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results in an increase in useful data due to the

ABSTRACT addition of reliable true negative results. We

Protein domain interactions with short demonstrate improvement in classification of
linear peptides, such as Src homology 2 (SH2pinding vs non-binding when using machine
domain interactions with  phosphotyrosine-learning techniques, suggesting improved
containing peptide motifs (pTyr), are ubiquitouscoherence in the reanalyzed datasets. We present
and important to many biochemical processes afevised SH2-pTyr affinity results, and propose a
the cell. The desire to map and quantify theseew analysis pipeline for future HTP
interactions has resulted in the development ofneasurements of domain-peptide interactions.
high-throughput (HTP) quantitative measurement
techniques, such as microarray or fluorescencktroduction
polarization assays. For example, in the last 15 Protein domain interactions with short
years, experiments have progressed fronfinear peptides are found in many biochemical
measuring single interactions to covering 500,00@rocesses of the cell, and play a central role in cell
of the 5.5 million possible SH2-pTyr interactions physiology and communication. For example, SH2
in the human proteome. However, high variabilitydomains are central to pTyr signaling networks,
in affinity measurements and disagreements abowthich control cell development, migration, and
positive interactions between published datasetspoptosis 1). The 120 human SH2 domains are
led us to re-evaluate the analysis methods and rasonsidered “readers”, since they read the presence
data of published SH2-pTyr HTP experiments. Weof  tyrosine  phosphorylation by  binding
identified several opportunities for improving the specifically to certain phosphorylated amino acid
identification of positive and negative interactions,sequences. Approximately half of the binding
and the accuracy of affinity measurements. Wenergy of the SH2-pTyr sequence interaction is
implemented model fitting techniques that aredue to an invariant arginine which creates a salt
more statistically appropriate for the non-linearbridge with the ligand pTyr. The remainder of the
SH2-pTyr interaction data. We developed a novebinding energy results from interactions between
method to account for protein concentration errorshe SH2 domain binding pocket and the residues
due to impurities and degradation, as well adlanking central pTyr residue®-4), resulting in
addressing protein inactivity and aggregation. Ouspecificity of SH2 domain interactions critical to
revised analysis increases reported affinitypTyr-mediated signalingsf. Measurements of all
accuracy, reduces the false negative rate, ar8H2 binding affinities for target peptides would
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greatly aid in the decryption of domain specificity degree of protein functionality before measuring
and advance understanding of cell signalingffinity. Thus protein of varying degrees of purity,
networks that control human physiology. functionality, and non-monomeric content were
However, the total potential number ofused for affinity measurements. Impure or
interactions is immense — the 46,000 tyrosineslegraded protein causes overestimation of protein
currently known to be phosphorylated in theconcentration when compared to the amount of
human proteome6] have the potential to interact active protein in a sample. These protein
with 120 human SH2 domains, resulting in overconcentration errors can propagate directly to

5.5 million possible SH2-pTyr interactions. errors in affinity, because affinity is derived from
Recent developments have expanded theoncentration and activity.
measurement coverage of human SH2-pTyr Second, we found errors in model fitting

interactions. Eight high-throughput (HTP) studiesand statistical methods used to evaluate model
have been performed to measure SH2 domaifitting, which could have significant impact on the
interactions  with  specific  phosphopeptidereported affinities. All of the affinity studies used
sequences 7¢14) (Table 1) wusing either the receptor occupancy model and the coefficient
microarrays or fluorescence polarization (FP). Thef determination () as a determination of how
six studies that quantitatively measured affinitywell the model fits the data. Fdinear models,
represent ~90,000 pairs of domain-peptideone can interpret the values 6fbetween 0 and 1
interactions, but these measurements cover less the total percent of variance explained by the
than 2% of possible interactions. In responsefit. However, when applied taon-linear models
computational approaches have attempted t(ike the receptor occupancy model used in each of
predict as-of-yet-unmeasured interactions usinghese studies to derive affinity), tHevalue cannot
the published interaction data. These methods spdre interpreted as the percent of variance, and has
the range from thermodynamic models whichbeen conclusively shown to be a poor indicator of
predict interaction strength using existing structurditness (9). Although this fact has long been
and binding measurement$5(17) to supervised established in the statistical literatu@9426) r* is
machine learning models using patterns in peptidstill commonly used to evaluate non-linear models
sequences and quantitative binding data to predid pharmaceutical and biomedical publications
binding (@4, 18). However, no computational despite being an ineffective and misleading metric.
method has used the available affinity data in itdn these publications, the use df effectively
entirety. We therefore wished to leverage allresulted in a bias for true positive interactions at
available binding affinity data in a supervisedthe expense of making many false negative calls,
learning approach to expand our knowledge o&nd removed many replicate measurements from
SH2-pTyr interaction space. incorporation into the reported affinity values.

