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interactions, we find the reanalyzed data results in

ABSTRACT significantly improved classification of binding vs

Protein domain interactions with short non-binding when using machine learning
linear peptides, such as Src homology 2 (SH2)echniques, suggesting improved coherence in the
domain interactions with  phosphotyrosine-reanalyzed datasets. In addition to providing the
containing peptide motifs (pTyr), are ubiquitousrevised dataset, we propose this new analysis
and important to many biochemical processes gbipeline and necessary protein activity controls
the cell — both in their central importance to cellshould be part of the design process of many such
physiology, and to the sheer scale of possibl&igh-throughput biochemical measurements.
interactions. The desire to map and quantify these
interactions has resulted in the development ofntroduction
increased throughput quantitative measurement Protein domain interactions with short
techniques, such as microarray or plate-baselihear peptides are found in many biochemical
fluorescence polarization assays. For example, iprocesses of the cell, and represent a vast number
the last 15 years, experiments have progresseil potential interactions. They play a central role
from measuring single interactions to havingin cell physiology and communication. For
covering 500,000 of the 5.5 million possible SH2-example, SH2 domains are central to pTyr
pTyr interactions in the human proteome.signaling networks, which control cell
However, high  variability in  affinity development, migration, and apoptosi§. (The
measurements and disagreements about positid20 human SH2 domains are considered
interactions between published datasets led us toeaders”, since they read the presence of tyrosine
re-evaluate the analysis pipelines of publisheghhosphorylation by binding specifically to certain
SH2-pTyr datasets. We identified severalphosphorylated amino acid sequences. These
opportunities for improving the identification of domains are typically 100 amino acids long and
positive and negative interactions, and theold into a conserved structure consisting of two o
accuracy of affinity measurements. These methodselices and sevestrands. At its binding core, an
account for protein aggregation and degradationinvariant arginine creates a salt bridge with the
and use model fitting and evaluation that are morégand pTyr yielding approximately half of the
appropriate for the non-linear behavior of bindingbinding energy of the SH2-pTyr sequence
interaction data. In addition to improve affinity interaction. Early degenerate library screens
accuracy, and increased certainty in negativelemonstrated that the remainder of the binding
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energy results from interactions between the SHRlentified potential inaccuracies in protein
domain binding pocket and the residues flankingconcentration common to all three data sets that
central pTyr residues 2{4), resulting in the had the potential to directly affect the published
specificity of SH2 domain interactions within affinity values. Second, we found errors in model
pTyr-mediated signaling5f. Understanding SH2 fitting and the statistical methods used to evaluate
domain specificity and binding affinities with model fitting, which could have significant impact
cognate ligands would greatly aid in ouron the reported affinities.

understanding of cell signaling networks that In reviewing the protein preparation
control human physiology. However, the totalprotocols for each experiment, we found that all of
interaction space is immense — the 46,00@he affinity studies failed to use positive controls

tyrosines currently known to be phosphorylated irto determine if protein was functional before
the human proteomes), present over 5.5 million measuring affinity. Furthermore, protein was
possible SH2-pTyr sequence interactions. minimally purified (via nickel chromatography
Recent developments have expanded thenly), and the resulting protein concentration was
measurement coverage of human SH2 domaimmeasured by absorbance. Thus protein of varying
with specific pTyr-containing peptides. degrees of purity and non-monomeric content
Specifically, eight high-throughput affinity studies were used for affinity measurements. Without
have been performed, using either microarrays guositive protein controls, it is difficult to determine
fluorescence polarization to measure SH2 domaiif non-interaction is due to inactive protein or true
interactions  with  specific  phosphopeptidefailure to interact. And testing non-monomeric
sequences7¢14). Although the six studies that protein risks violating the one-to-one assumptions
measured affinity represent roughly 90,000 pair®f the receptor occupancy model used to calculate
of domain-peptide interactions, theseaffinity. Errors in effective protein concentration
measurements cover only 2% of the possibl@eriving from inactive or degraded protein would
interaction space. In response, computationalesult in concentration values different than the
approaches have used published datasets to extesntiount of active protein in the sample. These
from the measured space into unmeasured spacesncentration errors would propagate directly to
by a variety of prediction methods. These methodsrrors in the derived affinity values, as affinity
span the range from thermodynamic models usingalues are a function of concentration.
existing structure and binding measurements to Furthermore, all of the affinity studies
predict interaction strengtll%-17) to supervised used the coefficient of determination?)(ras a
machine learning models using patterns in peptiddetermination of how well the model fits the data.
sequences and quantitative binding data to predidn these studies, any interaction not meeting®an r
binding to particular domaingl4, 18). However, value threshold of approximately 0.90 or 0.95 was
no computational method has used the availableejected from further analysis. Unfortunately, r
affinity data in its entirety. We therefore wished tohas been conclusively shown to be a poor indicator
leverage all available binding affinity of fitness for non-linear models (like the non-
measurement data in a supervised learnininear receptor occupancy model used in each of
approach to expand our knowledge of SH2-pTythese studies to derive affinity) and can produce
interaction space. misleading results 10). Although this fact has
Unfortunately, in the process of reviewing long been established in the statistical literature
published high-throughput data, we noticed(20-26) r? is still commonly used to evaluate non-
several inconsistencies with the published resultsnear models in pharmaceutical and biomedical
and potential problems with the methods used tpublications despite being an ineffective and
produce the data sets. We found surprisingnisleading metric. Forlinear data, one can
disagreement between published data sets. Thieterpret the values of between 0 and 1 as the
published data failed to agree on the identity ototal percent of variance explained by the fit.
which domain-peptide pairs interacted, and on thélowever, when applied tnon-linear data, the ¥
small subset on which the&lp agree, they reported value cannot be interpreted as the percent of
vastly different affinities. We hypothesized two variance and is known to fail to reflect
potential causes for this variation. First, wesignificantly better fitting models 10).


https://doi.org/10.1101/2020.01.02.892901

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.02.892901; this version posted January 2, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

New analysis pipeline improves SH2 affinity data

Furthermore, as applied here, it effectivelyof predominantly non-overlapping protein
resulted in a bias for identification of true positivemicroarray experiments. The second data group
interactions at the expense of making many falseonsists of a large study published by the
negative calls. MacBeath lab in 201310) with a set of new
Therefore, we had serious concerns aboyprotein microarray measurements using the
using the published data for use in machingrotocol published in 201028). The third data
learning, due to both inaccuracies in quantitativegroup consists of two non-overlapping sets of
results, and the significant potential for largefluorescence polarization data published in 2012
numbers of false negative results. Given thesand 2014 by the Jones lab3( 14). Because the
limitations in the published data, we endeavored tother array experimentsll, 12) only measured
retrieve and reanalyze any raw data we coulihteraction and not affinity, they were not
acquire in order to systematically improve SH2-considered for this analysis.
phosphopeptide affinity measurement accuracy. In order to determine how well the data
To accomplish this: 1) we refined model fitting groups agreed on affinity measurements, we
techniques, 2) implemented multiple models forexamined the correlation between domain-peptide
each measurement, 3) used a statistically accuraadfinity measurements which overlapped between
method for model selection, 4) developed methodany two data groups (Fig. 1). We found
to identify and remove non-functional proteinsurprisingly low correlation between affinity
from the results, and 5) introduced a simplemeasurements (with a maximum correlation of r =
method to handle the effects of degraded proteid.377). Next we asked if the different data groups
on affinity measurements. Our revised analysisdentified the same positive interactions between
improves affinity accuracy, improves specificity domain-peptide pairs, even if they did not agree on
by reducing the false negative rate, and results inthe affinity measurements. We compared the
dramatic increase in useful data, due to thédentities of positive interactions measured in any
addition of thousands of true negatives.of the three data groups. Here, we also found
Evaluation of the revised dataset shows improvedignificant disagreement over which domain-
learning accuracy within an active learning modebpeptide pairs were found to interact (Fig. 1). There
— suggesting that there is improved coherency iwere 347 positive domain-peptide interactions
the features of the revised dataset. We proposdentified by at least one group, but less than 16%
this new analysis framework for improving the of those interactions were found to be positive in
accuracy of high-throughput affinity domain- all three data groups. No two experiments were
peptide interaction measurements, and ultimatelgble to agree on more than 29% of the positive
suggest ways to improve future experiments vianteractions. The differences in interaction

better experimental design. identification were spread randomly among SH2
domains and peptides, with no single SH2 domain,
Results peptide, or peptide family being overrepresented

in the differences between any particular data
Evaluation of published affinity data and  group (Fig. S1).
acquisition of raw data We then considered which factors of
In the process of evaluating publishedprotein preparation, peptide preparation, or
high-throughput data, we found significantexperimental technology difference could have
disagreement between data sets. We evaluated @dlsulted in such different results. Although there
publications using high-throughput methods toare significant differences between the techniques
measure SH2 domain interactions with specifiof protein microarrays (which immobilize the SH2
peptide sequences, including peptide microarraysgroteins on the microarray and wash fluorophore-
peptide arrays, and fluorescence polarizatiomabeled peptides over the arrays) and fluorescence
methods. The publications containing SH2 affinitypolarization (where both the SH2 protein domains
data can be grouped into three, distinct data groupgd peptides are in solution), the differences
(Table 1). The first data group consists of thebetween positive interactors did not group by
group of studies published by the MacBeath lahechnology type. The MacBeath 2013 data group
from 2006 to 20097, 9, 27) which contain a body (which used protein microarrays) had almost the
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same size of positive interaction overlap with thereview the methods used to process the raw data
MacBeath  2006-09 (also using proteininto its published form. Although some raw data
microarrays) as with the Jones 2012-14 data growpas missing in comparison to the original
(which used fluorescence polarization methodspublication, by limiting our revised analysis to
(Fig. 1). In terms of experimental and analyticalinteractions of single SH2 domains with
methods all three data groups: 1) usegphosphopeptides from the ErbB family (EGFR,
recombinant SH2 domain protein production,ERBB2, ERBB3, ERBB4), as well as KIT, MET,
added a Histag, and used nickel chromatographyand GAB1, the available raw data covered
as the sole protein purification method; 2) dialyzedapproximately  99.6% of the reported
purified protein into a buffer and added glycerol,measurements.
though different buffers were used in different Evaluation of the Original Model. The raw
publications; 3) used absorbance at 280nM tadlata for each measured interaction consisted of
determine protein concentration, though one groufluorescence polarization measurements of an SH2
(10) measured protein concentration with adomain in solution with a phosphopeptide at
protocol @8) using denaturing conditions; 4) usedequilibrium at 12 concentrations. In the original
solid phase synthesized peptides purified wittpublication, the raw data was then used to interpret
reverse phase HPLC; and 5) used the receptan equilibrium dissociation rate constant (K
occupancy model, and similar methods ofaccording to the receptor occupancy model,
evaluating model fits based on the coefficient ofdeveloped by Clark in 1926 and derived from the
determination ). Without more detailed analysis, law of mass action29). As applied to the
it would be impossible to determine which of thesdluorescence polarization data, the model takes the
factors, if any, are responsible for the differencegorm:
in reported results.
These findings demonstrate significant [SH2 domain]E,,

