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Abstract

Despite considerable progress on pathogenicity scores prioritizing both coding and non-

coding variants for Mendelian disease, little is known about the utility of these pathogenicity

scores for common disease. Here, we sought to assess the informativeness of Mendelian disease-

derived pathogenicity scores for common disease, and to improve upon existing scores. We first

applied stratified LD score regression to assess the informativeness of annotations defined by top

variants from published Mendelian disease-derived pathogenicity scores across 41 independent

common diseases and complex traits (average N = 320K). Several of the resulting annotations

were informative for common disease, even after conditioning on a broad set of coding, con-

served, regulatory and LD-related annotations from the baseline-LD model. We then improved

upon the published pathogenicity scores by developing AnnotBoost, a gradient boosting-based

framework to impute and denoise pathogenicity scores using functional annotations from the

baseline-LD model. AnnotBoost substantially increased the informativeness for common dis-

ease of both previously uninformative and previously informative pathogenicity scores, implying

pervasive variant-level overlap between Mendelian disease and common disease. The boosted

scores also produced significant improvements in heritability model fit and in classifying disease-

associated, fine-mapped SNPs. Our boosted scores have high potential to improve candidate

gene discovery and fine-mapping for common disease.
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Introduction

Despite considerable progress on pathogenicity scores prioritizing both coding and non-coding vari-

ants for Mendelian disease1–10 (reviewed in ref. 11), little is known about the utility of these

pathogenicity scores for common disease. The shared genetic architecture between Mendelian dis-

ease and common disease has been implicated in studies reporting the impact of genes underlying

monogenic forms of common diseases on the corresponding common diseases12, significant cormo-

bidities among Mendelian and complex diseases13, and gene-level overlap between Mendelian dis-

eases and cardiovascular diseases14–16, neurodevelopmental traits17,18, and other complex traits19.

However, variant-level assessment of shared genetic architecture using Mendelian disease-derived

pathogenicity scores has not been explored. Thus, our current understanding of the genetic rela-

tionship between Mendelian disease and common disease remains limited.

Here, we sought to assess the informativeness of Mendelian disease-derived pathogenicity scores

for common disease, and to improve upon existing scores. We focused our attention on poly-

genic common and low-frequency variant architectures, which explain the bulk of common disease

heritability20–24. We assessed the informativeness of annotations defined by top variants from pub-

lished Mendelian disease-derived pathogenicity scores by applying stratified LD score regression25

(S-LDSC) with the baseline-LD model26,27 to 41 independent common diseases and complex traits

(average N = 320K). We assessed informativeness conditional on the baseline-LD model, which

includes a broad set of coding, conserved, regulatory and LD-related annotations.

We improved upon the published pathogenicity scores by developing AnnotBoost, a gradient

boosting-based machine learning framework to impute and denoise pathogenicity scores using func-

tional annotations from the baseline-LD model. We assessed the informativeness of annotations

defined by top variants from the boosted scores by applying S-LDSC and assessing informative-

ness conditional on annotations from the baseline-LD model as well as annotations derived from

the corresponding published scores. We also assessed the informativeness of the published and

boosted pathogenicity scores in producing improvements in heritability model fit and in predicting

disease-associated, fine-mapped SNPs.
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Results

Overview of methods

We define a binary annotation as an assignment of a binary value to each of low-frequency (0.5%

≤ MAF < 5%) and common (MAF ≥ 5%) SNP in a 1000 Genomes Project European reference

panel28, as in our previous work25,27. We define a pathogenicity score as an assignment of a nu-

meric value quantifying predicted pathogenicity, deleteriousness, and/or protein function to some

or all of these SNPs; we refer to theses score as Mendelian disease-derived pathogenicity scores, as

these scores have predominantly been developed and assessed in the context of Mendelian disease

(e.g. using pathogenic variants from ClinVar29 and HGMD30). We analyze 11 Mendelian disease-

derived missense scores, 6 genome-wide Mendelian disease-derived scores, and 18 additional scores.

Our primary focus is on binary annotations defined either using top variants from published (mis-

sense or genome-wide) Mendelian disease-derived pathogenicity scores, or using top variants from

boosted scores that we constructed from those pathogenicity scores using AnnotBoost, a gradient

boosting-based framework that we developed to impute and denoise pathogenicity scores using 75

coding, conserved, regulatory and LD-related annotations from the baseline-LD model26,27 (Figure

S1; see Methods). AnnotBoost uses decision trees to distinguish pathogenic variants (defined using

the input pathogenicity score) from benign variants; the AnnotBoost model is trained using the

XGBoost gradient boosting software31 (see URLs). AnnotBoost uses odd (resp. even) chromosomes

as training data to make predictions for even (resp. odd) chromosomes; the output of AnnotBoost is

the predicted probability of being pathogenic. We note that Mendelian disease-derived pathogenic-

ity scores may score a subset of SNPs, but every baseline-LD model annotation scores all SNPs.

Further details are provided in the Methods section; we have publicly released open-source software

implementing AnnotBoost, as well as all pathogenicity scores and binary annotations analyzed in

this work (see URLs).

We assessed the informativeness of the resulting binary annotations for common disease heri-

tability by applying S-LDSC25 to 41 independent common diseases and complex traits32 (average

N = 320K; Table S1; see URLs), conditioned on coding, conserved, regulatory and LD-related

annotations from the baseline-LD model26,27 and meta-analyzing results across traits. We assessed

informativeness for common disease using standardized effect size (τ∗), defined as the proportionate
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change in per-SNP heritability associated to a one standard deviation increase in the value of the

annotation, conditional on other annotations26 (see Methods). We also computed the heritability

enrichment, defined as the proportion of heritability divided by the proportion of SNPs. Unlike

enrichment, τ∗ quantifies effects that are unique to the focal annotation; annotations with sig-

nificantly positive or negative τ∗ are uniquely informative relative to all other annotations in the

model, whereas annotations with τ∗ = 0 contain no unique information, even if they are enriched for

heritability (see Methods). While S-LDSC models linear combinations of functional annotations,

AnnotBoost constructs (linear and) non-linear combinations of baseline-LD model annotations to

provide unique information.

Informativeness of Mendelian disease-derived missense scores for common dis-

ease

We assessed the informativeness for common disease of binary annotations derived from 11 Mendelian

disease-derived pathogenicity scores for missense variants1,5–8,33–37 (see Table 1). These scores re-

flect the predicted impact of missense mutations on Mendelian disease; we note that our analyses of

common disease are focused on common and low-frequency variants, but these scores were primarily

trained using very rare variants from ClinVar29 and Human Gene Mutation Database (HGMD)30.

For each of the 11 missense scores, we constructed binary annotations based on top missense vari-

ants using 5 different thresholds (from top 50% to top 10% of missense variants) and applied

S-LDSC25,26 to 41 independent common diseases and complex traits (Table S1), conditioning on

coding, conserved, regulatory and LD-related annotations from the baseline-LD model26,27 and

meta-analyzing results across traits; proportions of top SNPs were optimized to maximize informa-

tiveness (see Methods). We incorporated the 5 different thresholds into the number of hypotheses

tested when assessing statistical significance (Bonferroni P < 0.05/500 = 0.0001, based on a total

of ≈ 500 hypotheses tested in this study; see Methods). We identified (Bonferroni-significant) con-

ditionally informative binary annotations derived from 2 published missense scores: the top 30% of

SNPs from MPC36 (enrichment = 27x (s.e. 2.5), τ∗ = 0.60 (s.e. 0.07)) and the top 50% of SNPs

from PrimateAI8 (enrichment = 17x (s.e. 2.0), τ∗ = 0.42 (s.e. 0.09) (Figure 1, Table 2 and Table

S2). The MPC (Missense badness, PolyPhen-2, and Constraint) score36 is computed by identifying

regions within genes that are depleted for missense variants in ExAC data38 and incorporating
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variant-level metrics to predict the impact of missense variants; the PrimateAI score8 is computed

by eliminating common missense variants identified in other primate species (which are presumed

to be benign in humans), incorporating a deep learning model trained on the amino acid sequence

flanking the variant of interest and the orthologous sequence alignments in other species. The

remaining published Mendelian disease-derived missense scores all had derived binary annotations

that were significantly enriched for disease heritability (after Bonferroni correction) but not condi-

tionally informative (except for the published M-CAP7 score, which spanned too few SNPs to be

included in the S-LDSC analysis).

We constructed boosted scores from the 11 Mendelian disease-derived missense scores using

AnnotBoost, a gradient boosting-based machine learning framework that we developed to impute

and denoise pathogenicity scores using functional annotations from the baseline-LD model26 (see

Methods). We note that AnnotBoost scores genome-wide (missense and non-missense) variants,

implying low genome-wide correlations between input Mendelian disease-derived missense scores

and corresponding genome-wide boosted scores (0.02-0.24; Table S3A). AnnotBoost attained high

predictive accuracy in out-of-sample predictions of input missense scores (AUROC= 0.76-0.94,

AUPRC= 0.43-0.82; Table S4), although we caution that high predictive accuracy does not nec-

essarily translate into conditional informativeness for common disease39. We further note that

out-of-sample AUROCs closely tracked the genome-wide correlations between input Mendelian

disease-derived missense scores and corresponding genome-wide boosted scores (r = 0.65), imply-

ing that accurately predicting the input pathogenicity scores results in more correlated boosted

scores.

For each missense pathogenicity score, after running AnnotBoost, we constructed binary anno-

tations based on top genome-wide variants, using 6 different thresholds (ranging from top 10% to

top 0.1% of genome-wide variants, as well as variants with boosted scores ≥ 0.5; see Methods). We

assessed the informativeness for common disease of binary annotations derived from each of the

11 boosted scores using S-LDSC, conditioning on annotations from the baseline-LD model and 5

binary annotations derived from the corresponding published Mendelian disease-derived missense

score (using all 5 thresholds) (baseline-LD+5). We identified conditionally informative binary an-

notations derived from boosted versions of 10 Mendelian disease-derived missense scores, including

8 previously uninformative scores and the 2 previously informative scores (Figure 1, Table 2 and
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Table S2). Letting ↑ denote boosted scores, examples include the top 0.1% of SNPs from M-CAP↑7,

a previously uninformative score (enrichment = 23x (s.e. 2.6), τ∗ = 0.43 (s.e. 0.08); the published

M-CAP pathogenicity score spanned too few SNPs to be included in the S-LDSC analysis of Figure

1) and the top 0.1% of SNPs from PrimateAI↑8, a previously informative score (enrichment = 35x

(s.e. 2.7), τ∗ = 0.83 (s.e. 0.08)). The M-CAP (Mendelian Clinically Applicable Pathogenicity)

score7 is computed by training a gradient boosting tree classifier to distinguish pathogenic variants

from HGMD30 vs. benign variants from ExAC38 using 9 pathogenicity likelihood scores as fea-

tures (including PolyPhen-21, MetaLR34, CADD2; see Table 1); the PrimateAI score is described

above. Interestingly, binary annotations derived from 7 boosted scores had significantly negative τ∗

(−0.72 (s.e. 0.07) to −0.13 (s.e. 0.01)). All but one of these binary annotations were significantly

enriched for disease heritability, but less enriched than expected based on annotations from the

baseline-LD+5 model (Table S5; see ref. 40 and Methods, resulting in significantly negative τ∗.

These annotations are thus uniquely informative for disease heritability (analogous to transposable

element annotations in ref. 40 that were significantly depleted, but less depleted than expected and

thus uniquely informative); as noted above, annotations with significantly positive or negative τ∗

are uniquely informative. The boosted version of the remaining Mendelian disease-derived missense

score (MVP↑; not included in Figure 1) had a derived binary annotation that was significantly en-

riched for disease heritability (after Bonferroni correction) but not conditionally informative (Table

S2).

