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ABSTRACT 
Protein domain interactions with short 

linear peptides, such as Src homology 2 (SH2) 
domain interactions with phosphotyrosine-
containing peptide motifs (pTyr), are ubiquitous 
and important to many biochemical processes of 
the cell – both in their central importance to cell 
physiology, and to the sheer scale of possible 
interactions. The desire to map and quantify these 
interactions has resulted in the development of 
increased throughput quantitative measurement 
techniques, such as microarray or plate-based 
fluorescence polarization assays. For example, in 
the last 15 years, experiments have progressed 
from measuring single interactions to having 
covering 500,000 of the 5.5 million possible SH2-
pTyr interactions in the human proteome. 
However, high variability in affinity 
measurements and disagreements about positive 
interactions between published datasets led us to 
re-evaluate the analysis pipelines of published 
SH2-pTyr datasets. We identified several 
opportunities for improving the identification of 
positive and negative interactions, and the 
accuracy of affinity measurements. These methods 
account for protein aggregation and degradation, 
and use model fitting and evaluation that are more 
appropriate for the non-linear behavior of binding 
interaction data. In addition to improve affinity 
accuracy, and increased certainty in negative 

interactions, we find the reanalyzed data results in 
significantly improved classification of binding vs 
non-binding when using machine learning 
techniques, suggesting improved coherence in the 
reanalyzed datasets. In addition to providing the 
revised dataset, we propose this new analysis 
pipeline and necessary protein activity controls 
should be part of the design process of many such 
high-throughput biochemical measurements. 

Introduction 
Protein domain interactions with short 

linear peptides are found in many biochemical 
processes of the cell, and represent a vast number 
of potential interactions. They play a central role 
in cell physiology and communication. For 
example, SH2 domains are central to pTyr 
signaling networks, which control cell 
development, migration, and apoptosis (1). The 
120 human SH2 domains are considered 
“readers”, since they read the presence of tyrosine 
phosphorylation by binding specifically to certain 
phosphorylated amino acid sequences. These 
domains are typically 100 amino acids long and 
fold into a conserved structure consisting of two α-
helices and seven β-strands. At its binding core, an 
invariant arginine creates a salt bridge with the 
ligand pTyr yielding approximately half of the 
binding energy of the SH2-pTyr sequence 
interaction. Early degenerate library screens 
demonstrated that the remainder of the binding 
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energy results from interactions between the SH2 
domain binding pocket and the residues flanking 
central pTyr residues (2–4), resulting in the 
specificity of SH2 domain interactions within 
pTyr-mediated signaling (5). Understanding SH2 
domain specificity and binding affinities with 
cognate ligands would greatly aid in our 
understanding of cell signaling networks that 
control human physiology.  However, the total 
interaction space is immense – the 46,000 
tyrosines currently known to be phosphorylated in 
the human proteome (6), present over 5.5 million 
possible SH2-pTyr sequence interactions. 

Recent developments have expanded the 
measurement coverage of human SH2 domains 
with specific pTyr-containing peptides. 
Specifically, eight high-throughput affinity studies 
have been performed, using either microarrays or 
fluorescence polarization to measure SH2 domain 
interactions with specific phosphopeptide 
sequences (7–14). Although the six studies that 
measured affinity represent roughly 90,000 pairs 
of domain-peptide interactions, these 
measurements cover only 2% of the possible 
interaction space. In response, computational 
approaches have used published datasets to extend 
from the measured space into unmeasured spaces 
by a variety of prediction methods. These methods 
span the range from thermodynamic models using 
existing structure and binding measurements to 
predict interaction strength (15–17) to supervised 
machine learning models using patterns in peptide 
sequences and quantitative binding data to predict 
binding to particular domains (14, 18). However, 
no computational method has used the available 
affinity data in its entirety. We therefore wished to 
leverage all available binding affinity 
measurement data in a supervised learning 
approach to expand our knowledge of SH2-pTyr 
interaction space. 

Unfortunately, in the process of reviewing 
published high-throughput data, we noticed 
several inconsistencies with the published results 
and potential problems with the methods used to 
produce the data sets. We found surprising 
disagreement between published data sets. The 
published data failed to agree on the identity of 
which domain-peptide pairs interacted, and on the 
small subset on which they do agree, they reported 
vastly different affinities. We hypothesized two 
potential causes for this variation. First, we 

identified potential inaccuracies in protein 
concentration common to all three data sets that 
had the potential to directly affect the published 
affinity values. Second, we found errors in model 
fitting and the statistical methods used to evaluate 
model fitting, which could have significant impact 
on the reported affinities. 

In reviewing the protein preparation 
protocols for each experiment, we found that all of 
the affinity studies failed to use positive controls 
to determine if protein was functional before 
measuring affinity. Furthermore, protein was 
minimally purified (via nickel chromatography 
only), and the resulting protein concentration was 
measured by absorbance. Thus protein of varying 
degrees of purity and non-monomeric content 
were used for affinity measurements. Without 
positive protein controls, it is difficult to determine 
if non-interaction is due to inactive protein or true 
failure to interact. And testing non-monomeric 
protein risks violating the one-to-one assumptions 
of the receptor occupancy model used to calculate 
affinity. Errors in effective protein concentration 
deriving from inactive or degraded protein would 
result in concentration values different than the 
amount of active protein in the sample. These 
concentration errors would propagate directly to 
errors in the derived affinity values, as affinity 
values are a function of concentration. 

Furthermore, all of the affinity studies 
used the coefficient of determination (r2) as a 
determination of how well the model fits the data. 
In these studies, any interaction not meeting an r2 
value threshold of approximately 0.90 or 0.95 was 
rejected from further analysis. Unfortunately, r2 
has been conclusively shown to be a poor indicator 
of fitness for non-linear models (like the non-
linear receptor occupancy model used in each of 
these studies to derive affinity) and can produce 
misleading results (19). Although this fact has 
long been established in the statistical literature 
(20–26) r2 is still commonly used to evaluate non-
linear models in pharmaceutical and biomedical 
publications despite being an ineffective and 
misleading metric. For linear data, one can 
interpret the values of r2 between 0 and 1 as the 
total percent of variance explained by the fit. 
However, when applied to non-linear data, the r2 
value cannot be interpreted as the percent of 
variance and is known to fail to reflect 
significantly better fitting models (19). 
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Furthermore, as applied here, it effectively 
resulted in a bias for identification of true positive 
interactions at the expense of making many false 
negative calls. 

Therefore, we had serious concerns about 
using the published data for use in machine 
learning, due to both inaccuracies in quantitative 
results, and the significant potential for large 
numbers of false negative results. Given these 
limitations in the published data, we endeavored to 
retrieve and reanalyze any raw data we could 
acquire in order to systematically improve SH2-
phosphopeptide affinity measurement accuracy. 
To accomplish this: 1) we refined model fitting 
techniques, 2) implemented multiple models for 
each measurement, 3) used a statistically accurate 
method for model selection, 4) developed methods 
to identify and remove non-functional protein 
from the results, and 5) introduced a simple 
method to handle the effects of degraded protein 
on affinity measurements. Our revised analysis 
improves affinity accuracy, improves specificity 
by reducing the false negative rate, and results in a 
dramatic increase in useful data, due to the 
addition of thousands of true negatives.  
Evaluation of the revised dataset shows improved 
learning accuracy within an active learning model 
– suggesting that there is improved coherency in 
the features of the revised dataset.   We propose 
this new analysis framework for improving the 
accuracy of high-throughput affinity domain-
peptide interaction measurements, and ultimately 
suggest ways to improve future experiments via 
better experimental design. 

Results 

Evaluation of published affinity data and 
acquisition of raw data 

In the process of evaluating published 
high-throughput data, we found significant 
disagreement between data sets. We evaluated all 
publications using high-throughput methods to 
measure SH2 domain interactions with specific 
peptide sequences, including peptide microarrays, 
peptide arrays, and fluorescence polarization 
methods. The publications containing SH2 affinity 
data can be grouped into three, distinct data groups 
(Table 1). The first data group consists of the 
group of studies published by the MacBeath lab 
from 2006 to 2009 (7, 9, 27) which contain a body 

of predominantly non-overlapping protein 
microarray experiments.  The second data group 
consists of a large study published by the 
MacBeath lab in 2013 (10) with a set of new 
protein microarray measurements using the 
protocol published in 2010 (28). The third data 
group consists of two non-overlapping sets of 
fluorescence polarization data published in 2012 
and 2014 by the Jones lab (13, 14). Because the 
other array experiments (11, 12) only measured 
interaction and not affinity, they were not 
considered for this analysis. 

