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Abstract 

Background: Copy number alterations (CNAs), due to its large impact on the genome, 

have been an important contributing factor to oncogenesis and metastasis. Detecting 

genomic alterations from the shallow-sequencing data of a low-purity tumor sample 

remains a challenging task. 

Results: We introduce Accucopy, a CNA-calling method that improves and adds 

another layer to our previous Accurity model to predict both total (TCN) and allele-

specific copy numbers (ASCN) for the tumor genome. Accucopy adopts a tiered 

Gaussian mixture model coupled with an innovative autocorrelation-guided EM 

algorithm to find the optimal solution quickly. The Accucopy model utilizes 

information from both total sequencing coverage and allelic sequencing coverage. 
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Accucopy is implemented in C++/Rust, available at http://www.yfish.org/software/. 

Conclusions: We describe Accucopy, a method that can predict both TCNs and ASCNs 

from low-coverage low-purity tumor sequencing data. Through comparative analyses 

in both simulated and real-sequencing samples, we demonstrate that Accucopy is more 

accurate than existing methods. 

Keywords: Cancer genomics; Copy number alterations; Next-generation sequencing 

Background 

Genomic alterations discovered in large-scale cancer genomic projects [1, 2], have 

therapeutic implications in being an important source of drug development [3, 4]. Copy 

number alterations (CNAs), due to its large impact on the genome, have been an 

important contributing factor to oncogenesis and metastasis [5]. Different approaches 

have been applied to infer CNAs from genomic sequencing data [6-10], however, 

detecting genomic alterations from a cancer sample mixed with normal cells remains a 

challenging task, esp. in low-coverage and low-purity samples. Our previous tumor 

purity inference method, Accurity [11], leveraging the periodic patterns among the 

clonal CNAs to infer the tumor purity and ploidy, can work in challenging low-purity 

and low-coverage settings. In this paper, we introduce Accucopy, a CNA-calling 

method that extends the Accurity model to predict both total (TCN) and allele-specific 

copy numbers (ASCN) for the tumor genome. Accucopy adopts a tiered Gaussian 

mixture model coupled with an innovative autocorrelation-guided EM algorithm to find 

the optimal solution quickly. The Accucopy model utilizes information from both total 

sequencing coverage and allelic sequencing coverage. Through comparative analyses 
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in both simulated and real-sequencing samples, we demonstrate that Accucopy is more 

accurate than existing methods: Sclust, Sequenza, and ABSOLUTE. 

Next, we first describe the data and the Accucopy model. Then, we evaluate 

Accucopy on numerous simulated and real-sequencing samples and compare Accucopy 

with Sclust [9], Sequenza [10] and ABSOLUTE [7]. We end the paper with discussions 

on the strength and weakness of Accucopy. 

Methods 

Simulated tumor and matching normal sequencing data 

We generated in silico tumor and matching-normal WGS data using an EAGLE-based 

workflow at three coverage settings: 2X, 5X, and 10X. EAGLE is a software developed 

by Illumina to mimic their own high-throughput DNA sequencers and the simulated 

reads bear characteristics that are close to real-sequencing reads. We introduced twenty-

one somatic copy number alterations (SCNAs), with length ranging from 5MB to 

135MB and copy number from 0 to 8, affecting about 28% of the genome, to each 

simulated tumor genome. The entire genome of its matching normal sample is of copy 

number two. Over one million (=1.8 million) heterozygous single-nucleotide loci 

(HGSNVs) were introduced to each normal and its matching tumor sample. For each 

coverage setting, we first generated a pure tumor sample (purity=1.0) and its matching 

normal sample. We then generated nine different impure tumor samples (purity from 

0.1 to 0.9) by mixing the pure tumor sample sequencing with its matching normal data 

proportionately. The mixing proportion determines the tumor sample’s true purity. 

HCC1187 cancer cell line dataset 
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The genome-wide CNA profile of HCC1187 has been widely studied via the spectral 

karyotyping (SKY) tool, which is one of the most accurate tools for characterizing and 

visualizing genome wide changes in ploidy [12, 13]. We used the SKY result from [14] 

as the ground truth for CNA comparison. SKY does not reveal a genome-wide ASCN 

profile and only identifies the LOH (Loss-of-Heterozygosity) regions. For these LOH 

regions, about 60% of the HCC1187 genome, we inferred the ASCN based on their 

LOH and CNA states. The whole genome sequencing data of pure HCC1187 cancer 

cells and its matched normal HCC1187BL cell lines was downloaded from Illumina 

BaseSpace. The sequencing coverage for HCC1187 and HCC1187BL is 104X and 54X 

respectively. Based on the pair of pure-tumor and normal real sequencing data, we 

generated eight impure tumor samples with purity from 0.1 to 0.9 (exclude 0.5) by 

proportionately mixing the HCC1187 reads with its matching normal reads. 

TCGA samples 

One hundred sixty-six random pairs of TCGA tumor-normal samples, downloaded from 

TCGA to provide a more comprehensive evaluation of Accucopy on real-world samples. 

The cancer types include breast invasive carcinoma (BRCA), Colon adenocarcinoma 

(COAD), Glioblastoma multiforme (GBM), Head and Neck squamous cell carcinoma 

(HNSC), and Prostate adenocarcinoma (PRAD). The TCGA database also contains 

CNA profiles that are derived from Affymetrix SNP 6.0 array data. The TCGA CNA 

calling pipeline is built onto the existing TCGA level 2 data generated by Birdsuite [15] 

and uses the DNAcopy R-package to perform a circular binary segmentation (CBS) 

analysis [16], which translates noisy intensity measurements into chromosomal regions 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 30, 2020. ; https://doi.org/10.1101/2020.01.02.892364doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.02.892364
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 5 of 36 
 

of equal copy number. These TCGA database CNA profiles are only for TCN (Total 

Copy Number). During comparative analysis, we compared Accucopy TCN estimates 

with these TCGA database TCN estimates. 

Evaluation metrics 

Define T and P as the truth and the predicted sets of copy-number segments of a sample 

respectively. 

𝑇𝑇 = {(𝑇𝑇𝑖𝑖 ,𝑇𝑇𝑇𝑇𝑖𝑖), 𝑖𝑖 ∈ [1,𝑚𝑚]}  (1) 

𝑃𝑃 = {�𝑃𝑃𝑗𝑗 ,𝑃𝑃𝑇𝑇𝑗𝑗�, 𝑗𝑗 ∈ [1,𝑛𝑛]} (2) 

In equations above, m and n are the number of the segments in the truth and 

predicted sets respectively, 𝑇𝑇𝑖𝑖 or 𝑃𝑃𝑗𝑗 is the coordinate interval of a segment in the form 

of (chromosome, start, stop), and 𝑇𝑇Ci or 𝑃𝑃𝑇𝑇𝑗𝑗 is the copy number (float type) of this 

segment. Segments with no copy-number assigned by a method are excluded from T 

and P because any normal or abnormal assumption regarding their copy number status 

is hard to justify. 