We performed 5 secondary analyses. First, we restricted the 10 significant binary annotations

derived from our boosted Mendelian disease-derived missense scores to non-coding regions, which

were previously unscored by the Mendelian disease-derived missense scores, and assessed the infor-

mativeness of the resulting non-coding binary annotations using S-LDSC. We determined that the

non-coding annotations retained the bulk of the overall signals (85%-110% of absolute τ∗; Table

S6), implying that AnnotBoost leverages information about pathogenic missense variants to usefully

impute scores for non-missense variants. Second, we investigated which features of the baseline-LD

model contributed the most to the informativeness of the boosted annotations by applying Shap-

ley Additive Explanation (SHAP)41, a widely used tool for interpreting machine-learning models.

We determined that conservation-related features drove the predictions of the boosted annota-

tions, particularly (binary and continuous) GERP scores42 (Figure S2). Third, we examined the
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trait-specific S-LDSC results, instead of meta-analyzing results across 41 traits. We identified 2

(resp. 32) annotation-trait pairs with significant τ∗ values for annotations derived from published

(resp. boosted) scores (Table S7); significance was assessed using FDR<5%, as Bonferroni correc-

tion would be overly conservative in this case. These annotation-trait pairs spanned 1 (resp. 10)

different annotations, all of which were also conditionally significant in the meta-analysis across

traits (Figure 1B). Fourth, we assessed the heterogeneity of heritability enrichment and conditional

informativeness (τ∗) across the 41 traits (as in ref. 23; see Methods). We determined that 10/20

annotations tested had significant heterogeneity in enrichment and 14/20 annotations tested had

significant heterogeneity in τ∗, implying substantial heterogeneity across traits (Table S8). Fifth,

we investigated the overlap between genes linked to each of our 12 conditionally significant annota-

tions and 165 gene sets of biological importance, including high-pLI genes38 and known Mendelian

genes19 (see Methods; Table S9 and Table S10). We linked SNPs to the nearest gene, scored genes

based on the maximum pathogenicity score of linked SNPs, and assessed overlap between top gene

score quintiles and each of 165 reference gene sets. We consistently observed excess overlap for

genes for which homozygous knockout in mice results in lethality43,44 and high-pLI genes38, and

depleted overlap for olfactory receptor genes45 (Table S11A-B). In addition, top gene score quin-

tiles derived from our boosted scores often had significantly more overlap (based on Fisher’s exact

test) than corresponding top gene quintiles derived from published scores (Table S12; results for

PolyPhen-21,33 shown in Figure S3); gene scores derived from published and boosted pathogenicity

scores were moderately correlated (Table S11C-D). This implies that our new annotations can help

identify biologically important genes.

We conclude that 2 Mendelian disease-derived missense annotations and 10 boosted annotations

are uniquely informative for common disease, relative to baseline-LD model annotations.

Informativeness of genome-wide Mendelian disease-derived pathogenicity scores

for common disease

We assessed the informativeness for common disease of binary annotations derived from 6 genome-

wide Mendelian disease-derived pathogenicity scores2–4,9,10 (see Table 1). These scores reflect the

predicted impact of (coding and) non-coding variants on Mendelian disease; as above, these scores

were primarily trained using very rare variants from ClinVar29 and HGMD30. For each of the 6
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genome-wide scores, we constructed binary annotations based on top genome-wide variants using

5 different thresholds (from top 0.1% to top 10% of genome-wide variants) and applied S-LDSC

to the 41 traits, conditioning on the baseline-LD model26 and meta-analyzing results across traits;

proportions of top SNPs were optimized to maximize informativeness (see Methods). We identified

(Bonferroni-significant) conditionally informative binary annotations derived from 3 genome-wide

scores: the top 0.5% of SNPs from ReMM4 (enrichment = 19x (s.e. 1.2), τ∗ = 0.82 (s.e. 0.09)),

the top 0.5% of SNPs from CADD2,46 (enrichment = 18x (s.e. 1.3), τ∗ = 0.71 (s.e. 0.10)), and

the top 0.1% of SNPs from Eigen3 (enrichment = 24x (s.e. 2.1), τ∗ = 0.40 (s.e. 0.06)) (Figure

2, Table 2 and Table S13). The CADD (Combined Annotation Dependent Depletion) score2,46

is computed by training a support vector machine to distinguish deleterious vs. neutral variants

using functional annotations as features; the Eigen score3 is computed from 29 input functional

annotations by using an unsupervised machine learning method (leveraging blockwise conditional

independence between annotations) to differentiate functional vs. non-functional variants; the

ReMM (Regulatory Mendelian Mutation) score4 is computed by training a random forest classi-

fier to distinguish 406 hand-curated Mendelian mutations from neutral variants using conservation

scores and functional annotations as features. The remaining 3 genome-wide scores all had de-

rived binary annotations that were significantly enriched for disease heritability (after Bonferroni

correction) but not conditionally informative (Table S13).

We applied AnnotBoost to the 6 genome-wide Mendelian disease-derived scores. We observed

moderate correlations between input genome-wide Mendelian disease-derived scores and corre-

sponding boosted scores (r = 0.35-0.66; Table S3B). AnnotBoost again attained high predictive

accuracy in out-of-sample predictions of input genome-wide scores (AUROC = 0.83-1.00, AUPRC

= 0.70-1.00; Table S4); however, out-of-sample AUROCs did not closely track the correlations

between input genome-wide scores and corresponding boosted scores (r = 0.05).

We again constructed binary annotations based on top genome-wide variants, using 6 differ-

ent thresholds (ranging from top 0.1% to top 10% of genome-wide variants, as well as variants

with boosted scores ≥ 0.5; see Methods). We assessed the informativeness for common disease

of binary annotations derived from each of the 6 boosted scores using S-LDSC, conditioning on

annotations from the baseline-LD model and 5 binary annotations derived from the correspond-

ing published genome-wide Mendelian disease-derived score (using all 5 thresholds). We identified
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conditionally informative binary annotations derived from boosted versions of all 6 genome-wide

Mendelian disease-derived scores, including the 3 previously uninformative scores and the 3 previ-

ously informative scores (Figure 2, Table 2 and Table S2). Examples include the top 5% of SNPs

from ncER↑9 (enrichment = 6.2x (s.e. 0.30), τ∗ = 0.74 (s.e. 0.10)) and the top 0.5% of SNPs

from boosted Eigen-PC↑3 (enrichment = 16x (s.e. 1.1), τ∗ = 0.62 (s.e. 0.12)), both of which were

previously uninformative scores, and the top 1% of SNPs from ReMM↑4 (enrichment = 17x (s.e.

0.8), τ∗ = 1.17 (s.e. 0.12)), a previously informative score. The ncER (non-coding Essential Regu-

lation) score9 is computed by training a gradient boosting tree classifier to distinguish non-coding

pathogenic variants from ClinVar29 and HGMD30 vs. benign variants using 38 functional and

structural features; the Eigen-PC score3 (related to the Eigen score) is computed from 29 input

functional annotations by using the lead eigenvector of the annotation covariance matrix to weight

the annotations; the ReMM score is described above.

We performed 5 secondary analyses. First, for the 4 genome-wide Mendelian disease-derived

scores with <100% of SNPs scored (Table 1), we restricted the binary annotations derived from

our boosted genome-wide Mendelian disease-derived scores to previously unscored variants and

assessed the informativeness of the resulting binary annotations using S-LDSC. We determined that

these annotations retained only a minority of the overall signals (17%-54% of absolute τ∗; Table

S14), implying that AnnotBoost usefully denoises previously scored variants. Second, we again

investigated which features of the baseline-LD model contributed the most to the informativeness

of the boosted annotations by applying SHAP41. We determined that both conservation-related

features (e.g. GERP scores) and LD-related features (e.g. LLD-AFR; level of LD in Africans)

drove the predictions of the boosted annotations (Figure S4). Third, we examined the trait-

specific S-LDSC results, instead of meta-analyzing results across 41 traits. We identified 11 (resp.

20) annotation-trait pairs with significant τ∗ values for annotations derived from published (resp.

boosted) scores (FDR<5%; Table S7). These annotation-trait pairs spanned 2 (resp. 4) different

annotations, all of which were also conditionally significant in the meta-analysis across traits (Figure

2B). Fourth, we assessed the heterogeneity of heritability enrichment and τ∗ across the 41 traits

(see Methods). We determined that 10/12 annotations tested had significant heterogeneity in

enrichment and 9/12 annotations tested had significant heterogeneity in τ∗, implying substantial

heterogeneity across traits (Table S8). Fifth, we investigated the overlap between genes linked
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to each of our 9 conditionally significant annotations and 165 gene sets of biological importance

(see Methods; Table S9). As above, we consistently observed excess overlap for genes for which

homozygous knockout in mice results in lethality43,44 and high-pLI genes38, and depleted overlap

for olfactory receptor genes45 (Table S11), implying that our new annotations can help identify

biologically important genes. For example, the top (bottom) quintile of genes linked to the boosted

CADD annotation had 1.7x (0.34x) excess overlap with high-pLI genes38 vs. excess overlap of 0.8x

(0.5x) for the top (bottom) quintile of genes linked to the published CADD2,46 annotation (OR =

2.4, P < 6e-49) (Figure S3, Table S12).

We conclude that 3 genome-wide Mendelian disease-derived annotations and 6 boosted anno-

tations are uniquely informative for common disease, relative to baseline-LD model annotations.

Informativeness of additional genome-wide scores for common disease

For completeness, we assessed the informativeness for common disease of 18 additional genome-

wide scores not related to Mendelian disease, including 2 constraint-related scores47,48, 9 scores

based on deep learning predictions of epigenetic marks49–51, and 7 gene-based scores38,52–54 (see

Table S15). For each of the 18 additional scores, we constructed binary annotations based on

top variants using 5 different thresholds and applied S-LDSC to the 41 traits, conditioning on the

baseline-LD model26 and meta-analyzing results across traits; in this analysis, we also conditioned

on 8 Roadmap annotations55 (4 annotations based on the union across cell types and 4 annotations

based on the average across cell types, as in ref. 39), as many of the additional scores pertain to

regulatory elements, making this an appropriate conservative step.

We identified (Bonferroni-significant) conditionally binary annotations derived from 6 informa-

tive scores, including the top 1% of SNPs from CDTS47 (enrichment = 9.3x (s.e. 0.75), τ∗ = 0.35

(s.e. 0.06)) and the top 5% of SNPs from DeepSEA-H3K4me349,50 (enrichment = 3.9x (s.e. 0.23),

τ∗ = 0.21 (s.e. 0.04)) (Figure 3, Table 2 and Table S16). CDTS (Context-Dependent Tolerance

Score)47 is a constraint score based on observed vs. expected variation in whole-genome sequence

data; DeepSEA-H3K4me3 scores49,50 are computed by training a deep learning model to predict

chromatin marks using proximal reference genome sequence as features and aggregated across dif-

ferent cell types39 (The DeepSEA annotations in Figure 3 were more significant than those analyzed

in ref. 39, because we optimized binary annotations based on top variants; however, no DeepSEA
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annotations were included in our combined joint model (see below)). 9 of the remaining 10 scores

(excluding two that were not analyzed due to small annotation size) had derived binary annota-

tions that were significantly enriched for disease heritability (after Bonferroni correction) but not

conditionally informative (Table S16).

We applied AnnotBoost to the 18 additional scores, and to the 47 main annotations of the

baseline-LD model (Table S15). Correlations between input scores and corresponding boosted

scores varied widely (r = 0.005-0.93; Table S3C). AnnotBoost again attained high predictive accu-

racy in out-of-sample predictions of the input scores (AUROC = 0.55-1.00, AUPRC = 0.23-0.98;

Table S4); out-of-sample AUROCs closely tracked the correlations between input scores and corre-

sponding boosted scores (r = 0.65).

We again constructed binary annotations based on top genome-wide variants, using 6 different

thresholds (ranging from top 0.1% to top 10% of genome-wide variants, as well as variants with

boosted scores ≥ 0.5; see Methods). We assessed the informativeness for common disease of binary

annotations derived from each of the 65 boosted scores using S-LDSC, conditioning on annotations

from the baseline-LD model, the 8 Roadmap annotations, and (for the first 18 additional scores

only) 5 binary annotations derived from the corresponding input scores (using all 5 thresholds).