Unfortunately, in the process of reviewing Therefore, due to both inaccuracies in
published HTP data, we found surprisingquantitative results and the significant potential for
disagreement between publications about whickarge numbers of false negative results, we had
domain-peptide pairs interacted. For the limitedserious concerns about using the published
number of interactions for which they agreed, theaffinities in machine learning. To overcome these
reported vastly different affinities for interacting issues, we decided to retrieve and reanalyze
pairs. We identified two issues common to all ofavailable raw data in order to systematically
the data sets that could be responsible for thinprove classification and affinity accuracy for
discrepancies in results: errors affecting proteirSH2pTyr interactions. To accomplish this we: 1)
concentration, and improper use of statisticatefined model fitting techniques, 2) implemented
methods affecting modeling results. fitting multiple models to each measurement, 3)

First, we found potential sources of errorsused a statistically accurate method for model
in protein concentration that could affect reportedselection, 4) developed methods to identify and
affinity values. Protein was minimally purified remove non-functional protein from the results,
(via nickel chromatography), and proteinand 5) introduced a novel method to address the
concentration was measured by absorbance. Neffects of protein concentration errors on reported
study used positive controls to determine theffinity.
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Our revised analysis improves affinity identified by one or more groups, fewer than 16%
accuracy, improves specificity by reducing the(55/347) were found to interact in all three data
false negative rate, and results in a dramatigroups. No two experiments were able to agree on
increase in useful data due to the addition ofnore than 29% of the positive interactions. The
thousands of true negative results. Evaluation dfiifferences in interaction identification were
the revised affinities shows improved learningspread randomly among SH2 domains and
accuracy within an active learning model —peptides, with no single SH2 domain, peptide, or
suggesting that there is improved coherency in thpeptide family being overrepresented (Fig. S1).

features of the revised dataset. These findings demonstrate significant
quantitative and qualitative differences between
Results published data from different labs, and even

disagreement between publications from the same

Evaluation of published affinity data and |ab.
acquisition of raw data Although there are significant differences

In the process of evaluating publishedbetween the techniqgues of PM and FP
high-throughput data, we found significantexperimental methods, the differences between
disagreement between data sets. We evaluated plbsitive interactors did not group by technique
publications using HTP methods to measure SHZFig. 1) and different techniques had similar
domain interactions with specific peptide numbers of common positive interactions.
sequences. The publications containing SH2lthough very low, the best correlation (r = 0.367)
affinity data can be grouped into three, distincivas between a PM experiment and an FP
data groups (Table 1). The first data group consistéxperiment from the same lab. All three data
of the group of studies published by the MacBeatlyroups used similar protein and peptide production
lab from 2006 to 20097( 9, 27) which contain a and purification methods, absorbance for
body of predominantly non-overlapping proteindetermination of protein concentration, the
microarray (PM) experiments. The second dataeceptor occupancy model for determining
group consists of a large study published by theaffinity, and similar methods of evaluating model
MacBeath lab in 201310) with a set of new PM fits based on the coefficient of determinatiof). (r
measurements using the protocol published in We concluded that we would need to look
2010 @8). The third data group consists of two further into the methods and raw data to evaluate
non-overlapping sets of fluorescence polarizationhe differences between published data sets, or
(FP) experiments published in 2012 and 2014 bgven to evaluate the quality of any single set of
the Jones lab 18, 14). Because the other published data. Acquisition of raw data from
experiments X1, 12) only measured interaction published studies was surprisingly difficult. No
and not affinity, they were not considered for thispublication included raw data, only supplemental
analysis. tables with post-processed values for affinity