To evaluate the performance of a method, we defined two metrics. The first metric, 

CallF, is the fraction of the genome whose copy number status is identified by a method. 

CallF =
Σ𝑗𝑗=1n 𝐿𝐿𝐿𝐿𝑛𝑛𝐿𝐿𝐿𝐿ℎ�𝑃𝑃𝑗𝑗�
𝐺𝐺𝐿𝐿𝑛𝑛𝐺𝐺𝑚𝑚𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛𝐿𝐿𝐿𝐿ℎ

 (3) 

The second metric, FullC, is a correlation-like metric that measures how the 

predicted CNAs are concordant with the truth set. It is the fraction of matching 

segments, treating the copy-number difference as a continuous outcome between 0 and 

1 by applying an exponential function. Segments that are normal (copy-number=2) in 

both T and P are excluded because copy number 2 is sometimes the most ubiquitous 
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state of a cancer genome and a simple method calling the entire genome as copy number 

2 will still perform OK if normal segments are included in the comparison. 

FullC =
∑ ∑ �𝑇𝑇𝑖𝑖 ∩ 𝑃𝑃𝑗𝑗� ⋅ 𝐿𝐿−�𝑇𝑇𝑇𝑇𝑖𝑖−𝑃𝑃𝑇𝑇𝑗𝑗�𝑛𝑛

𝑗𝑗=1
𝑚𝑚
𝑖𝑖=1

∑ ∑ 𝑇𝑇𝑖𝑖 ∩ 𝑃𝑃𝑗𝑗𝑛𝑛
𝑗𝑗=1

𝑚𝑚
𝑖𝑖=1

 (4) 

The value of FullC is between 0 and 1, with 0 being completely discordant and 1 

being completely concordant and can be applied to both TCN and ASCN performance 

evaluation. In the ASCN case, we calculate FullC for the Major Allele Copy Number 

(MACN) as FullC is the same for the minor allele copy number. The evaluation metric 

used by early publications that ignores the mismatch of copy numbers and only 

considers the concordance of the coordinates of non-normal segments, can be 

misleading. For example, a duplication could be considered a match to a deletion. FullC 

remedies this issue by taking the copy number difference into account. 

For the simulation data and the HCC1187 dataset, the truth set is known. For the 

TCGA samples, we use the TCN profiles in the TCGA database as a proxy for the truth 

set. They are derived from the Affymetrix SNP 6.0 array, not strictly a truth set, but 

helpful in our comparison analyses. 

Summary for the Accucopy model 

The Accucopy model is a probabilistic model that infers the TCN and ASCN from two 

types of input: the sequencing coverage information summarized by Tumor Read 

Enrichment (TRE) and the allele-specific coverage information summarized by Log 

ratio of Allelic-coverage Ratios (LAR) at HGSNVs. Definitions of TRE and LAR are 

in Additional File 1. TREs are samples from a multi-component Gaussian mixture 

model with the tumor purity, the tumor ploidy, and the total copy number of each 
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genomic region as parameters. LARs are samples from a two-component Gaussian 

mixture model with the allele-specific copy numbers of genomic regions as additional 

parameters. The entire genome is segmented by an enhanced version of the public 

GADA [17] (unpublished). We developed an autocorrelation-guided EM algorithm to 

find optimal parameters. Bayesian Information Criterion is adopted to avoid model 

overfitting. More details of the Accucopy model are in the Additional File 1. 

Results 

Evaluation of Accucopy on the simulated data 

We evaluated the FullC and CallF of Accucopy using simulated tumor and normal data 

under three coverage settings: 2X, 5X, and 10X, and nine different purity settings, 0.1-

0.9, (Fig. 1). For the TCN inference, Accucopy achieved high FullC and CallF, 

mostly >0.95, regardless of the tumor purity level, even if the coverage is only 2X (Fig. 

1A, 1C and 1E). In the low-purity (0.1-0.4) cases of the 2X coverage, the TCN FullC 

deteriorates only slightly to about 0.9. For the ASCN inference, Accucopy achieved 

robust FullC and CallF, >0.8, when the sample purity is equal to or above 0.2 (Fig. 1B 

and 1D) for the 5X and 10X coverage. In the low coverage settings (2X), Accucopy 

requires the purity of sample to be at least 0.6 to achieve good performance in ASCN 

inference, but the total copy number (TCN) estimates are still >90% correct (Fig. 1E). 

We think the extremely low tumor content (<0.4), less than 1.2X (=0.6*2X) coverage 

on average for the tumor cells, renders the ASCN inference quite challenging. 

We compared Accucopy with Sclust, Sequenza, and ABSOLUTE. All three 

methods can infer the tumor purity, SCNAs, and ASCNs. Sclust performs well in high-
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coverage (>=10X) and high-purity settings (purity >=0.6) (Fig. 1A and 1B) and 

performs reasonably well in medium coverage (5X) and high purity settings (purity ≥ 

0.6), but performs poorly in low-purity (<=0.5) or low-coverage (2X) settings. 

Sequenza performs similarly to Sclust in 5X and 10X but outperforms Sclust in 2X and 

low-purity conditions. Sequenza has the strange phenomenon that it performs better on 

5X samples than 10X samples. We found that Sequenza over-segments the genome in 

10X samples and calls many of these small segments with the wrong copy number and 

thus has lower performance in 10X than 5X. The case of ABSOLUTE is curious. It 

achieves good TCN performance on par with Accucopy in some conditions but 

performs quite poorly in other conditions. We found that its TCN performance is 

dependent on its ability to estimate the tumor purity correctly, (Table 1). Across the 

coverage and purity level, Accucopy is the top performer or a very close second. 

To illustrate the performance difference, we plotted the estimated TCN and ASCN 

of chromosome 1 by Accucopy and Sclust, with the true purity being 0.4 (low) or 0.8 

(high) and coverage being 2X (low) and 10X (high) (Supplementary Fig. 1). In the 10X-

coverage high-purity sample, the output by Accucopy and Sclust are very close to the 

truth (Supplementary Fig. 1B and 1C). If the purity decreases 0.4, the TCN and ASCN 

estimates of Accucopy are still very close to the truth while Sclust underestimates TCN 

and ASCN (Supplementary Fig. 1D and 1E). If the sequencing coverage decreases to 

2X, Accucopy can still infer the true TCN in both high and low purity settings but its 

ASCN inference deteriorates in the low-purity low-coverage sample (Supplementary 

Fig. 1F and 1H). Sclust overestimated both TCN and ASCN in the 2X high-purity 
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setting (Supplementary Fig. 1G) and failed completely in the 2X low-purity setting 

(Supplementary Fig 1I). This detailed comparison confirmed conclusions drawn from 

the summary evaluation plot (Fig. 1). The main strength of Accucopy, compared to 

Sclust and other methods, is that it can perform in low-coverage and/or low-purity 

settings while others are unstable. 

