive alternative builds on the observation that the macro-scale expression of signals relies on the41

precision with which the underlying structures are built [11]. If individuals heritably vary in their capacity to42

achieve such precision—either directly or via the acquisition of stable developmental conditions—then signals43

may serve as an index of underlying genetic quality [4]. Finally, the lack of obvious ecologically relevant44

material to trade-off against during signal construction, together with the self-assembly inherent in structural45

colours, has motivated arguments against any general expectations for condition dependence sensu lato [12].46

Though experimental work is able to partition these hypotheses in some contexts [13], most empirical studies47

to date have focused on the overarching question of honesty by examining the predicted covariance between48

fitness-related traits and signal expression. This has provided valuable insight into the central question, but49

diversity in signal designs, measures of ‘quality’, and taxonomy have presented a challenge for qualitative50

synthesis.51

Here I used phylogenetically controlled meta-analysis and meta-regression to examine whether struc-52
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tural colour signals encode salient information on individual quality. Specifically, I synthesised estimates of53

correlations between measures of individual quality and signal expression to test the prediction of condition54

dependence, before examining methodological and theoretically derived mediators of effect-size variation55

among studies.56

Methods57

Literature search and study selection58

I conducted a systematic literature search using Web of Knowledge and Scopus databases for publi-59

cations up to September 2019, using the query ((colour OR color OR pigment) AND signal AND (quality60

OR condition OR condition dependent OR condition dependence OR ornament) OR honest*), as well as61

searching the references of included texts. This produced 3482 unique studies, from which 41 were ultimately62

suitable for quantitative synthesis following the screening of titles, abstracts, and full texts (see Fig. S1 for63

PRISMA statement) using the R package ‘revtools’ v0.4.1 [14]. I included all experimental and observational64

studies that quantified the relationship between intersexual structural colour signal expression and any one65

of age, body condition (size, size-corrected mass, or growth rate), immune function (oxidative damage, PHA66

response, circulating CORT or testosterone) or parasite resistance as a measure of individual quality. I67

excluded studies that conflated the structural and pigmentary contributions to signal expression during mea-68

surement or manipulation, that directly manipulated colouration or the underlying structures, only studied69

sexually immature juveniles, focused exclusively on intrasexual signalling, used human-subjective assessments70

of colouration, or which provided insufficient data.71

Effect size calculation72

I used the correlation coefficient, Pearson’s r, transformed to Fisher’s z as the effect size describing the73

relationship between colour signal expression and measures of individual quality for meta-analysis. These74

effects were extracted directly from text or figures, using the R package ‘metadigitise’ v1.0 [15], where75

possible (n = 100), or was otherwise converted from available test statistics or summary data (n = 84).76

Meta-analyses77

I ran both phylogenetic multi-level meta-analytic (intercept-only, MLM) and multi-level meta-78

regression (MLMR) models, using the package ‘metafor’ v2.1-0 [16] in R v3.5.2 [17]. Almost all studies79

reported multiple effects through the estimation of several colour metrics or multiple measures of individual80

quality, so I included both a study- and observation-level random effect in all models. From my MLM81
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model I estimated a meta-analytic mean (i.e., intercept) effect size, which describes the overall support for82

the honesty of structural colour signals. I accounted for phylogenetic non-independence between effect sizes83

in all models by estimating relationships among species using the Open Tree of Life database [18], accessed84

via the R package ‘rotl’ v3.0.10 [19]. Given the resulting tree topology, I estimated a correlation matrix85

from branch lengths derived using Grafen’s method [20] assuming node heights raised to the power of 0.5.86

Though this does not account for evolutionary divergence, it grants an approximate estimate of relatedness87

by accounting for phylogenetic topology (Fig. S2).88

I then used separate MLMRmodels to examine the effects of moderators, both theoretical and method-89

ological, which may be expected to alter the strength of the signal/quality relationship. These included the90

measure of individual quality used—body condition, age, immune function, or parasite resistance (as defined91

above)—since ‘quality’ is multivariate (discussed below). There is a suite of metrics available for measuring92

colour, though they typically centre on quantifying hue (the unique colour), saturation (spectral purity),93

and brightness, or a composite thereof [21]. I therefore coded each as an ‘chromatic’ or ‘achromatic’ measure94

in order to separately evaluate which, if any, signal features contain salient information on mate quality.95