In order to determine how well the data 
groups agreed on affinity measurements, we 
examined the correlation between domain-peptide 
affinity measurements which overlapped between 
any two data groups (Fig. 1). We found 
surprisingly low correlation between affinity 
measurements (with a maximum correlation of r = 
0.377). Next we asked if the different data groups 
identified the same positive interactions between 
domain-peptide pairs, even if they did not agree on 
the affinity measurements. We compared the 
identities of positive interactions measured in any 
of the three data groups. Here, we also found 
significant disagreement over which domain-
peptide pairs were found to interact (Fig. 1). There 
were 347 positive domain-peptide interactions 
identified by at least one group, but less than 16% 
of those interactions were found to be positive in 
all three data groups. No two experiments were 
able to agree on more than 29% of the positive 
interactions. The differences in interaction 
identification were spread randomly among SH2 
domains and peptides, with no single SH2 domain, 
peptide, or peptide family being overrepresented 
in the differences between any particular data 
group (Fig. S1). 

We then considered which factors of 
protein preparation, peptide preparation, or 
experimental technology difference could have 
resulted in such different results. Although there 
are significant differences between the techniques 
of protein microarrays (which immobilize the SH2 
proteins on the microarray and wash fluorophore-
labeled peptides over the arrays) and fluorescence 
polarization (where both the SH2 protein domains 
and peptides are in solution), the differences 
between positive interactors did not group by 
technology type. The MacBeath 2013 data group 
(which used protein microarrays) had almost the 
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same size of positive interaction overlap with the 
MacBeath 2006-09 (also using protein 
microarrays) as with the Jones 2012-14 data group 
(which used fluorescence polarization methods) 
(Fig. 1). In terms of experimental and analytical 
methods all three data groups: 1) used 
recombinant SH2 domain protein production, 
added a His6 tag, and used nickel chromatography 
as the sole protein purification method; 2) dialyzed 
purified protein into a buffer and added glycerol, 
though different buffers were used in different 
publications; 3) used absorbance at 280nM to 
determine protein concentration, though one group 
(10) measured protein concentration with a 
protocol (28) using denaturing conditions; 4) used 
solid phase synthesized peptides purified with 
reverse phase HPLC; and 5) used the receptor 
occupancy model, and similar methods of 
evaluating model fits based on the coefficient of 
determination (r2). Without more detailed analysis, 
it would be impossible to determine which of these 
factors, if any, are responsible for the differences 
in reported results. 

These findings demonstrate significant 
quantitative and qualitative differences between 
published data from different labs, and even 
disagreements between early results and late 
results published from the same lab. We concluded 
that we could not identify the source of differences 
between published data sets, or even evaluate the 
quality of any single set of published data, without 
looking further into the raw data. Acquisition of 
raw data from published studies was surprisingly 
difficult. Upon review of the affinity publications, 
we discovered that no publication contained raw 
data. Rather, publications contained only 
supplemental tables with post-processed values for 
affinity, which are insufficient for replication of 
published results. Furthermore, we discovered that 
most raw data underlying the published analysis 
has been lost by the original authors and is no 
longer available from any party. (Table 1) 
However, we were able to retrieve raw data from 
the Jones 2012-14 data group, thanks to assistance 
from the authors (personal communication from 
Richard Jones, Ron Hause, and Ken Leung). 

Raw SH2 interaction data and revised analysis 
We proceeded to examine the raw data 

from the Jones 2012-14 data group, to evaluate the 
quality and completeness of the data, and to 

review the methods used to process the raw data 
into its published form. Although some raw data 
was missing in comparison to the original 
publication, by limiting our revised analysis to 
interactions of single SH2 domains with 
phosphopeptides from the ErbB family (EGFR, 
ERBB2, ERBB3, ERBB4), as well as KIT, MET, 
and GAB1, the available raw data covered 
approximately 99.6% of the reported 
measurements. 

Evaluation of the Original Model. The raw 
data for each measured interaction consisted of 
fluorescence polarization measurements of an SH2 
domain in solution with a phosphopeptide at 
equilibrium at 12 concentrations. In the original 
publication, the raw data was then used to interpret 
an equilibrium dissociation rate constant (Kd) 
according to the receptor occupancy model, 
developed by Clark in 1926 and derived from the 
law of mass action (29).  As applied to the 
fluorescence polarization data, the model takes the 
form:  

				���� = ��	2	������������ + ��	2	������															(1)	
where Fobs is the observed fluorescence 
polarization (FP) at each assayed protein 
concentration of the SH2 domain (measured in 
millipolarization units (mP)), and Fmax represents 
the FP at saturation (see also Fig. S2). The affinity 
(Kd) and saturation limit (Fmax) are fitted 
parameters of the model. It is important to note 
that this model is dependent on several critical 
assumptions: that the reaction is reversible; that 
the ligand only exists in a bound and unbound 
form; that all receptor molecules are equivalent; 
that the biological response is proportional to 
occupied receptors; and that the system is at 
equilibrium. 

We hypothesized that the specific methods 
used to implement the receptor occupancy model 
in the original publications might have affected the 
accuracy of the originally published fitted 
parameter results. We examined three aspects of 
the implementation of this model. First, we 
examined the effect of subtracting background 
fluorescence on model fitting and explored 
alternatives that introduce less bias. Second, we 
reviewed whether dropping outlier measurements, 
as used in the original publications, affected model 
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fitting results. Third, we asked whether the 
receptor occupancy model could reliably fit a non-
binding sample, and examined failure modes when 
we found it did not. 

The Effect of Background Fluorescence 
on Model Fitting. In the original analysis, the 
authors used a plate-wise background subtraction 
method, where the median baseline control value 
was recorded from plate measurements and 
subtracted from the polarization signal observed at 
each data point (13). When plates had excessive 
variation in baseline control values, the authors 
excluded these results from further analysis. We 
hypothesized that the setting of the background or 
“zero” polarization value (zero-signal) would 
affect model fitting results, because a critical 
assumption of the model is that the saturation 
curve passes through the origin (the point of zero-
signal, which is also the point of zero-
concentration). Because the background 
subtraction method results in zero-signal at a point 
other than zero-concentration – violating the 
assumptions of the model – we examined the 
effects of this method of background subtraction 
on model fitting. 

In examining many measurements, we 
initially found that the background value was often 
uncorrelated with the signal values. In some cases, 
a strong signal with low internal noise was 
present, but the background value was high – far 
above much of the seemingly reliable signal (Fig. 
S3, top row). In these cases, the high quality of the 
data seems to contradict the limits imposed by the 
seemingly high background, below which 
measurements should be random noise. In other 
cases, the background level was far below the 
signal (Fig. S3, middle row). Subtracting a high 
background value would drive some FP values 
negative, which cannot be accommodated by the 
model. Subtracting a low background value forces 
the zero-signal point to be far below the data and 
causes reproducible and systematic errors in 
affinity parameter fitting when the curve is forced 
to pass through the origin. Treating the minimum 
measured FP value as the zero signal value can 
also induce unforeseen results in fit parameters, as 
the first data point is not always the minimum due 
to random noise in the data. The shortcoming of 
the subtraction methods is that the curve is forced 
through a point without using the high-quality 

information contained in the data forming the 
saturation curve. 

In contrast, we chose a method in which 
the origin was set at a point that was extrapolated 
from the saturation curve data itself, instead of 
from the reported background values. This was 
accomplished by adding an offset value (Fbg) and 
fitting both the curve and the offset/origin at the 
same time: 

				���� = ��	2	������������ + ��	2	������	+ ���									(2)	
(where Fbg represents a fluorescence background 
offset value). This resulted in the fewest artificial 
constraints on the data and high-quality fits 
independent of artifacts from background 
subtraction. 

Outlier Removal Biases Model Fitting. In 
the original publications, the authors utilized an 
iterative outlier removal process. For each set of 
12 data points in a replicate measurement, 
individual points identified as outliers using a 
statistical model were removed iteratively and the 
fit was reevaluated. Up to three points were 
iteratively removed per measurement. For 
measurements where more than three data points 
were identified as outliers, the measurement was 
removed from further consideration. The approach 
of dropping outliers is a commonly used tool to 
reduce the impact of noise on a model, yet it 
represents a tradeoff. By using fewer data points, 
less of the original data is available. Furthermore, 
outlier identification relies on assumptions about 
how measured data is expected to fit a statistical 
model, which may not be correct. We wished to 
determine the impact of outlier removal on the 
interpretation of the raw data. 