In order to determine agreement betweewhich are insufficient for replication of published
data sets, we examined both qualitative angdesults. Furthermore, we discovered that most raw
quantitative results. First, we examined thedata underlying the published analysis has been
correlation between domain-peptide affinity lost by the original authors and is no longer
measurements which overlapped between any twavailable from any party. (Table 1) Fortunately,
data groups (Fig. 1, top row). We foundwe were able to retrieve raw data from the Jones
surprisingly low correlation between affinity 2012-14 data group (personal communication
measurements (with a maximum correlation of r from Richard Jones, Ron Hause, and Ken Leung).
0.367). Next we asked if the different data groups
identified the same positive interactions betweerRaw SH2 interaction data and revised analysis
domain-peptide pairs, even if they did not agree on We began by examining the raw data from
the affinity measurements. Here, we foundthe Jones 2012-14 data group to evaluate the
significant disagreement over which domain-quality and completeness of the data, and to
peptide pairs were found to interact (Fig. 1, bottonreview the methods used to process the raw data
row). Of 347 positive domain-peptide interactionsinto its published form. Although some raw data
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was missing in comparison to the originalexamined the effect of dropping outlier
publication, by limiting our revised analysis to measurements on model fitting results, and
interactions of single SH2 domains with implemented an alternative method to determine
phosphopeptides from the ErbB family (EGFR,model fithess: signal-to-noise ratio (SNR).
ERBB2, ERBB3, ERBB4), as well as KIT, MET, Background subtraction causes errors in
and GAB1, the available raw data coveredmodel fits and is replaced by fitting an offset. In
approximately  99.6% of the reported the original analysis, the authors used a plate-wise
measurements. background subtraction method, where the median
Evaluation of the implementation of the baseline control value was recorded from plate
receptor occupancy model. The raw data for eaclmeasurements and subtracted from the
measured interaction consisted of fluorescencpolarization signal observed at each data point
polarization measurements of an SH2 domain i§13). When plates had excessive variation in
solution with a phosphopeptide at equilibrium atbaseline control values, the authors excluded these
12 concentrations. In the original publication, theresults from further analysis. However, in
raw data was then used to derive an equilibriunexamining many measurements by eye, we found
dissociation rate constant (K by fitting the that the background values seemed uncorrelated
receptor occupancy model (developed by Clark invith the signal values (Fig. S3).

1926 using the law of mass actioRB9)). As A critical feature of the receptor
applied to the fluorescence polarization data, theccupancy model is that the saturation curve
model takes the form: passes through the origin (because the point of
zero-signal is also the point of zero-concentration).
[SH2 domain]Fy, 4y Thus background subtraction forces the zero-
FobS=Kd+[5H2 domain] M signal to a point other than that of zero-

concentration, resulting in higher residual error
where Fys is the observed FP signal at eachwhich introduces errors in derived affinity (Fig.
assayed protein concentration of the SH2 domaif4). These errors increase or decrease affinity
(measured in millipolarization units (mP)), and(based on whether the background is high or low),
Fmax represents the FP at saturation (see also Fighd are non-linear by affinity. Since the
S2). The affinity (k) and saturation limit (f,)  relationship of the background was seemingly
are fitted parameters of the model. It is importantandom, and the error factors are non-linear,
to note that this model is dependent on severdlackground subtraction injected random error in
critical assumptions: that the reaction is reversibleaffinity calculations. More than 54% of the
that the ligand only exists in a bound and unboungeplicate measurements exhibited problematic
form; that all receptor molecules are equivalentpackground levels (Fig. S4, bottom row). Thus, we
that the biological response is proportional torejected the background subtraction method in
occupied receptors; and that the system is davor of fitting the model along with an offset

equilibrium. value (Ry):