We identified conditionally informative binary annotations derived from boosted versions of 13/18

additional scores (including 11 previously uninformative scores and 2 previously informative scores)

and 24/47 baseline-LD model annotations (Figure 3, Table 2 and Table S16). Examples include the

top 10% of SNPs from DeepSEA-DNase↑49,50 (enrichment = 3.7x (s.e. 0.27), τ∗ = 0.69 (s.e. 0.11)),

a previously uninformative score, the top 1% of SNPs from CCR↑48 (enrichment = 7.9x (s.e. 0.65),

τ∗ = 0.51 (s.e. 0.09)), a previously uninformative score, and the top 5% of SNPs from H3K9ac↑56

(enrichment = 5.4x (s.e. 0.31), τ∗ = 0.76 (s.e. 0.09)), a baseline-LD model annotation. The

CCR (Constrained Coding Regions) score48 is a constraint score based on observed vs. expected

variation in whole-exome sequence data; DeepSEA scores are described above. We note that the 18

additional scores included 7 gene-based scores, which did not perform well; 3 published gene-based

scores and 4 boosted gene-based scores yielded conditionally significant binary annotations, but

their τ∗ were small (−0.02 to 0.09). Boosted versions of 3 of the remaining 5 additional scores and

20 of the remaining 23 baseline-LD model annotations had derived binary annotations that were

significantly enriched for disease heritability (after Bonferroni correction) but not conditionally
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informative (Table S16).

We performed 6 secondary analyses. First, for the 31 additional boosted scores which were con-

ditionally significant and for which the underlying published scores had < 100% of SNPs scored,

we restricted the boosted scores to previously unscored variants and assessed the informativeness

of the resulting binary annotations using S-LDSC. We determined that these annotations retained

over half of the overall signals (average of 55% of absolute τ∗; Table S17), implying that Annot-

Boost both imputes and denoises existing scores. Second, we again investigated which features of

the baseline-LD model contributed the most to the informativeness of the boosted annotations by

applying SHAP41. We determined that a broad set features contributed to the predictions, includ-

ing conservation-related features and LD-related features (as above), but also including regulatory

features (e.g. H3K4me1, DGF, H3K9ac for boosted DeepSEA↑) (Figure S5). Third, we examined

the trait-specific S-LDSC results, instead of meta-analyzing results across 41 traits. We identified

9 (resp. 78) annotation-trait pairs with significant tau∗ values for annotations derived from pub-

lished (resp. boosted) scores (FDR<5%; Table S7). These annotation-trait pairs spanned 5 (resp.

32) different annotations, most of which (3/5 published, 23/32 boosted) were also conditionally

significant in the meta-analysis across traits (Figure 3B). Fourth, we assessed the heterogeneity

of heritability enrichment and τ∗ across the 41 traits (see Methods). We determined that 64/81

annotations tested had significant heterogeneity in enrichment and 40/81 annotations tested had

significant heterogeneity in τ∗, implying substantial heterogeneity across traits (Table S8). Fifth,

we repeated the analyses of Figure 3 without including the 8 Roadmap annotations. We determined

that the number of significant binary annotations increased (Table S18), confirming the importance

of conditioning on the 8 Roadmap annotations as an appropriate conservative step39. We further

verified that including the 8 Roadmap annotations did not impact results from previous sections

(Table S19). Sixth, we investigated the overlap between genes linked to each of our 43 condition-

ally significant annotations and 165 gene sets of biological importance (see Methods; Table S9). As

above, we consistently observed excess overlap for genes for which homozygous knockout in mice

results in lethality43,44 and high-pLI genes38, and depleted overlap for olfactory receptor genes45

(Figure S3, Table S11, Table S12), implying that our new annotations can help identify biologically

important genes.

We conclude that 6 additional genome-wide annotations and 37 boosted annotations are uniquely
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informative for common disease, relative to baseline-LD model annotations.

Constructing and evaluating combined heritability models

We constructed and evaluated two heritability models incorporating our new functional annota-

tions: (i) a combined marginal model incorporating all binary annotations that were conditionally

significant (conditional on the baseline-LD model), and (ii) a combined joint model incorporating

only a subset of binary annotations that were jointly and conditionally significant (conditional on

each other and the baseline-LD model). We constructed the combined marginal model by merging

the baseline-LD model with the 64 conditionally significant annotations (derived from 11 published

scores and 53 boosted scores; Table 2) (baseline-LD+marginal). We constructed the combined

joint model by performing forward stepwise elimination to iteratively remove annotations that had

conditionally non-significant τ∗ values after Bonferroni correction (P ≥ 0.05/500 = 0.0001) or

τ∗ < 0.25 (see Methods) (baseline-LD+joint). We have prioritized this type of combined joint

model in previous work26,32,39,40,53, hypothesizing that there would be little value in retaining a

large number of annotations containing redundant information; we note the substantial correlations

between annotations in this study (Table S20).

The combined joint model included 11 binary annotations derived from 3 published scores and

8 boosted scores (Figure 4, Table 2 and Table S21). These 11 annotations are each substantially

uniquely informative for common disease and include 5 boosted annotations with τ∗ > 0.5 (e.g.

boosted ReMM: τ∗ = 1.33 (s.e. 0.12)); annotations with τ∗ > 0.5 are unusual, and considered

to be very important40. We note that the top 0.5% of SNPs from REVEL↑6 had significantly

negative τ∗ (−0.95 (s.e. 0.08)), as the annotation was significantly enriched for disease heritability

but less enriched than expected based on annotations from the combined joint model; as noted

above, annotations with significantly positive or negative τ∗ are uniquely informative.

We performed two analyses to evaluate the combined joint model and the combined marginal

model, compared to the baseline-LD model; these analyses evaluated aggregate heritability mod-

els, rather than individual functional annotations. First, we computed the average loglSS
57 (an

approximate likelihood metric) of each model, relative to a model with no functional annotations,

across 30 common diseases and complex traits from the UK Biobank58 (subset of 41 traits; Table

S1) (∆loglSS ; see Methods). Results are reported in Figure 5A and Table S22. The combined joint
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model attained a +7.4% larger ∆loglSS than the baseline-LD model (P < 6e-38); the combined

marginal model attained a +23.9% larger ∆loglSS than the baseline-LD model (P < 2e-99), in-

cluding a significantly larger improvement for 30/30 traits analyzed (Figure 5B and Table S22).

The improvements were only slightly smaller when using Akaike Information Criterion (AIC) to

account for increases in model complexity57 (+7.0% and +20.3%; Table S22).

Second, we assessed each model’s accuracy of classifying three different sets of fine-mapped

SNPs (from 10 LD-, MAF-, and genomic-element-matched control SNPs in the reference panel28):

7,333 fine-mapped for 21 autoimmune diseases from Farh et al.59, 3,768 fine-mapped SNPs for

inflammatory bowel disease from Huang et al.60, and 1,851 fine-mapped SNPs for 49 UK Biobank

traits from Weissbrod et al.61. We note that with the exception of Weissbrod et al. fine-mapped

SNPs (stringently defined by causal posterior probability ≥ 0.95; FDR < 0.05), 95% credible fine-

mapped SNPs likely include a large fraction of non-causal variants. We computed the AUPRC

attained by the combined joint model and the combined marginal model, relative to a model with

no functional annotations (∆AUPRC), aggregated by training a gradient boosting model (multi-

score analysis); we used odd (resp. even) chromosomes as training data to make predictions for

even (resp. odd) chromosomes (see Methods). We note that this gradient boosting model uses

disease data (fine-mapped SNPs), whereas AnnotBoost does not use disease data to construct

boosted pathogenicity scores; specifically, our boosted scores do not use fine-mapped SNPs. The

combined joint model attained a +2.5% to 6.9% larger ∆AUPRC than the baseline-LD model

(each P < 3e-28); the combined marginal model attained a +4.9% to 21.3% larger ∆AUPRC than

the baseline-LD model (each P < 7e-100); we obtained similar results using AUROC (Figure S6,

Table S23). This improvement likely comes from non-linear interactions involving the boosted

annotations, published annotations, and the baseline-LD model.

We performed 8 secondary analyses. First, we repeated loglSS analysis on the model with 19

new annotations with conditional τ∗ > 0.5; we determined this model attained a +10.6% larger

∆loglSS and +9.7% larger AIC than the baseline-LD model (P < 2e-50) (Table S22). Second, we

applied SHAP41 to investigate which features contributed the most to classification of fine-mapped

SNPs; we determined that boosted scores often drove the predictions, validating the potential

utility of boosted scores in functionally-informed fine-mapping (e.g. H3K9ac↑, CADD) (Figure S7,

Figure S8). Third, we repeated the classification of fine-mapped SNPs using a single LD-, MAF-,
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and genomic-element-matched control variant (instead of 10 control variants) for each fine-mapped

SNP, and obtained similar results (Table S23). Fourth, we repeated the classification of fine-

mapped disease SNPs analysis of Weissbrod et al. fine-mapped SNPs using 1,379 SNPs that were

fine-mapped without using functional information61 (to ensure that results were not circular), and

obtained similar results (Figure S6, Table S23). Fifth, we computed the AUPRCs for classifying

fine-mapped SNPs individually attained by each of 82 published and 82 boosted scores (single-

score analysis), comparing results for boosted scores vs. the corresponding published scores. The

boosted scores significantly outperformed the corresponding published scores in each case (66/82

to 80/82 scores; Figure S9, Table S24, and Table S25). We also found that AUPRC and AUROC

results for published and boosted scores were moderately correlated with S-LDSC results (up to

r = 0.67) for binary annotations derived from these scores, validating the S-LDSC results (Table

S26). Sixth, we repeated the single-score and multi-score analysis using 14,807 NHGRI GWAS

SNPs62,63; we obtained similar results (Figure S9, Figure S6, Table S24, Table S23). Seventh, we

computed genome-wide correlations between all annotations analyzed including baseline-LD model

annotations (Table S20). Several of the jointly significant annotations were strongly correlated

(up to 0.73) with conservation-related annotations from the baseline-LD model, particularly binary

GERP scores, consistent with our SHAP results (Figure S2, Figure S4 and Figure S5). Eighth,

we compared the informativeness of the baseline-LD model and the combined joint model. We

identified the addition of 11 jointly significant annotations greatly reduced the informativeness of

several existing baseline-LD annotations, including conservation-related annotations (e.g. conserved

primate, binary GERP scores) and other annotations (e.g. coding, CpG content; see Figure S10

and Table S27), recapitulating the informativeness of 11 jointly significant annotations.

We conclude that the combined joint model and the combined marginal model both significantly

outperformed the baseline-LD model, validating the informativeness of our new annotations for

common disease. The improvement was much larger for the combined marginal model; this finding

was surprising, in light of our previous work advocating for conservatively restricting to jointly

significant annotations when expanding heritability models26,32,39,40,53. However, we caution that

due to the much larger number of new annotations in the combined marginal model, the combined

joint model may still be preferred in some settings.

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2020. ; https://doi.org/10.1101/2020.01.02.890657doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.02.890657
http://creativecommons.org/licenses/by-nc-nd/4.0/


Discussion

We analyzed the informativeness of a broad set of Mendelian disease-derived pathogenicity scores

across 41 independent common diseases and complex traits to show that several annotations de-

rived from published Mendelian disease-derived scores were conditionally informative for common

disease after conditioning on the baseline-LD model. We further developed AnnotBoost, a gradient

boosting-based machine learning framework to impute and denoise existing pathogenicty scores.

We determined that annotations derived from boosted pathogenicity scores were even more in-

formative for common disease, resulting in 64 marginally significant annotations and 11 jointly

significant annotations and implying pervasive variant-level overlap between Mendelian disease and

common disease. These variant-level results are substantially different from previous studies of gene-

level overlap between Mendelian diseases and complex traits12–19. Notably, our new annotations

produced significant improvements in heritability model fit and in classifying disease-associated,

fine-mapped SNPs. We also detected significant excess overlap between genes linked to our new

annotations and biologically important gene sets.