This dichotomy is supported by physiological and ecological evidence around the partitioning of colour and96

luminance information in certain contexts [22–24], as well as the expectation that not all signal features are97

equally likely to be subject to condition dependence [25,26]. I also tested the effect of signal iridescence. The98

rationale was twofold. For one, all iridescence arises from coherent light-scattering [26]. All things being99

equal, coherent light-scattering demands a level of architectural precision beyond that of incoherent scatterers,100

and so offers an indirect test of the hypothesised link between the demands of nano-scale precision and signal101

honesty. Second, iridescence is an inherently temporal feature of visual communication and this temporal102

structure itself may provide an additional or alternate conduit of information to potential mates [13,27,28],103

though this possibility remains unexplored directly. I also considered study type, given my inclusion of both104

experimental and observational studies, as well as the sex of focal animals. Finally, I coded whether studies105

included measurements of non-sexual traits as controls in tests of heightened condition-dependence [29] and106

tested for an effect on the resulting effect size estimates (see discussion).107

Publication bias108

I explored evidence for publication bias by visually inspecting funnel plots of effect sizes versus stan-109

dard errors (Fig. S3) and using an Egger’s test on an intercept-only MLMA that included the random effects110

described above [30].111

Data availability112
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All data and code are available via GitHub (https://github.com/thomased/metacol), and will be113

persistently archived upon acceptance.114

Results115

The final dataset comprised 184 effect sizes, across 27 species, from 41 studies [5,13,31–35,35–69].116

As predicted, I found a positive overall correlation between individual quality and structural colour signal117

expression (Z = 0.159, 95% CI = 0.087 to 0.232; Fig. 1). These effects sizes were highly heterogeneous (I2118

= 81.24%, 95% CI = 78.31 to 83.78; See table S1 for full set of estimates) as is typical of meta-analytic data119

in ecology and evolutionary biology [70]. A small amount of heterogeneity was explained by among-study120

effects (I2 = 15.10%, 95% CI = 9.40 to 21.70), and only a very weak phylogenetic signal was evident (I2 =121

1.60%, 95% CI = 0.86 to 2.60).122

Of the measures of quality considered, body condition (Z = 0.191, 95% CI = 0.099 to 0.284) and123

immune function (Z = 0.356, 95% CI = 0.126 to 0.587) were reliably positively correlated with structural124

colour expression, while age (Z = 0.017, 95% CI = -0.118 to 0.152) and parasite resistance (Z = 0.122, 95%125

CI = -0.026 to 0.266) were not (Fig. 1). Both the colour (Z = 0.154, 95% CI = 0.066 to 0.242) and brightness126

(Z = 0.172, 95% CI = 0.071 to 0.273) of signals were similarly informative channels, and iridescent signals127

were subject to slightly stronger positive correlations than non-iridescent signals (Z = 0.156, 95% CI = 0.013128

to 0.299). Signal honesty was apparent among males only (Z = 0.171, 95% CI = 0.093 to 0.247), though the129

weak, borderline effect and much smaller sample among females (Z = 0.121, 95% CI = -0.014 to 0.257, n =130

29) suggests a male-bias in the literature similar to that in related fields [71], which may have partly driven131

this outcome. Experimental studies tended to report marginally stronger correlations (Z = 0.221, 95% CI132

= 0.109 to 0.334) than observational assays (Z = 0.129, 95% CI = 0.058 to 0.200), most likely reflecting133

slightly exaggerated experimental manipulations of condition relative to natural variation [29]. Finally, the134

majority of studies (n = 36) did not include measurements of non-sexual control traits, though I found no135

clear difference in effect-size estimates between those that did and did not (Z = 0.120, 95% CI = -0.09 to136

0.328).137

Publication bias138

Visual inspection of the funnel plot showed little asymmetry (Fig. S3), as supported by non-significant139