We hypothesized that the specific methods
used to implement the receptor occupancy model _ [SH2 domain]Fpqy +F 5
in the original publications might have affected the °bs ™ k. + [SH2 domain] 0 )

accuracy of the originally published results. We

examined three aspects of the implementation dExample fits using the receptor occupancy model
this model. First, we reviewed the method ofwith offset can be seen in Fig. S5.
subtraction of background fluorescence and found

that it introduces systematic random errors in

affinity results. Second, we evaluated whether the

receptor occupancy model could reliably fit a non-

binding sample. When we found it could not, we

implemented an alternate model and a model

selection procedure in order to more reliably

identify negative interactions. Finally, we
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The receptor occupancy model fails toappropriate for use with non-linear models,(
accurately identify non-binding measurements30), is robust even with high noise data, and
introducing a linear model. Although the receptoremploys a regularization technique to avoid
occupancy model is theoretically capable of fittingoverfitting by penalizing models with more
a typical binding saturation curve as well as garameters (the receptor occupancy has 3
‘flat"  curve representative of non-binding parameters; the linear model has only 2
interactions, we found that it fails to accurately fitparameters). In our implementation we used a bias
non-binding interactions in practice (Fig. S6),corrected form of the metric, AICc, in order to
resulting in artefactual model fits with account for only having 12 data points per
unreasonable affinity and saturation values. saturation curve. A lower AICc score indicates a

Because negative interactions resemblédetter fit. Examples of model fitting can be seen in
low-slope or zero-slope lines with superimposed-ig. S7.
random noise, we hypothesized that a linear model Evaluation of model fitness. In order to
would more reliably fit these ‘non-binders’ and determine how well the data was represented by a
resolve fit artifacts. The linear model is: model, we used the signal to noise ratio (SNR) as

a metric of model fithess. The SNR metric
F,ps = m[SH2 domain] + F, 4 represents the magnitude of residual errors of fit to
the model (a form of noise), and weighs this sum
(where k represents an offset value, amdis a by the overall size of the fluorescent signal
constant representing the slope of the fitted linegneasured. It is calculated as
Fig. S6, red fits). Out of 37,378 replicate

measurements, 31,861 were best fit by the linear max(F,ps) — min(F,ps)
model. Of these, 29,778 were initially classified as SNR = IR 3)
non-binders. =

We also found a group of replicate wheren is the number of data points; R the
measurements (~6%) which were best fit by gesjdual value of thé" data point, and & is the
linear model but with steep positive slope.gpserved fluorescence (in mP units).

Linearly increasing fluorescent signal with no At an SNR-1, the measured signal is
indication of saturation violates the assumptions Ofarger than the sum of all errors to the fit, and
a receptor occupancy model, and is more likely t9epresents a good quality fit in practice. We chose
represent a form of protein aggregation, peptidg ratio of 1 as the limit of a good fit based on
aggregation, or some other form of non-specifiGextensive visual inspection of the fits (see Fig. S8
binding. Thus, to preserve the quality of the nonyng Fig. S9). Replicates with SNR<1 made up
binding calls, a conservative slope cutoff ofg 294 of fits (1948/37378). These low-SNR fits fell
5mP/uM  was implemented, above Wwhichjntg three classes: zero signal measurements
replicates were identified as aggregators, angi7g 0os, 1480/1948), measurements where noise
removed from further consideration. Of the 31-86]swamped the signal (21.9%, 427/1948), and good
replicates best fit by the linear model, 2083 wergneasurements with large single point outliers
initially classified as aggregators. (2.1%, 41/1948). Although the metric excludes
Fitting multiple models requires a model some viable measurements that would be kept

selection process. When more than one model cgghen reviewing by eye (e.g. 41 single point outlier

must be implemented to determine which model;10th of 1% of all replicate measurements

most accurately represents the data whilgp 1106, 14/37378). A consistent standard is
balancing against adding additional parametergjfficult to implement without such a metric, and
which can lead to overfitting. In order to gny objective metric would likely excluse some

determine if a measurement is best described by\gahle measurements. (See the Discussion for
receptor occupancy model or a linear model Wehoughts on alternate metrics.)