itati itati i obs = : €Y)
guantitative and qualitative differences between K4 + [SH2 domain]
published data from different labs, and even
disagreements between early results and lai@here F, is the observed fluorescence
results published from the same lab. We concludegolarization (FP) at each assayed protein
that we could not identify the source of differencesoncentration of the SH2 domain (measured in
between published data sets, or even evaluate thgillipolarization units (mP)), and &, represents
quality of any single set of published data, withoutthe FP at saturation (see also Fig. S2). The affinity
looking further into the raw data. Acquisition of (K,) and saturation limit (Fmax) are fitted
raw data from published studies was surprisinglparameters of the model. It is important to note
difficult. Upon review of the affinity publications, that this model is dependent on several critical
we discovered that no publication contained ravassumptions: that the reaction is reversible; that
data. Rather, publications contained onlythe ligand only exists in a bound and unbound
supplemental tables with post-processed values féorm; that all receptor molecules are equivalent;
affinity, which are insufficient for replication of that the biological response is proportional to
published results. Furthermore, we discovered thajccupied receptors; and that the system is at
most raw data underlying the published analysigquilibrium.
has been lost by the original authors and is no We hypothesized that the specific methods
longer available from any party. (Table 1)used to implement the receptor occupancy model
However, we were able to retrieve raw data fromn the original publications might have affected the
the Jones 2012-14 data group, thanks to assistangecuracy of the originally published fitted
from the authors (personal communication fromparameter results. We examined three aspects of

Richard Jones, Ron Hause, and Ken Leung). the implementation of this model. First, we
' ' _ ' examined the effect of subtracting background
Raw SH2 interaction data and revised analysis fluorescence on model fiting and explored

We proceeded to examine the raw datalternatives that introduce less bias. Second, we
from the Jones 2012-14 data group, to evaluate th@viewed whether dropping outlier measurements,
quality and completeness of the data, and t@s used in the original publications, affected model
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fitting results. Third, we asked whether theinformation contained in the data forming the
receptor occupancy model could reliably fit a non-saturation curve.
binding sample, and examined failure modes when In contrast, we chose a method in which
we found it did not. the origin was set at a point that was extrapolated
The Effect of Background Fluorescencefrom the saturation curve data itself, instead of
on Model Fitting. In the original analysis, the from the reported background values. This was
authors used a plate-wise background subtractioaccomplished by adding an offset valuggfand
method, where the median baseline control valuétting both the curve and the offset/origin at the
was recorded from plate measurements angame time:
subtracted from the polarization signal observed at
each data pointl@). When plates had excessive [SH2 domain]Fyqy
variation in baseline control values, the authors obs = K, + [SH2 domain] bg @
excluded these results from further analysis. We
hypothesized that the setting of the background qiwhere F4 represents a fluorescence background
“zero” polarization value (zero-signal) would offset value). This resulted in the fewest artificial
affect model fitting results, because a criticalconstraints on the data and high-quality fits
assumption of the model is that the saturatiomndependent of artifacts from background
curve passes through the origin (the point of zerosubtraction.
signal, which is also the point of zero- Outlier Removal Biases Model Fitting. In
concentration).  Because the  backgroundhe original publications, the authors utilized an
subtraction method results in zero-signal at a poiriterative outlier removal process. For each set of
other than zero-concentration — violating thel2 data points in a replicate measurement,
assumptions of the model — we examined théndividual points identified as outliers using a
effects of this method of background subtractiorstatistical model were removed iteratively and the
on model fitting. fit was reevaluated. Up to three points were
In examining many measurements, Weiteratively removed per measurement. For
initially found that the background value was oftenmeasurements where more than three data points
uncorrelated with the signal values. In some casegere identified as outliers, the measurement was
a strong signal with low internal noise wasremoved from further consideration. The approach
present, but the background value was high — fasf dropping outliers is a commonly used tool to
above much of the seemingly reliable signal (Figreduce the impact of noise on a model, yet it
S3, top row). In these cases, the high quality of theepresents a tradeoff. By using fewer data points,
data seems to contradict the limits imposed by thiess of the original data is available. Furthermore,
seemingly high background, below whichoutlier identification relies on assumptions about
measurements should be random noise. In othé&low measured data is expected to fit a statistical
cases, the background level was far below thenodel, which may not be correct. We wished to
signal (Fig. S3, middle row). Subtracting a highdetermine the impact of outlier removal on the
background value would drive some FP valuesnterpretation of the raw data.
negative, which cannot be accommodated by the In order to determine the effect of
model. Subtracting a low background value forcesemoving a data point, we evaluated the number of
the zero-signal point to be far below the data andata points and concentration range of those data
causes reproducible and systematic errors ipoints for suitability to the measurements
affinity parameter fitting when the curve is forcedattempted. The original data consisted of protein
to pass through the origin. Treating the minimumyith an initial concentration of either 10uM or
measured FP value as the zero signal value c&@uM, and 11 serial dilutions of the protein (for a
also induce unforeseen results in fit parameters, astal of 12 data points), with each dilution
the first data point is not always the minimum duerepresenting a further reduction to one-half
to random noise in the data. The shortcoming ofoncentration. Thus the range of concentrations
the subtraction methods is that the curve is forcedpanned by each measurement was either 2.4nM to
through a point without using the high-quality 5uM or 4.9nM to 10uM. For an ideal binding
saturation experiment attempting to identify, K
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the concentrations tested should span either side nfeasured signal is larger than the sum of all errors
Ky, and the highest and lowest measuredo the fit, and represents a good quality fit in
concentrations should establish the plateaus se@mactice, with few exceptions.
on semi-log saturation plots (Fig. S4, second Receptor Occupancy Model Failure to Fit
column). Given the concentrations measured, iNon-Binding Measurements. The original analysis
can be seen that the experiment is designed tejected measurements below Arutoff of 0.95.
most accurately identify proteins with affinity K Those rejected measurements were considered to
in the range of 0.05 uM to 0.5uM. However, thebe non-binders by many subsequent analysis and
original publication reported values as high as 2@nodels. Since the use of drcutoff does not have
KM, which is more than 4-fold above the 0.5 pMa straightforward interpretation when evaluating a
limit of the highest accuracy measurement rangenonlinear model, we wished to understand under
For interactions with a Kof 1 uM, the upper what conditions this approach would have
plateau of the semi-log saturation curve no longeproduced errors in classification of binding and
has any coverage from the data (Fig. S4, row 2)yon-binding interactions.
and interactions with Kvalues higher than 5uM Although the receptor occupancy model is
have few or no data points even abovgKg. S4, theoretically capable of fitting a typical binding
rows 3 and 4), which significantly increasessaturation curve as well as a ‘flat’ curve
potential inaccuracies in model fitting. This representative of non-binding interactions, we
suggests that every data point is critical forfound that in practice it fails to identify non-
accuracy, particularly points above.Kn practice, binding interactions (Fig. S7, blue fits). The fitting
we found many cases where removal of a singlerrors follow two patterns: In the first pattern,
data point had a large impact on the resulting fittedhoise in the data is over-fit. Non-binding data
affinity parameter. In contrast, we found fewtypically looks like a low magnitude flat line with
examples where a single, obvious outliersuperimposed noise. However, in practice,
prevented a good fit on an otherwise very hightraditional least-squares methods will tend to over-
guality measurement. Based on the high sensitivitfit noise in the data to a rapidly saturating curve,
of affinity to the removal of data, we decided torather than fit a straight line. Ironically, this
use all data points (dropping no points) to avoidartifact results in miscategorization as a binder,
introducing these inaccuracies. Rather thamith a high affinity fit. Second, when there is
dropping data points, we identified poor qualitylimited non-specific binding present, non-binding
measurements after fitting the model bydata can also present as a line with a low-to-
comparing the magnitude of fit error to the moderate slope with superimposed noise. In these
magnitude of the measured signal (signal-to-noiseases, the receptor occupancy model tends to fit a
ratio, SNR). low-curvature arc (almost indistinguishable from a
Signal To Noise Ratio. In order to accountstraight line). The consequences of this type of fit
for outlier measurements that impact fitness and tartifact are found in erroneous fit parameters: an
determine how well the data was represented bgstronomically high saturation value and low
the model, we used a signal to noise ratio (SNRaffinity. A saturation value of this size cannot
metric. This SNR metric evaluates the magnitudeesult from the one-to-one interaction assumption
of residual errors of fit to the model (a form of of the receptor occupancy model, and clearly
noise), and weights this sum by the overall size ofepresents a fit artifact.