In order to determine the effect of 
removing a data point, we evaluated the number of 
data points and concentration range of those data 
points for suitability to the measurements 
attempted. The original data consisted of protein 
with an initial concentration of either 10µM or 
5µM, and 11 serial dilutions of the protein (for a 
total of 12 data points), with each dilution 
representing a further reduction to one-half 
concentration. Thus the range of concentrations 
spanned by each measurement was either 2.4nM to 
5µM or 4.9nM to 10µM. For an ideal binding 
saturation experiment attempting to identify Kd, 
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the concentrations tested should span either side of 
Kd, and the highest and lowest measured 
concentrations should establish the plateaus seen 
on semi-log saturation plots (Fig. S4, second 
column). Given the concentrations measured, it 
can be seen that the experiment is designed to 
most accurately identify proteins with affinity (Kd) 
in the range of 0.05 µM to 0.5µM. However, the 
original publication reported values as high as 20 
µM, which is more than 4-fold above the 0.5 µM 
limit of the highest accuracy measurement range. 
For interactions with a Kd of 1 µM, the upper 
plateau of the semi-log saturation curve no longer 
has any coverage from the data (Fig. S4, row 2), 
and interactions with Kd values higher than 5µM 
have few or no data points even above Kd (Fig. S4, 
rows 3 and 4), which significantly increases 
potential inaccuracies in model fitting. This 
suggests that every data point is critical for 
accuracy, particularly points above Kd. In practice, 
we found many cases where removal of a single 
data point had a large impact on the resulting fitted 
affinity parameter. In contrast, we found few 
examples where a single, obvious outlier 
prevented a good fit on an otherwise very high 
quality measurement. Based on the high sensitivity 
of affinity to the removal of data, we decided to 
use all data points (dropping no points) to avoid 
introducing these inaccuracies. Rather than 
dropping data points, we identified poor quality 
measurements after fitting the model by 
comparing the magnitude of fit error to the 
magnitude of the measured signal (signal-to-noise 
ratio, SNR). 

Signal To Noise Ratio. In order to account 
for outlier measurements that impact fitness and to 
determine how well the data was represented by 
the model, we used a signal to noise ratio (SNR) 
metric. This SNR metric evaluates the magnitude 
of residual errors of fit to the model (a form of 
noise), and weights this sum by the overall size of 
the fluorescent signal measured. It is calculated as 

��� = ��(����) − ��(����)∑ |�"|#"$% 														(3)	
where n is the number of data points, Ri is the 
residual value of the i th data point, and Fobs is the 
observed fluorescence (in mP units). We chose a 
ratio of 1 as the limit of a good fit (see Fig. S5 and 
Fig. S6). At an SNR greater than one, the 

measured signal is larger than the sum of all errors 
to the fit, and represents a good quality fit in 
practice, with few exceptions. 

Receptor Occupancy Model Failure to Fit 
Non-Binding Measurements. The original analysis 
rejected measurements below an r2 cutoff of 0.95. 
Those rejected measurements were considered to 
be non-binders by many subsequent analysis and 
models. Since the use of an r2 cutoff does not have 
a straightforward interpretation when evaluating a 
nonlinear model, we wished to understand under 
what conditions this approach would have 
produced errors in classification of binding and 
non-binding interactions. 

Although the receptor occupancy model is 
theoretically capable of fitting a typical binding 
saturation curve as well as a ‘flat’ curve 
representative of non-binding interactions, we 
found that in practice it fails to identify non-
binding interactions (Fig. S7, blue fits). The fitting 
errors follow two patterns: In the first pattern, 
noise in the data is over-fit. Non-binding data 
typically looks like a low magnitude flat line with 
superimposed noise. However, in practice, 
traditional least-squares methods will tend to over-
fit noise in the data to a rapidly saturating curve, 
rather than fit a straight line. Ironically, this 
artifact results in miscategorization as a binder, 
with a high affinity fit. Second, when there is 
limited non-specific binding present, non-binding 
data can also present as a line with a low-to-
moderate slope with superimposed noise. In these 
cases, the receptor occupancy model tends to fit a 
low-curvature arc (almost indistinguishable from a 
straight line). The consequences of this type of fit 
artifact are found in erroneous fit parameters: an 
astronomically high saturation value and low 
affinity.  A saturation value of this size cannot 
result from the one-to-one interaction assumption 
of the receptor occupancy model, and clearly 
represents a fit artifact. 

Thus, we hypothesized that a linear model 
would more reliably fit non-binding interactions 
and resolve both of these types of fit artifacts. The 
linear model: 

���� = ��	2	������ + ���										(4)	
(where Fbg represents a FP background offset 
value, and m is a constant representing the slope of 
the fitted line, Fig. S7, red fits). There are two 
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parameters to the linear model (slope and 
offset/intercept), one fewer parameter than the 
receptor occupancy model which has Fmax, Kd, and 
offset/intercept. 

When more than one model can be used to 
fit the data, a method of model selection must be 
implemented to determine which model most 
accurately represents the data while balancing 
against adding additional parameters which can 
lead to overfitting. In order to determine if a 
measurement is best described by a receptor 
occupancy model or a linear model we used the 
Akaike Information Criterion (AIC). In contrast to 
the coefficient of determination (r2), AIC is a 
model selection metric which is appropriate for 
use with non-linear models (19, 30), is robust even 
with high noise data, and employs a regularization 
technique to avoid overfitting by penalizing 
models with more parameters. In our 
implementation we used a bias corrected form of 
the metric, AICc, in order to account for only 
having 12 data points per saturation curve. A 
lower AICc score indicates a better fit. Examples 
of model fitting can be seen in Fig. S8. If data was 
best fit by the receptor occupancy model, we used 
SNR to identify the quality of fit of that model. 

Although low-slope linear data is 
consistent with non-binding interactions, we also 
found a class of measurement which was best fit 
by a high-slope linear model. The high slope 
suggests linearly increasing fluorescent signal with 
concentration with no indication of saturation. 
This type of response is outside the scope of a 
receptor occupancy model, and is more likely to 
represent a form of either protein or peptide 
aggregation (or a combination of both), or a form 
of non-specific binding. Thus, to preserve the 
quality of the non-binding calls, a conservative 
low-slope cutoff of 5mP/µM was implemented, 
above which replicates were identified as 
aggregators, and removed from further 
consideration. 

Summary of Revised Analysis Method for 
Replicate Measurements. Following a systematic 
review of each decision made in evaluating a 
measurement in high-throughput affinity studies 
(i.e., background subtraction, outlier removal, 
model fitting, and quality of fit) we developed a 
new analysis pipeline for each replicate 
measurement (Fig. 2). For each replicate 
measurement we fit two models: a linear model 

with offset (equation 4) and a receptor occupancy 
model with offset (equation 2). Fits were evaluated 
with AICc: the model with the lower score was 
chosen as the best fit. Replicates that were fit best 
by the linear model and had a slope of less than or 
equal to 5mP/µM were classified as negative 
interactions, or ‘non-binders’. Linear fits with a 
slope greater than 5mP/µM were classified as 
aggregators. A replicate that was fit best by the 
receptor occupancy model was then evaluated for 
signal to noise ratio (SNR). If the SNR was greater 
than one, the replicate was classified as a positive 
interaction or ‘binder’. Out of 37,378 replicate 
measurements, we found 2753 binders and 29,778 
non-binders. There were 2764 replicates that fit 
best to the receptor occupancy model, but were too 
noisy to reliably call as binders (classified as Low-
SNR fits), and approximately 2000 fits that best fit 
the linear model, but with high slope (classified as 
Aggregators, Fig. 3).  

Once a fitting process is completed for 
each replicate, typically replicate measurements 
are averaged and the mean and standard deviation 
are reported. In the original publication, the 
authors averaged the affinities (Kd) derived from 
each replicate domain-peptide pair measurement 
to obtain the final published Kd value and reported 
standard deviations where there were three or 
more replicates. However, we found interesting 
patterns at the replicate level that made us question 
whether the mean was an appropriate way to 
handle the replicates, discussed in detail below. 

High variation at the replicate level highlights 
protein degradation and inactivity 

The original publication reported a single 
affinity (Kd) value for each domain-peptide pair, 
which was the average of multiple replicate 
domain-peptide measurements. However, we 
found interesting patterns in the replicate-level 
results suggesting impaired protein functionality 
and problems with concentration accuracy. This 
led to an in-detail examination of replicate results, 
and made us examine the assumption of using the 
mean as an appropriate way to handle replicates. 

In looking at replicate variance, we 
noticed examples of high variance in affinity 
among replicates (for example, Kd values ranging 
from 0.5µM to over 20µM for replicates from a 
single domain-peptide interaction). To explore this 
further, we visualized variance for each group of 
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replicates from the same peptide and domain using 
a distributed dot plot (Fig. 4). We found high 
variation in replicates across a large fraction of all 
measurements, independent of affinity. We then 
inspected the individual fits for each replicate 
group in order to determine the source of the 
variation. Most replicate fits were high quality and 
had low residual error to the model. By eye, the 
measured data looked reliable for each replicate, 
despite the high variation in derived affinity.  (For 
a representative example of all measurements from 
one such replicate group, see Fig. S9). This pattern 
held true across many such examples reviewed 
(data not shown). How could such high-quality 
individual replicate measurements result in such 
varied affinities for a single domain-peptide pair? 