The simulation analysis suggests: a) Accucopy can accurately estimate TCN in a 

wide range of purity (0.1-0.9) and coverage (2X and above) settings. b) Accucopy can 

robustly infer ASCN as long as the purity is above 0.1 in moderate or high coverage 

(>=5X) settings; c) In low-coverage (2X) settings, the ASCN inference by Accucopy 

requires the purity to be above 0.5, which suggests that a minimal 1X tumor content 

(=total-coverage*purity), i.e. 10X*0.1, 5X*0.2, 2X*0.5, in a sequenced sample is 

required for an accurate ASCN inference by Accucopy. 

Evaluation of Accucopy on the HCC1187 dataset 

The prior simulation study has shown the solid performance of Accucopy in low (5X) 

and medium (10X) coverage settings. In this section, we run Accucopy on the HCC1187 

dataset to validate Accucopy on a real sequencing dataset. We know the true purity of 

the eight impure HCC1187 tumor samples because we designed the mixing of 

HCC1187 and its corresponding normal cells. The Accucopy performance in TCN 

inference is on par with that of the simulation study (Fig. 2A). The MACN inference is 

better than that of the simulation study under similar conditions (Fig. 2B), because all 

the true MACNs of HCC1187 are effectively LOHs (Loss-Of-Heterozygosity). The 

non-LOHs of HCC1187 have unknown MACN state and are excluded in comparison. 
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The statistical power to infer MACNs is highest for LOHs than non-LOHs because the 

difference between the major and the minor allele copy number is at its widest gap. This 

exercise indicates for real-sequencing samples, Accucopy can still achieve solid 

performance, comparable to its performance in the simulated data. 

Inferring SCNAs for TCGA samples 

We ran Accucopy and Sclust on 166 pairs of TCGA tumor-normal samples that have 

corresponding TCN profiles in the TCGA database. Accucopy succeeded for 110 

samples. Accucopy failed on 56 samples due to noisy TRE data, which is caused by 

high level of intra-tumor heterogeneity and/or genomic alterations. Sclust succeeded 

for 57 samples. We compared the TCN output by either method against the 

corresponding TCGA TCN profiles. 

The Accucopy FullC metric is strongly correlated with the tumor purity (Fig. 3A), 

and is independent of CallF (Fig. 3C). The average Accucopy CallF is about 95%, 

regardless of the tumor purity (Fig. 3B), which indicates Accucopy predicts TCNs for 

almost the entire genome of all analyzed samples. The Sclust FullC is also correlated 

with the tumor purity, but only among samples with purity above 0.5 and coverage 

above 10X (Fig. 4A). These samples tend to have high CallF (Fig. 4B and 4C). The 

decline of FullC with the decreasing tumor purity observed in both Accucopy and Sclust 

are quite interesting. The prior simulation and HCC1187 studies indicate that Accucopy 

performs well in predicting TCNs for samples with coverage 2-10X and purity 0.1-0.9 

and Sclust performs well in purity>0.5 and coverage>=10X samples. 

We carefully compared the Accucopy TCN prediction for samples in the high-
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FullC-high-purity top-right part of Fig. 3A vs samples in the low-FullC-low-purity 

lower-left part of Fig. 3A and found that the decline of FullC with the decreasing tumor 

purity is primarily caused by the diminishing statistical power of the TCGA pipeline as 

the tumor purity declines (Fig. 4). The TCGA CNA pipeline (Birdsuite + CBS) assumes 

a tumor sample consisting of 100% tumor cells. Thus the copy number of a genomic 

segment predicted by the TCGA pipeline is a weighted average of its respective copy 

numbers in the tumor and normal cells. As the purity of a tumor sample declines, the 

increasing fraction of normal cells, whose genomic copy number is two, will move the 

predicted average copy number closer to two. Accucopy and Sclust explicitly model the 

tumor purity and do not suffer from this issue. This is exactly what we observe in 

detailed TCGA vs. Accucopy comparisons (Fig. 5). In both samples, the segmentations 

of the genome by the TCGA pipeline and Accucopy are highly similar. In addition, the 

copy number qualitative predictions (duplication or deletion) for individual segments 

are highly similar too. Were it not for FullC to consider copy number differences, both 

samples would have shown near perfect concordance between the TCGA profile and 

the Accucopy output. In the low-purity sample (Fig. 5A), the copy number quantitative 

predictions of abnormal segments are closer to two and are numerically less concordant 

with those by Accucopy, manifested by a lower FullC than the high-purity sample (Fig. 

5B). 

It is also clear from Fig. 4 that Sclust works in more limited conditions than 

Accucopy. Sclust requires the tumor purity above 0.5 and the sequencing coverage 

above or near 10X. For samples with sequencing coverage below 10X, Sclust may 
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predict copy numbers for only a fraction of the genome (Fig. 4B). For samples with 

coverage lower than 5X, (Fig. 4D), Sclust failed completely. This is consistent with the 

simulation finding that Sclust has lower power in detecting CNAs from the low-purity 

(<0.5) and/or low-coverage (<=5X) samples. 

The TCGA study indicates Accucopy is capable of identifying copy number 

alterations in complex real-world samples, some of which may have very low 

sequencing coverage and are of low tumor purity. 

Implementation and performance 

Accucopy is implemented in vanilla C++ and Rust and is released for Ubuntu 18.04 in 

a docker. In theory, it can be built for Windows or MacOS but we have not tested it. 

Average runtime of Accucopy is about 45 minutes for a 5X tumor/normal matched pair; 

about three hours for a 30X tumor/normal matched pair on a single core of Intel(R) 

Xeon(R) CPU E5-2670 v3 @ 2.30GHz; with the peak RAM consumption under 4GB. 

We provided all methods with the same input bam files and ran all programs with 

default parameters under the same computational environment as stated above. 

Discussion 

Through extensive simulated and real-sequencing data analyses, we have demonstrated 

that Accucopy is a fast, accurate, and fully automated method that infers TCN and 

ASCN of somatic CNAs from tumor-normal high-throughput sequencing data. The 

strength of Accucopy, relative to other methods, lies particularly in its performance in 

low-coverage and low-purity samples. This makes Accucopy an excellent choice in 

first-round low-coverage screening type of analysis. It can offer crucial insight 
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regarding the tumor purity, ploidy, TCNs, and ASCNs before an expensive in-depth 

high-coverage analysis is started. 

One under-appreciated factor contributing to the excellent performance of 

Accucopy is the large amount of simulation and real-sequencing samples with known 

truth (or near truth for TCGA samples). This trove of data leads us to adjust many 

aspects of the Accucopy model during development. Here are a few notable adjustments. 