the fluorescent signal measured. It is calculated as Thus, we hypothesized that a linear model
would more reliably fit non-binding interactions
max(F,ps) — min(F,ps) and resolve both of these types of fit artifacts. The
SNR = ™ IR ) linear model:
wheren is the number of data points; R the Fops = m[SH2 domain] + Fy,4 %)

residual value of thé" data point, and Jss is the

observed fluorescence (in mP units). We chose @vhere f, represents a FP background offset
ratio of 1 as the limit of a good fit (see Fig. S5 andvalue, andnis a constant representing the slope of
Fig. S6). At an SNR greater than one, thdhe fitted line, Fig. S7, red fits). There are two
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parameters to the linear model (slope andvith offset (equation 4) and a receptor occupancy
offset/intercept), one fewer parameter than thenodel with offset (equation 2). Fits were evaluated
receptor occupancy model which hagfKg and  with AICc: the model with the lower score was
offset/intercept. chosen as the best fit. Replicates that were fit best
When more than one model can be used tby the linear model and had a slope of less than or
fit the data, a method of model selection must bequal to 5mP/uM were classified as negative
implemented to determine which model mostinteractions, or ‘non-binders’. Linear fits with a
accurately represents the data while balancinglope greater than 5mP/uM were classified as
against adding additional parameters which caaggregators. A replicate that was fit best by the
lead to overfitting. In order to determine if areceptor occupancy model was then evaluated for
measurement is best described by a receptsignal to noise ratio (SNR). If the SNR was greater
occupancy model or a linear model we used théhan one, the replicate was classified as a positive
Akaike Information Criterion (AIC). In contrast to interaction or ‘binder’. Out of 37,378 replicate
the coefficient of determination 3r AIC is a measurements, we found 2753 binders and 29,778
model selection metric which is appropriate fornon-binders. There were 2764 replicates that fit
use with non-linear model4 9, 30), is robust even best to the receptor occupancy model, but were too
with high noise data, and employs a regularizatiomoisy to reliably call as binders (classified as Low-
technique to avoid overfitting by penalizing SNR fits), and approximately 2000 fits that best fit
models with more parameters. In ourthe linear model, but with high slope (classified as
implementation we used a bias corrected form oRggregators, Fig. 3).
the metric, AICc, in order to account for only Once a fitting process is completed for
having 12 data points per saturation curve. Aeach replicate, typically replicate measurements
lower AICc score indicates a better fit. Examplesare averaged and the mean and standard deviation
of model fitting can be seen in Fig. S8. If data wasare reported. In the original publication, the
best fit by the receptor occupancy model, we useduthors averaged the affinities gjkderived from
SNR to identify the quality of fit of that model. each replicate domain-peptide pair measurement
Although low-slope linear data is to obtain the final published #&alue and reported
consistent with non-binding interactions, we alscstandard deviations where there were three or
found a class of measurement which was best finore replicates. However, we found interesting
by a high-slope linear model. The high slopepatterns at the replicate level that made us question
suggests linearly increasing fluorescent signal withwhether the mean was an appropriate way to
concentration with no indication of saturation.handle the replicates, discussed in detail below.
This type of response is outside the scope of a
receptor occupancy model, and is more likely tdHigh variation at the replicate level highlights
represent a form of either protein or peptideprotein degradation and inactivity
aggregation (or a combination of both), or a form The original publication reported a single
of non-specific binding. Thus, to preserve theaffinity (Kq) value for each domain-peptide pair,
guality of the non-binding calls, a conservativewhich was the average of multiple replicate
low-slope cutoff of 5mP/uM was implemented, domain-peptide measurements. However, we
above which replicates were identified asfound interesting patterns in the replicate-level
aggregators, and removed from furtherresults suggesting impaired protein functionality
consideration. and problems with concentration accuracy. This
Summary of Revised Analysis Method for led to an in-detail examination of replicate results,
Replicate Measurements. Following a systematiand made us examine the assumption of using the
review of each decision made in evaluating anean as an appropriate way to handle replicates.
measurement in high-throughput affinity studies In looking at replicate variance, we
(i.e., background subtraction, outlier removal,noticed examples of high variance in affinity
model fitting, and quality of fit) we developed a among replicates (for exampley Malues ranging
new analysis pipeline for each replicatefrom 0.5uM to over 20uM for replicates from a
measurement (Fig. 2). For each replicatesingle domain-peptide interaction). To explore this
measurement we fit two models: a linear modefurther, we visualized variance for each group of
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replicates from the same peptide and domain usinge hypothesized that errors in protein
a distributed dot plot (Fig. 4). We found high concentration would be reflected as errors in
variation in replicates across a large fraction of albffinity. Because a fraction of degraded or inactive
measurements, independent of affinity. We themrotein represents an error between the assumed
inspected the individual fits for each replicateconcentration and the active concentration of a
group in order to determine the source of therotein, degraded or inactive protein would also
variation. Most replicate fits were high quality andpropagate to errors in affinity.

had low residual error to the model. By eye, the The effect of 50% degradation and 75%
measured data looked reliable for each replicatelegradation on a protein with 1um k shown in
despite the high variation in derived affinity. (ForFig. 5. For saturation binding experiments, the
a representative example of all measurements fromrror in fluorescence polarization (FP) is not linear
one such replicate group, see Fig. S9). This pattemith the error in concentration — rather it is a
held true across many such examples reviewefdinction of the level of saturation of the protein
(data not shown). How could such high-qualitybinding the ligand. However, the error in affinity
individual replicate measurements result in sucliderived from the model fit) is linearly
varied affinities for a single domain-peptide pair? proportional to the error in concentration.

On its face, such high variation in affinity Thus, degraded protein of varying degrees
between replicates suggests a significant probleman manifest as a range of measurgd/édues in
with either experimental design or experimentakeplicate measurements (all of which would be
method. At a minimum, it suggests that anotheequal to or higher than the truegK while
(uncontrolled for) variable is being measuredsimultaneously coming from seemingly high-
instead of the desired variable being tested. In thguality, low-noise individual FP measurements.
worst case, the remedy requires identifying and’his exact phenomenon has also been
controlling for the source of variation, and redoingdemonstrated experimentall$1).
the experimental measurements. However, we Evidence for Protein Degradation and
hypothesized that a single variable — proteifNon-Functionality in the Raw Data. We next
degradation — could be responsible for the higlexamined the data for evidence of protein
variance we saw in this data. Even the authors afegradation. If the variance in affinity was from
the original publication argued that the “greatestandom (non-systemic) sources, we would expect
source of variability in the FP assay...is batch{o find no patterns of variance in time. In contrast,
specific differences in protein functionality 13) if variance was from protein degradation, we

To that end, we first examined the might see non-random patterns in affinity over
theoretical effects of degradation on affinity. Wetime. For example, if a fresh protein sample and a
found that degradation could produce highdegraded protein sample were used on different
variance in affinity, and could also be consistentuns, we might expect to see variation correlating
with the high-quality individual fits we saw for with the day, but consistent during that run. If a
replicates. Next, we identified evidence of suchprotein sample was exhausted mid-run, and
degradation in patterns in the data. Finally, weeplaced with a fresh sample, we might see a
developed a method to control for degradation irsudden surge of increased affinity in the middle of
the current raw data in order to ultimately producea run. Although we don’t have an exact time for
more accurate interaction affinities using existinggach measurement, and the same peptides were
raw data. measured far apart in time, we do have a pseudo-

Effect of Degradation on Derived K time substitute. Fortunately, on each run, the
Although binding affinity is a molecular property peptides were measured in approximately the same
— affinity is the strength of interaction between aorder, which allows us to see patterns of protein
single protein molecule and a single peptide -affinity over time and across peptides from run to
accurate derivation and calculation of affinity byrun. In the first published experiment, data was
most methods depends on the accuracy gfrimary gathered on 3 runs on 3 different days. On
concentration measurements for the tested proteieach run, domains were tested against hundreds of
In the case of the receptor occupancy model usqukptides providing rich data for seeing these
here, affinity is a function of concentration. Thus,patterns.
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Fig. S10 shows this time-dependent dataGRB2, by labeling all measurements from Run 1
for interactions with three SH2 domains. Foras non-functional, we removed the replicates from
PIK3R2-N, we see that Run3 replicatesconsideration. For BMX, no positive interactions
consistently showed lower ¢Kvalues (higher with any peptide were recorded on any run. While
affinities) than replicates from other days. Thisit is possible that this represents the true binding
pattern of run to run variation suggests that thédehavior, it is equally possible that the BMX
protein samples tested in Runs 1 and 2 were leggotein was never functional. Since it is impossible
active than Run 3. For RASA1-N, no single dayto tell from the data, and the quality of both true
dominated the highest affinity until plate 174, afterpositive and true negative data is of concern, the
which the highest affinity replicates all come frommost conservative course is to consider all of these
Run 1. This is consistent with a change to freshmeasurements as non-functional, and remove them
less degraded protein during Run 1. These patterfiom consideration. This is shown in the right
are not compatible with a random source ofpanel for BMX. PIK3R1-C, on the other hand,
variance. However not all protein data showsshows very little evidence of degradation.
pattern  consistent with this degradationHowever, no positive results were recorded on
hypothesis. For SH2D2A, binding affinity tends to Run 4, which is consistent with the protein in Run
be weaker on Run 2, but the highest affinity4 being non-functional.