On its face, such high variation in affinity 
between replicates suggests a significant problem 
with either experimental design or experimental 
method. At a minimum, it suggests that another 
(uncontrolled for) variable is being measured 
instead of the desired variable being tested. In the 
worst case, the remedy requires identifying and 
controlling for the source of variation, and redoing 
the experimental measurements. However, we 
hypothesized that a single variable – protein 
degradation – could be responsible for the high 
variance we saw in this data. Even the authors of 
the original publication argued that the “greatest 
source of variability in the FP assay...is batch-
specific differences in protein functionality.” (13) 

To that end, we first examined the 
theoretical effects of degradation on affinity. We 
found that degradation could produce high 
variance in affinity, and could also be consistent 
with the high-quality individual fits we saw for 
replicates. Next, we identified evidence of such 
degradation in patterns in the data. Finally, we 
developed a method to control for degradation in 
the current raw data in order to ultimately produce 
more accurate interaction affinities using existing 
raw data. 

Effect of Degradation on Derived Kd. 
Although binding affinity is a molecular property 
– affinity is the strength of interaction between a 
single protein molecule and a single peptide – 
accurate derivation and calculation of affinity by 
most methods depends on the accuracy of 
concentration measurements for the tested protein. 
In the case of the receptor occupancy model used 
here, affinity is a function of concentration. Thus, 

we hypothesized that errors in protein 
concentration would be reflected as errors in 
affinity. Because a fraction of degraded or inactive 
protein represents an error between the assumed 
concentration and the active concentration of a 
protein, degraded or inactive protein would also 
propagate to errors in affinity.  

The effect of 50% degradation and 75% 
degradation on a protein with 1µm Kd is shown in 
Fig. 5. For saturation binding experiments, the 
error in fluorescence polarization (FP) is not linear 
with the error in concentration – rather it is a 
function of the level of saturation of the protein 
binding the ligand. However, the error in affinity 
(derived from the model fit) is linearly 
proportional to the error in concentration. 

Thus, degraded protein of varying degrees 
can manifest as a range of measured Kd values in 
replicate measurements (all of which would be 
equal to or higher than the true Kd), while 
simultaneously coming from seemingly high-
quality, low-noise individual FP measurements. 
This exact phenomenon has also been 
demonstrated experimentally (31). 

Evidence for Protein Degradation and 
Non-Functionality in the Raw Data. We next 
examined the data for evidence of protein 
degradation. If the variance in affinity was from 
random (non-systemic) sources, we would expect 
to find no patterns of variance in time. In contrast, 
if variance was from protein degradation, we 
might see non-random patterns in affinity over 
time. For example, if a fresh protein sample and a 
degraded protein sample were used on different 
runs, we might expect to see variation correlating 
with the day, but consistent during that run. If a 
protein sample was exhausted mid-run, and 
replaced with a fresh sample, we might see a 
sudden surge of increased affinity in the middle of 
a run. Although we don’t have an exact time for 
each measurement, and the same peptides were 
measured far apart in time, we do have a pseudo-
time substitute. Fortunately, on each run, the 
peptides were measured in approximately the same 
order, which allows us to see patterns of protein 
affinity over time and across peptides from run to 
run. In the first published experiment, data was 
primary gathered on 3 runs on 3 different days. On 
each run, domains were tested against hundreds of 
peptides providing rich data for seeing these 
patterns. 
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Fig. S10 shows this time-dependent data 
for interactions with three SH2 domains. For 
PIK3R2-N, we see that Run3 replicates 
consistently showed lower Kd values (higher 
affinities) than replicates from other days. This 
pattern of run to run variation suggests that the 
protein samples tested in Runs 1 and 2 were less 
active than Run 3. For RASA1-N, no single day 
dominated the highest affinity until plate 174, after 
which the highest affinity replicates all come from 
Run 1. This is consistent with a change to fresh, 
less degraded protein during Run 1. These patterns 
are not compatible with a random source of 
variance. However not all protein data shows 
pattern consistent with this degradation 
hypothesis. For SH2D2A, binding affinity tends to 
be weaker on Run 2, but the highest affinity 
(lowest Kd) experimentally alternate between Run 
1 and Run 3, and significant variation appears 
during each run. The patterns for SH2D2A are not 
consistent with a simple degradation hypothesis, 
and may be indicative of additional sources of 
variation. 

Because we found patterns consistent with 
partial degradation, we also wanted to examine the 
data for patterns of complete protein degradation. 
Complete degradation, or completely non-
functional protein, would be indistinguishable 
from a non-binding measurement for a single 
replicate, potentially resulting in a false-negative.  
A control experiment to determine protein 
functionality would normally be required to 
delineate these two cases. However, we 
hypothesized that non-functional protein would 
manifest within the data as long runs of non-
binding results across many replicates, but would 
demonstrate contradictory evidence of binding on 
other runs when the protein was not degraded. 

To examine the data for patterns of non-
functional protein, we plotted affinity by domain 
and by run for three example domains from the 
first publication: GRB2, BMX, and PIK3R1-C 
(Fig. S11). For GRB2, no positive interactions 
were recorded on Run 1, despite several positive 
interactions from Run 2 and Run 3. This is 
consistent with the protein on Run 1 being 
completely non-functional. Furthermore, because 
the protein on Run 1 may have been non-
functional, then all non-binding interactions 
measured on that run are potentially false 
negatives. As indicated in the right panel for 

GRB2, by labeling all measurements from Run 1 
as non-functional, we removed the replicates from 
consideration. For BMX, no positive interactions 
with any peptide were recorded on any run. While 
it is possible that this represents the true binding 
behavior, it is equally possible that the BMX 
protein was never functional. Since it is impossible 
to tell from the data, and the quality of both true 
positive and true negative data is of concern, the 
most conservative course is to consider all of these 
measurements as non-functional, and remove them 
from consideration. This is shown in the right 
panel for BMX. PIK3R1-C, on the other hand, 
shows very little evidence of degradation. 
However, no positive results were recorded on 
Run 4, which is consistent with the protein in Run 
4 being non-functional. 

Once all individual replicate fits were 
complete according to our revised protocol (Fig. 
2), we added a step to the pipeline where 
experimental runs were examined for non-
functional protein. If an entire run lacked even one 
positive binding interaction, but had corresponding 
positive interactions on another run, the entire run 
was marked as containing non-functional protein. 
By removing replicates where there is evidence 
that the protein was non-functional, we avoid the 
potential for false negatives from this ambiguous 
data, and greatly improve the pool of true negative 
calls. Non-functional protein calls for all peptides 
and domains can be seen in Fig. S12 and Fig. S13. 

Removal of non-functional protein has a 
significant impact on the numbers of 
measurements at the replicate level. Fig. 3 shows 
that non-functional replicates made up 37.6% of 
all replicates (14070/37378). Most of the non-
functional replicates were originally categorized as 
non-binders, but a portion came from low-SNR 
replicates, and replicates that demonstrated 
aggregation. The large number of runs showing 
patterns of non-functional protein contributes to 
the overall evidence that protein degradation is a 
high source of variation in the data, and the need 
to control for it. 

Method for Handling Replicates with 
High Variance. Two key issues arise when 
considering how to handle replicate measurements 
in this data: both caused by the presence of 
degraded protein.  First, we see patterns in the data 
strongly consistent with degraded and non-
functional protein. Yet, individual measurements 
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from positive interactions seem to be of high-
quality and relatively low noise. Without knowing 
the exact amount of protein degradation in any 
sample, how can this degradation be controlled for 
across replicate measurements? Second, what is 
the correct procedure for handling multiple 
replicate measurements when degraded protein is 
suspected in order to report a value closest to the 
true affinity? 

We propose that protein degradation can 
be partially controlled for by reporting the 
minimum measured Kd as the affinity. Given some 
unknown amount of protein degradation, we 
demonstrated above that the true affinity of the 
protein will always be equal to or higher than the 
measured affinity for protein, because the active 
concentration will always be equal to or lower 
than the measured concentration. Put in terms of 
Kd, the true Kd will always be equal to, or lower 
than the minimum measured Kd. Thus, the 
minimum Kd reflects the closest measured value to 
the true affinity. 