A coverage smoothing step greatly reduced the random noise in sequencing coverage. 

Adoption of Strelka2 [18] dramatically reduced the number of false positives in calling 

heterozygous SNPs, compared to other variant callers we tried. Extensive in-depth 

analyses uncovered that the expectation of Log ratio of Allelic Ratios (LAR) needed to 

be adjusted due to the exclusion of zero-allele-coverage SNPs, which improved the 

Accucopy performance in the ASCN inference by an order of magnitude. These 

adjustments may look trivial but cumulatively are very effective in improving the 

overall performance of Accucopy. 

The requirement of a periodic TRE pattern arising from varying copy numbers 

means that Accucopy is not suitable for tumor samples with little or no copy number 

alterations. An excessive amount of point mutations in a tumor, relative to its matching 

normal, resulting in many wrong alignments, will also render Accucopy unable to 

confidently discover a period from the TRE pattern. Another case that could weaken 

Accucopy is the presence of copy number variations (CNVs) in healthy normal 

individuals. At these genomic regions, the TCN and ASCN predictions by Accucopy 

will be inaccurate as Accucopy assumes the entire genome of a normal sample to be of 
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copy number two. 

For regions where different tumor subclones may harbor different SCNAs, the 

current way of outputting averaged TCNs and MACNs is less than satisfactory from 

the standpoint of tumor clonal evolution. The next iteration of Accucopy will try to 

address this. 

Conclusions 

Through extensive simulated and real-sequencing data analyses, we have demonstrated 

that Accucopy is a fast, accurate, and fully automated method that infers TCN and 

ASCN of somatic CNAs from tumor-normal high-throughput sequencing data. The 

strength of Accucopy, relative to other methods, lies particularly in its performance in 

low-coverage low-purity samples. This makes Accucopy an excellent choice in first-

round low-coverage screening type of analysis. It can offer crucial insight regarding the 

tumor purity, ploidy, TCNs, and ASCNs before an expensive in-depth high-coverage 

analysis starts. 

 

Availability and Requirements 

Project name: Accucopy 

Project home page: https://github.com/polyactis/Accucopy 

Operating system(s): Linux 

Programming language: C++/Rust/Python 

License: SIMM Institute License, free for non-commercial use. 

Any restrictions to use by non-academics: license needed. 
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Abbreviations 

CNAs: Copy number alterations 

TCN: total copy number 

ASCN: allele-specific copy numbers 

SCNAs: somatic copy number alterations 

HGSNVs: heterozygous single-nucleotide loci 

SKY: spectral karyotyping 

LOH: Loss-of-Heterozygosity 

BRCA: breast invasive carcinoma 

COAD: Colon adenocarcinoma 

GBM: Glioblastoma multiforme 

HNSC: Head and Neck squamous cell carcinoma 

PRAD: Prostate adenocarcinoma 

CBS: circular binary segmentation 

MACN: Major Allele Copy Number 

TRE: Tumor Read Enrichment 

LAR: Log ratio of Allelic-coverage Ratios 

CNVs: copy number variations 
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Table 1 Purity estimates by all methods 

Coverage True purity Accucopy Sequenza ABSOLUTE Sclust 
2X 0.1 0.1047 1.0 0.26 - 
2X 0.2 0.2069 1.0 0.21* - 
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2X 0.3 0.31214 0.98 0.32* - 
2X 0.4 0.41966 0.47 0.42* - 
2X 0.5 0.5199 0.56 0.53* 0.59 
2X 0.6 0.62211 0.66 0.31 0.61 
2X 0.7 0.73768 0.86 0.37 0.74 
2X 0.8 0.83951 0.91 0.72 0.63 
2X 0.9 0.94051 0.95 0.61 0.99 
5X 0.1 0.09751 0.13 0.22 - 
5X 0.2 0.20108 0.22 0.2* - 
5X 0.3 0.31011 0.38 0.36 0.24 
5X 0.4 0.40559 0.44 0.41* 0.32 
5X 0.5 0.51208 0.55 0.69 0.37 
5X 0.6 0.6125 0.65 0.47 0.64 
5X 0.7 0.71576 0.76 0.36 0.72 
5X 0.8 0.816 0.84 0.81* 0.81 
5X 0.9 0.91884 0.94 0.46 0.98 
10X 0.1 0.098563 0.29 0.22 0.27 
10X 0.2 0.20085 0.31 0.25 - 
10X 0.3 0.30411 0.36 0.27 - 
10X 0.4 0.40553 0.42 0.51 0.3 
10X 0.5 0.5066 0.52 0.51* - 
10X 0.6 0.60569 0.63 0.3 0.65 
10X 0.7 0.70754 0.74 0.53 0.7 
10X 0.8 0.80739 0.83 0.8* 0.83 
10X 0.9 0.90612 0.94 0.45 0.92 

Note: Asterisk (*) in the ABSOLUTE column indicates ABSOLUTE performed well 

on the sample. Dash (-) in the Sclust column indicates Sclust failed on the sample. 

 

Figures 
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Fig. 1 Evaluation of Accucopy and Sclust on simulation data. 

FullC and CallF of total copy number on low-coverage 10X (A), low-coverage 5X (C) 

and low-coverage 2X (E). FullC and CallF of major allele copy number on low-

coverage 10X (B), low-coverage 5X (D) and low-coverage 2X (F). The blank space in 

the figure indicates Sclust failed on this sample. The red, green, orange and purple bar 

represent Accucopy, Sequenza, ABSOLUTE and Sclust respectively. 
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Fig. 2 Accucopy performance on the HCC1187 dataset. 

The sequencing coverage for all samples is 10X. The tumor purity varies from 0.1 to 

0.9. A. The TCN FullC plot shows the Accucopy TCN calls are at least 90% concordant 

with the true TCN calls. The TCN CallF indicates Accucopy predicts TCN for close to 

100% of the genome. B. The MACN FullC plot indicates the Accucopy MACN calls 

are close to 95% concordant with the true MACN calls. The MACN inference is better 

than that of the simulation study under similar conditions because all the true MACNs 

of HCC1187 are effectively LOHs (Loss-Of-Heterozygosity). The non-LOHs of 

HCC1187 have unknown MACN state and are excluded in comparison. The statistical 

power to infer MACNs is highest for LOHs than non-LOHs because the difference 

between the major and the minor allele copy number is at its widest gap. 
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Fig. 3 The performance of Accucopy in predicting TCNs for TCGA samples. 