(lowest Ky) experimentally alternate between Run Once all individual replicate fits were

1 and Run 3, and significant variation appeargomplete according to our revised protocol (Fig.
during each run. The patterns for SH2D2A are noR), we added a step to the pipeline where
consistent with a simple degradation hypothesisgxperimental runs were examined for non-
and may be indicative of additional sources offunctional protein. If an entire run lacked even one
variation. positive binding interaction, but had corresponding

Because we found patterns consistent witlpositive interactions on another run, the entire run
partial degradation, we also wanted to examine th&vas marked as containing non-functional protein.
data for patterns of complete protein degradatiorBy removing replicates where there is evidence
Complete degradation, or completely non-that the protein was non-functional, we avoid the
functional protein, would be indistinguishable potential for false negatives from this ambiguous
from a non-binding measurement for a singledata, and greatly improve the pool of true negative
replicate, potentially resulting in a false-negative calls. Non-functional protein calls for all peptides
A control experiment to determine protein and domains can be seen in Fig. S12 and Fig. S13.
functionality would normally be required to Removal of non-functional protein has a
delineate these two cases. However, weignificant impact on the numbers of
hypothesized that non-functional protein wouldmeasurements at the replicate level. Fig. 3 shows
manifest within the data as long runs of non-that non-functional replicates made up 37.6% of
binding results across many replicates, but woul@ll replicates (14070/37378). Most of the non-
demonstrate contradictory evidence of binding orfunctional replicates were originally categorized as
other runs when the protein was not degraded.  non-binders, but a portion came from low-SNR

To examine the data for patterns of non-replicates, and replicates that demonstrated
functional protein, we plotted affinity by domain aggregation. The large number of runs showing
and by run for three example domains from thepatterns of non-functional protein contributes to
first publication: GRB2, BMX, and PIK3R1-C the overall evidence that protein degradation is a
(Fig. S11). For GRB2, no positive interactionshigh source of variation in the data, and the need
were recorded on Run 1, despite several positivio control for it.
interactions from Run 2 and Run 3. This is Method for Handling Replicates with
consistent with the protein on Run 1 beingHigh Variance. Two key issues arise when
completely non-functional. Furthermore, becauseonsidering how to handle replicate measurements
the protein on Run 1 may have been nonin this data: both caused by the presence of
functional, then all non-binding interactions degraded protein. First, we see patterns in the data
measured on that run are potentially falsestrongly consistent with degraded and non-
negatives. As indicated in the right panel forfunctional protein. Yet, individual measurements
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from positive interactions seem to be of high-Revised Affinity Results and Comparison to the
quality and relatively low noise. Without knowing Original Published Results
the exact amount of protein degradation in any In the results from our revised analysis,
sample, how can this degradation be controlled fot518 positive (binding) interactions were
across replicate measurements? Second, what igentified, along with 7038 negative (non-binding)
the correct procedure for handling multipleinteractions. These ~7000 true negative results
replicate measurements when degraded protein ispresent a significant increase in information
suspected in order to report a value closest to thfeom the original raw data. Approximately 3200
true affinity? interactions had inconclusive or problematic data
We propose that protein degradation carand no conclusions about their affinity could be
be partially controlled for by reporting the drawn. Of those, 2753 domain-peptide pairs had
minimum measured Kas the affinity. Given some non-functional protein. Final affinity values were
unknown amount of protein degradation, weplotted for all peptide-domain interactions as a
demonstrated above that thrie affinity of the heat map (Fig. 6), and summarized by category of
protein will always be equal to or higher than theinteraction and changes in calls (Fig. 7). Our
measuredaffinity for protein, because the active revised results and the originally published results
concentration will always be equal to or lowerare available in Supporting Data as an Excel file.
than the measured concentration. Put in terms of Despite similar numbers of positive
Kg, thetrue K4 will always be equal to, or lower interactions between the original and revised
than the minimum measured 4K Thus, the results, the identities of the domain-peptide pairs
minimum K reflects the closest measured value tacomprising the positive interactions changed
the true affinity. significantly. Changes in calls by class are
In addition, reporting the minimumgkas  visualized in Fig. 7, while the identities of the
the affinity also avoids the issues caused bylomain-peptide pairs with changed calls are
averaging multiple degraded measurements. If theisualized in Fig. S14. Results from the original
measurements were true replicates, reflectingublication are visualized in Fig. S15. More than
random noise and experimental error, taking th&7% of the original positive interaction calls
mean of multiple replicates would be thechanged to either non-interactions, or rejected
appropriate procedure because the mean woulgsults due to data quality issue. In the final model,
represent the highest likelihood of the true value o168 interactions originally called positive in the
affinity. However, if the variation is known to be published results are found to be true negative
caused by degradation, taking the mean ointeractions. These changes are primarily due to
multiple samples would not reflect the trueusing multiple models to fit the data: the added
affinity. Taking the mean of a varying number of capability of the added, linear, model to identify
samples of unknown degradation wouldaggregation and true non-binding interactions
inadvertently increase the reporteq Kalue by instead of resulting in the over-fitting artifacts or
some unpredictable amount, where that amourfalse positive results of using a single model.
depends on the number of samples and th8imilarly large changes were found in the
magnitude of their degradation. Furthermore, sinceriginally published negative interactions where
the mean is particularly affected by outliers, ever273 formerly rejected interactions are classified as
one severely degraded sample would significantlyrue positive interactions. These recovered results
increase the mean reported Value, resulting in a are primarily due to changes in baseline fitting,
reported affinity with high error. Therefore, odd and using an appropriate quality metric to
though it may seem from a statistical perspectivedetermine which model fits best.
taking the minimum Ky is the most appropriate Furthermore, even though 1245 domain-
way to handle variation in replicates wherepeptide pairs were found to bind in both the
degradation represents the primary source dafriginal publication and our revised analysis, the
variation. quantitative affinity of those binders changed
significantly in the revised analysis (Fig. 8). Note
that although the minimum of each replicate group
was selected as most accurately reflecting the true
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affinity, our revised affinity values are not all revised dataset. First, ENS worked effectively on
lower than the original publication. This is both the original and revised datasets, identifying
primarily due to significant changes at thepositives that far exceed the expected number by
replicate level — where some original replicategandom chance by the 100th query (Fig. 9). This
were removed from consideration by changes isuggests that phosphopeptide sequences do encode
the fitting process, and a number of new replicatemformation about whether an SH2 domain will
were included in each replicate set. recognize them in a binding interaction. Second,
ENS performance in the revised dataset was

Independent evaluation of revised analysiss  higher than the original dataset on average, finding
measuring improved consistency via active 45.3 positives vs. 33.3 positives (p-value of 4e-
learning 12). Third, ENS performance is significantly more

We wanted to evaluate our revisedvariable on the original dataset than on the final
analysis compared to original results. In a caséataset (ranging between 9 and 62 positives in 50
such as this, it is difficult to evaluate becausdrials (with an average of 33.3), compared to a
original samples are no longer available. Howevenange of 38 to 67 (with an average of 45.3
one way to evaluate the data is to use machingositives) for the revised dataset. In the worst of
learning methods to ascertain whether the reviseghe 50 trials, search in the original dataset
data has better internal consistency or predictiveanderperformed by 50% compared to what is
power (when compared to itself) than the originakexpected by random chance), whereas the worst
data set. Lacking a biological reference, it seemethndom trial within the final dataset still
fitting to evaluate this data using machineoutperformed random chance by two-fold. Thus,
learning, as we originally wished to harness SH2he improved average performance and lower
domain binding measurements in machinevariability in our revised results suggests improved
learning frameworks to extrapolate from thecoherency in our revised analysis over the original
relatively ~ small  number of available published results.
measurements.

To do this, we implemented active searchDiscussion
a machine learning approach that is highly Here, we present a revised analysis of raw
amenable to biochemistry problems such as thiglata from SH2 domain affinity experiments. We
Active learning (also known as optimal presented an analysis framework which improved
experimental design or active data acquisition) is an the model fitting and evaluation methods of
machine learning paradigm where we userevious work. We used improved methods to
available data to select the next best experimentdentify high-quality true positive interactions, and
to maximize a specific objective. Active search iswe added thousands of true negative interactions,
a realization of this framework where the objectivewhile filtering out results from potentially inactive
is to recover as many members of a rare, valuablgrotein.
class as possible. In this case where only 13.9% of Although raw data from only two
the original dataset represents positive interactionsxperiments was available for detailed analysis,
between an SH2 domain and a phosphopeptide (are were fortunate that raw data combined a large
18.2% in the revised dataset) the objective of thguantity of measurements with a well-established,
search algorithm was to prioritize each sequentiadolution-based experimental system — fluorescence
selected interaction to maximize the total numbepolarization — commonly used for analytical
of positive interactions discovered. We biochemical assays. All in vitro experimental
implemented the effective nonmyopic searchmethods have limitations when attempting to
(ENS) algorithm 82) with the goal of optimizing understand behavior in vivo, but early high-
the total positive experiments identified in anthroughput experiments used arrays that had
allocated search of 100 queries. The algorithm walémitations and biases for higher affinity
seeded randomly with one example positive beforenteractions 13). Those experiments had either the
search progressed and was repeated 50 times. peptide {1, 12) or the protein 7—10) mounted on