We note three key differences between AnnotBoost and previous approaches that utilized gra-

dient boosting to identify pathogenic missense7 and non-coding variants9,10. First, AnnotBoost

uses a pathogenicity score as the only input and does not use disease data (e.g. ClinVar29 or

HGMD30). Second, AnnotBoost produces genome-wide scores, even when some SNPs are un-

scored by the input pathogenicity score. Third, AnnotBoost leverages 75 diverse features from the

baseline-LD model26,27, significantly more than previous approaches7,9,10. Indeed, we determined

that AnnotBoost produces strong signals even when conditioned on those approaches.

Our findings have several ramifications for improving our understanding of common disease.

First, elucidating specific mechanistic links between Mendelian disease and common disease may

yield important biological insights. Second, it is of interest to assess the informativeness for com-

mon disease of Mendelian disease pathogenicity scores that may be developed in the future, partic-

ularly after imputing and denoising these scores using AnnotBoost; this would further elucidate the

variant-level overlap between Mendelian disease and common disease. Third, annotations derived

from published and boosted Mendelian pathogenicity scores can be used to improve functionally

informed fine-mapping61,64–67, motivating their inclusion in future large-scale fine-mapping stud-
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ies. (On the other hand, we anticipate that our new annotations will be less useful for improving

functionally informed polygenic risk prediction68,69 and association mapping70, because there is

pervasive LD between SNPs in an annotation and SNPs outside of an annotation, such that these

annotations do not distinguish which LD blocks contain causal signal.) Fourth, the larger improve-

ment for our combined marginal model versus our combined joint model (Figure 5A) advocates

for a more inclusive approach to expanding heritability models, as compared to our previous work

advocating for conservatively restricting to jointly significant annotations26,32,39,40,53. However,

the combined marginal model suffers a cost of reduced interpretability (it contains a much larger

number of new annotations, and it is unclear which of these annotations are providing the improve-

ment), thus the combined joint model may still be preferred in some settings. Fifth, gene scores

derived from published and boosted Mendelian pathogenicity scores can be used to help identify

biologically important genes; we constructed gene scores by linking SNPs to their nearest gene, but

better strategies for linking regulatory variants to genes71–73 could potentially improve upon our

results.

We note several limitations of our work. First, we focused our analyses on common disease

(which are driven by common and low-frequency variants) and did not analyze Mendelian diseases

(which are driven by very rare variants); the application of AnnotBoost to impute and denoise very

rare pathogenic variants for Mendelian disease is a direction for future work. Second, we primarily

report results that are meta-analyzed across 41 traits (analogous to previous studies25,26,32,39,40,53),

but results and their interpretation may vary substantially across traits. Nonetheless, our com-

bined marginal model produced a significant improvement in heritability model fit for 30/30 UK

Biobank traits analyzed (Figure 5B). Third, S-LDSC is not well-suited to analysis of annotations

spanning a very small proportion of the genome, preventing the analysis of a subset of published

pathogenicity scores; nonetheless, our main results attained high statistical significance. Fourth,

we restricted all of our analyses to European populations, which have the largest available GWAS

sample size. However, we expect our results to be generalizable to other populations, as functional

enrichments have been shown to be highly consistent across ancestries65,74,75; we note that assessing

functional enrichments in admixed populations76 would require the application of an unpublished

extension of S-LDSC77. Fifth, the gene-based SNP scores that we analyzed did not perform well,

perhaps because they were defined using 100kb windows, a crude strategy employed in previous
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work32,53,78; better strategies for linking regulatory variants to genes71–73 (as shown in above gene

scores) could potentially improve upon those results. Despite these limitations, the imputed and de-

noised pathogenicity scores produced by our AnnotBoost framework have high potential to improve

gene discovery and fine-mapping for common disease.

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2020. ; https://doi.org/10.1101/2020.01.02.890657doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.02.890657
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods

Genomic annotations and the baseline-LD model

We define a genomic annotation as an assignment of a numeric value to each SNP above a specified

minor allele frequency (e.g. MAF≥0.5%) in a predefined reference panel (e.g. 1000 Genomes28;

see URLs). Continuous-valued annotations can have any real value. Probabilistic annotations can

have any real value between 0 and 1. A binary annotation can be viewed as a subset of SNPs

(the set of SNPs with annotation value 1); we note all annotations analyzed in this work are

binary annotations. Annotations that correspond to known or predicted function are referred to as

functional annotations.

The baseline-LD model26 (v2.1) contains 86 functional annotations (see URLs). We use these

annotations as features of AnnotBoost (see below). These annotations include genomic elements

(e.g. coding, enhancer, promoter), conservation (e.g. GERP, PhastCon), regulatory elements

(e.g. histone marks, DNaseI-hypersensitive sites (DHS), transcription factor (TF) binding sites),

and linkage disequilibrium (LD)-related annotations (e.g. predicted allele age, recombination rate,

SNPs with low levels of LD).

Enrichment and τ ∗ metrics

We used stratified LD score regression (S-LDSC25,26) to assess the contribution of an annotation

to disease heritability by estimating the enrichment and the standardized effect size (τ∗) of an

annotation.

Let acj represent the (binary or probabilistic) annotation value of the SNP j for the annotation c.

S-LDSC assumes the variance of per normalized genotype effect sizes is a linear additive contribution

to the annotation c:

Var(βj) =
∑
c

acjτc (1)

where τc is the per-SNP contribution of the annotation c. S-LDSC estimates τc using the following
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equation:

E[χ2
j ] = N

∑
c

`(j, c)τc + 1 (2)

where N is the sample size of the GWAS and `(j, c) is the LD score of the SNP j to the annotation

c. The LD score is computed as follow `(j, c) =
∑

k ackr
2
jk where rjk is the correlation between the

SNPs j and k.

We used two metrics to assess the informativeness of an annotation. First, the standardized

effect size (τ∗), the proportionate change in per-SNP heritability associated with a one standard

deviation increase in the value of the annotation (conditional on all the other annotations in the

model), is defined as follows:

τc∗ =
τcsd(C)

h2g/M
(3)

where sd(C) is the standard deviation of the annotation c, h2g is the estimated SNP-heritability,

and M is the number of variants used to compute h2g (in our experiment, M is equal to 5,961,159,

the number of common SNPs in the reference panel). The significance for the effect size for each

annotation, as mentioned in previous studies26,32,53, is computed as ( τ∗

se(τ∗) ∼ N(0, 1)), assuming

that τ∗

se(τ∗) follows a normal distribution with zero mean and unit variance.

Second, enrichment of the binary and probabilistic annotation is the fraction of heritability

explained by SNPs in the annotation divided by the proportion of SNPs in the annotation, as

shown below:

Enrichment =
%h2g(C)

%SNP(C)
=

h2g(C)

h2g∑
j ajc
M

(4)

where h2g(C) is the heritability captured by the cth annotation. When the annotation is enriched for

trait heritability, the enrichment is > 1; the overlap is greater than one would expect given the trait

heritablity and the size of the annotation. The significance for enrichment is computed using the

block jackknife as mentioned in previous studies25,32,53,78.). The key difference between enrichment

and τ∗ is that τ∗ quantifies effects that are unique to the focal annotation after conditioning on
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all the other annotations in the model, while enrichment quantifies effects that are unique and/or

non-unique to the focal annotation.

In all our analyses, we used the European samples in 1000G28 (see URLs) as reference SNPs.

Regression SNPs were obtained from HapMap 379 (see URLs). SNPs with marginal association

statistics > 80 and SNPs in the major histocompatibility complex (MHC) region were excluded.

Unless stated otherwise, we included the baseline-LD model26 in all primary analyses using S-LDSC,

both to minimize the risk of bias in enrichment estimates due to model mis-specification25,26 and

to estimate effect sizes (τ∗) conditional on known functional annotations.

Published Mendelian disease-derived pathogenicity scores

We considered a total 35 published scores: 11 Mendelian disease-derived missense pathogenicity

scores, 6 genome-wide Mendelian disease-derived pathogenicity scores, and 18 additional scores

(see Table 1 and Table S15). Here, we provide a short description for Mendelian missense and

genome-wide Mendelian disease-derived pathogenicity scores. Details for 18 additional scores and

the baseline-LD annotations are provided in Table S15. Our curated pathogenicity scores are

available online (see URLs).

For all scores, we constructed annotations using GRCh37 (hg19) assembly limited to all 9,997,231

low-frequency and common SNPs (with MAF ≥ 0.5%) found in 1000 Genomes28 European Phase 3

reference genome individuals (see URLs). Mendelian missense scores were readily available from db-

NSFP database80,81 using a rankscore (a converted score based on the rank among scored SNPs);

genome-wide Mendelian disease-derived scores were individually downloaded and used with no

modification to original scores (see URLs). For each pathogenicity score, we constructed a binary

annotation based on optimized threshold (See below). Short descriptions for each pathogenicity

score (excluding 18 additional scores and the baseline-LD annotations; provided in Table S15) are

provided below:

Mendelian disease-derived missense pathogenicity scores:

PolyPhen-21,33 (HDIV and HVAR): Higher scores indicate higher probability of the missense mu-

tation being damaging on the protein function and structure. The default predictor is based on

a naive Bayes classifier using HumDiv (HDIV), and the other is trained using HumVar (HVAR),
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using 8 sequence-based and 3 structure-based features.

MetaLR/MetaSVM34: An ensemble prediction score based on logistic regression (LR) or support

vector machine (SVM) to classify pathogenic mutations from background SNPs in whole exome

sequencing, combining 9 prediction scores and one additional feature (maximum minor allele fre-

quency).

PROVEAN35,82: An alignment-based score to predict the damaging single amino acid substitu-

tions.

SIFT 4G5: Predicted deleterious effects of an amino acid substition to protein function based on

sequence homology and physical properties of amino acids.

REVEL6: An ensemble prediction score based on a random forest classifier trained on 6,182 mis-

sense disease mutations from HGMD30, using 18 pathogenicity scores as features.

M-CAP7: An ensemble prediction score based on a gradient boosting classifier trained on pathogneic

variants from HGMD30 and benign variants from ExAC data set38, using 9 existing pathogenicity

scores, 7 base-pair, amino acid, genomic region, and gene-based features, and 4 features from mul-

tiple sequence alignments across 99 species.

PrimateAI8: A deep-learning-based score trained on the amino acid sequence flanking the variant

of interest and the orthologous sequence alignments in other species and eliminating common mis-

sense variants identified in 6 non-human primate species.

MPC36 (missense badness, PolyPhen-2, and constraint): Logistic regression-based score to identify

regions within genes that are depleted for missense variants in ExAC data38 and incorporating

variant-level metrics to predict the impact of missense variants. Higher MPC score indicates in-

creased deleteriousness of amino acid substitutions once occured in missense-constrained regions.

MVP37: A deep-learning-based score trained on 32,074 pathogenic variants from ClinVar29, HGMD30,

and UniProt83, using 38 local context, constraint, conservation, protein structure, gene-based, and

existing pathogenicity scores as features.

Genome-wide Mendelian disease-derived pathogenicity scores:

CADD2,46: An ensemble prediction score based on a support vector machine classifier trained to

differentiate 14.7 million high-frequency human-derived alleles from 14.7 million simulated variants,

using 63 conservation, regulatory, protein-level, and existing pathogenicity scores as features. We

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2020. ; https://doi.org/10.1101/2020.01.02.890657doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.02.890657
http://creativecommons.org/licenses/by-nc-nd/4.0/


used PHRED-scaled CADD score for all possible SNVs of GRCh37.

Eigen/Eigen-PC3: Unsupervised machine learning score based on 29 functional annotations and

leveraging blockwise conditional independence between annotations to differentiate functional vs.

non-functional variants. Eigen-PC uses the lead eigenvector of the annotation covariance matrix

to weight the annotations. For both Eigen and Eigen-PC, we used PHRED-scaled scores and

combined coding and non-coding regions to make it as a single genome-wide score. Higher score

indicates more important (predicted) functional roles.