CallF and FullC were calculated to assess the performance of Accucopy. Each dot 

represents one TCGA sample and is colored according to its sequencing coverage. Each 

scatterplot is fitted with a redline by loess smoothing. A. FullC is between 0.3 and 0.9, 

strongly dependent on the tumor purity level. B. CallF is between 0.93 and 0.96, 

independent of the tumor purity level, indicating Accucopy predicted copy numbers for 

almost the entire genome for all analyzed TCGA samples. C. FullC is independent of 

CallF. D. The colorbar maps the sequencing coverage of each sample to the color of 
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each dot. The sequencing coverage is set to 10 for samples with sequencing coverage 

above 10. 

 

 

 

Fig. 4 The performance of Sclust in predicting TCNs for TCGA samples. 

CallF and FullC were calculated to assess the performance of Sclust. Each dot 

represents one sample and is colored according to its sequencing coverage. Each 

scatterplot is fitted with a redline by loess smoothing. A. FullC shows a dependency 
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on both the sequencing coverage and the tumor purity. B. CallF is high (~0.9) only for 

samples with sequencing coverage near or above 10. For samples with lower 

coverage, Sclust may fail to predict copy numbers for significant portions of their 

genomes. C. FullC is highly correlated with CallF. This suggests the more regions 

that Sclust fails to predict copy numbers, the less concordant its predicted copy 

numbers are with the TCGA calls. D. The colorbar maps the sequencing coverage of 

each sample to the color of each dot. The sequencing coverage is set to 10 for samples 

with sequencing coverage above 10. The colorbar scale starts from around 5 because 

Sclust failed on samples with sequencing coverage below 5. 
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Fig. 5 The loss of power of the TCGA CNA pipeline in low-purity samples. 

The copy number of a genomic segment predicted by the TCGA pipeline, which does 

not model the tumor purity, is a weighted average of its respective copy numbers in the 

tumor and normal cells. As the purity of a tumor sample declines, the increasing fraction 

of normal cells will move the predicted average copy number closer to two. Accucopy 

treats the copy numbers of the tumor and normal cells within one tumor sample as two 

separate parameters in its model. Panel (A) exhibits the copy number profile of a low-

purity sample (purity=0.286) predicted by the TCGA pipeline, the upper panel, versus 

that predicted by Accucopy, the lower panel. The FullC between the two profiles is 

0.523. Panel (B) is a similar plot to panel A, for a high-purity sample (purity=0.911). 

The FullC between the TCGA-pipeline and Accucopy predicted CNA profiles is 0.877. 

In both samples, the segmentations of the genome by the TCGA pipeline and Accucopy 

are highly similar. In addition, the copy number qualitative predictions (duplication or 

deletion) for individual segments are also highly similar. However, in the high-purity 

sample (B), the copy number quantitative predictions of abnormal segments are further 

away from two and are numerically more concordant with those by Accucopy, 

manifested by a higher FullC than the low-purity sample (A). 

 

Supplementary information 
Additional File 1 Method details of Accucopy 
 
1 Basic definitions 

We define the fraction of cancer cells in a tumor sample as the tumor purity γ and the 

fraction of normal cells is 1-γ. We assume that the ploidy of a normal cell is 2 and 
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denote the average copy number of a cancer cell as the tumor cell ploidy: κ. The tumor 

sample ploidy ω is a weighted average of the ploidy of normal and cancer cells, 

expressed in γ and κ as follows: 

ω = (1 − γ) × 2 + γ × κ  (5) 

We denote the total copy number (TCN) of a chromosomal segment s of all tumor 

cells as 𝑇𝑇𝑠𝑠 . Then, the TCN of the same segment for the tumor sample, 𝑇𝑇𝑡𝑡 , is the 

average TCN of tumor and normal cells in the tumor sample: 

Ct = (1 − 𝛾𝛾) × 2 + 𝛾𝛾 × 𝑇𝑇𝑠𝑠  (6) 

Note the difference between the tumor cell ploidy and the tumor sample ploidy. The 

latter includes ploidy contribution from normal cells in a tumor sample while the former 

is only about tumor cells. The two are identical for a 100% pure tumor. Similarly, the 

tumor cell TCN of a segment is different from the tumor sample TCN of the same 

segment. The observed sequencing coverage of a tumor sample should be proportional 

to the tumor sample ploidy, thus dependent on the tumor purity and tumor cell ploidy, 

𝛾𝛾, 𝜅𝜅. 

2 Tumor Read Enrichment (TRE) for a chromosomal segment 

Denote the number of reads covering a genomic segment s for a tumor sample and its 

matching normal sample as nts and nns , respectively, and a total number of Nt and 

Nn  reads for a tumor sample and its matching normal sample. The Tumor Read 

Enrichment (TRE) for segment bin s, es, is defined as follows: 

es =
𝑛𝑛𝑡𝑡𝑠𝑠

𝑁𝑁𝑡𝑡
𝑛𝑛𝑛𝑛𝑠𝑠

𝑁𝑁𝑛𝑛
�  (7) 

TRE is a normalized read enrichment of a chromosomal segment in a tumor sample 

relative to its matching normal sample. Factors that influence both tumor and normal 

samples, such as the read mappability and the GC biases, are canceled out. To have a 

better statistical representation, TRE is calculated for each 500bp (roughly the 

sequencing fragment length) bin throughout the whole genome. A fast version of 

GADA is applied to segment the entire genome based on calculated TREs. 

3 The TRE expectation and the TCN Gaussian mixture model 
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For a chromosomal segment bin s, assuming independence between the local and global 

coverage, the expected TRE of a segment bin s can be approximated as follows: 

 𝐸𝐸𝑠𝑠 = 𝐸𝐸(𝐿𝐿𝑠𝑠) = 𝐸𝐸 �
𝑛𝑛𝑡𝑡𝑠𝑠

𝑁𝑁𝑡𝑡
𝑛𝑛𝑛𝑛𝑠𝑠

𝑁𝑁𝑛𝑛
� � ≈

𝐸𝐸(𝑛𝑛𝑡𝑡𝑠𝑠)
𝐸𝐸(𝑛𝑛𝑛𝑛𝑠𝑠 ) ×

𝐸𝐸(𝑁𝑁𝑛𝑛)
𝐸𝐸(𝑁𝑁𝑡𝑡)

  (8) 

We define a few nuisance parameters to help to further derive Es. The length of 

segment bin 𝑠𝑠 is Ls. The length of the reference genome, about three billions, is Lgw. 