contrast to the coefficient of determinatiorl)(r selection. In the original publications, the authors
AIC is a model selection metric which is ytjlized an iterative outlier removal process. For
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each set of 12 data points in a replicateHigh variation at the replicate level is likely
measurement, individual points were identified asaused by protein concentration errors
outliers using a statistical model. The outlier was The original publication reported a single
removed and the fit was reevaluated. Up to threaffinity (Ky) value for each domain-peptide pair,
points were removed per replicate measurementvhich was the average of multiple replicate
For measurements where more than three dattbmain-peptide measurements. However, we
points were identified as outliers, the replicatefound patterns of high variation in affinity
measurement was removed from furthebetween replicates that suggested a significant
consideration. problem with the either experimental design or
For an ideal binding saturation experimentexperimental method. We hypothesized that a
attempting to identify I§ the concentrations tested single variable — errors in protein concentration —
should span either side of;Kand the highest and could be responsible for the high variance.
lowest measured concentrations should establish In reviewing data quality, we identified a
the plateaus seen on semi-log saturation plots (Séerge number of domain-peptide interactions
Fig. S5). Based on the concentrations selected falemonstrating high variance in affinity among
this experiment, the ideal range for quantificatiorreplicates (for example, Kvalues ranging from
is affinity (Kg) in the range of 0.05uM to 0.5uM. below 0.5uM to over 20uM for replicates from a
For interactions with a k1.0uM, the upper single domain-peptide interaction). In order to
plateau of the semi-log saturation curve no longedetermine the source and character of the variance,
has any coverage (Fig. S5, row 2). Interactionsve inspected replicates as a group for individual
with Kg>5uM have no data points at all abovg K domain-peptide interactions (for a representative
(Fig. S5, rows 3 and 4). This suggests that evergxample, see Fig. S10). Despite high variance
data point is critical for accuracy, particularly between replicates, each replicate measurement
points above ki thus we chose to use all datahad high quality fits and low residual error, as
points to avoid introducing additional error and toexpected from meeting an SNR>1. (For a
allow the SNR metric to gauge the quality of fit. representative example of all measurements from
Summary of revised analysis method forone such replicate group, see Fig. S10).
replicate _measurements. Following a systematic To explore this further, we visualized and
review of each decision made in evaluating auantified variance (Fig. 4) for all domain-peptide
measurement in  HTP affinity studies weinteractions. Although variance tends to increase
developed an improved analysis pipeline (Fig. 2)as Ky increases, variance greater than 10uM is
For each replicate measurement, we fit twdound across a large fraction of all measurements,
models: a receptor occupancy model with offsetndependent of affinity. How could high-quality
(equation 2) and a linear model with offsetindividual replicate measurements result in such
(equation 4). Fits were evaluated with AICc: thevaried affinities for a single domain-peptide pair?
model with the lower score was chosen as the be®fe hypothesized that protein concentration error
fit. Replicates that were fit best by the linear(arising from differences in protein preparations
model and had a slope of less than or equal teuch as impurities, degradation and inactivity)
5mP/uM were classified as negative interactionsgould directly propagate to errors in modeled
or ‘non-binders’. Linear fits with a slope greateraffinity values while still producing high-quality
than 5mP/uM were classified as aggregators aniddividual replicate saturation curves.
removed from considerations. A replicate that was To test this hypothesis, we first examined
fit best by the receptor occupancy model was thethe theoretical effects of protein concentration
evaluated for signal-to-noise ratio (SNR). If theerror on affinity. We demonstrate that
SNR was greater than one, the replicate wasoncentration errors directly manifest as errors in
classified as a positive interaction or ‘binder’. Outaffinity, and that errors from impurity or
of 37,378 replicate measurements, we identifiedlegradation systematically manifest as artificially
7.4% (2753) as binders, 79.7% (29,778) as nomigh Ky (lower affinity). Next, we examined the
binders, 7.4% (2764) as low-SNR fits, and 5.6%methods and data for sources of purification
(2083) as aggregators (Fig. 3, left side). errors, partial degradation, and complete protein
inactivity, and identified evidence of all three.
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Finally, we developed a method to control forbe present. Because the method used to determine
these sources of protein concentration error angrotein concentration was absorbance at 280nM,
produce affinities with higher accuracy using theonly total protein content is measured,
existing raw data. independent of purity or activity.

