
25	
	

 416	
 417	
Figure 5. KNIT sequence origin and location. A) Model of KNIT loci in both chromosome 2 418	

and the mitochondrial genome. The model indicates that the full genomic sequence of KNIT 419	

exists in both chromosome two near the centromere and in the mitochondrial genome of A. 420	

thaliana, the predicted protein sequence differ. B) The gap sequence that separates genic 421	

sequences is not present in A. thaliana. G= gap sequence; S1= first segment of KNIT gene; S2= 422	

second segment of KNIT gene.   423	

  424	
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 425	

Figure 6. A model for orphan gene evolution through the mitochondrial genome. Novel 426	

sequences are created due to the high rearrangement rate in the mitochondrial genome , and then 427	

inserted into a nuclear chromosome. The transferred DNA may already contain gene coding 428	

information like KNIT (left side of model: Route 1) or may obtain an open reading frame via 429	

other genome mechanisms such as transposon transposition (right side: Route 2). 430	

 431	
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Tables 

Table 1. Comparison of the three cellular genomes in A. thaliana, G. max and Z. mays. All 

three species have more mitochondrial orphan genes compared to chloroplast orphans.  

 

Whole 

genome 

orphan 

Mitochondrion 

orphans 

Chloroplast 

orphans 

Total 

genes 

Total 

mitochondrial 

genes 

Total 

chloroplast 

genes 

A. 

thaliana 
1,169 30 4 35,387 122 80 

G. max 2,410 24 5 73,320 71 79 

Z. mays 5,245 63 5 63,540 137 91 
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Table 2.  Genome homology of orphans of mitochondrial genome in A. thaliana. Nearly all 

predicted orphan genes in the mitochondria have either complete or partial sequence transfer to 

the nuclear genome of Arabidopsis.  *AtMg00740 is the only gene that has sequence homology 

to a nuclear chromosome of a different species (A. alpina). All genes except AtMg00680 have 

some sort of sequence homology to another species mitochondrial genome, suggesting the 

sequence originated in the mitochondrial genome and has been recently transferred to the nuclear 

genome of A. thaliana. Orphans were marked as knitted if two different segments of the query 

was found in the same mitochondrial genome of a particular species (other than A. thaliana). 

Gene ID 
Nuclear 

Chromosome 
Location 

Query 
Cover (%) Knitted 

Segments in 
Mitochondrion of Other 

Species 
AtMg00130 2,3 9,20  X 
AtMg00140 4 7  X 
AtMg00200 1,2 19,100  X 
AtMg00260 2,3 100,100 X X 
AtMg00320 2 100  X 
AtMg00430 2 100 X X 
AtMg00440 2 100 X X 
AtMg00450 2 100  X 
AtMg00470 N/A N/A X X 
AtMg00600 2 100 X X 
AtMg00630 N/A N/A  X 
AtMg00680 2 20   
AtMg00720 2 25  X 
AtMg00740* 2,3,5 100,14,22  X 
AtMg00840 2 100  X 
AtMg00870 5 100  X 
AtMg00880 2,5 100,100  X 
AtMg00890 1,2 9,100  X 
AtMg01000 2,3 100,20  X 
AtMg01050 2 100  X 
AtMg01100 2,5 100,18  X 
AtMg01140 2 100 X X 
AtMg01150 2 100 X X 
AtMg01180 2 100  X 
AtMg01240 2 100  X 
AtMg01260 1,2,3,5 5,100,5,18  X 
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AtMg01290 2 100  X 
AtMg01300 2 100  X 
AtMg01370 2 24  X 
AtMg01400 4 40  X 
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Table 3. Alignment analysis for KNIT (BLASTn hit). One hit was reported in A. thaliana 

(outside of the chromosome 2 hit) with a 100% match spanning all 1,746 nucleotides. For S. 

arvensis, B. napus, and A. alpina, two individual hits (one around 1,290 nt and the other 475 nt) 

to the mitochondrial genome were reported. S. parvula had one hit (475 nt) reported. A small 

amount of unaligned bases for all hits underlie a low mutation rate of the mitochondrial 

genomes.  

Query 
Name Subject Name Segment Identity Alignment 

length 
Unaligned 

bases 

KNIT 
A. thaliana 

ecotype Col-0 
mitochondrion 

KNIT 
Full 100 1,746 0 

KNIT S. arvensis 
mitochondrion 

Segment 
1 99.61 1,286 5 

KNIT S. arvensis 
mitochondrion 

Segment 
2 99.58 475 2 

KNIT 
B. napus strain 

56366 
mitochondrion 

Segment 
1 98.60 1,289 18 

KNIT 
B. napus strain 

56366 
mitochondrion 

Segment 
2 99.16 475 4 

KNIT A. alpina 
mitochondrion 

Segment  
1 97.91 1,290 27 

KNIT A. alpina 
mitochondrion 

Segment 
2 98.95 475 5 

KNIT S. parvula 
mitochondrion 

Segment 
2 98.95 475 5 
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