The genome-wide average sequencing coverage is VgwT  for the tumor sample and VgwN  

for its matching normal sample. The average sequencing coverage for segment bin s 

from a tumor sample is λs × VgwT , which multiplies a sequence-specific factor λs to 

the genome-wide sequencing coverage. The average sequencing coverage for segment 

bin s from the matching normal sample is λs × VgwN . With all these definitions, we can 

derive the expected TRE, Es, as a statistic only dependent on tumor purity, γ, tumor 

cell ploidy, κ, and the TCN of the segment bin in cancer cell, Cs: 

 Es =
E(nts)
E(nns ) ×

E(Nn)
E(Nt)

=
Ct × Ls × λs × VgwT

2 × Ls × λs × VgwN
×

2 × Lgw × VgwN

ω × Lgw × VgwT

=
Ct
ω

=
(1 − γ) × 2 + γ × Cs
(1 − γ) × 2 + γ × κ

 (9) 

The entire segment, s, is assumed to be of the same TCN and thus all observed es 

should have the same expectation, Es. Thus, we drop the subscript s of Es and add 

the superscript i to denote the expected TRE for all segments with TCN = 𝑖𝑖 as Ei: 

𝐸𝐸𝑖𝑖 =
(1 − 𝛾𝛾) × 2 + 𝛾𝛾 × 𝑖𝑖
(1 − 𝛾𝛾) × 2 + 𝛾𝛾 × 𝜅𝜅

 (10) 

For all segments with TCN=i + 1, the corresponding Ei+1 is 

𝐸𝐸𝑖𝑖+1 =
(1 − 𝛾𝛾) × 2 + 𝛾𝛾 × (𝑖𝑖 + 1)

(1 − 𝛾𝛾) × 2 + 𝛾𝛾 × 𝜅𝜅
 (11) 
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Forms of Ei  and Ei+1  can explain the periodicity we observed from any TRE 

histogram. We define the period of a TRE histogram, P, as the interval between two 

copy numbers (Figure 1) and its expected value is 

𝑃𝑃 = 𝐸𝐸𝑖𝑖+1 − 𝐸𝐸𝑖𝑖 =
𝛾𝛾

(1 − 𝛾𝛾) × 2 + 𝛾𝛾 × 𝜅𝜅  (12) 

In a histogram of TREs (Figure 1), the period P  is the interval between two 

adjacent major peaks. Each major peak in a TRE histogram represents one group of 

clonal segments with the same integral copy number. Usually the period of a tumor 

sample decreases with low purity or high ploidy. 

Further, we define the Normal TRE (NTRE) Q , as the TRE corresponding to 

segments of copy number 2, then 

 𝑄𝑄 = 𝐸𝐸𝑖𝑖|(𝑖𝑖 = 2) =
(1 − 𝛾𝛾) × 2 + 𝛾𝛾 × 𝑖𝑖
(1 − 𝛾𝛾) × 2 + 𝛾𝛾 × 𝜅𝜅

|(𝑖𝑖 = 2)

=
2

(1 − 𝛾𝛾) × 2 + 𝛾𝛾 × 𝜅𝜅

 (13) 

Solving eq. 8 and 9 produces the tumor sample purity γ and the tumor cell ploidy 

κ in terms of P and Q. 

Figure 1 A typical Tumor Read Enrichment (TRE) histogram shows a periodic 
pattern 
Auto-correlation analysis can identify the period of the histogram, P, as the interval 
between major peaks. Q, one major peak that corresponds to copy-number-two 
segments, is identified through the Accucopy probabilistic model. Minor peaks 
between the major ones consist of subclonal segments. 
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𝛾𝛾 =
2 × 𝑃𝑃
𝑄𝑄

𝜅𝜅 = 2 +
1 − 𝑄𝑄
𝑃𝑃

 (14) 

We model the observed TREs, 𝐿𝐿𝑠𝑠, as a Gaussian mixture with each component 

corresponding to TCN = 𝑖𝑖. 

 es ∼ Σ𝑖𝑖=0I 𝑝𝑝𝑖𝑖𝑁𝑁�𝐸𝐸𝑖𝑖 ,𝜎𝜎𝑖𝑖2�  (15) 

where 𝑝𝑝𝑖𝑖 is the mixing parameter (also prior probability) for component 𝑖𝑖, with 

Σ𝑖𝑖=0I 𝑝𝑝𝑖𝑖 = 1, and 𝜎𝜎𝑖𝑖2 is the component variance. The TRE likelihood for all M segments 

is: 

𝐿𝐿(𝐿𝐿; 𝛾𝛾, 𝜅𝜅) = ��𝑝𝑝𝑖𝑖𝑃𝑃(𝐿𝐿𝑠𝑠|𝐸𝐸𝑖𝑖 ,𝜎𝜎𝑖𝑖2)
𝐼𝐼

𝑖𝑖=0

𝑀𝑀

𝑠𝑠=1

 (16) 

4 Log ratio of Allelic-coverage Ratios (LAR) of HGSNVs 

For an HGSNV, denote 𝑛𝑛𝑡𝑡𝑅𝑅 , 𝑛𝑛𝑡𝑡𝐴𝐴 , 𝑛𝑛𝑛𝑛𝑅𝑅  and 𝑛𝑛𝑛𝑛𝐴𝐴  as the read counts for the reference 

allele (R) and the alternative allele (A) in a tumor (t) and its matching normal (n) 

samples. Define 𝑟𝑟 as the log-ratio of allelic-coverage ratios (LAR) for an HGSNV: 

r = log��
𝑛𝑛𝑡𝑡𝑅𝑅

𝑛𝑛𝑛𝑛𝑅𝑅
� �

𝑛𝑛𝑡𝑡𝐴𝐴

𝑛𝑛𝑛𝑛𝐴𝐴
�� � = log (

𝑛𝑛𝑡𝑡𝑅𝑅𝑛𝑛𝑛𝑛𝐴𝐴

𝑛𝑛𝑛𝑛𝑅𝑅𝑛𝑛𝑡𝑡𝐴𝐴
)  (17) 

The LAR is defined in the same vein as the TRE. The tumor allelic coverage is 

normalized by that of the matching normal sample to eliminate various sequencing 

biases: the GC-bias, the reference mapping bias, etc. However, the definition requires 

all four read counts to be positive as any zero will render the statistic ill-defined, which 

necessitates an adjustment in calculating its expectation, detailed in the next section. 

The variant calling of HGSNVs is carried out at 44 million SNP loci from the 1000 

Genomes project using Strelka2. To improve the quality of the final HGSNVs, the 

tumor and normal samples were called simultaneously by Strelka2, in so-called multi-

sample calling, SNPs must be heterozygous in the normal sample, and the coverage of 

the SNP must be above two in either sample. 