In addition, reporting the minimum Kd as 
the affinity also avoids the issues caused by 
averaging multiple degraded measurements. If the 
measurements were true replicates, reflecting 
random noise and experimental error, taking the 
mean of multiple replicates would be the 
appropriate procedure because the mean would 
represent the highest likelihood of the true value of 
affinity. However, if the variation is known to be 
caused by degradation, taking the mean of 
multiple samples would not reflect the true 
affinity. Taking the mean of a varying number of 
samples of unknown degradation would 
inadvertently increase the reported Kd value by 
some unpredictable amount, where that amount 
depends on the number of samples and the 
magnitude of their degradation. Furthermore, since 
the mean is particularly affected by outliers, even 
one severely degraded sample would significantly 
increase the mean reported Kd value, resulting in a 
reported affinity with high error. Therefore, odd 
though it may seem from a statistical perspective, 
taking the minimum Kd is the most appropriate 
way to handle variation in replicates where 
degradation represents the primary source of 
variation. 

Revised Affinity Results and Comparison to the 
Original Published Results 

In the results from our revised analysis, 
1518 positive (binding) interactions were 
identified, along with 7038 negative (non-binding) 
interactions. These ~7000 true negative results 
represent a significant increase in information 
from the original raw data. Approximately 3200 
interactions had inconclusive or problematic data 
and no conclusions about their affinity could be 
drawn. Of those, 2753 domain-peptide pairs had 
non-functional protein. Final affinity values were 
plotted for all peptide-domain interactions as a 
heat map (Fig. 6), and summarized by category of 
interaction and changes in calls (Fig. 7). Our 
revised results and the originally published results 
are available in Supporting Data as an Excel file. 

Despite similar numbers of positive 
interactions between the original and revised 
results, the identities of the domain-peptide pairs 
comprising the positive interactions changed 
significantly. Changes in calls by class are 
visualized in Fig. 7, while the identities of the 
domain-peptide pairs with changed calls are 
visualized in Fig. S14. Results from the original 
publication are visualized in Fig. S15. More than 
17% of the original positive interaction calls 
changed to either non-interactions, or rejected 
results due to data quality issue. In the final model, 
168 interactions originally called positive in the 
published results are found to be true negative 
interactions. These changes are primarily due to 
using multiple models to fit the data: the added 
capability of the added, linear, model to identify 
aggregation and true non-binding interactions 
instead of resulting in the over-fitting artifacts or 
false positive results of using a single model. 
Similarly large changes were found in the 
originally published negative interactions where 
273 formerly rejected interactions are classified as 
true positive interactions. These recovered results 
are primarily due to changes in baseline fitting, 
and using an appropriate quality metric to 
determine which model fits best. 

Furthermore, even though 1245 domain-
peptide pairs were found to bind in both the 
original publication and our revised analysis, the 
quantitative affinity of those binders changed 
significantly in the revised analysis (Fig. 8). Note 
that although the minimum of each replicate group 
was selected as most accurately reflecting the true 
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affinity, our revised affinity values are not all 
lower than the original publication. This is 
primarily due to significant changes at the 
replicate level – where some original replicates 
were removed from consideration by changes in 
the fitting process, and a number of new replicates 
were included in each replicate set. 

Independent evaluation of revised analysis: 
measuring improved consistency via active 
learning 

We wanted to evaluate our revised 
analysis compared to original results. In a case 
such as this, it is difficult to evaluate because 
original samples are no longer available. However, 
one way to evaluate the data is to use machine 
learning methods to ascertain whether the revised 
data has better internal consistency or predictive 
power (when compared to itself) than the original 
data set. Lacking a biological reference, it seemed 
fitting to evaluate this data using machine 
learning, as we originally wished to harness SH2 
domain binding measurements in machine 
learning frameworks to extrapolate from the 
relatively small number of available 
measurements.  

To do this, we implemented active search, 
a machine learning approach that is highly 
amenable to biochemistry problems such as this. 
Active learning (also known as optimal 
experimental design or active data acquisition) is a 
machine learning paradigm where we use 
available data to select the next best experiments 
to maximize a specific objective. Active search is 
a realization of this framework where the objective 
is to recover as many members of a rare, valuable 
class as possible. In this case where only 13.9% of 
the original dataset represents positive interactions 
between an SH2 domain and a phosphopeptide (or 
18.2% in the revised dataset) the objective of the 
search algorithm was to prioritize each sequential 
selected interaction to maximize the total number 
of positive interactions discovered. We 
implemented the effective nonmyopic search 
(ENS) algorithm (32) with the goal of optimizing 
the total positive experiments identified in an 
allocated search of 100 queries. The algorithm was 
seeded randomly with one example positive before 
search progressed and was repeated 50 times. 

ENS showed improved average 
performance and higher consistency with our 

revised dataset. First, ENS worked effectively on 
both the original and revised datasets, identifying 
positives that far exceed the expected number by 
random chance by the 100th query (Fig. 9). This 
suggests that phosphopeptide sequences do encode 
information about whether an SH2 domain will 
recognize them in a binding interaction. Second, 
ENS performance in the revised dataset was 
higher than the original dataset on average, finding 
45.3 positives vs. 33.3 positives (p-value of 4e-
12). Third, ENS performance is significantly more 
variable on the original dataset than on the final 
dataset (ranging between 9 and 62 positives in 50 
trials (with an average of 33.3), compared to a 
range of 38 to 67 (with an average of 45.3 
positives) for the revised dataset. In the worst of 
the 50 trials, search in the original dataset 
underperformed by 50% compared to what is 
expected by random chance), whereas the worst 
random trial within the final dataset still 
outperformed random chance by two-fold.  Thus, 
the improved average performance and lower 
variability in our revised results suggests improved 
coherency in our revised analysis over the original 
published results. 

Discussion 
Here, we present a revised analysis of raw 

data from SH2 domain affinity experiments. We 
presented an analysis framework which improved 
on the model fitting and evaluation methods of 
previous work. We used improved methods to 
identify high-quality true positive interactions, and 
we added thousands of true negative interactions, 
while filtering out results from potentially inactive 
protein.  

Although raw data from only two 
experiments was available for detailed analysis, 
we were fortunate that raw data combined a large 
quantity of measurements with a well-established, 
solution-based experimental system – fluorescence 
polarization – commonly used for analytical 
biochemical assays. All in vitro experimental 
methods have limitations when attempting to 
understand behavior in vivo, but early high-
throughput experiments used arrays that had 
limitations and biases for higher affinity 
interactions (13). Those experiments had either the 
peptide (11, 12) or the protein (7–10) mounted on 
a surface, and would be less preferable to a 
method where both molecules were measured in 
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solution. So despite limited availability of data, the 
raw data available is likely to be the best example 
for further analysis. 

Other high-throughput experiments share 
many critical methods with the data reviewed here. 
In all published experiments measuring affinity, 
protein was minimally filtered after production. 
Authors knowingly measured non-monomeric 
protein. The limited purification is likely to result 
in errors in protein concentration measurements 
due to inactive protein contaminants. Furthermore, 
in none of the experiments was protein assessed 
for activity before being measured. This has two 
critical consequences: the inability to separate 
non-binding results from negative interactions due 
to non-functional protein, and additional errors in 
active protein concentration with respect the 
measured protein concentration. Incorrect use of 
statistical methods to evaluate models was 
common to all published work – particularly the 
improper use of the coefficient of determination 
(r2) to determine the quality of fit of a non-linear 
model, and using only a single model to fit data. 
Their choices resulted in a high false negative rate, 
and also masked the high variance in replicates 
that our revised analysis revealed. Our results 
suggest that, if the raw data were available, some 
of these issues could be corrected for in other 
experiments. 

One seemingly innocuous choice – 
averaging multiple replicates containing degraded 
protein – could be a significant source of error in 
published results from this experiment and other 
published high-throughput data. Taking the mean 
of multiple replicates is a standard practice when 
replicate differences represent random error, but it 
has drastically different results in the presence of 
multiple degraded measurements. The use of the 
mean to reconcile degraded replicate 
measurements could manifest as errors effectively 
randomizing reported affinity measurements. Even 
if failure to control protein degradation was the 
sole common error among these experiments, it 
could be the cause of the discrepancies between 
published numerical results. 

It is concerning that an entire body of 
published work has developed from this set of 
problematic results. At the very least, we have 
shown that affinity values from the original 
publications were derived from data and methods 
causing serious inaccuracies. This data has had a 

wide-reaching effect in many areas of SH2 domain 
research: the data has been used to draw specific 
conclusions about SH2 domain biology such as 
identification of EGFR recruitment targets (33), to 
explain quantitative differences in RTK signaling 
(9), and as evidence to understand the promiscuity 
of EGFR tail binding (34).  In addition, this work 
has been used to guide experimental design by 
filtering potential binding proteins by affinity (35), 
to reconcile confusing experimental results (36), 
and to guide new experimental hypothesis testing 
(37). It has played a role in cancer research as 
context to understand kinase dependencies in 
cancer (38), and as evidence of HER3 and PI3K 
connections as relevant to PTEN loss in cancer 
(39). It has influenced evolutionary analysis (40), 
has been used to design mechanistic EFGR models 
(41, 42), and has been used in computational 
algorithms for domain binding predictions (14–18, 
43). 