Protein concentration errors propagate If the variance in affinity was from a
directly as errors in derived j&values. Although random (non-systemic) source, we would expect
binding affinity is a molecular property — affinity to find no patterns of variance in time. In contrast,
is the strength of interaction between a singléf variance was from batch-related protein
protein molecule and a single peptide — accuratdegradation or impurities, we might see alternating
derivation and calculation of affinity by most patterns in affinity over time as different batches
methods depends on the accuracy of concentrati@are used. For example, if high-purity protein
measurements for the tested protein. In the case shmple were used on run 1 and a low-purity
the receptor occupancy model used here, affinity iprotein sample were used on run 2, we would
a derived function of concentration and FPexpect consistently higher affinities on run 1 and
response. Because impurities or degraded protegonsistently lower affinities on run 2. Or, if a
represent an error between the assumepartially-degraded protein sample was exhausted
concentration and the active concentration of anid-run, and replaced with a fresh sample, we
protein, we hypothesized this would propagate t@ould see a sudden surge of higher affinity results
errors in affinity. in the middle of a run, when compared to other

We examined the theoretical effect ofruns. Similar patterns could arise from batch to
concentration errors on measured affinity (Fig. 5)batch variations in purity affecting accuracy of
Errors in protein concentration due to impurities orexpected concentration.
degradation cause an overestimation of the true We examined the data for evidence of
concentration of active protein. Overestimationthese patterns. Since we do not have true
errors in protein concentration cause errors dn K information at the batch level or activity of each
always resulting in a higher jK(lower affinity) protein sample, these patterns must be inferred
than the true value. This error is linearlyfrom the data. Although these patterns are difficult
proportional to the error in concentration. to spot due to the nature of the experimental

Thus, protein concentration errors due todesign, we find examples of non-random run-
batch impurities or degradation can manifest as dependent variations in affinity in the data (Fig.
range of K values in replicate measurementsS11). These patterns are not compatible with a
made from different batches of protein, all ofrandom source of variance, and are compatible
which would be equal to or higher than the truewith either degradation or protein impurity causing
Kg, while simultaneously coming from high- errors in protein concentration.

quality, low-noise replicate fits. This exact Evidence for complete non-functionality
phenomenon has also been demonstrateaf protein domains. Because we found patterns
experimentally §1). consistent with partial degradation, we examined