ENS  showed improved average a surface, and would be less preferable to a
performance and higher consistency with oumethod where both molecules were measured in
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solution. So despite limited availability of data, thewide-reaching effect in many areas of SH2 domain
raw data available is likely to be the best exampleesearch: the data has been used to draw specific
for further analysis. conclusions about SH2 domain biology such as
Other high-throughput experiments shareidentification of EGFR recruitment targe®3j, to
many critical methods with the data reviewed hereexplain quantitative differences in RTK signaling
In all published experiments measuring affinity,(9), and as evidence to understand the promiscuity
protein was minimally filtered after production. of EGFR tail binding 4). In addition, this work
Authors knowingly measured non-monomerichas been used to guide experimental design by
protein. The limited purification is likely to result filtering potential binding proteins by affinity39),
in errors in protein concentration measurementfo reconcile confusing experimental resul&6)(
due to inactive protein contaminants. Furthermoreand to guide new experimental hypothesis testing
in none of the experiments was protein assess€d7). It has played a role in cancer research as
for activity before being measured. This has twacontext to understand kinase dependencies in
critical consequences: the inability to separateancer 88), and as evidence of HER3 and PI3K
non-binding results from negative interactions dueonnections as relevant to PTEN loss in cancer
to non-functional protein, and additional errors in(39). It has influenced evolutionary analys&)),
active protein concentration with respect thehas been used to design mechanistic EFGR models
measured protein concentration. Incorrect use df4l, 42), and has been used in computational
statistical methods to evaluate models waslgorithms for domain binding prediction’4¢18,
common to all published work — particularly the 43).
improper use of the coefficient of determination Furthermore, it is likely that these issues
(r) to determine the quality of fit of a non-linear plague most other high-throughput studies of SH2
model, and using only a single model to fit datadomains due to shared methodology, and thus
Their choices resulted in a high false negative ratgffect works derived from those publications as
and also masked the high variance in replicatesell. Due to the lack of correlation between any
that our revised analysis revealed. Our resultpublished high-throughput SH2 domain data, and
suggest that, if the raw data were available, somihe likelihood that similar issues plague all similar
of these issues could be corrected for in othedata sets, we would recommend against use of
experiments. these previously published data sets in future
One seemingly innocuous choice -—research or models of SH2 domain behavior. We
averaging multiple replicates containing degradedurther recommend that all derivative work should
protein — could be a significant source of error inbe carefully reviewed for accuracy.
published results from this experiment and other We want to address the best uses of the
published high-throughput data. Taking the meamevised affinity results we present, as well as the
of multiple replicates is a standard practice whetimits of the current analysis. These negative
replicate differences represent random error, but ihteractions represent a significant improvement
has drastically different results in the presence obver theoretical methods of simulating negative
multiple degraded measurements. The use of thateractions 18), as they are based on real
mean to reconcile degraded replicatemeasurements rather than statistical assumptions.
measurements could manifest as errors effectivellfurthermore, the negative interactions from our
randomizing reported affinity measurements. Evemevised set are controlled for false negative results
if failure to control protein degradation was thefrom non-functional protein — something no other
sole common error among these experiments, BH2 domain data can claim. Thus, our revised
could be the cause of the discrepancies betweersults have significant potential to improve the
published numerical results. quality of models built on categorical (binary)
It is concerning that an entire body of binding data. The limitation of this method is that
published work has developed from this set othe highest affinity measured value may not be the
problematic results. At the very least, we havdrue affinity, if a fully functional protein was never
shown that affinity values from the original measured. Nevertheless, the highest measured
publications were derived from data and methodsaffinity should still represent the measured value
causing serious inaccuracies. This data has hadctosest to the true value. It is also important to
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restate: not all variation in the data is consistenStormo lab %1). In that method, a 2-color
with the degradation hypothesis, and some&ompetitive fluorescence anisotropy assay
variation may represent other unknown sources aheasures the relative affinity of two interactions in
variation which we have not controlled for. Forsolution. By measuring interaction against two
example, one key assumption of the receptopeptides at once from the same pool of proteins,
occupancy model requires measuring the reactiotihe concentration of the protein and the proportion
at equilibrium. Since no data is provided to proveof active protein is the same in both interactions.
that the 20-minute incubation time given to allWhen the ratios are calculated, the concentration
samples was sufficient to bring all reactions toand activity drop from the calculation of affinity.
equilibrium, it is possible that some variation isAlthough this method only provides relative
due to measurements made in non-equilibriunaffinity, if one could carefully establish absolutely
conditions. affinity for a single peptide (or panel of peptides),
Finally, we would like to discuss methods absolute affinity could be extended to all
to improve future data gathering and reportinginteractions.  Alternatively, another recent
High-throughput studies have great value, an@éxperiment also uses competitive fluorescence
provide a vast quantity of often never beforeanisotropy, but measures a competitive titration
measured data. These methods have been usefulciarve in a single well with an agarose gradient
a wide variety of domain-motif interactions, for (52). Diffusion forms a spatiotemporal gradient for
example SH3-polyproline interactiongl4( 45), the interaction, and so one can produce a full
PDZ domains interacting with C-terminal tails titration curve in each well in a multi-well plate,
(46-48), and major histocompatibility complete measuring both affinity and active protein
(MHC) interactions with peptides 49, 50). concentration simultaneously. Regardless of the
However, just as quickly, errors in these studiespecific method, it should be a best practice to
propagate rapidly and thereby into research resulccount for or control for the concentration of
of other investigators. This suggests that an eveactive protein within the measurement of total
higher than normal standard of care is necessaprotein concentration.
when evaluating such publications. A set of best
practices for high-throughput methods should bé/ethods
established. For example, all raw data from high Raw Data. Upon receipt of the Jones
throughput experiments should be published2012-14 raw data, we examined the data for
along with all code used to process that data. Thisonsistency and completeness. We found that the
would make the initial data far more valuable fordata did not cover all interactions described in the
future research, much like the raw arrays storedriginal publication. However, by limiting our
Gene Expression Omnibus, or the rawrevised analysis to interactions of single SH2
experimental measurements are stored along witthomains with phosphopeptides from the ErbB
the protein structure in the Protein Data Bank. Tdamily, as well as KIT, MET, and GAB1, we were
this end, we have provided the original raw datable to limit the effect of missing raw data. Within
and our full revised data on Figshare (DOI:this scope, only a handful of individual replicate
https://doi.org/10.6084/m9.figshare.11482686.v1),interactions were then missing (approximately 138
and provided the code for the analysis pipeline oneplicate-level measurements out of over 37,000
GitHub (https://github.com/NaegleLab/SH2fp) someasurements) and were limited to 3 domain-
that future evaluation can be more easilypeptide pairs. Fortunately, two of the domain-
accomplished by other researchers. Furthermor@eptide pairs were represented by other replicate
in methods quantitatively measuring proteinmeasurements. The data we examined for this
activity, protein degradation will always be anrevised analysis cover the interactions of 84 SH2
issue. Methods for quantifying activity should be adomains with 184 phosphopeptides. The peptides
best practice. Alternatively, methods which do nocame from receptor proteins from the four ErbB
depend so heavily on accurate proteindomains (EGFR/ErbBl, HERZ2/ErbB2, ErbB3,
concentration should be preferred. One suclkrbB4) as well as KIT, MET, and GAB1. Of SH2
concentration-independent method of measuringroteins containing a single SH2 domain, 66
interaction affinity was recently developed by thedomains were measured: ABL1, ABL2, BCARS,
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BLK, BLNK, BMX, BTK, CRK, CRKL, DAPP1, where %, ..., % are the residuals from the
FER, FES, FGR, GRAP2, GRB2, GRB7, GRB10,nonlinear least squares fit and N is the number of
GRB14, HCK, HSH2D, INPPL1, ITK, LCK, residuals. The bias corrected form of AIC, referred
LCP2, LYN, MATK, NCK1, NCK2, PTK6, to as AlCc, is a variant which corrects for small
SH2B1, SH2B2, SH2B3, SH2D1A, SH2D1B, sample sizes, e.g. when one has fewer than 30 data
SH2D2A, SH2D3A, SH2D3C, SH3BP2, SHB, points. AlCc is calculated as follows:

SHC1, SHC2, SHC3, SHC4, SHD, SHE, SHF,

SLA, SLA2, SOCS1, SOCS2, SOCS3, SOCS5, 2p(p+1)

SOCS6, SRC, STAP1, SUPT6H, TEC, TENCL, AlCe=AIC+ =7 ™
TNS1, TNS3, TNS4, TXK, VAV1, VAV2,

VAV3, and YES1. From SH2 proteins with double where n is the sample size, and p is the number of
domains, C-terminal and N-terminal domains wergyarameters in the model9). Each replicate had a
individually measured from 10 proteins: PIK3R1, sample size of 12. The receptor occupancy model
PIK3R2, PIK3R3, PLCG1, PTPN11l, RASAL, had three parameters (affinity {Ksaturation level
SYK, ZAP70, PLCG2 (N-terminal only) and (F,,), and background offset (§), while the
PTPN6 (C-terminal only). One peptide had nolinear model had two parameters (slopg), (and
measurements in the raw data (EGFR pY944)ackground offset ().

Within this revised scope, the available raw data Replicates that were fit best by the linear
covered approximately 99.6% of the originally model with a slope of less than or equal to
available raw data. 5mP/uM  were categorized as negative

The raw data for each measuredinteractions, or ‘non-binders’. Linear fits with a
interaction consisted of fluorescence polarizatiorslope greater than 5mP/uM were categorized as
measurements of an SH2 domain in solution wittaggregators. Replicates that were fit best by the
a phosphopeptide at 12 concentrations. Theeceptor occupancy model were subsequently
measurements were arranged on 384 well platesvaluated for signal to noise ratio (SNR, equation
32 different SH2 domains at each of 123). If the SNR was greater than one, the replicate
concentrations, all measured against a singla&as categorized as a positive interaction or
peptide per plate. Protein concentrationshinder’, otherwise, it was rejected as a low-SNR
represented 12 serial dilutions of 50% startingit and removed from consideration.
with either 10 uM or 5 uM protein. Identifying Non-Functional Protein. Once

Model Fitting, Model Selection, and all individual fits were complete, runs were
Replicate-Level Calls. For each replicateexamined for non-functional protein. If an entire
measurement, we fit two models: the linear modefun lacked even one positive binding interaction,
(equation 4) and the receptor occupancy modeind those same interactions measured positive on
(equation 2). Model fits were evaluated with theanother run, the non-binder, aggregator, and low-
bias corrected Akaike Information Criterion SNR calls on that run were changed to non-
(AICc), and the model with the lower AICc score functional protein and removed from

was selectedl@). consideration.
The Akaike Information Criterion (AIC) Replicate Handling for Domain-Peptide
as a quality metric, was calculated by Measurements. For each domain-peptide pair, only
replicates that were marked as binders with
AIC =2p —21In(L) (5)  sufficiently high signal to noise ratio (SNR) were

_ _ considered. For a given domain-peptide pair, the
wherep is the number of parameters in the modelminimum numeric value of K (strongest

and In(L) is the maximum log-likelihood of the measured affinity) was reported as the finalfét

model. In a non-linear fit, with normally that domain peptide pair.