Furthermore, it is likely that these issues 
plague most other high-throughput studies of SH2 
domains due to shared methodology, and thus 
affect works derived from those publications as 
well. Due to the lack of correlation between any 
published high-throughput SH2 domain data, and 
the likelihood that similar issues plague all similar 
data sets, we would recommend against use of 
these previously published data sets in future 
research or models of SH2 domain behavior. We 
further recommend that all derivative work should 
be carefully reviewed for accuracy. 

We want to address the best uses of the 
revised affinity results we present, as well as the 
limits of the current analysis. These negative 
interactions represent a significant improvement 
over theoretical methods of simulating negative 
interactions (18), as they are based on real 
measurements rather than statistical assumptions. 
Furthermore, the negative interactions from our 
revised set are controlled for false negative results 
from non-functional protein – something no other 
SH2 domain data can claim. Thus, our revised 
results have significant potential to improve the 
quality of models built on categorical (binary) 
binding data. The limitation of this method is that 
the highest affinity measured value may not be the 
true affinity, if a fully functional protein was never 
measured. Nevertheless, the highest measured 
affinity should still represent the measured value 
closest to the true value. It is also important to 
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restate: not all variation in the data is consistent 
with the degradation hypothesis, and some 
variation may represent other unknown sources of 
variation which we have not controlled for. For 
example, one key assumption of the receptor 
occupancy model requires measuring the reaction 
at equilibrium. Since no data is provided to prove 
that the 20-minute incubation time given to all 
samples was sufficient to bring all reactions to 
equilibrium, it is possible that some variation is 
due to measurements made in non-equilibrium 
conditions. 

Finally, we would like to discuss methods 
to improve future data gathering and reporting. 
High-throughput studies have great value, and 
provide a vast quantity of often never before 
measured data. These methods have been useful to 
a wide variety of domain-motif interactions, for 
example SH3-polyproline interactions (44, 45), 
PDZ domains interacting with C-terminal tails 
(46–48), and major histocompatibility complete 
(MHC) interactions with peptides (49, 50). 
However, just as quickly, errors in these studies 
propagate rapidly and thereby into research results 
of other investigators. This suggests that an even 
higher than normal standard of care is necessary 
when evaluating such publications. A set of best 
practices for high-throughput methods should be 
established. For example, all raw data from high 
throughput experiments should be published, 
along with all code used to process that data. This 
would make the initial data far more valuable for 
future research, much like the raw arrays stored 
Gene Expression Omnibus, or the raw 
experimental measurements are stored along with 
the protein structure in the Protein Data Bank. To 
this end, we have provided the original raw data 
and our full revised data on Figshare (DOI: 
https://doi.org/10.6084/m9.figshare.11482686.v1), 
and provided the code for the analysis pipeline on 
GitHub (https://github.com/NaegleLab/SH2fp) so 
that future evaluation can be more easily 
accomplished by other researchers. Furthermore, 
in methods quantitatively measuring protein 
activity, protein degradation will always be an 
issue. Methods for quantifying activity should be a 
best practice. Alternatively, methods which do not 
depend so heavily on accurate protein 
concentration should be preferred. One such 
concentration-independent method of measuring 
interaction affinity was recently developed by the 

Stormo lab (51). In that method, a 2-color 
competitive fluorescence anisotropy assay 
measures the relative affinity of two interactions in 
solution. By measuring interaction against two 
peptides at once from the same pool of proteins, 
the concentration of the protein and the proportion 
of active protein is the same in both interactions. 
When the ratios are calculated, the concentration 
and activity drop from the calculation of affinity. 
Although this method only provides relative 
affinity, if one could carefully establish absolutely 
affinity for a single peptide (or panel of peptides), 
absolute affinity could be extended to all 
interactions. Alternatively, another recent 
experiment also uses competitive fluorescence 
anisotropy, but measures a competitive titration 
curve in a single well with an agarose gradient 
(52). Diffusion forms a spatiotemporal gradient for 
the interaction, and so one can produce a full 
titration curve in each well in a multi-well plate, 
measuring both affinity and active protein 
concentration simultaneously. Regardless of the 
specific method, it should be a best practice to 
account for or control for the concentration of 
active protein within the measurement of total 
protein concentration. 

Methods 
Raw Data. Upon receipt of the Jones 

2012-14 raw data, we examined the data for 
consistency and completeness. We found that the 
data did not cover all interactions described in the 
original publication. However, by limiting our 
revised analysis to interactions of single SH2 
domains with phosphopeptides from the ErbB 
family, as well as KIT, MET, and GAB1, we were 
able to limit the effect of missing raw data. Within 
this scope, only a handful of individual replicate 
interactions were then missing (approximately 138 
replicate-level measurements out of over 37,000 
measurements) and were limited to 3 domain-
peptide pairs. Fortunately, two of the domain-
peptide pairs were represented by other replicate 
measurements. The data we examined for this 
revised analysis cover the interactions of 84 SH2 
domains with 184 phosphopeptides. The peptides 
came from receptor proteins from the four ErbB 
domains (EGFR/ErbB1, HER2/ErbB2, ErbB3, 
ErbB4) as well as KIT, MET, and GAB1. Of SH2 
proteins containing a single SH2 domain, 66 
domains were measured: ABL1, ABL2, BCAR3, 
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BLK, BLNK, BMX, BTK, CRK, CRKL, DAPP1, 
FER, FES, FGR, GRAP2, GRB2, GRB7, GRB10, 
GRB14, HCK, HSH2D, INPPL1, ITK, LCK, 
LCP2, LYN, MATK, NCK1, NCK2, PTK6, 
SH2B1, SH2B2, SH2B3, SH2D1A, SH2D1B, 
SH2D2A, SH2D3A, SH2D3C, SH3BP2, SHB, 
SHC1, SHC2, SHC3, SHC4, SHD, SHE, SHF, 
SLA, SLA2, SOCS1, SOCS2, SOCS3, SOCS5, 
SOCS6, SRC, STAP1, SUPT6H, TEC, TENC1, 
TNS1, TNS3, TNS4, TXK, VAV1, VAV2, 
VAV3, and YES1. From SH2 proteins with double 
domains, C-terminal and N-terminal domains were 
individually measured from 10 proteins: PIK3R1, 
PIK3R2, PIK3R3, PLCG1, PTPN11, RASA1, 
SYK, ZAP70, PLCG2 (N-terminal only) and 
PTPN6 (C-terminal only). One peptide had no 
measurements in the raw data (EGFR pY944). 
Within this revised scope, the available raw data 
covered approximately 99.6% of the originally 
available raw data. 

The raw data for each measured 
interaction consisted of fluorescence polarization 
measurements of an SH2 domain in solution with 
a phosphopeptide at 12 concentrations. The 
measurements were arranged on 384 well plates: 
32 different SH2 domains at each of 12 
concentrations, all measured against a single 
peptide per plate. Protein concentrations 
represented 12 serial dilutions of 50% starting 
with either 10 µM or 5 µM protein. 

Model Fitting, Model Selection, and 
Replicate-Level Calls. For each replicate 
measurement, we fit two models: the linear model 
(equation 4) and the receptor occupancy model 
(equation 2). Model fits were evaluated with the 
bias corrected Akaike Information Criterion 
(AICc), and the model with the lower AICc score 
was selected (19). 

The Akaike Information Criterion (AIC) 
as a quality metric, was calculated by 

()* = 2+ − 2 ,�(-)																					(5)	
where p is the number of parameters in the model, 
and ln(L) is the maximum log-likelihood of the 
model. In a non-linear fit, with normally 
distributed errors, ln(L) is calculated by 

,�(-) = 	−0.5�1,�(22) + 1 − ,�(�) + ,� 34�"5#
"$6 78	(6)	

where x1, ..., xn are the residuals from the 
nonlinear least squares fit and N is the number of 
residuals. The bias corrected form of AIC, referred 
to as AICc, is a variant which corrects for small 
sample sizes, e.g. when one has fewer than 30 data 
points. AICc is calculated as follows: 

()*: = ()* + 2+(+ + 1)� − + − 1 																		(7)	
where n is the sample size, and p is the number of 
parameters in the model (19). Each replicate had a 
sample size of 12. The receptor occupancy model 
had three parameters (affinity (Kd), saturation level 
(Fmax), and background offset (Fbg)), while the 
linear model had two parameters (slope (m), and 
background offset (Fbg)). 