ReMM4 (regulatory Mendelian mutation): An ensemble prediction score based on a random for-

est classifier to to distinguish 406 hand-curated Mendelian mutations from neutral variants using

conservation scores and functional annotations. Higher ReMM score indicate greater potential to

cause a Mendelian disease if mutated.

NCBoost10: An ensemble prediction score based on a gradient boosting classifier trained on 283

pathogenic non-coding SNPs associated with Mendelian disease genes and 2830 common SNPs,

using 53 conservation, natural selection, gene-based, sequence context, and epigenetic features.

ncER9 (non-coding essential regulation): An ensemble prediction score based on a gradient boost-

ing classifier trained on 782 non-coding pathogenic variants from ClinVar29 and HGMD30, using 38

gene essentiality, 3D chromatin structure, regulatory, and existing pathogenicity scores as features.

AnnotBoost framework

AnnotBoost is based on gradient boosting, a machine learning method for classification; the Annot-

Boost model is trained using the XGBoost gradient boosting software31 (see URLs). AnnotBoost

requires only one input, a pathogenicity score to boost, and generates a genome-wide (probabilis-

tic) pathogenicity score (as described in Figure S1). During the training, AnnotBoost uses decision

trees, where each node in a tree splits SNPs into two classes (pathogenic and benign) using 75

coding, conserved, regulatory, and LD-related features from the baseline-LD model26 (excluding

10 MAF bins features; we obtained similar results with or without MAF bins features; see Figure

S11). We note that the baseline-LD annotations considered all low-frequency and common SNPs

thus do not have unscored SNPs. The method generates training data from the input pathogenicity

scores without using external variant data; top 10% SNPs from the input pathogenicity score are
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labeled as a positive training set, and bottom 40% SNPs are labeled as a control training set; we

obtained similar results with other training data ratios (see Figure S12). As described in ref. 31,

the prediction is based on T additive estimators (we use T = 200 to 300; see below), minimizing

the following loss objective function Lt at the t-th iteration:

Lt =

n∑
i=1

l(yi, ŷi
t−1 + ft(xi)) + γ(ft) (5)

where l is a differentiable convex loss function (which measures the difference between the prediction

(ŷi) and the target yi at the i-th instance), ft is an independent tree structure, and last term γ(ft)

penalizes the complexity of the model, helping to avoid over-fitting. The prediction (ŷi) is made by∑T
t=1 ft(xi) by ensembling outputs of multiple weak-learner trees. Odd (resp. even) chromosome

SNPs are used for training to score even (resp. odd) chromosome SNPs. The output of the classifier

is the probability of being similar to the positive training SNPs and dissimilar to the control training

SNPs.

We used the following model parameters: the number of estimators (200, 250, 300), depth of the

tree (25, 30, 35), learning rate (0.05), gamma (minimum loss reduction required before additional

partitioning on a leaf node; 10), minimum child weight (6, 8 ,10), and subsample (0.6, 0.8, 1);

we optimized parameters with hyperparamters tuning (a randomized search) with five-fold cross-

validation. Two important parameters to avoid over-fitting are gamma and learning rate; we chose

these values consistent with previous studies9,10. The model with the highest AUROCs on the

held-out data was selected and used to make a prediction.

To identify which feature(s) drives the prediction output with less bias, AnnotBoost uses Shap-

ley Addictive Explanation (SHAP41), a widely used tool to interpret complex non-linear models,

instead of built-in feature importance tool because of SHAP’s property of satisfying symmetry,

dummy player, and additivity axioms. SHAP uses the training matrix (features x SNP labels) and

the trained model to generate a signed impact of each baseline-LD features on the AnnotBoost

prediction.

To evaluate the performance of classifiers, we plotted receiver operating characteristic (ROC)

and precision-recall (PR) curves. As we train AnnotBoost by splitting SNPs into odd and even

chromosomes, we report the average out-of-sample area under the curve (AUC) of the odd and
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even chromosomes classifier. We used the threshold of 0.5 to define a class; that is, class 1 includes

SNPs with the output probability > 0.5. We caution that high classification accuracy does not

necessarily translate into conditional informativeness for common disease39.

Constructing binary annotations using top variants from published and boosted

scores

For published Mendelian disease-derived missense pathogenicity scores, we considered five different

thresholds to construct binary annotations: top 50%, 40%, 30%, 20% or 10% of scored variants.

For published scores that produce Bonferroni-significant binary annotations, we report results for

the binary annotation with largest |τ∗| among those that are Bonferroni-significant. For published

scores that do not produce Bonferroni-significant binary annotations, we report results for the

threshold with most significant τ∗ (even though not Bonferroni-significant).

For all other published pathogenicity scores, we considered the top 10%, 5%, 1%, 0.5% or

0.1% of scored variants to construct binary annotations; we used more inclusive thresholds for

published Mendelian disease-derived missense pathogenicity scores due to the small proportion of

variants scored (∼ 0.3%; see Table 1). For published scores that produce Bonferroni-significant

binary annotations, we report results for the binary annotation with largest |τ∗| among those that

are Bonferroni-significant. For published scores that do not produce Bonferroni-significant binary

annotations, we report results for the top 5% of variants (the average optimized proportion among

Bonferroni-significant binary annotations); we made this choice because (in contrast to published

Mendelian missense scores) for many other published scores the most significant τ∗ was not even

weakly significant.

For boosted pathogenicity scores, we considered the top 10%, 5%, 1%, 0.5% or 0.1% of scored

variants, as well as variants with boosted scores ≥ 0.5; we note that top 10% of SNPs does not

necessarily translate to 10% of SNPs, as some SNPs share the same score, and some genomic

regions (e.g. MHC) are excluded when running S-LDSC (see below). For boosted scores that

produce Bonferroni-significant binary annotations, we report results for the binary annotation with

largest |τ∗| among those that are Bonferroni-significant. For boosted scores that do not produce

Bonferroni-significant binary annotations, we report results for the top 5% of variants.

In all analyses, we excluded binary annotations with proportion of SNPs < 0.02% (the same
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threshold used in ref. 53), because S-LDSC does not perform well for small annotations25. We

analyzed 155 annotations derived from published scores (31 published scores (Table 2), 5 thresholds

for top x% of variants, 31*5 = 155), such that 500 hypotheses is a conservative correction in the

analysis of published scores. We also analyzed 492 annotations derived from boosted scores (82

underlying published scores including 47 baseline-LD model annotations (Table 2), 6 thresholds

for top x% of variants, 82*6 = 492), such that 500 hypotheses is a roughly appropriate correction

in the analysis of boosted scores. For simplicity, we corrected for max(155,492) ≈ 500 hypotheses

throughout. We note that, in the meta-analysis τ∗ p-values, a global FDR < 5% corresponds to

P < 0.0305; thus, our choice of P < 0.05/500 = 0.0001 is conservative.

In all primary analyses, we analyzed only binary annotations. However, we verified in a sec-

ondary analysis of the CDTS score47 that probabilistic annotations produced results similar to

binary annotations (see Figure S13).

Heterogeneity of enrichment and τ ∗ across traits

For a given annotation, we assessed the heterogeneity of enrichment and τ∗ (across 41 independent

traits) by estimating the standard deviation of the true parameter value across traits, as described

in ref. 23. We calculated the cross-trait τ∗ as the inverse variance weighted mean across the traits.

Then, we compared
∑n

i=1(τ̂i − τ̂across−trait)2/(std.error2i ) to a χ2
n null statistic, where n = 47 (41

independent traits; 47 summary statistics; see Table S1). We repeated analysis for heritability

enrichment by using enrichments and standard errors of enrichment estimates from S-LDSC.

Overlap between gene score quintiles informed by input pathogenicity scores and

165 reference gene sets

For a given pathogenicity score, we scored genes based on the maximum pathogenicity score of

linked SNPs, where SNPs were linked to a unique nearest gene using ANNOVAR84: 9,997,231

SNP-gene links, decreasing to 5,059,740 S2G links after restricting to 18,117 genes with a protein

product (according to HGNC85) that have an Ensembl gene identifier (ENSG ID). Gene scores

are reported in Table S9. We constructed quintiles of genes scores and assessed gene-level excess
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fold overlap with 165 reference gene sets of biological importance (see below; summarized in Table

S10). We note that this analysis used continuous-valued pathogenicity scores, instead of binary

annotations.

The 165 reference gene sets (Table S10) reflected a broad range of gene essentiality86 metrics,

as outlined in ref. 53. They included known phenotype-specific Mendelian disease genes19, con-

strained genes38,87–89, essential genes43,44,90, specifically expressed genes across GTEx tissues78,

dosage outlier genes across GTEx tissues91, genes with a ClinVar pathogenic or likely pathogenic

variants29, genes in the Online Mendelian Inheritance in Man (OMIM92), high network connectivity

genes in different gene networks53,93, genes with more independent SNPs53, known drug targets94,

human targets of FDA-approved drugs95, eQTL-deficient genes96,97, and housekeeping genes98; a

subset of these gene sets were previously analyzed in ref. 53.

As defined in our previous study53, the excess fold overlap of gene set 1 and gene set 2 is defined

as follows:

excess overlap(gene set 1, gene set2) = Pd/Ptot (6)

where Pd = |gene set 1 ∩gene set 2|
|gene set 2| and Ptot = |gene set 1∩all protein-coding genes|

|all protein-coding genes| . The standard error for

the excess overlap is similarly scaled:

SE =

√
Pd(1− Pd)
|gene set 2|

/Ptot (7)

When there is excess overlap, the excess fold overlap is > 1; when there is depletion, the excess

fold overlap is < 1. We assessed the odds ratio and significance in the difference between the excess

overlap between the boosted gene quintile and the published gene quintile by the Fisher’s exact

test.

Evaluating heritability model fit using loglSS

Given a heritability model (e.g. the baseline-LD model, combined joint model, or combined

marginal model), we define the ∆loglSS of that heritability model as the loglSS of that heritability
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model minus the loglSS of a model with no functional annotations (baseline-LD-nofunct; 17 LD

and MAF annotations from the baseline-LD model26), where loglSS
57 is an approximate likelihood

metric that has been shown to be consistent with the exact likelihood from restricted maximum

likelihood (REML; see URLs). We compute p-values for ∆loglSS using the asymptotic distribution

of the Likelihood Ratio Test (LRT) statistic: −2 loglSS follows a χ2 distribution with degrees of

freedom equal to the number of annotations in the focal model, so that −2∆loglSS follows a χ2

distribution with degrees of freedom equal to the difference in number of annotations between the

focal model and the baseline-LD-nofunct model. We used UK10K as the LD reference panel and

analyzed 4,631,901 HRC (haplotype reference panel99) well-imputed SNPs with MAF ≥ 0.01 and

INFO ≥ 0.99 in the reference panel; We removed SNPs in the MHC region, SNPs explaining > 1%

of phenotypic variance and SNPs in LD with these SNPs.

We computed ∆loglSS for 4 heritability models:

• baseline-LD: annotations from the baseline-LD model25,26 (86 annotations)

• baseline-LD+joint: baseline-LD model + 11 jointly significant annotations (3 published, 8 boosted;

97 annotations)

• baseline-LD+marginal-stringent: baseline-LD model + 19 marginally significant annotations with

conditional τ∗ > 0.5 (105 annotations)

• baseline-LD+marginal: baseline-LD model + 64 marginally significant annotations (11 published,

53 boosted; 150 annotations)

Classification of fine-mapped disease SNPs

We assessed the classification accuracy of fine-mapped disease SNPs. Here, we consider only low-

frequency and common SNPs (MAF ≥ 0.5%) and report the total number of unique SNPs (regard-

less MAF). we assessed the accuracy of classifying five different SNP sets (summarized in Table

S24): (1) 7,333 fine-mapped for 21 autoimmune diseases from Farh et al.59 (of 7,747 total SNPs;

95% credible sets), (2) 3,768 fine-mapped SNPs for inflammatory bowel disease from Huang et al.60

(of 4,311 total SNPs; 95% credible sets), (3) 1,851 SNPs (of 2,225 SNPs, spanning 3,025 SNP-trait

pairs; stringently defined by causal posterior probability ≥ 0.95) functionally-informed fine-mapped

for 49 UK Biobank traits from Weissbrod et al.61, (4) 1,379 (of 1,853 total SNPs with causal pos-
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terior probability ≥ 0.95) non-functionally-informed fine-mapped SNPs for 49 UK Biobank traits

from Weissbrod et al.61, and (5) 14,807 SNPs from the NHGRI GWAS catalog62,63 (2019-07-12

version; p-value < 5e-8; we note only about 5% of GWAS SNPs are expected to be causal59).