5 The LAR expectation, the ASCN Gaussian mixture model, and the EM 

algorithm 
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Denote the ASCNs of a tumor cell and its matching normal cell at an HGSNV as (k, l), 

lower case of L in it, and (1,1), with k and l denoting the major-allele copy number 

and the minor-allele copy number in the tumor cell respectively. The alternative allele 

is less likely to be mapped correctly to the reference genome than the reference allele 

due to the reference bias. Let ϕ denote the reference mapping bias of the reference 

allele relative to the alternative allele, and typically ϕ > 1. Hence, the ASCNs of a 

pure tumor sample and its matching normal one is either (ϕk, l) and (ϕ, 1), or (k,ϕl) 

and (1,ϕ), depending on if the major allele is the reference allele or not. Taking the 

tumor purity 𝛾𝛾  into account, the ASCNs of a tumor sample is either (ϕ(𝛾𝛾𝛾𝛾 +

(1 − 𝛾𝛾) × 1), 𝛾𝛾𝛾𝛾 + (1 − 𝛾𝛾) × 1) , or (𝛾𝛾𝛾𝛾 + (1 − 𝛾𝛾) × 1,ϕ(𝛾𝛾𝛾𝛾 + (1 − 𝛾𝛾) × 1)) , 

depending on which allele is the reference allele, with the ASCNs of the normal sample 

unchanged. The sequencing coverage of a segment is proportional to its copy number. 

Then take expectation of eq. 13 produces the following naïve expectations of LAR, 

with the reference bias ϕ cancelled out: 
𝐸𝐸(𝑟𝑟) = 𝜇𝜇1∗  𝐺𝐺𝑟𝑟  𝜇𝜇2∗

𝜇𝜇1∗ = log
𝛾𝛾𝛾𝛾 + (1 − 𝛾𝛾) × 1
𝛾𝛾𝛾𝛾 + (1 − 𝛾𝛾) × 1

 

𝜇𝜇2∗ = log
𝛾𝛾𝛾𝛾 + (1 − 𝛾𝛾) × 1
𝛾𝛾𝛾𝛾 + (1 − 𝛾𝛾) × 1

 (18) 

𝜇𝜇1∗ = −𝜇𝜇2∗  (19) 

However, the definition of LAR (eq. 13) precludes HGSNVs with any zero allelic 

coverage in either sample, which creates a substantial bias not accounted for in the 

naïve expectation (eq. 14), we model the allelic sequencing coverage as a Poisson 

distribution and exclude zero-coverage to derive a better expectation of LAR. Denote 

𝜆𝜆𝑘𝑘+𝑙𝑙 = 𝜆𝜆𝑘𝑘 + 𝜆𝜆𝑙𝑙 as the mean total coverage, with 𝜆𝜆𝑘𝑘 and 𝜆𝜆𝑙𝑙 being the mean coverage 

of the major and minor alleles respectively: 

𝜆𝜆𝑘𝑘 =
𝛾𝛾𝛾𝛾 + (1 − 𝛾𝛾)

𝛾𝛾(𝛾𝛾 + 𝛾𝛾) + 2 × (1 − 𝛾𝛾) × 𝜆𝜆𝑘𝑘+𝑙𝑙  (20) 

𝜆𝜆𝑙𝑙 =
𝛾𝛾𝛾𝛾 + (1 − 𝛾𝛾)

𝛾𝛾(𝛾𝛾 + 𝛾𝛾) + 2 × (1 − 𝛾𝛾) × 𝜆𝜆𝑘𝑘+𝑙𝑙  (21) 

We estimate 𝜆𝜆𝑘𝑘+𝑙𝑙 as the median depth of all HGSNVs within a segment in a tumor 

sample. Denote 𝑑𝑑𝑘𝑘 and 𝑑𝑑𝑙𝑙 as the observed read counts of the major and the minor 

alleles respectively and each follows a Poisson distribution: 
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𝑑𝑑𝑘𝑘 ∼ 𝑃𝑃𝐺𝐺(𝜆𝜆𝑘𝑘),  𝑑𝑑𝑙𝑙 ∼ 𝑃𝑃𝐺𝐺(𝜆𝜆𝑙𝑙)  (22) 

Excluding the zero read counts, the adjusted expectation of LAR, 𝜇𝜇1 and 𝜇𝜇2, are 

as follows: 

𝜇𝜇1 =
∑ ∑ log �𝑑𝑑

𝑘𝑘

𝑑𝑑𝑙𝑙 � 𝑃𝑃(𝑑𝑑𝑘𝑘|𝜆𝜆𝑘𝑘)𝑃𝑃(𝑑𝑑𝑙𝑙|𝜆𝜆𝑙𝑙)∞
𝑑𝑑𝑙𝑙=1

∞
𝑑𝑑𝑘𝑘=1

∑ ∑ 𝑃𝑃(𝑑𝑑𝑘𝑘|𝜆𝜆𝑘𝑘)𝑃𝑃(𝑑𝑑𝑙𝑙|𝜆𝜆𝑙𝑙)∞
𝑑𝑑𝑙𝑙=1

∞
𝑑𝑑𝑘𝑘=1

𝜇𝜇2 =  −𝜇𝜇1

 (23) 

Figure 2 shows the adjustment greatly improved the fit between the observed mean 

LAR and the true mean. 

 

 

Figure 2  Effect of the adjustment of the expectation of LAR for a segment of 
HCC1187 
This is a histogram of LARs for this segment. The known TCN (Total Copy Number) 
of this segment is 3. The known ASCN (major allele vs minor allele) is 3-0. The gray 
bars are the observations. The blue line is the fitted Gaussian mixture distribution 
based on the naïve expectations of LAR. The red line is the fitted Gaussian mixture 
distribution based on the adjusted expectations of LAR. 
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In real data, we have no idea if the expectation of an observed LAR is 𝜇𝜇1 or 

𝜇𝜇2 because it is unknown which allele is the major allele. Thus, we adopt a two-

component Gaussian mixture model with the two components having an identical 

variance and their means opposite to each other: 

r ∼ Σ𝑚𝑚=1
2 𝛼𝛼𝑚𝑚𝑁𝑁(𝜇𝜇𝑚𝑚,𝜎𝜎𝑠𝑠2)  (24) 

where 𝛼𝛼𝑚𝑚 is the mixing parameter (or prior probability) for component m, with 

𝛼𝛼1 + 𝛼𝛼2 = 1, and 𝜎𝜎𝑠𝑠2 is the Gaussian variance of LAR for either component, specific 

to segment s. 