Evidence for protein concentration errorsthe data for patterns of complete protein
due to protein degradation or impurity. Thedegradation. Complete degradation, or completely
original publications used Hisagged non-functional protein, would be indistinguishable
recombinant SH2 domain protein productionfrom a non-binding measurement for a single
methods, and used nickel chromatography as theplicate, potentially resulting in a false-negative.
sole protein purification method. In theory theseA control experiment to determine protein
methods can provide purities of up to 95%2)(  functionality would normally be required to
However in practice the results can varydelineate these two cases. However, we
significantly, and can be affected by the amindchypothesized that non-functional protein would
acid content, nonspecific binding, purification manifest within the data as long runs of non-
conditions, and the type of affinity matrix usedbinding results across many replicates, but would
(32). Our experience in the lab performing thesedlemonstrate contradictory evidence of binding on
purifications suggests that differences in purityother runs when the protein was not degraded. We
between different protein preparations are likely tdound patterns consistent with non-functional
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protein (Fig. S12). Non-functional protein taking the mean of multiple replicates would be
domains were identified and removed fromthe appropriate procedure because the sample
consideration (See Methods, and Fig. S13 and Fignean would represent the highest likelihood of the
S14). true population value of affinity. However, if the
By removing replicates where there isvariation is caused by protein concentration errors,
evidence that the protein was non-functional, weaking the mean of multiple measurements would
avoid the potential for false negatives from thisnot reflect the true affinity. Rather, it would
ambiguous data, and greatly improve the pool oinadvertently increase the reported Kalue by
true negative calls. Removal of non-functionalsome unpredictable amount, which depends on the
protein has a significant impact on the numbers ofiumber of samples and the magnitude of their
measurements at the replicate level. Nondegradation. In addition, since the mean is
functional replicates made up 37.6% of allparticularly affected by outliers, even one severely
replicates (Fig. 3, right side). The large number oflegraded sample would significantly increase the
runs showing patterns of completely non-mean reported Kvalue, resulting in a reported
functional protein contributes to the overall affinity with high error. Therefore, odd though it
evidence that protein degradation is present and imay seem from a statistical perspective, taking the
a source of variance in the data. minimumKjy is the most accurate way to handle
variation in replicates where errors in protein
Method for handling replicates with high  concentration overestimation represent the primary
variance due to protein concentration errors,  source of variation.
Reporting the minimum instead of the mean.
Two key issues arise when considering how tdRevised affinity results and comparison to the
handle replicate measurements when impurities ariginal published results
degradation are suspected to be a primary source In the results from our revised analysis,
of variance. First, without knowing the exact1518 positive (binding) interactions were
amount of protein concentration error in any onédentified, along with 7038 negative (non-binding)
sample, how can this error be controlled fordnteractions. These ~7000 true negative results
Second, what is the correct procedure for handlingepresent a significant increase in information
replicates when variation is primarily due tofrom the original publication in which no true
concentration errors and not random sampl@egative interactions were reported. For 3200
variation? We propose a simple but novel, solutionnteractions, inconclusive or problematic data was
to both questions: reporting the minimum rathempresent and no conclusions about their affinity
than the mean of the replicate measurementsould be drawn. Of those, 2753 potential domain-
results in the most accurate reported measuremereptide interactions remain unevaluated due to
Impurities and degradation can benon-functional protein. Final affinity values were
partially controlled for by reporting the minimum plotted for all peptide-domain interactions as a
replicate K. Given some unknown amount of heat map (Fig. 6), and summarized by category of
protein concentration error due to degradation omteraction and changes in calls (Fig. 7). A
impurities, theactive concentration of protein will summary of our revised results and the originally
always be equal to or lower than theeasured published results are available in Supporting Data,
concentration. And as we demonstrated aboves an Excel file, and the complete raw and revised
this means that the true affinity of the protein willdata is available on Figshare (DOI:
always be equal to or greater than the measurddtps://doi.org/10.6084/m9.figshare.11482686.v1).
affinity. Put in terms of i the true K will always Despite similar numbers of positive
be equal to, or lower than the minimum measurethteractions between the original and revised
Kg. Thus, the minimum Kreflects the closest results (1519 vs. 1518), the identities of the
measured value to the true affinity. domain-peptide pairs comprising the positive
Furthermore, reporting the minimum interactions changed significantly (Fig. 7). More
measured Kalso addresses the variance problemthan 17% of the original positive interaction calls
If the measurements were true replicatesgchanged to either non-interactions, or rejected
reflecting random noise and experimental errorresults due to data quality issues. In the final
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model, 166 interactions originally called positive To do this, we implemented active search,
in the published results are found to be truea machine learning approach that is highly
negative interactions. These changes are primarilgmenable to biochemistry problems such as this.
due to the ability to avoid fit artifacts and false-Active learning (also known as optimal
positive results, a consequence of using multiplexperimental design or active data acquisition) is a
models to fit the data. Similarly large changesmachine learning paradigm where we use
were found in the originally published negativeavailable data to select the next best experiments
interactions where 273 formerly rejectedto maximize a specific objective. Active search is
interactions are now classified as true positivea realization of this framework where the objective
interactions. These recovered results are primarilis to recover as many members of a rare, valuable
due to changes using offset fits instead oftlass as possible. In this case where only 13.9% of
background subtraction, and using an appropriatthe original dataset represents positive interactions
quality metric to determine which model fits best.between an SH2 domain and a phosphopeptide (or
Changes in calls by class are visualized in Fig. 718.2% in the revised dataset) the objective of the
while the identities and magnitude of the domainsearch algorithm was to prioritize each sequential
peptide pairs with changed calls are visualized irselected interaction to maximize the total number
Fig. S15. Results from the original publication areof  positive interactions discovered. We
visualized in Fig. S16. implemented the effective nonmyopic search