Replicates that were fit best by the linear 
model with a slope of less than or equal to 
5mP/µM were categorized as negative 
interactions, or ‘non-binders’. Linear fits with a 
slope greater than 5mP/µM were categorized as 
aggregators. Replicates that were fit best by the 
receptor occupancy model were subsequently 
evaluated for signal to noise ratio (SNR, equation 
3). If the SNR was greater than one, the replicate 
was categorized as a positive interaction or 
‘binder’, otherwise, it was rejected as a low-SNR 
fit and removed from consideration. 

Identifying Non-Functional Protein. Once 
all individual fits were complete, runs were 
examined for non-functional protein. If an entire 
run lacked even one positive binding interaction, 
and those same interactions measured positive on 
another run, the non-binder, aggregator, and low-
SNR calls on that run were changed to non-
functional protein and removed from 
consideration. 

Replicate Handling for Domain-Peptide 
Measurements. For each domain-peptide pair, only 
replicates that were marked as binders with 
sufficiently high signal to noise ratio (SNR) were 
considered. For a given domain-peptide pair, the 
minimum numeric value of Kd (strongest 
measured affinity) was reported as the final Kd for 
that domain peptide pair. 

Active search. The probability model (32) 
used  a simple k-nearest neighbor (k = 20) where 
distance is defined by average Euclidean distance 
of corresponding divided physicochemical 
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property scores (DPPS) features of the amino 
acids (53) comprising the peptide, i.e.: 

�##(�, �′) = 1�4�>?�++@(�"), �++@(�′6)A	(8)#
"$6 	

where dnn is the distance used to define nearest 
neighbors, de is the Euclidean distance, n is the 
number of amino acids in the peptide (here n = 9), 
and dpps(xi) is the DPPS feature vector of the ith 
amino acid in peptide x. 
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Data 

Group 
Type Publication Peptides 

SH2 

Domains 
Affinity 

Results 

Available 

Raw Data 

Available 
Models 

1 PM 

Jones et al. 

(2006) 
61 159 Yes Yes No 

SH2PepInt 

Wunderlich/ 

Mirny 

Kaushansky 

et al. (2008) 
50 133 Yes Yes No 

Gordus et al. 

(2009) 
46 96 Yes Yes Yes (pos) 

2 PM 
Koytiger et al. 

(2013) 
729 70 Yes Yes No 

MSM/D, 

FoldX 

3 FP 

Hause et al. 

(2012) 
89 93 Yes Yes Yes (PC) 

 

PEBL 
Leung et al. 

(2014) 
85 93 Yes Yes Yes (PC) 

n/a PA 

Liu et al. 

(2010) 
192 50 No No (fig) No 

Tinti et al. 

(2013) 
6202 70 No No (*) No (*) 

Table 1: Overview of Published SH2 Data and Use in Published Models. Eight high-throughput experiments have 
been published since 2006 using experimental techniques such as protein microarrays (PM), peptide arrays (PA), 
and fluorescence polarization (FP). Of the published studies, only two studies have raw data available, by personal 
communication. Even the published data from several studies is no longer available.  (pos) Raw data only published 
for positive interactions; (PC) data available only by personal communication; (fig) Published as a figure only, 
numerical results are available by private communication; (*) Original results were stored in PepspotDB, but not 
published in the journal or supplement. PepspotDB is no longer available. 
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Figure 1: Comparison of Published Affinity Data. The correlation of data published by the MacBeath group between 
2006 and 2009, by the MacBeath group in 2013, and by the Jones group in 2012 and 2014 is evaluated using 
correlation plots (top row). With perfect agreement, data points would fall along the dashed gray line. Surprisingly, 
there is almost no correlation between data groups. Even results from the same lab published at different times show 
only mild correlation (r=0.367, MacBeath 2006-09 vs MacBeath 2013).  The data were also examined for agreement 
on positively interacting domain-peptide pairs (bottom panel). Positive interactions are identified by blue bars. Of 
the 347 positive domain-peptide interactions identified by at least one group, only 55 interactions were found to be 
positive in all three data groups (15.9%). No two data groups agreed on more than 29% of positive interactions. 
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Figure 2: Flowchart of Revised Analysis Process. Comparison between the original analysis process (left panel) and 
our revised analysis pipeline (right panel). For our revised process, representative sample fits are shown below each 
of the final categorizations. 
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Figure 3: Initial Replicate-Level Results and the Results of Non-Functional Protein Identification (NFPI). The 
categorization results of individual domain-peptide measurements are shown (Before NFPI). Of the 37,378 
measurements, 7.4% (2,753) were initially identified as positive interactions (binders), 7.4% (2,083) as interactions 
showing aggregation, 5.6% (2,764) as low signal-to-noise, and 79.7% (29,778) as non-binders. The subsequent 
identification and removal of individual domain-peptide measurements made on non-functional protein had a 
significant effect on the categorization of non-positive replicate-level measurements. Of the 29778 measurements 
initially categorized as non-binders, 56.6% (16,859) were identified as likely to contain non-functional protein and 
were removed from further consideration. 
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Figure 4: Replicate Measurements Exhibit High Variance. The variance in replicates for each domain-peptide 
interaction was visualized by distributed dot plots. Within each plot, on each row all affinity measurements for a 
single domain-peptide pair are plotted. Domain-peptide interactions (rows) are sorted by mean affinity, and grouped 
into four different affinity ranges (panels) for more detailed viewing. The plots demonstrate that high variance 
replicate groups can be found in domain-peptides with all ranges of mean affinity, and that very few domain peptide 
pairs have low variance replicates. This suggests that high replicate variance is ubiquitous, and independent of mean 
affinity.  
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Figure 5: Degradation Effects on Measured Affinity. Simulated measurements for an ideal binding saturation 
experiment are shown for a theoretical protein with 1 µM affinity (row 1). (Measurements in the second column are 
the same data as the first column, but plotted on a logarithmic concentration axis.) In rows 2 and 3 a measurement of 
the same theoretical protein with 1.0 µM affinity is shown, but with the indicated fraction of degraded protein in the 
sample. The protein degradation is unknown by the experimenter, so the x-axis values erroneously match the full 
activity sample. The y-values are reduced in rows 2 and 3 because the FP signal has been adjusted to that of the 
active concentration. The y-values change in a non-linear fashion as governed by the fully active saturation curve 
(row 1). For example, in row 2 with 50% degradation, the FP measurement (y-value) at 10µM is equivalent to the 
FP value at 5uM in row 1. In row 3 with 75% degradation, the FP measurement (y-value) at 10µM is equivalent to 
the FP value at 2.5uM in row 1. When affinity is derived from these degraded protein measurements, the result is an 
erroneous weaker affinity as shown. Although the change in FP from degraded protein is non-linear, the error in 
affinity is linear and proportional to the concentration error (and inversely proportional to the Kd).  
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Figure 6: Revised Analysis Final Results. A heat map showing the final results of the revised analysis. A significant 
fraction a measurements demonstrated patterns consistent with non-functional protein and were removed from the 
analysis. Comparison with the original published results can be seen in Supplemental Figures 14 and 15. 
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Figure 7: Changes In Calls Between Original Publication and Revised Analysis. Although the numbers of positive 
interactions are similar in our revised analysis, the identities of those interactions have changed significantly. The 
changes in calls are visualized in the Sankey map above. Of the original 1519 positive interactions found by the 
original authors, 166 (10.9%) were found to be non-binders in our analysis. Of the 10330 rejected interactions from 
the original publications, 273 (2.6%) positive interactions were recovered in our analysis. 
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Figure 8: Correlation between Original Publication and Revised Analysis. Affinity values were compared for for the 
comomn set of positive interactions (n=1245, upper left panel), as well as at lower affinity thresholds (other panels, 
as indicated). Our revised affinity values correlate only moderately with the original publication (Pearson r=0.635), 
which is surprising considering the analysis is on the same raw data. Our revised results correlate best when 
considering all measurements under 20µM affinity (Pearson r = 0.734). Despite choosing the minimum measured 
value for Kd, our revised data often reports higher Kd results than the original publication (i.e. results below the 
diagonal). This is due to different categorization and filtering procedures which result in significant additions and 
removal of individual measurements in each set of replicates for a domain-peptide pair before the mean or minimum 
are taken. It is interesting to note that correlation does not continue to improve at higher affinity (lower Kd), despite 
the fact that the chosen raw measurement range is tailored for highest accuracy for Kd < 1.0 µM. This suggests that 
the differences between our revised results are independent of the accuracy of the original measurements, and more 
likely due to the need to correctly +handle variation due to degraded protein.  
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Figure 9: Enhanced Nonmyopic Active Search (ENS) Results. Performance of the active search 

algorithm ENS within each dataset (original or revised). The line represents mean result, with shading 
captures +/- standard deviation. In this context, ENS seeks to select each successive interaction such that 
the total number of positive interactions discovered is maximized. 
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Fig. S1: Domain-Peptide-Level Comparison of Binding Between Published Results. Blue denotes positive 
interations (binding). J14: Jones 2012-14; MB13: MacBeath 2013; MB09: MacBeath 2006-09.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 2, 2020. ; https://doi.org/10.1101/2020.01.02.892901doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.02.892901