We introduce a missing variable, Δ , that indicates which component an LAR 

belongs to, and apply the Expectation-Maximization (EM) algorithm to estimate 𝛼𝛼𝑚𝑚 

and 𝜎𝜎𝑠𝑠2 . Given a segment s with TCN = 𝑇𝑇𝑠𝑠 , which contains 𝑁𝑁𝑠𝑠  LARs, for every 

possible ASCN combination (𝛾𝛾, 𝛾𝛾): 𝛾𝛾 = 𝑇𝑇𝑠𝑠 − 𝛾𝛾, 𝛾𝛾 = 0,1,⋯ , ⌈𝑇𝑇𝑠𝑠/2⌉, 𝜇𝜇𝑚𝑚 is calculated 

according to eq. 19, then the E-step computes the conditional probability of one LAR 

belonging to either component: 

𝑃𝑃 �Δ𝑖𝑖|𝑟𝑟𝑖𝑖;𝜎𝜎𝑠𝑠
2(𝑔𝑔),𝛼𝛼1

(𝑔𝑔),𝛼𝛼2
(𝑔𝑔)� =

𝛼𝛼𝑚𝑚
(𝑔𝑔)𝑃𝑃 �𝑟𝑟𝑖𝑖|𝜇𝜇𝑚𝑚,𝜎𝜎𝑠𝑠

2(𝑔𝑔)�

∑ 𝛼𝛼𝑚𝑚
(𝑔𝑔)𝑃𝑃 �𝑟𝑟𝑖𝑖|𝜇𝜇𝑚𝑚,𝜎𝜎𝑠𝑠

2(𝑔𝑔)�2
𝑚𝑚=1

Δ𝑖𝑖 = 1,2;  𝑖𝑖 = 1,2, … ,𝑁𝑁𝑠𝑠 

 (25) 

The M-step updates these parameters: 

𝜎𝜎�𝑠𝑠2 =
1
𝑁𝑁𝑠𝑠
� � 𝑃𝑃�Δ𝑖𝑖|𝑟𝑟𝑖𝑖 ,𝜎𝜎𝑠𝑠

2(𝑔𝑔),𝛼𝛼1
(𝑔𝑔),𝛼𝛼2

(𝑔𝑔)�
Δ𝑖𝑖=1,2

(𝑟𝑟𝑖𝑖 − 𝜇𝜇𝑚𝑚)2
𝑁𝑁𝑠𝑠

𝑖𝑖=1

𝛼𝛼�1 =
1
𝑁𝑁𝑠𝑠
�𝑃𝑃 �Δ𝑖𝑖 = 1|𝑟𝑟𝑖𝑖 ,𝜎𝜎𝑠𝑠

2(𝑔𝑔),𝛼𝛼1
(𝑔𝑔),𝛼𝛼2

(𝑔𝑔)�
𝑁𝑁𝑠𝑠

𝑖𝑖=1

𝛼𝛼�2 = 1 − 𝛼𝛼�1
(𝑔𝑔)

 (26) 

The E-step and M-step are iterated until convergence and we calculate the LAR 

likelihood for ASCN (𝛾𝛾, 𝛾𝛾) as follows: 

𝐿𝐿(𝑟𝑟; 𝛾𝛾, 𝛾𝛾) = � � 𝛼𝛼𝑚𝑚𝑃𝑃(𝑟𝑟𝑖𝑖|𝜇𝜇𝑚𝑚,𝜎𝜎𝑠𝑠2)
𝑚𝑚=1,2

𝑁𝑁𝑠𝑠

𝑖𝑖=1

 (27) 

The EM algorithm is applied to solve optimal parameters and derive the 

corresponding likelihood for every possible ASCN combination (𝛾𝛾, 𝛾𝛾). The ASCN 

estimate �𝛾𝛾� , 𝛾𝛾� for segment 𝑠𝑠 is the one with the maximum likelihood. 
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�𝛾𝛾� , 𝛾𝛾� = arg max
𝑘𝑘,𝑙𝑙

log 𝐿𝐿(𝑟𝑟; 𝛾𝛾, 𝛾𝛾)  (28) 

In the next step, the maximum LAR likelihood of all segments will be combined 

with the TRE likelihood via the Bayesian Information Criterion (BIC) to determine the 

most likely tumor purity, tumor ploidy, TCNs and ASCNs of all chromosomal segments. 

6 BIC for the combined model and optimization 

To avoid model overfitting, we adopt the Bayesian Information Criterion (BIC). 
 𝐵𝐵𝐵𝐵𝑇𝑇(𝐿𝐿, 𝑟𝑟; 𝛾𝛾, 𝜅𝜅,𝛾𝛾, 𝛾𝛾) = −2 log 𝐿𝐿(𝐿𝐿; 𝛾𝛾, 𝜅𝜅) − 2 log 𝐿𝐿(𝑟𝑟; 𝛾𝛾, 𝛾𝛾)

+𝐵𝐵 × log𝑀𝑀 + 𝐽𝐽 × log𝑁𝑁  (29) 

where I is the total number of potential TCNs, M is the total number of observed 

TREs, J is the total number of potential ASCNs, and 𝑁𝑁 is the total number of HGSNVs.  

Instead of searching through the infinite range of tumor purity 𝛾𝛾 ∈ [0,1], the tumor 

cell ploidy 𝜅𝜅 ∈ [0,∞], all possible TCNs and ASCNs, an optimization scheme that 

leverages the periodic TRE pattern is adopted. Accucopy first uses an autocorrelation 

analysis that discovers candidates for P and Q, which are equivalent to 𝛾𝛾 and 𝜅𝜅, as 

shown in eq. 10, and finds the minimum BIC score among these candidates only. 

To reduce the noise in the TRE distribution, Accucopy applies a kernel smoothing 

(1D Gaussian) before the autocorrelation analysis. The top two lags identified in the 

auto-correlation analysis form the candidates of 𝑃𝑃. Given a candidate 𝑃𝑃, Accucopy 

further identifies major peaks in the TRE distribution that are 𝑃𝑃 apart, which represent 

clonal segments of integral copy numbers, and filters out segments that do not belong 

to any major peak, which are classified as subclonal segments. The TREs of all the 

major peaks become the candidates for 𝑄𝑄. Given a pair of candidate 𝑃𝑃 and 𝑄𝑄, the 

TCN of each clonal segment is determined, the TRE likelihood is computed, and the 

EM algorithm is carried out to compute the most likely ASCN of this segment and its 

LAR likelihood. The TRE and LAR likelihoods are then combined into the BIC score. 

The best estimates of purity and ploidy (𝛾𝛾�, �̂�𝜅), TCNs, and ASCNs (𝛾𝛾� , 𝛾𝛾) are obtained 

by minimizing the BIC score: 

�𝛾𝛾�, �̂�𝜅,𝛾𝛾� , 𝛾𝛾� = arg min
𝛾𝛾,𝜅𝜅,𝜇𝜇,𝑘𝑘,𝑙𝑙

𝐵𝐵𝐵𝐵𝑇𝑇(𝐿𝐿, 𝑟𝑟; 𝛾𝛾, 𝜅𝜅,𝛾𝛾, 𝛾𝛾)  (30) 
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Additional File 2:  
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Supplementary Figure 1. Copy number profile of chr1 on partial simulation data. X-

axis is the chromosomal position and Y-axis is the copy number. Each figure has two 

panels. The top is the profile of absolute copy number and the bottom is the profile of 

major allele copy number. A. The truth profile of chr1. B-I. The copy number profile 

given by different methods on different samples. The title of each figure has three keys 

split by space, which indicate the method name, sample coverage and sample purity 

respectively. 
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