For each of these five SNP sets, we matched 10 control SNPs for each positive fine-mapped

SNP by matching LD, MAF, and genomic element, as in previous studies9,10,47; we note that these

studies emphasized the need for matching the relative genomic region distribution in performance

evaluation. MAF was based on the same reference panel (European samples from 1000 Genomes

Phase 328), and LD was estimated by applying S-LDSC on the all SNPs annotation (‘base’). To

identify the genomic element of each SNPs and the nearest gene, we annotated these five sets of

SNPs using ANNOVAR84 using the gene-based annotation. For assigning the genomic element to

each SNP, we used the default ANNOVAR prioritization rule for gene-based annotations: exonic =

splicing (defined by 10bp of a splicing junction) > ncRNA > UTR5 = UTR3 > intronic > upstream

= downstream > intergenic (see URLs for more detailed definition of each genomic element). When

SNP (in the intergenic or intronic region) is associated with overlapping genes, the nearest protein-

coding gene (based on the distance to the TSS or TSE) is retained. To obtain 10 control SNPs

for each positive fine-mapped SNP, we first searched the control SNPs within the same genomic

element and the same chromosome of that positive SNP; then kept the 10 control SNPs with the

most similar LD and MAF (based on the average of rank(LD difference from the positive SNP) and

rank(MAF difference from the positive SNP)). In secondary analyses, we instead retained a unique

most closely matched control SNP.

Given positive and control SNP sets, we computed the AUPRCs (and AUROCs) by an individual

score (each of 82 published and 82 boosted scores). We refer this as a single-score analysis. We

used AUPRC as a primary metric, as AUPRC is more robust for imbalanced data100. We assessed

the significance of the difference between two AUPRCs using 1,000 samples bootstrapped standard

errors then performed 2-sample t-test; variance of AUPRCs (and AUROCs) from 1,000 samples

was sufficiently small. We note this single-score analysis measures an improvement between two

scores, where one score is derived from the other (e.g. our boosted score from published score).

Also, we performed a multi-score analysis. For each heritability model, we aggregated scores by

training a gradient boosting model (features: aggregated scores, positive label: each of five sets of

SNPs, control label: LD-, MAF-, and genomic-element-matched control sets of SNPs); we used odd
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(resp. even) chromosomes as training data to make predictions for even (resp. odd) chromosomes.

We used the same training parameters as AnnotBoost (carefully selected to avoid over-fitting,

consistent with the previous study9,10) with hyperparameters tuned using a randomized search

method with five-fold cross-validation. We report the average AUPRC and AUROC of odd and

even chromosome classifiers. We also computed ∆AUPRC as AUPRC of a given model minus

AUPRC of baseline-LD-nofunct model. We note that no disease data (five sets of SNPs used as

labels) was re-used in these analyses, as AnnotBoost uses only the input pathogenicity scores to

generate positive and negative sets of training data. We assessed the significance of the difference as

described above. To identify which feature(s) drives the prediction output, we applied SHAP41 to

generate a signed impact of each baseline-LD, published, and boosted score features on classifying

fine-mapped disease SNPs.
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URLs

AnnotBoost source code, published and boosted pathogenicity scores and binary annotations, and

SHAP results: https://data.broadinstitute.org/alkesgroup/LDSCORE/Kim_annotboost

S-LDSC software: https://github.com/bulik/ldsc

SumHer software for computing loglSS : http://dougspeed.com/sumher/

XGBoost: https://github.com/dmlc/xgboost

SHAP (SHapley Additive exPlanations) feature importance: https://github.com/slundberg/

shap

dbNSFP database: https://sites.google.com/site/jpopgen/dbNSFP

CADD scores: https://cadd.gs.washington.edu/download

Eigen/Eigen-PC scores: https://xioniti01.u.hpc.mssm.edu/v1.1/

ReMM scores: https://charite.github.io/software-remm-score.html

NCBoost scores: https://github.com/RausellLab/NCBoost

ncER scores: https://github.com/TelentiLab/ncER_datasets

CDTS scores: http://www.hli-opendata.com/noncoding

CCR scores: https://s3.us-east-2.amazonaws.com/ccrs/ccr.html/

DeepSEA (2018 version) scores: https://github.com/FunctionLab/ExPecto

DIS scores: Table S1. in ref. 51.

pLI scores: https://gnomad.broadinstitute.org/downloads

LIMBR scores: Table S1 in ref. 52.

Saha, Greene, InWeb, Sonawane network annotations:

https://data.broadinstitute.org/alkesgroup/LDSCORE/Kim_pathwaynetwork/

EDS scores: Table S1 in ref. 54.

165 reference gene sets: https://github.com/samskim/networkconnectivity

baseline-LD (v.2.1) annotations: https://data.broadinstitute.org/alkesgroup/LDSCORE/

Ensembl biomart: https://www.ensembl.org/biomart

HapMap: ftp://ftp.ncbi.nlm.nih.gov/hapmap/

GWAS Catalog (Release v1.0): https://www.ebi.ac.uk/gwas.

1000 Genomes Project Phase 3 data: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/
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20130502

ANNOVAR: http://annovar.openbioinformatics.org/

PLINK software: https://www.cog-genomics.org/plink2

BOLT-LMM summary statistics for UK Biobank traits: https://data.broadinstitute.org/

alkesgroup/UKBB

UK Biobank: http://www.ukbiobank.ac.uk/

UK Biobank Genotyping and QC Documentation: http://www.ukbiobank.ac.uk/wp-content/

uploads/2014/04/UKBiobank_genotyping_QC_documentation-web.pdf
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Tables

Score Description
Coverage

(% SNPs scored)
Ref.

PolyPhen-2 Impact of missense variants using protein sequence and structure using HumDiv 0.28% 1,33
PolyPhen-2-HVAR Impact of missense variants using protein sequence and structure using HumVar 0.28% 1,33
MetaLR Deleterious missense mutations using ensemble scoring (logistic regression) 0.32% 34
MetaSVM Deleterious missense mutations using ensemble scoring (support vector machine) 0.32% 34
PROVEAN Impact of an amino acid change on protein function 0.31% 35,82
SIFT 4G Impact of an amino acid change on protein function 0.31% 5
REVEL Pathogenic missense variants using ensemble scoring 0.32% 6
M-CAP Pathogenic rare missense variants 0.03% 7
PrimateAI Impact of missense variants using deep neural networks 0.26% 8
MPC Regional missense constraint 0.10% 36
MVP Impact of missense variants using deep neural networks 0.29% 37

CADD Predicted deleterious variants using ensemble scoring 100% 2,46
Eigen Putatively causal variants using unsupervised learning 83.79% 3
Eigen-PC Putatively causal variants using unsupervised learning using the lead eigenvector 83.79% 3
ReMM Pathogenic regulatory variants using ensemble scoring 100% 4
NCBoost Pathogenic non-coding variants using ensemble scoring 28.55% 10
ncER Essential regulatory variants using ensemble scoring 61.94% 9

Table 1. 11 Mendelian disease-derived missense and 6 genome-wide Mendelian disease-derived
pathogenicity scores. For each of 17 Mendelian disease-derived pathogenicity scores analyzed, we provide a
description and report the coverage (% of SNPs scored) and corresponding reference. The first 11 annotations
are scores for missense variants, and the last 6 annotations are genome-wide scores. Annotations are ordered
first by type and then by the year of publication.

Score # scores
# marginally significant

annotations
# significant annotations
in a combined joint model

published boosted published boosted

Mendelian missense 11 2* 10 1* 2

Genome-wide Mendelian 6 3 6 2 3

Additional scores 18 6** 13 0** 0

Baseline-LD model annotations 47 n/a 24 n/a 3

Table 2. Summary of informativeness for common disease of annotations derived from 82 pub-
lished scores and corresponding boosted scores For each category of scores, we report the number
of scores; the number of marginally conditionally informative annotations (S-LDSC τ∗ p < 0.0001, condi-
tional on the baseline-LD model) (baseline-LD+marginal model); and the number of jointly conditionally
informative annotations in a combined joint model (S-LDSC τ∗ p < 0.0001 and |τ∗| ≥ 0.25, conditional on
the baseline-LD model and each other) (baseline-LD+joint model). *Based on 9/11 published Mendelian
missense scores analyzed, as binarized annotations were too small to analyze for the remaining 2 published
Mendelian missense scores. **Based on 16/18 published additional scores analyzed, as binarized annotations
were too small to analyzed for the remaining 2 published additional scores.
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Figures

Figure 1. Informativeness for common disease of binary annotations derived from 11 Mendelian
disease-derived missense scores and corresponding boosted scores. We report (A) heritability
enrichment of binary annotations derived from published and boosted Mendelian disease-derived missense
scores, meta-analyzed across 41 independent traits; (B) conditional τ∗ values, conditioning on the baseline-
LD model (for annotations derived from published scores) or the baseline-LD model and corresponding
published annotations (for annotations derived from boosted scores). We report results for 10 Mendelian
disease-derived missense scores (of 11 analyzed) for which annotations derived from published and/or boosted
scores were conditionally significant; the published M-CAP score spanned too few SNPs to be included in
the S-LDSC analysis. The percentage under each bar denotes the proportion of SNPs in the annotation;
the proportion of top SNPs included in each annotation was optimized to maximize informativeness (largest
|τ∗| among Bonferroni-significant annotations, or most significant p-value if no annotation was Bonferroni-
significant). Error bars denote 95% confidence intervals. In panel (B), * denotes conditionally significant
annotations. Numerical results are reported in Table S2. Results for standardized enrichment, defined as
enrichment times the standard deviation of annotation value (to adjust for annotation size), are reported in
Table S25.
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Figure 2. Informativeness for common disease of binary annotations derived from 6 genome-
wide Mendelian disease-derived scores and corresponding boosted scores. We report (A) her-
itability enrichment of binary annotations derived from published and boosted genome-wide Mendelian
disease-derived scores, meta-analyzed across 41 independent traits; (B) conditional τ∗ values, conditioning
on the baseline-LD model (for annotations derived from published scores) or the baseline-LD model and
corresponding published annotations (for annotations derived from boosted scores). We report results for 6
genome-wide Mendelian disease-derived scores (of 6 analyzed) for which annotations derived from published
and/or boosted scores were conditionally significant. The percentage under each bar denotes the propor-
tion of SNPs in the annotation; the proportion of top SNPs included in each annotation was optimized to
maximize informativeness (largest |τ∗| among Bonferroni-significant annotations, or top 5% if no annotation
was Bonferroni-significant; top 5% was the average optimized proportion among significant annotations).
Error bars denote 95% confidence intervals. In panel (B), * denotes marginally conditionally significant
annotations. Numerical results are reported in Table S13. Results for standardized enrichment, defined as
enrichment times the standard deviation of annotation value (to adjust for annotation size), are reported in
Table S25.
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Figure 3. Informativeness for common disease of binary annotations derived from 18 additional
genome-wide scores + 47 baseline-LD model annotations and corresponding boosted scores.
We report (A) heritability enrichments of binary annotations derived from published and boosted additional
genome-wide scores, meta-analyzed across 41 independent traits; (B) conditional τ∗ values, conditioning
on the baseline-LD model and 8 Roadmap annotations (for annotations derived from published scores) or
the baseline-LD model, 8 Roadmap annotations, and corresponding published annotations (for annotations
derived from boosted scores); (C) heritability enrichments of binary annotations derived from published and
boosted baseline-LD model annotations; and (D) conditional τ∗ values of binary annotations derived from
published and boosted baseline-LD model annotations. In (A) and (B), we report results for the 10 most
informative additional genome-wide scores (of 18 analyzed). In (C) and (D), we report results for the 10
most informative baseline-LD model annotations (of 47 analyzed). The percentage under each bar denotes
the proportion of SNPs in the annotation; the proportion of top SNPs included in each annotation was
optimized to maximize informativeness (largest |τ∗| among Bonferroni-significant annotations, or top 5% if
no annotation was Bonferroni-significant; top 5% was the average optimized proportion among significant
annotations). Error bars denote 95% confidence intervals. In panels (B) and (D), * denotes conditionally
significant annotations. Numerical results are reported in Table S16. Results for standardized enrichment,
defined as enrichment times the standard deviation of annotation value (to adjust for annotation size), are
reported in Table S25.
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Figure 4. Informativeness for common disease of 11 jointly significant binary annotations from
combined joint model. We report (A) heritability enrichment of 11 jointly significant binary annotations,
meta-analyzed across 41 independent traits; (B) joint τ∗ values, conditioned on the baseline-LD model,
8 Roadmap annotations, and each other. We report results for the 11 jointly conditionally informative
annotations in the combined joint model (S-LDSC τ∗ p < 0.0001 and |τ∗| ≥ 0.25). The percentage under
each bar denotes the proportion of SNPs in the annotation. Error bars denote 95% confidence intervals.
Numerical results are reported in Table S21. Results for standardized enrichment, defined as enrichment
times the standard deviation of annotation value (to adjust for annotation size), are reported in Table S25.
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Figure 5. Evaluation of improvement in heritability model fit. We report (A) average ∆loglSS