New analysis pipeline improves SH2 affinity data 

S3 

 
Fig. S2: The Receptor Occupation Model. Saturation plots in both linear (left) and semi-log (right) demonstrate 
increasing saturation with increasing fractional occupancy, with full saturation achieved at Fmax. The affinity (Kd) 
can be derived by fitting a curve to the data, but can also be derived graphically as seen above. At equilibirum, the 
affinity is equal to the concentration when ½ of the receptor is occupied (½ Fmax). In the semi-log curve, where the 
concentration axis is in log10 scale, Kd can be identified easily because it corresponds with the inflection point at the 
center of the the s-shaped curve. 
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Fig. S3: Examples of Varying Background Fluorescence Polarization. The raw data exhibited highly varying levels 
of change in polarization (FP) for background samples containing no protein domain. In many cases,  background 
values were higher than measurements (first row) which appeared to have high signal-to-noise ratio. In other cases, 
the background values were much lower (second row) than the expected value (third row).  Rather than use the 
background levels as reported, we fit the the intercept simultaneously with fitting the model to the data. 
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Fig. S4: Receptor Occupancy Model Fits for Various Affinity Interactions. High-quality receptor occupancy model 
fits showing positive interactions at varying affinities (Kd) from 0.1µM to 20µM. For interactions with 0.1 µM 
affinity, data points are evenly distributed on either side of the inflection point (semi-log plot), begin to establish no-
signal level, and establish saturation well. As affinity decreases (Kd increases), saturation is more poorly defined, 
with coverage by fewer or no points. Thus, the concentration ranges chosen make this experiment best suited to 
identify affinity in the 0.05µM to 0.5µM range. Since data in the original publication was reported up to 20µM, 
results with low affinities (higher Kd values) are likely to be less accurate.  
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Fig. S5: Signal-to-Noise Ratio (SNR). The quality of fit metric, deemed signal-to-noise ratio (SNR), evaluates the 
magnitude of residual errors of fit to the model (a form of noise), and weights this sum by the overall size of the 
fluorescent signal measured. If the SNR is below one (such that the noise/model errror is larger than the signal of the 
model, the data is rejected. As can be seen from the examples above, a signal to noise ratio of 1.0 or greater 
represents high-quality fits to the model, with little deviation from the model fit line. An SNR below 1.0 tends to 
represent fits with either large numbers of deviations, or a single large outlier, and are removed from consideration. 
Because it is difficult to differentiate between an outlier and a noisy fit with this metric, all measurement are rejected 
to maintain the quality of the positive interactions. 
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Fig. S6: Signal-to-Noise Ratio Distribution for Replicates Classified as Binders. At a signal to noise ratio (SNR) of 
1.0, 50.1% of all replicate measurements which are fit best by thr receptor occupancy model represent high-quality 
interactions and are considered positive interactions. The remainder, which have an SNR < 1, are considered poor 
fits, and are removed from consideration. 
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Fig. S7: Model Fitting Results for Non-binding Interactions. The receptor occupancy model fails to fit non-binding 
data well in practice. Non-binding data is expected to be represented by data points in a horizontal line, with some 
small level of superimposed noise expected (see first column for examples at full scale). Upon close examination 
(second column, zoomed view of the same data in the first column), noise in individual data points can be more 
clearly visualized. Random noise in the measurements can cause the model to force fit a ‘saturation’-type curve, 
resulting in several fit artifacts. In one type of fit-artifact (top row), a saturation curve poorly fits the data and has a 
low saturation value (on the order of 5mP units). In another type of fit-artifact (bottom row), all but one data point is 
considered to be at saturation, while one single point sets the rest of the saturation curve, resulting in an artifically 
low Kd, on the order of 1nM and sometimes much lower. Most commonly, a situation between these two extremes is 
found (middle row). A  linear model (red dashed line) has a lower AICc score when fitted to these non-binding cases 
than the receptor occupancy model, and can be used to reliably identify non-binding interactions while avoiding 
artifacts like the ones demonstrated.  
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Fig. S8: Model Selection. Both linear and receptor occupancy models are fitted to the data. AICc scores are 
calculated and compared between models – the model with the lowest AICc score is selected as the best fit. If a 
linear fit is chosen, and the slope is less than 5mP/µM, the interaction is classified as a non-binding interaction. 
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Fig. S9: Replicate Measurements for FGR Interactions with MET pY1313. An example of high-replicate variation 
across replicates for a single domain-peptide pair. Each individual measurement represents a high-quality fit to the 
receptor occupancy model, yet the resulting affinities vary from ~3µm to ~12µM. It is clear from the quality of each 
measurement that the variation is not due to noisy data, or fitting artifacts. Rather, each measurement seems to be a 
high-quality result of different affinity behavior.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 2, 2020. ; https://doi.org/10.1101/2020.01.02.892901doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.02.892901


New analysis pipeline improves SH2 affinity data 

S11 

 
Fig. S10: Examples of Degradation Patterns in Domain Data. In the original publication, data was primary gathered 
on 3 runs on 3 different days. On each run, domains were tested against hundreds of peptides providing rich data for 
identifying patterns. Variance in affinity from random (non-systemic) sources should manifest independent of run or 
sample order. In contrast, variance from protein degradation would demonstrate specific, non-random patterns in 
affinity. Degraded protein on a run would manifest as variance between runs, but consistently higher Kd on the 
degraded run across all peptides. For PIK3R2-N, we see that Run3 replicates consistently showed lower Kd values 
(higher affinities) than replicates from other days. This pattern of run to run variation suggests that the protein 
samples tested in Runs 1 and 2 were degraded. A protein sample exhausted mid-run and replaced with a fresh 
sample, could manifest as a surge of increased affinity in the middle of a run of lower affinity. For RASA1-N, no 
single day dominated the highest affinity until plate 174, after which the highest affinity replicates all come from 
Run 1. This is consistent with a change to fresh, active protein during Run 1. These patterns are not compatible with 
a random source of variance. Not all protein data shows pattern consistent with this degradation hypothesis. For 
SH2D2A, significant variation appears during each run. The patterns for SH2D2A are not consistent with a simple 
degradation hypothesis, and may be indicative of additional sources of variation. 
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Fig. S11: Non-Functional Protein Identification – Examples. Non-functional protein identification (NFPI) can be 
made when plotting protein domain activity against many peptides across multiple runs. The left column figures 
show results before NFPI, and the right column figures show the results of NFPI on the same data. A binder is 
identified by a green cell, a non-binder by a white cell, non-functional protein by a blue cell, and a non-measured 
interaction by a gray cell. A lack of even one positive interaction on an entire run is suggestive of non-functional 
protein. When other runs of the same protein show positive interactions, the runs with no positive interactions are 
considered to be non-functional and are removed from consideration. For example, with GRB2 (row 1), runs 2 
through 4 showed some positive interactions. On run 1, however, no measurements indicated positive interactions. 
The lack of even one positive interaction in run 1 suggests that the protein was completely degraded or non-
functional, and the presence of positive interactions in the other runs acts as a positive control. Run 1 is then marked 
in blue in the right panel for GRB2, and removed from consideration. A less-clear case of non-functional protein can 
be seen with BMX (row 2). For BMX, no positive interactions were found on any run. Although it is a formal 
possibility that BMX simply binds none of these peptides, we simply have no information that the protein was ever 
active, thus we conservatively identify all runs as non-functional. For PIK3R1-C, no measurements on the fourth run 
were positive interactions, while other runs contain positives, thus run 4 was categorized to be non-functional. 
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Fig. S12: Non-functional Protein in Hause, et al (2012). Non-Functional protein results for all measured interactions 
from the first publication, Hause, et al (2012). See legend from Fig. S11. 
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Fig. S13: Non-functional Protein in Leung, et al (2014). Non-Functional protein results for all measured interactions 
from the second publication, Leung, et al (2014). See legend from Fig. S11.  
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Fig. S14: Changes In Calls Between Original Publication and Revised Analysis. A heat map showing the changes in 
calls in our revised analysis. Differences in calls with the original publication are found across all domains and all 
peptides.  
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Fig. S15: Results from the Original Publication. A heat map showing the original published results in the same 
format, sorting order, and naming convention – for comparison with our revised analysis. 
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