distributed errordn(L) is calculated by Active search. The probability modeéi2)
used a simple k-nearest neighbor (k = 20) where

c ) distance is defined by average Euclidean distance

in > ©)  of corresponding divided physicochemical

=1

In(L) = —0.5N (ln(Zn) +1—-In(N)+ ln(
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property scores (DPPS) features of the amino
acids 3) comprising the peptide, i.e.:

1 n
dn(6,%) = =" do(dpps(x), dpps('1)) (8)
i=1

where d,, is the distance used to define nearest
neighbors,d, is the Euclidean distance, is the
number of amino acids in the peptide (here 9),

and dpps(X) is theDPPSfeature vector of the"i
amino acid in peptidg.
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Data L X SH2 .. Results Raw Data
Group Type Publication Peptides Domains Affinity Available | Available Models
Jones et al. Wunderlich/
(2006) 61 159 Yes Yes Mirny
Kaushansk SH2Pepint
aushansky
1 PM et al. (2008) 50 133 Yes Yes
Gordus et al.
(2009) 46 96 Yes Yes Yes (pos)
Koytiger et al. MSM/D,
2 PM (2013) 729 70 Yes Yes FoldX
Hause et al.
(2012) 89 93 Yes Yes Yes (PC)
3 FP N al PEBL
eung et al.
(2014) 85 93 Yes Yes Yes (PC)
Liu et al. .
(2010) 192 50 No (fig)
n/a PA Tinti et al
inti et al. " "
(2013) 6202 70 No (*) No (*)

Table 1: Overview of Published SH2 Data and Use in Published Models. Eight high-throughput experiments have
been published since 2006 using experimental techniques such as protein microarrays (PM), peptide arrays (PA),
and fluorescence polarization (FP). Of the published studies, only two studies have raw data available, by personal
communication. Even the published data from several studies is no longer available. (pos) Raw data only published
for positive interactions; (PC) data available only by personal communication; (fig) Published as a figure only,
numerical results are available by private communication; (*) Original results were stored in PepspotDB, but not
published in the journal or supplement. PepspotDB is no longer available.
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Figure 1. Comparison of Published Affinity Data. The correlation of data published by the MacBeath group between
2006 and 2009, by the MacBeath group in 2013, and by the Jones group in 2012 and 2014 is evaluated using
correlation plots (top row). With perfect agreement, data points would fall along the dashed gray line. Surprisingly,
there is almost no correlation between data groups. Even results from the same lab published at different times show
only mild correlation (r=0.367, MacBeath 2006-09 vs MacBeath 2013). The data were also examined for agreement
on positively interacting domain-peptide pairs (bottom panel). Positive interactions are identified by blue bars. Of
the 347 positive domain-peptide interactions identified by at least one group, only 55 interactions were found to be
positive in all three data groups (15.9%). No two data groups agreed on more than 29% of positive interactions.
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Figure 2: Flowchart of Revised Analysis Process. Comparison between the original analysis process (left panel) and
our revised analysis pipeline (right panel). For our revised process, representative sample fits are shown below each
of the final categorizations.
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Figure 3: Initial Replicate-Level Results and the Results of Non-Functional Protein Identification (NFPI). The
categorization results of individual domain-peptide measurements are shown (Before NFPI). Of the 37,378
measurements, 7.4% (2,753) were initially identified as positive interactions (binders), 7.4% (2,083) as interactions
showing aggregation, 5.6% (2,764) as low signal-to-noise, and 79.7% (29,778) as non-binders. The subsequent
identification and removal of individual domain-peptide measurements made on non-functional protein had a
significant effect on the categorization of non-positive replicate-level measurements. Of the 29778 measurements
initially categorized as non-binders, 56.6% (16,859) were identified as likely to contain non-functional protein and
were removed from further consideration.
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Figure 4: Replicate Measurements Exhibit High Variance. The variance in replicates for each domain-peptide
interaction was visualized by distributed dot plots. Within each plot, on each row all affinity measurements for a
single domain-peptide pair are plotted. Domain-peptide interactions (rows) are sorted by mean affinity, and grouped
into four different affinity ranges (panels) for more detailed viewing. The plots demonstrate that high variance
replicate groups can be found in domain-peptides with all ranges of mean affinity, and that very few domain peptide
pairs have low variance replicates. This suggests that high replicate variance is ubiquitous, and independent of mean
affinity.

24


https://doi.org/10.1101/2020.01.02.892901

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.02.892901; this version posted January 2, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

New analysis pipeline improves SH2 affinity data

Ka Ky
300 Fmax 300 LT Fmax
_______________ o] ¥4
e 9
Theoretical Protein - P I
— 250 g 1 250 1 1
Kd— 1.0 IJ.M g 50 id ijax 0 ,F‘ ijax
w 3 4
/1 Kd=1.0 /1 Kd=1.0
¢ 4
200 9 4 200 /,d’
3 FO A_e—""o FO
T T T T T T T T T T T T
0 2 4 6 8 10 0.001 0.01 0.1 1.0 10 100 1000
Ky Ky
300 Fmax 300 - P Fmax
___________ -o- ,“/
. e 4
Measured Affinity at 50% T 5 - - 1p 250 A S 1
Degradation T A 3 Fmax 7 7 Fmax
w o p’
Kd = 2.0 /1 Kd=2.0
¢ J:
200 ¢’ 200 o
§ Fo ppied Fo
T T T T T T T T T T T T
0 2 4 6 8 10 0.001 0.01 0.1 1.0 10 100 1000
Ka Ky
300 Fmax 300 4 LT Fmax
________ - ,¢/
Measured Affinity at 75% ¢ 2s0 A e 1, 250 s LF
. p=3 P 2 X v > X
Degradation & /
& 4
L Kd = 4.0 S Kd = 4.0
A i
200 2 200 3’9/
ﬂﬁ FO - Fo
T T T T T T T T T T T T
0 2 4 6 8 10 0.001 0.01 0.1 1.0 10 100 1000

Concentration (uM) Concentration (uM, /0gio)

Figure 5: Degradation Effects on Measured Affinity. Simulated measurements for an ideal binding saturation
experiment are shown for a theoretical protein with 1 puM affinity (row 1). (Measurements in the second column are
the same data as the first column, but plotted on a logarithmic concentration axis.) In rows 2 and 3 a measurement of
the same theoretical protein with 1.0 uM affinity is shown, but with the indicated fraction of degraded protein in the
sample. The protein degradation is unknown by the experimenter, so the x-axis values erroneously match the full
activity sample. The y-values are reduced in rows 2 and 3 because the FP signal has been adjusted to that of the
active concentration. The y-values change in a non-linear fashion as governed by the fully active saturation curve
(row 1). For example, in row 2 with 50% degradation, the FP measurement (y-value) at 10uM is equivalent to the
FP value at 5uM in row 1. In row 3 with 75% degradation, the FP measurement (y-value) at 10uM is equivalent to
the FP value at 2.5uM in row 1. When affinity is derived from these degraded protein measurements, the result is an
erroneous weaker affinity as shown. Although the change in FP from degraded protein is non-linear, the error in
affinity is linear and proportional to the concentration error (and inversely proportional tg)the K
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Figure 6: Revised Analysis Final Results. A heat map showing the final results of the revised analysis. A significant
fraction a measurements demonstrated patterns consistent with non-functional protein and were removed from the
analysis. Comparison with the original published results can be seen in Supplemental Figures 14 and 15.
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Figure 7: Changes In Calls Between Original Publication and Revised Analysis. Although the numbers of positive
interactions are similar in our revised analysis, the identities of those interactions have changed significantly. The
changes in calls are visualized in the Sankey map above. Of the original 1519 positive interactions found by the
original authors, 166 (10.9%) were found to be non-binders in our analysis. Of the 10330 rejected interactions from
the original publications, 273 (2.6%) positive interactions were recovered in our analysis.
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Figure 8: Correlation between Original Publication and Revised Analysis. Affinity values were compared for for the
comomn set of positive interactions (n=1245, upper left panel), as well as at lower affinity thresholds (other panels,
as indicated). Our revised affinity values correlate only moderately with the original publication (Pearson r=0.635),
which is surprising considering the analysis is on the same raw data. Our revised results correlate best when
considering all measurements under 20uM affinity (Pearson r = 0.734). Despite choosing the minimum measured
value for Ky, our revised data often reports highey n€sults than the original publication (i.e. results below the
diagonal). This is due to different categorization and filtering procedures which result in significant additions and
removal of individual measurements in each set of replicates for a domain-peptide pair before the mean or minimum
are taken. It is interesting to note that correlation does not continue to improve at higher affinity (pwlesgite

the fact that the chosen raw measurement range is tailored for highest accuracy thOKiIM. This suggests that

the differences between our revised results are independent of the accuracy of the original measurements, and more
likely due to the need to correctly +handle variation due to degraded protein.
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Figure 9: Enhanced Nonmyopic Active Search (ENS) Results. Performance of the active search
algorithm ENS within each dataset (original or revised). The line represents mean result, with shading
captures +/- standard deviation. In this context, ENS seeks to select each successive interaction such that
the total number of positive interactions discovered is maximized.
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New analysis pipeline for high-throughput domain-peptide affinity experiments improves SH2 interaction
data

Tom Ronan', Roman Garnett? and Kristen Naegle®
Supporting Information

Final Revised Affinity Data.xlsx — contains the interaction affinities between domains and
phosphopeptides based on our revised analysis.

Fig. S1: Domain-Peptide-Level Comparison of Binding between Published Results.
Fig. S2: The Receptor Occupation Model.

Fig. S3: Examples of Varying Background Fluorescence Polarization.

Fig. S4: Receptor Occupancy Model Fits for Various Affinity Interactions.

Fig. S5: Signal-to-Noise Ratio (SNR).

Fig. S6: Signal-to-Noise Ratio Distribution for Replicates Classified as Binders
Fig. S7: Model Fitting Results for Non-binding Interactions.

Fig. S8: Model Selection.

Fig. S9: Replicate Measurements for FGR Interactions with MET pY1313.