(an approximate model likelihood metric57) across 30 UKBB traits; (B) ∆loglSS of the baseline-LD and
baseline-LD+marginal models for each trait. ∆loglSS is computed as loglSS of a given model - loglSS of a
model with no functional annotations (baseline-LD-nofunct model: MAF/LD annotations only). In panel
(A), k denotes the number of new annotations beyond the baseline-LD model. Numerical results are reported
in Table S22.
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Supplementary tables

See Excel file for all supplementary tables. Titles and captions are provided below.

Table S1. List of 41 independent diseases and complex traits analyzed. Analogous to a previous
study32, we considered 89 GWAS summary association statistics, including 34 traits from publicly
available sources and 55 traits from the UK Biobank (up to N = 459K); summary association statistics
were computed using BOLT-LMM v2.3101,102. We obtained 41 independent traits (average N = 320K)
with genetic correlation less than 0.9 (computed using cross-trait LDSC103). For 6 traits, we analyzed two
different sources (both publicly available and UK Biobank), resulting in total 47 summary statistics
analyzed. For each trait, we report a trait identifier, trait description, reference, sample size, and
heritability z-score.

Table S2. Informativeness for common disease of binary annotations derived from 11
Mendelian disease-derived missense scores and corresponding boosted scores. We applied
S-LDSC, conditional on the baseline-LD model (for annotations derived from published scores) or the
baseline-LD model and corresponding published annotations (for annotations derived from boosted scores)
and meta-analyzed results across 41 independent traits. We report meta-analyzed enrichments and τ∗.

Table S3. Correlations between published scores and genome-wide boosted scores We report
Pearson correlation (r) between published scores and genome-wide boosted scores for (A) Mendelian
disease-derived missense scores, (B) genome-wide Mendelian disease-derived scores, (C) other scores, and
(D) all scores. We regard originally unscored SNPs as having a score of zero.

Table S4. Predictive accuracy of AnnotBoost in out-of-sample predictions of input published
scores. We evaluated the AnnotBoost model classification performance based on AUROC and AUPRC on
a 20% held-out testing set (consisted of odd (resp. even) chromosome SNPs) through the 5-fold
cross-validation. For each boosted score, we reported the average AUROCs of odd-chr and even-chr model.

Table S5. Expected heritability enrichments of binary annotations derived from boosted
Mendelian disease-derived missense scores with significantly negative τ∗. We report the
heritability enrichment that is expected based on the boosted annotation’s overlap with the baseline-LD
model and corresponding published annotations, by assuming that the τ of the annotation is zero. In
general, expected enrichments were significantly less than observed enrichments.

Table S6. Informativeness for common disease of binary annotations derived from boosted
Mendelian disease-derived missense scores, restricted to non-coding regions. We restricted
boosted Mendelian missense annotations (whose top X% variants are already optimized) to non-coding
SNPs and applied S-LDSC (conditioning on the baseline-LD model and corresponding published
annotations). We report meta-analyzed enrichments, τ , and τ∗ across 41 independent traits; for
meta-analysis, we used the same weights from the meta-analysis of the unrestricted boosted annotations.
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Table S7. Trait-specific informativeness for common disease of binary annotations. Instead of
meta-analyzing S-LDSC results across traits, we report the trait-specific results for 5,311 annotation-trait
pairs (113 annotations x 47 traits; 113 annotations whose proportions of top SNPs were optimized). We
indicated 152 annotation-trait pairs that were significant at FDR < 5% on τ∗ p-value.

Table S8. Heterogeneity of heritability enrichment and τ∗ across traits. We report the
heterogeneity p-value of heritability enrichment and τ∗ across 41 traits, for each of annotations analyzed.

Table S9. Gene scores derived from published and boosted pathogenicity scores. We report
genes scores (maximum pathogenicity score of linked SNPs) for genes linked to each of 203 scores analyzed
(consisting of 35 published, 82 boosted, 86 baseline-LD annotations).

Table S10. 165 reference gene sets of biological importance. We report (A) gene set’s short
description, number of genes, and reference; (B) ENSG ID for each of 165 gene sets (limited to
protein-coding genes).

Table S11. Excess overlap of 165 reference gene sets in each quintile bin of gene scores
derived from input pathogenicity scores. We report (A) the excess fold overlap of genes in each
quintile bin of both published and boosted gene scores; (B) the standard error of the excess overlap; (C)
the Pearson correlation (r) among the gene scores; and (D) the Spearman correlation (ρ) among the gene
scores.

Table S12. Odds ratios for fold overlaps by gene quintiles from boosted scores and
corresponding gene quintiles from published scores in 165 reference gene sets. We computed
the significance of the association between gene score quintiles from each of 82 published-boosted score
pairs using Fisher’s exact test. We report the odds ratios and p-value for (A) fifth quintile (top 20%) gene
sets, (B) fourth quintile gene sets, (C) third quintile gene sets, (D) second quintile gene sets, and (E) first
quintile (bottom 20%) gene sets.

Table S13. Informativeness for common disease of binary annotations derived from 6
genome-wide Mendelian disease-derived scores and corresponding boosted scores. We applied
S-LDSC, conditional on the baseline-LD model (for annotations derived from published scores) or the
baseline-LD model and corresponding published annotations (for annotations derived from boosted scores)
and meta-analyzed results across 41 independent traits. We report meta-analyzed enrichments and τ∗.

Table S14. Informativeness for common disease of binary annotations derived from boosted
genome-wide Mendelian pathogenicity scores, restricted to previously unscored variants. We
restricted boosted Mendelian annotations (whose coverage is < 100%; see Table 1) to previously unscored
variants and applied S-LDSC (conditioning on the baseline-LD model and corresponding published
annotations). We report meta-analyzed enrichments, τ , and τ∗ across 41 independent traits; for
meta-analysis, we used the same weights from the meta-analysis of the unrestricted boosted annotations.
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Table S15. Summary of 18 additional genome-wide scores and 47 baseline-LD model
annotations. We provide a description of 18 additional genome-wide scores and 47 baseline-LD model
annotations. These include 2 constraint-related annotations, 9 predicted regulatory annotations (7
epigenetic states and 2 predicted transcriptional/post-transcriptional regulatory effects), 7 gene-based
annotations, and 47 annotations from the baseline-LD model. We report the coverage, out of 9,997,231
common SNPs we considered; we note that the baseline-LD model annotations consider genome-wide SNPs
and do not have any missingness (see Methods). For binary annotations, the proportion of SNPs with
value 1 is considered as coverage. Annotations are first ordered by the type and then by the year of
publication. base (all SNPs), 10 MAF bins, and 6 LD-related annotations constitute baseline-LD-nofunct
model (model with no functional annotations).

Table S16. Informativeness for common disease of binary annotations derived from 18
additional genome-wide scores + 47 baseline-LD model annotations and corresponding
boosted scores. We applied S-LDSC, conditional on the baseline-LD model and 8 Roadmap annotations
(for annotations derived from published scores) or the baseline-LD model, 8 Roadmap annotations, and
corresponding published annotations (for annotations derived from boosted scores) and meta-analyzed
results across 41 independent traits. We report meta-analyzed enrichments and τ∗.

Table S17. Informativeness for common disease of binary annotations derived from boosted
versions of additional genome-wide scores and baseline-LD model annotations, restricted to
previously unscored variants. We restricted boosted additional annotations (whose coverage is <
100%; see Table S15) to previously unscored variants and applied S-LDSC (conditioning on the
baseline-LD model and corresponding published annotations). We report meta-analyzed enrichments, τ ,
and τ∗ across 41 independent traits; for meta-analysis, we used the same weights from the meta-analysis of
the unrestricted boosted annotations.

Table S18. Informativeness for common disease of binary annotations derived from 18
additional genome-wide scores + 47 baseline-LD model annotations and corresponding
boosted scores without conditioning on 8 Roadmap annotations. We applied S-LDSC, conditional
on the baseline-LD model (for annotations derived from published scores) or the baseline-LD model and
corresponding published annotations (for annotations derived from boosted scores) and meta-analyzed
results across 41 independent traits. We report meta-analyzed enrichments and τ∗.

Table S19. Informativeness for common disease of marginally conditionally significant
annotations derived from Mendelian disease-derived missense scores and genome-wide
Mendelian disease-derived scores and corresponding boosted scores, when additionally
conditioning on 8 Roadmap annotations. We applied S-LDSC to marginally significant Mendelian
missense and genome-wide Mendelian annotations, conditioning on the baseline-LD model, 8 Roadmap
annotations, and published annotations (for boosted annotations), and meta-analyzed results across 41
independent traits. We report meta-analyzed enrichments and τ∗.
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Table S20. Genome-wide correlations among functional annotations. We report Pearson
correlation (r) (A) among 11 jointly significant annotations, (B) between 11 jointly significant annotations
and functional annotations from the baseline-LD model, and (C) among all 198 annotations (85
baseline-LD annotations (excluding ‘base’ annotation; all SNPs annotated with 1), 31 annotations derived
from published scores, and 82 boosted annotations).

Table S21. Informativeness for common disease of 11 jointly significant binary annotations in
a combined joint model. We applied S-LDSC, conditioned on the baseline-LD model, 8 Roadmap
annotations, and each other, and meta-analyzed results across 41 independent traits. We report proportion
of SNPs, meta-analyzed enrichments, and τ∗.

Table S22. Evaluation of heritability model fit using loglSS. We report loglSS , ∆loglSS , and AIC
for GCTA (number of annotations = 1), baseline-LD-nofunct (17), baseline-LD (86), baseline-LD+joint
(97), baseline-LD+marginalτ∗ ≥0.5 (105), and baseline-LD+marginal model (150), after applying
SumHer57 across 30 UKBB summary statistics. ∆loglSS is computed as loglSS of a given model - loglSS of
baseline-LD-nofunct model. AIC (to account for increase in model complexity) is computed as 2*number of
annotations - 2loglSS , as described in ref. 57. We also report the p-value on the differences in ∆loglSS .