Egger’s tests (t180 = -0.2395, p = 0.8110), which suggests a minimal influence of missing data on effect size140

estimates.141
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Discussion142

Colourful ornaments may be reliable conduits of information on mate quality, though evidence for143

the predicted covariance between signal expression and mate quality among structural, as opposed to pig-144

mentary, signals is equivocal. Here I found meta-analytic support for this link in the form of a positive145

correlation between structural colour expression and individual quality (Fig. 1), consistent with honesty-146

based models of sexual signal evolution [3,4]. The strength of the overall correlation, though moderate, was147

commensurate with meta-analytic estimates from pigment-based sexual signals [7,8,72], and suggests that148

structural colouration may serve a reliable indicator of individual quality.149

Quality is a multivariate feature of individuals, and this is reflected in the effect-size variation between150

measures. Both condition (as narrowly defined above), and proxy measures of immune system integrity were151

on-average positively correlated with signal expression. This is consistent with the general expectation of152

developmental integration among signalling and fitness-related traits and is supported by experimental work153

showing that body mass and immune function are responsive to ecologically salient stressors, with conse-154

quences for colour production. Among birds, for example, disease and dietary stress produces abnormalities155

in the keratin barbules that contribute to colouration [73–75], while in butterflies the precision arrangement156

of wing-scale architectures is disrupted by nutritional and environmental stress during pupal (hence, wing-157

structure) development [34,76]. In contrast, neither age nor parasite resistance were reliably informative of158

mate quality. These latter measures are often predicated on, or susceptible to, the mechanical degradation159

of structures post-development. Thus, the inherently heightened variability of sexual signals combined with160

ectoparasite-induced damage and/or accumulated wear with age may compound to render the signals less161

accurate predictors on balance [57,77,78]. Curiously, the near inverse relationship was recently identified in a162

meta-analysis of carotenoid-based signalling. Weaver et al. [7] examined correlations across similar categories163

of quality as those used here but found no consistent relationship between signals and either of body condi-164

tion or immune function. Given the fundamental optical and developmental differences between structural165

and pigmentary colour production the potential exists for each to signal unique aspects of individual mate166

quality, as is suggested by the totality of these results. This has also been directly supported by limited167

empirical work [63] and may hold more broadly as an explanation for the often integrated use of structural168

and pigmentary mechanisms in sexual colouration.169

Colour is often assumed to be the central conduit of information exchange given its relative stability170

under variable natural illumination [23,25], though my results suggest both the chromatic and achromatic171

features of signals are similarly informative (Fig. 1). Furthermore, I identified slightly stronger condition172
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dependence among iridescent, as opposed to non-iridescent, patches. While the underlying architecture173

varies across taxa, all iridescent colouration arises from coherent light interference and so demands a level of174

architectural regularity and precision beyond that of incoherent scattering [10,26]. Iridescence also introduces175

temporal structure to signals since the colour appearance depends on the precise arrangement of signals,176

viewers, and light sources. These combined features may render iridescent colouration particularly suitable177

as bearers of information [28], as broadly consistent with the results presented here, and so contribute to178

the ubiquity of the phenomenon [79,80]. This idea has found some support, for example, via condition-179

dependent variation in signal angularity [13], and a predictive relationship between iridescence itself and180

mating success [81]. Empirically unravelling the function and perceptual significance of iridescence in the181

context of sexual signalling—where the effect is seen at its most extreme—remains an active challenge [27].182

More generally, these results affirm the view that the extended spectral and temporal repertoire available183

to structural colours may facilitate the exploration of distinct ‘signalling niches’, with tangible evolutionary184

consequences [1,52].185

By integrating the development of signal structure and fitness-related traits, structural colours may186

serve as informative signals during mate choice. A holistic understanding, however, awaits progress on187

several fronts. Most significant is the inclusion of appropriate non-sexual controls. Given that many traits188

will scale with overall condition, the ultimate evidence for handicap models lies in the demonstration of189

heightened condition-dependence among sexual traits. Though I found no clear difference in effect size190

estimates between studies with and without such controls the small sample size was limiting, and moreover191

represents a conceptual limitation that remains pervasive [29]. Partitioning indicator and handicap models192

of signal evolution, and understanding the nature of direct and/or indirect benefits being signalled, are193

key challenges which requires both experimental and quantitative-genetic study across a breadth of taxa194

[13]. Finally, signalling ecology should remain front-of-mind as accumulating evidence, consistent with that195

presented here, continues to highlight the inherent spatio-temporal complexity of signals and visual systems196

[82–84]. This offers exciting opportunities for integrative studies of signal development, production, and197

perception, which will fuel a richer view of this pervasive adornment of the natural world.198
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Figures378

Figure 1: Forest plot of the mediators of the correlation between structural colour signal expression and
individual quality. Shown are Pearson’s correlations back transformed from Fisher’s z, with 95% confidence
intervals about the mean. Sample sizes are displayed on the right.
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