Fig. S10: Degradation Patterns Can Be Seen in Domain Level Data.

Fig. S11: Non-Functional Protein — Examples.

Fig. S12: Non-functional Protein in Hause, et al (2012).

Fig. S13: Non-functional Protein in Leung, et al (2014).
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Fig. S15: Results from the Original Publication.

S1


https://doi.org/10.1101/2020.01.02.892901

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.02.892901; this version posted January 2, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

New analysis pipeline improves SH2 affinity data

14 |
MB13
MB09

¥MYZZZOO0DAMOSANMNHZOAAMANNYNZZZIUONHOHNNYNZZZ4O000MNYESINNYYZNZZZOM00ONOST N
JOSTTIYmTOOZN> > >SS T donEXY T T T NSV TVOEY T T TN TI>>S e Jo-dnFOSY T T o YmmT<aen>n
OAANOEARTI TV ZIIIW WO ~ U2 ¥R LB L —OZ¥NANnIIID I o — 110 HIAENQnTnZ W
‘o' BN AN JE>S>S> o0 > (00 nZ N >0z N S>>0 o2 LI P>
vonnn Fo Vo i @a I NCPREnnn TN n PRCO00To” T iaNaNE NN EM00 BTN N
HOYYYOL 000000000 RNDNNONYYY ZoNNNLoHoYYYEmMoo NN SN N AY Y YN TS N~ any
Scgaa’odnodddd9009 2% gam0aan N OCOR-NmamaZaa M HMMNTHaNAT T NEaa NN ES A~
AP0 0000000 HA00HSE T IO T INTOC AT i oA AN AN A A T S (e
o= g e _IHe——— | i—HE IS SrAacnaNg T oo oo0om ee el e e e e S e e e
oo e e T e L T Ty T o aer e T mmmae RS T C TN NS e e
LigoofuoridrrrXlufrl yyroroooglbe XLy drdqore b @l o o Xu o
OO oL Lo EOORELOL L oo OO e OO0 OO s (OO
ww Oy onOO000lUnOOUGEe O 1 rkuoOnl0g- 0 im0 lneg  wwe 1 OrymnOnoo0
ool mm W Ww  fp oo oW WY foeococn wwo [Gh] OO W wmw
L o [T} [T} ] hl LWLl Wy
000 o QOOwW 0oOom QOO i
[TERTTRIT} www [TERTERIT} www
g g > NS g g
FOANE < <
! 1 r 555 55 G ] !
TN T T771 (&) ?|| | a0 .-H—!—?HI ™~
1 it 1
1 =N | RO 5o Mok : o [ L] R TN AL 1
| 0 N 1l 1
| annny o o aasnan N oK
T o\ [ taasanane:
1l 11 | mzll ¥
adadat 11 L et
oW L b oy odu Lud w
wi o [Fave] w w
e o

e e B ¥ 2 2 O S ST
TTT SO N TN TNV NMT sveTe N
EodntanPe=rodmE AN e lim R IS B P IS oA AR R P G2 I IUB P E T 0NN E T 22 e DN 2
o B roocn > Pl oo 5S> proca ) > >
Semo y\o";l\mmm ﬁ”r\,_ Do m":l‘:‘ Bko lo V) E‘i‘@ml‘”ﬁ,_w ?Lol o Doo 000 ﬁm}”bm'_??b‘p?g&'_ |
A LTIV VAo [NEHS =y P SN v NSNS DBABARDNLLLA DBt E
Araa o Hon—aaa N ' Hnd s PPRoN~aN~ T s N NS s NoNS~SEONGONHNNOT TR Q90000 N00RONN EQ‘NN
[ H o pos—od=H | oEN— N ||W®®HNNHNHHNNNH — ﬁﬁu I I_NooaNNN—HNNNSY ©
s H Pl NS HRG S mmmﬂumu hHWOLO™ NN Ny = M ke QAN H A M
O AN MRG0 i HAD A MRS i [ MO N Ny S AN B S N m 8000y [t 11 L T RN L
BOSCEARRMMmABSAAD o M0m =750 P mmadmA NN RS S ENm00 @mnannmnngBRnNNN mmmmten m
o 000 m Mmoo PmDnn0n~~~ 2T nonomoonP0nmmy00M~~—~L2MonalnomnmnOm @ m
Wl | xOcCamp oo oXmoedm || oOo0xrmmOD e mer ) o || 0mnBxrmmmBmmmomna
MMMy - LMNMME M m e WM m & m W e 11U or NN mm 1 o of AL o7 oF 6C CC 11 o acmmmnmy oL yommo
oom W w Weem w oy W woOOWmm ww o W gy woOoWer i w
ommm [sa]ea] W W OOy W 0 e w [aaan]aa REuTH)
oot w =] oo Wi coced W
wuiwl wuiwl wuiwl Wi

]14
MB13
MB09

ERBB4_1150_TXK -

ERBB4_1056_SRC o
ERBB4_1150_BLK
ERBB4_1150_HCK -
ERBB4_1150_LCK
ERBB4_1150_LYN o
ERBB4_1150_SRC
ERBB4_1284 BLK

ERBB4_1162_SLA2 A

ERBB4_1056_PIK3R1-N
ERBB4_1056_PIK3R2-N
ERBB4_1056_PIK3R3-N
ERBB4_1056_YES1 -
ERBB4_1150_ABL1 +
ERBB4_1150_PIK3R1-N -
ERBB4_1150_PIK3R2-N -
ERBB4_1150_PIK3R3-N -
ERBB4_1150_PTK6 -
ERBB4_1150_SH2B3
ERBB4_1150_TENC1 -
ERBB4_1150_VAV1 o
ERBB4_1150_VAV2 o
ERBB4_1150_VAV3 +
ERBB4_1150_YES1 -
ERBB4_1162_NCK2 -
ERBB4_1162_SH2D3C —
ERBB4_1162_VAV2

]14
MB13
MBO09

MY ODUOY S ZODUUNY MM NN Z OMCUNDHMNOOHS NN Z < ONOHMY N Y Y ZNZMLODHNOOS 0
AngggxmAm;gzgﬁxmAonHmmuFUEM;;;Mm§811005§8u£x>>>m;gIjgmg3@2t3§6i£§§agigéugzm
S>>>EN W) %ng ETaN N bﬁk?>
MMM L 0L Bi00 (1008, CNT T AIn33  nnln
XHYINS gOmmm LY. Emwmwo Aty
N — — MNo—~MNMNoF 0" 'MOLMMINOY
8H QHKEEaHmwﬁ ELLHH MM — — — (] ﬂﬂmﬁgg”ﬂmﬁﬂﬁﬂpm
e mmsimmmm mNEmmmPLmFEH LEWEMFHHﬁFEQMQEFLFEmH o L MEFEFmFEFWEmFWH T v I
== pssswsiiO-Esssu 55 s >SS0 0w M mmm =S o Mt S i
[T =TT SSL-“lss s Sl | PSSt us"ss55" 125250 °s s W FsS*usss
s w = s = S = [ 1] = =S =
= === = =

Fig. S1: Domain-Peptide-Level Comparison of Binding Between Published Results. Blue denotes positive
interations (binding). J14: Jones 2012-14; MB13: MacBeath 2013; MB09: MacBeath 2006-09.
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Linear Plot Semi-Log Plot (x-axis, /0g10)
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log1o uM

Fig. S2: The Receptor Occupation Model. Saturation plots in both linear (left) and semi-log (right) demonstrate
increasing saturation with increasing fractional occupancy, with full saturation achievgg. athe affinity (Ky)

can be derived by fitting a curve to the data, but can also be derived graphically as seen above. At equilibirum, the
affinity is equal to the concentration when ¥ of the receptor is occupied%IR the semi-log curve, where the
concentration axis is in lggscale, K can be identified easily because it corresponds with the inflection point at the
center of the the s-shaped curve.
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Fig. S3: Examples of Varying Background Fluorescence Polarization. The raw data exhibited highly varying levels

of change in polarization (FP) for background samples containing no protein domain. In many cases, background
values were higher than measurements (first row) which appeared to have high signal-to-noise ratio. In other cases,
the background values were much lower (second row) than the expected value (third row).
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Rather than use the

background levels as reported, we fit the the intercept simultaneously with fitting the model to the data.
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Fig. S4: Receptor Occupancy Model Fits for Various Affinity Interactions. High-quality receptor occupancy model
fits showing positive interactions at varying affinitiesg{rom 0.1uM to 20uM. For interactions with 0.1 pM
affinity, data points are evenly distributed on either side of the inflection point (semi-log plot), begin to establish no-
signal level, and establish saturation well. As affinity decreasgin@ieases), saturation is more poorly defined,

with coverage by fewer or no points. Thus, the concentration ranges chosen make this experiment best suited to
identify affinity in the 0.05uM to 0.5uM range. Since data in the original publication was reported up to 20uM,
results with low affinities (higher Kvalues) are likely to be less accurate.
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Fig. S5: Signal-to-Noise Ratio (SNR). The quality of fit metric, deemed signal-to-noise ratio (SNR), evaluates the
magnitude of residual errors of fit to the model (a form of noise), and weights this sum by the overall size of the
fluorescent signal measured. If the SNR is below one (such that the noise/model errror is larger than the signal of the
model, the data is rejected. As can be seen from the examples above, a signal to noise ratio of 1.0 or greater
represents high-quality fits to the model, with little deviation from the model fit line. An SNR below 1.0 tends to
represent fits with either large numbers of deviations, or a single large outlier, and are removed from consideration.
Because it is difficult to differentiate between an outlier and a noisy fit with this metric, all measurement are rejected
to maintain the quality of the positive interactions.
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SNR = 1.0
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Fig. S6: Signal-to-Noise Ratio Distribution for Replicates Classified as Binders. At a signal to noise ratio (SNR) of
1.0, 50.1% of all replicate measurements which are fit best by thr receptor occupancy model represent high-quality
interactions and are considered positive interactions. The remainder, which have an SNR < 1, are considered poor
fits, and are removed from consideration.
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Fig. S7: Model Fitting Results for Non-binding Interactions. The receptor occupancy model fails to fit non-binding
data well in practice. Non-binding data is expected to be represented by data points in a horizontal line, with some
small level of superimposed noise expected (see first column for examples at full scale). Upon close examination
(second column, zoomed view of the same data in the first column), noise in individual data points can be more
clearly visualized. Random noise in the measurements can cause the model to force fit a ‘saturation’-type curve,
resulting in several fit artifacts. In one type of fit-artifact (top row), a saturation curve poorly fits the data and has a
low saturation value (on the order of 5mP units). In another type of fit-artifact (bottom row), all but one data point is
considered to be at saturation, while one single point sets the rest of the saturation curve, resulting in an artifically
low Kg, on the order of 1nM and sometimes much lower. Most commonly, a situation between these two extremes is
found (middle row). A linear model (red dashed line) has a lower AICc score when fitted to these non-binding cases
than the receptor occupancy model, and can be used to reliably identify non-binding interactions while avoiding