Table S23. Classification of fine-mapped disease SNPs: multi-score analysis. We report
AUROCs and AUPRCs of different combined scores in classifying 5 different independent SNP sets: 7,333
fine-mapped for 21 autoimmune diseases from Farh et al.59, 3,768 fine-mapped SNPs for inflammatory
bowel disease from Huang et al.60, 1,851 fine-mapped SNPs for 47 traits from UK Biobank61 (stringently
defined by causal posterior probability ≥ 0.95; both functionally-informed and non functionally-informed),
and 14,807 GWAS significant SNPs62,63 (from 10 LD-, MAF-, and genomic element-matched control SNPs
as well as the most matched low frequency and common SNPs in the reference panel28).

Table S24. Summary of fine-mapped SNPs analyzed and results of single-score classification
analysis. We report the reference SNP ID (RSID) of four fine-mapped SNP sets and GWAS significant
SNPs and their corresponding control SNPs that are found in the reference panel (MAF ≥ 0.5%). We also
report their short description and the number of unique SNPs of 10 matched control SNPs and most
matched control SNPs. We also report the summary of single-score classification analysis, including the
number of scores, where boosted scores perform better than the corresponding published scores, and the
average AUROC and AUPRC improvement. Numeric results for the single-score analysis can be found in
Table S25.

Table S25. Classification of fine-mapped disease SNPs: single-score analysis. We report
AUROCs and AUPRCs of published and boosted scores in classifying 5 different independent SNP sets:
7,333 fine-mapped for 21 autoimmune diseases from Farh et al.59, 3,768 fine-mapped SNPs for
inflammatory bowel disease from Huang et al.60, 1,851 fine-mapped SNPs for 47 traits from UK Biobank61

(stringently defined by causal posterior probability ≥ 0.95; both functionally-informed and non
functionally-informed), and 14,807 GWAS significant SNPs62,63 ((A) from 10 LD-, MAF-, and genomic
element-matched control SNPs as well as (B) the most matched low frequency and common SNPs in the
reference panel28). We report the S-LDSC results (including standardized enrichments) of derived
annotations based on top prioritized SNPs side by side. The summary of single-score analysis can be found
in Table S24.
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Table S26. Correlation between S-LDSC metrics and AUROCs from single-score analysis of
classifying fine-mapped SNPs. For (A) 75 published annotations (excluding small annotations with
proportion of SNPs < 0.02%) and (B) 82 boosted annotations, we computed Pearson correlation (r)
between different S-LDSC metrics (standardized enrichment, τ∗) and AUROCs on classifying fine-mapped
SNPs. We note AUROCs are computed on all SNPs, and S-LDSC results correspond to results on top
prioritized SNPs. We further note it is 75 published annotations, not 82, because 7 scores were excluded in
S-LDSC analysis due to small annotation size for 4 scores and not comparable enrichments for 3
continuous-valued baseline-LD annotations.

Table S27. Informativeness of the baseline-LD model before and after adding 11 jointly
significant binary annotations We applied S-LDSC to (A) the baseline-LD model + 8 Roadmap
annotations and (B) the baseline-LD model + 8 Roadmap annotations + 11 jointly significant annotations
and meta-analyzed results across 41 independent traits. We report proportion of SNPs, meta-analyzed
enrichments, and τ∗.
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Supplementary figures

Figure S1. Overview of AnnotBoost framework. We describe the AnnotBoost model training. Annot-
Boost requires only one input, a pathogenicity score to boost, and generates a genome-wide (probabilistic)
boosted pathogenicity score. From the input pathogenicity score (e.g. CADD as shown here), we built a
classification model, each for even and odd chromosome SNPs using 75 baseline-LD annotations25,26 as fea-
tures. We assessed informativeness of annotations derived from published scores (input) and boosted scores
(output) for common disease using S-LDSC78.
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Figure S2. Feature importance of boosted Mendelian disease-derived missense pathogenicity
scores. We applied SHAP41 to assess which features from the baseline-LD drives the prediction of 11
boosted missense scores by AnnotBoost. We report the signed impact of top 20 features for each of 11
predictive models: (A) PolyPhen-2, (B) PolyPhen-2-HVAR, (C) MetaLR, (D) MetaSVM, (E) PROVEAN,
(F) SIFT 4G, (G) REVEL, (H) M-CAP, (I) Primate-AI, (J) MPC, and (K) MVP. We obtained similar
results for even/odd chromosome classifiers; we report odd chromosome results here (see full results online;
see URLs).
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Figure S3. Excess overlap between gene scores derived from input pathogenicity scores and
165 reference gene sets of biological importance. We report the excess overlap of genes linked to
published and boosted scores in existing gene sets of biological importance (summarized in Table S10):
(A) PolyPhen-21,33 gene quintiles from published and boosted scores, (B) CADD2,46 gene quintiles from
published and boosted scores, and (C) CCR48 gene quintiles from published and boosted scores. Error bars
represent 95% confidence intervals. Numeric results for excess overlap and correlaton among gene scores are
shown in Table S11. Numeric results for odds ratios and p-values from Fisher’s exact test between published
gene quintiles and boosted gene quintiles are reported in Table S12.
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Figure S4. Feature importance of boosted genome-wide Mendelian disease-derived pathogenic-
ity scores. We applied SHAP41 to assess which features from the baseline-LD drives the prediction of 11
boosted missense scores by AnnotBoost. We report the signed impact of top 20 features for each of 6 genome-
wide Mendelian disease-derived pathogenicity scores: (A) CADD, (B) Eigen, (C) Eigen-PC, (D) ReMM, (E)
NCBoost, and (F) ncER. We obtained similar results for even/odd chromosome classifiers; we report odd
chromosome results here (see full results online; see URLs).
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Figure S5. Feature importance of boosted scores derived from 18 additional genome-wide
scores and 47 baseline-LD model annotations. We applied SHAP41 to assess which features from
the baseline-LD drives the prediction of 18 boosted additional scores by AnnotBoost. We report the signed
impact of top 20 features for each of 18 additional scores: (A) CDTS, (B) CCR, (C-I) DeepSEA-CTCF,
-DNase, -H3K27ac, -H3K4me1, -H3K4me2, -H3K4me3, -H3K9ac, (J-K) DIS-DNA, -RNA, (L) pLI, (M)
LIMBR, (N-Q) Gene network connectivity-Saha, Greene, InWeb, Sonawane, (R) EDS. We obtained similar
results for even/odd chromosome classifiers; we report odd chromosome results here (see full results online;
see SHAP results of 47 boosted baseline-LD scores online; see URLs).
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Figure S6. Classification of fine-mapped disease SNPs using aggregated scores. We report the
true positive rate, false positive rate, precision, and recall along with the classification accuracy (AUPRCs and
AUROCs) of four aggregated scores on classifying 5 different independent SNP sets: (A, F) 7,333 fine-mapped
for 21 autoimmune diseases from Farh et al.59, (B, G) 3,768 fine-mapped SNPs for inflammatory bowel disease
from Huang et al.60, (C, H) 1,851 fine-mapped SNPs for 47 traits from UK Biobank61, (D, I) 1,379 fine-
mapped SNPs without functional data for 47 traits from UK Biobank61, and (E, J) 14,807 GWAS significant
SNPs62,63, from 10 LD-, MAF-, and genomic element-matched control SNPs. We report the average AUPRCs
and AUROCs of even/odd-chromosome classifiers. Differences for AUROCs and AUPRCs attained between
(1) baseline-LD and baseline-LD+joint model, (2) baseline-LD and baseline-LD+marginal model, and (3)
baseline-LD+joint and baseline-LD+marginal were largely significant (p-val < 0.008). Numerical results,
including results using the most matched control SNPs (instead of 10), are reported in Table S23.
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Figure S7. Feature importance of baseline-LD+joint model in predicting fine-mapped or
GWAS significant SNPs. We applied SHAP41 to assess which features from the baseline-LD+joint
drive the prediction of fine-mapped or GWAS significant SNPs from 10 matched control SNPs for each
positive SNP. We report the signed impact of top 20 feature for each of 4 fine-mapped SNPs and GWAS
significant SNPs: (A) Farh et al., (B) Huang et al., (C) Weissbrod et al., (D) Weissbrod et al. (fine-mapped
without functional data), (E) GWAS significant SNPs. We obtained similar results for even/odd chromosome
classifiers; we report odd chromosome results here (see full results online; see URLs).

63

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2020. ; https://doi.org/10.1101/2020.01.02.890657doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.02.890657
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S8. Feature importance of baseline-LD+marginal model in predicting fine-mapped or
GWAS significant SNPs. We applied SHAP41 to assess which features from the baseline-LD+marginal
drive the prediction of fine-mapped or GWAS significant SNPs from 10 matched control SNPs for each
positive SNP. We report the signed impact of top 20 feature for each of 4 fine-mapped SNPs and GWAS
significant SNPs: (A) Farh et al., (B) Huang et al., (C) Weissbrod et al., (D) Weissbrod et al. (fine-mapped
without functional data), (E) GWAS significant SNPs. We obtained similar results for even/odd chromosome
classifiers; we report odd chromosome results here (see full results online; see URLs).
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Figure S9. Classification of fine-mapped disease SNPs in single-score analysis using published
and boosted scores. We report the classification accuracy (AUROC and AUPRC) of each of the 82
boosted scores compared to the corresponding published score. We report AUROC (resp. AUPRC) on (A,
F) 7,333 fine-mapped for 21 autoimmune diseases from Farh et al.59, (B, G) 3,768 fine-mapped SNPs for
inflammatory bowel disease from Huang et al.60, (C, H) 1,851 fine-mapped SNPs for 47 traits from UK
Biobank61, (D, I) 1,379 fine-mapped SNPs without functional data for 47 traits from UK Biobank61, and
(E, J) 14,807 GWAS significant SNPs62,63 from 10 LD-, MAF-, and genomic element-matched control SNPs.
Numerical results, including results using the most matched control SNPs (instead of 10), are reported in
Table S25
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Figure S10. Informativeness of the baseline-LD model before and after adding 11 jointly sig-
nificant binary annotations We report meta-analyzed τ∗ of the baseline-LD model annotations, across
41 independent traits, from two different S-LDSC analyses: (1) the baseline-LD model + 8 Roadmap anno-
tations and (2) the baseline-LD model + 8 Roadmap annotations + 11 jointly significant annotations. Error
bars represent 95% confidence intervals. Numerical results are reported in Table S27.
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Figure S11. Informativeness for common disease of binary annotations derived from boosted
CDTS scores with or without MAF features. We applied AnnotBoost to CDTS annotation using
all baseline-Ld features and all features excluding MAF bins. Then, we applied S-LDSC, conditioning on
published binary CDTS annotations (five thresholds from 90th percentile to 99.9th percentile) and baseline-
LD model annotations; and meta-analyzed results across 41 independent traits. We report meta-analyzed
enrichments and τ∗. Error bars represent 95% confidence intervals.

67

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2020. ; https://doi.org/10.1101/2020.01.02.890657doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.02.890657
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S12. Informativeness for common disease of binary annotations derived from boosted
CDTS scores using imbalanced data. We applied AnnotBoost to CDTS annotation of varying training
data. Then, we applied S-LDSC, conditioning on published binary CDTS annotations (five thresholds from
90th percentile to 99.9th percentile) and baseline-LD model annotations; and meta-analyzed results across
41 independent traits. We report meta-analyzed enrichments and τ∗. Error bars represent 95% confidence
intervals.
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Figure S13. Informativeness for common disease of binary and probabilistic annotations de-
rived from published CDTS scores. We constructed binary and probabilistic annotations for published
CDTS47. We applied S-LDSC, conditional on baseline-LD model annotations and meta-analyzed results
across 41 independent traits. We report meta-analyzed enrichments and τ∗. To construct probabilistic an-
notations of varying proportion of SNPs, we performed the following transformation to upweight the upper
percentile and downweight the lower percentile SNPs: eα∗annot

eα with α varied from 3 to 2000. Error bars
represent 95% confidence intervals.
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