artifacts like the ones demonstrated.
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Fig. S8: Model Selection. Both linear and receptor occupancy models are fitted to the data. AICc scores are
calculated and compared between models — the model with the lowest AICc score is selected as the best fit. If a
linear fit is chosen, and the slope is less than 5mP/uM, the interaction is classified as a non-binding interaction.
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Fig. S9: Replicate Measurements for FGR Interactions with MET pY1313. An example of high-replicate variation
across replicates for a single domain-peptide pair. Each individual measurement represents a high-quality fit to the
receptor occupancy model, yet the resulting affinities vary from ~3um to ~12uM. It is clear from the quality of each
measurement that the variation is not due to noisy data, or fitting artifacts. Rather, each measurement seems to be a
high-quality result of different affinity behavior.
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Domain: PIK3R2-N Domain: RASAL-N
Run 1 Run 2 Run 3 Run 1 Run 2 Run 3

Peptide Plate| Ky |Plate| Ky [Plate| Ky Peptide Plate| Ky |Plate| Ky [Plate| Ky
ERBB4 0807 129 199 222 8.59 ERBB4 1150 3 2.19 185 0.56 205 0.61
ERBB2 1127 133 3.08 203 226 0.99 ERBB4 1202 4 15.16| 186 206 4.32
227 1.18 ERBB4 1208 11 37.85[ 194 7.64 216 6.41

ERBB4 1056 134 2.03 204 0.82 230 ERBB2 1005 19 10.87| 202 1.38 225 5.14
ERBB4 1056 137 4.23 207 231 ERBB2 1127 20 1.64 203 1.16 226 0.96
ERBB3 1159 136 0.26 206 0.26 229 0.09 ERBB3 1159 23 0.31 206 0.44 229 0.19
ERBB3 1159 139 0.70 209 233 0.23 ERBB3 1159 26 4.15 209 4.95 233 2.99
ERBB3 1307 140 0.58 210 0.26 234 0.25 ERBB3 1307 27 1.77 210 1.60 234 1.93
ERBB4 1150 144 214 3.66 238 3.65 ERBB4 1150 31 1.05 214 0.96 238 1.33
ERBB2 0772 148 | 1.54 218 242 2.19 ERBB2 0772 35 I 6.05 218 242 9.36

EGFR 0764 152 2.49 223 2.27 246 1.16 ERBB4 1262 37 1.14 220 4.79 244

ERBB3 0823 154 225 248 4.92 ERBB4 0906 38 9.69 222 7.17 300 | 1.17
EGFR 1092 160 232 254 |13.55 EGFR 0764 39 | 9.94 223 246 22.16
ERBB3 0868 167 239 261 2.32 ERBB3 0823 41 2.84 225 248 2.23
EGFR 1016 168 3.67 240 I 0.94 262 ERBB3 0897 50 235 10.04| 257 2.10
ERBB2 1023 242 244 265 2.22 EGFR 1016 55 1.43 240 I 1.37 261 2.24
ERBB3 1054 243 3.14 245 266 ERBB2 1023 174 5,05 244  10.55( 265 9.31
ERBB3 1222 250 252 0.81 273 0.84 ERBB4 1162 176 2.29 246 5.21 267 4.14
ERBB3 1289 257 10.68| 259 282 0.16 ERBB2 1196 178 1.62 248 269 1.71
ERBB4 1202 266 268 292 1.03 ERBB2 1221 179 0.24 249 1.95 270 1.86
ERBB2 1222 180 0.40 250 6.89 271 2.78

Domain: SH2D2A ERBB3 1222 182 0.64 252 2.87 273 1.83

Run 1 Run 2 Run 3 ERBB3 1224 183 0.75 253 2.16 274 1.25
Peptide Plate Ky Platel Ky Plate Ky ERBB3 1262 187 3.69 257 280 13.43
ERBB4_1202 61 3.08 186 5.53 206 4.35 ERBB3 1289 189 3.45 259 282 4.35
ERBB4_0807 71 6.90 199 222 21.91 EGFR 0998 190 1.30 260 7.82 283 2.82
ERBB3_1307 82 12.28] 210 234 55.47 ERBB3 1276 191 0.83 261 1.36 284 2.39
ERBB3_0789 87 13.74[ 215 239 9.50 ERBB3 1328 192 1.83 262 16.03[ 285 9.10
ERBB4_ 1262 92 15.13[ 220 244 9.42 EGFR 1172 193 1.31 263 5.72 286 5.37
ERBB4_0906 93  12.86| 222 300 | 0.88 EGFR 0727 194 | 3.01 | 264 287 6.33
ERBB3_0975 101 I 7.56 231 253  20.46 ERBB4 1202 199 1.31 268 3.16 292 | 1.00

273 1.79 | 297

w
©
o

[N}
o
=
=
o
w

EGFR_1092 102 5.29 232 I 3.23 254 13.20 ERBB4 1242
EGFR_0900 105 7.50 235 18.59| 257 1.96
ERBB2_1139 106 3.51 198 7.50 220 1.70

236 221 1.44
299 3.67

EGFR_0915 108 4.46 | 238 5.55 259 3.89 [:::::]indicates the lowest Kd
ERBB2_1221 213 2.80 249 270 18.26 (highest affinity) across
ERBB3_1222 216 3.12 252 273 21.60 the 3 runs for a domain-peptide
ERBB4_1188 219 9.09 [ 255 276 | 7.78 pair.
ERBB3_1328 226 | 0.86 ] 262 285 5.90
ERBB4_1202 233 4.36 | 268 292 1.23

ERBB4_1208 237 5.42 272 13.81| 216 1.98

Fig. S10: Examples of Degradation Patterns in Domain Data. In the original publication, data was primary gathered
on 3 runs on 3 different days. On each run, domains were tested against hundreds of peptides providing rich data for
identifying patterns. Variance in affinity from random (non-systemic) sources should manifest independent of run or
sample order. In contrast, variance from protein degradation would demonstrate specific, non-random patterns in
affinity. Degraded protein on a run would manifest as variance between runs, but consistently highehd
degraded run across all peptides. For PIK3R2-N, we see that Run3 replicates consistently showegviaiwes K

(higher affinities) than replicates from other days. This pattern of run to run variation suggests that the protein
samples tested in Runs 1 and 2 were degraded. A protein sample exhausted mid-run and replaced with a fresh
sample, could manifest as a surge of increased affinity in the middle of a run of lower affinity. For RASA1-N, no
single day dominated the highest affinity until plate 174, after which the highest affinity replicates all come from
Run 1. This is consistent with a change to fresh, active protein during Run 1. These patterns are not compatible with
a random source of variance. Not all protein data shows pattern consistent with this degradation hypothesis. For
SH2D2A, significant variation appears during each run. The patterns for SH2D2A are not consistent with a simple
degradation hypothesis, and may be indicative of additional sources of variation.
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Fig. S11: Non-Functional Protein Identification — Examples. Non-functional protein identification (NFPI) can be
made when plotting protein domain activity against many peptides across multiple runs. The left column figures
show results before NFPI, and the right column figures show the results of NFPI on the same data. A binder is
identified by a green cell, a non-binder by a white cell, non-functional protein by a blue cell, and a non-measured
interaction by a gray cell. A lack of even one positive interaction on an entire run is suggestive of non-functional
protein. When other runs of the same protein show positive interactions, the runs with no positive interactions are
considered to be non-functional and are removed from consideration. For example, with GRB2 (row 1), runs 2
through 4 showed some positive interactions. On run 1, however, no measurements indicated positive interactions.
The lack of even one positive interaction in run 1 suggests that the protein was completely degraded or non-
functional, and the presence of positive interactions in the other runs acts as a positive control. Run 1 is then marked
in blue in the right panel for GRB2, and removed from consideration. A less-clear case of non-functional protein can
be seen with BMX (row 2). For BMX, no positive interactions were found on any run. Although it is a formal
possibility that BMX simply binds none of these peptides, we simply have no information that the protein was ever
active, thus we conservatively identify all runs as non-functional. For PIK3R1-C, no measurements on the fourth run
were positive interactions, while other runs contain positives, thus run 4 was categorized to be non-functional.
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Fig. S12: Non-functional Protein in Hause, et al (2012). Non-Functional protein results for all measured interactions
from the first publication, Hause, et al (2012). See legend from Fig. S11.
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Fig. S13: Non-functional Protein in Leung, et al (2014). Non-Functional protein results for all measured interactions
from the second publication, Leung, et al (2014). See legend from Fig. S11.
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Fig. S14: Changes In Calls Between Original Publication and Revised Analysis. A heat map showing the changes in
calls in our revised analysis. Differences in calls with the original publication are found across all domains and all
peptides.
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Fig. S15: Results from the Original Publication. A heat map showing the original published results in the same
format, sorting order, and naming convention — for comparison with our revised analysis.
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