Furthermore, even though 1245 domain{ENS) algorithm 83) with the goal of optimizing
peptide pairs were found to bind in both thethe total positive experiments identified in an
original publication and our revised analysis, theallocated search of 100 queries. The algorithm was
guantitative affinity of those binders changedseeded randomly with one example positive before
significantly in the revised analysis (Fig. 8). Notesearch progressed and was repeated 50 times.
that although the minimum of each replicate group ENS  showed improved average
was selected as most accurately reflecting the trygerformance and higher consistency with our
affinity, our revised affinity values are not all revised dataset. First, ENS worked effectively on
lower than the original publication. This is both the original and revised datasets, identifying
primarily due to significant changes at thepositives that far exceed the expected number by
replicate level — where some original replicategandom chance by the 100th query (Fig. 9). This
were removed from consideration by changes isuggests that phosphopeptide sequences do encode
the fitting process, and a number of new replicatemformation about whether an SH2 domain will
were included in each replicate set. recognize them in a binding interaction. Second,

ENS performance in the revised dataset was

Independent evaluation of revised analysis:  higher than the original dataset on average, finding
measuring improved consistency via active 45.3 positives vs. 33.3 positives (p-value of 4e-
learning 12). Third, ENS performance is significantly more

We wanted to evaluate our revisedvariable on the original dataset than on the final
analysis compared to original results. In a caseéataset (ranging between 9 and 62 positives in 50
such as this, it is difficult to evaluate becauserials (with an average of 33.3), compared to a
original samples are no longer available. Howevenange of 38 to 67 (with an average of 45.3
one way to evaluate the data is to use machingositives) for the revised dataset. In the worst of
learning methods to ascertain whether the reviseghe 50 trials, search in the original dataset
data has better internal consistency or predictivanderperformed by 50% compared to what is
power than the original data set. Lacking aexpected by random chance), whereas the worst
biological reference, it seemed fitting to evaluaterandom trial within the final dataset still
this data using machine learning, as we originallyutperformed random chance by two-fold. Thus,
wished to harness SH2 domain bindingthe improved average performance and lower
measurements in machine learning frameworks toariability in our revised results suggests improved
extrapolate from the relatively small number ofcoherency in our revised analysis over the original
available measurements. published results.


https://doi.org/10.1101/2020.01.02.892901

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.02.892901; this version posted May 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

New analysis pipeline improves SH2 affinity data

Discussion of active protein concentration overestimation,
Here, we performed a revised analysis ofreporting the minimum replicate jKfor each
raw data from SH2 domain affinity experiments.domain peptide pair represents the value closest to
We presented a new analysis framework whichhe true activity of the protein.
improved on the model fitting and evaluation In this analysis we implemented a simple
methods of previous work. We report high-metric of quality, SNR, which weights the total fit
confidence true positive interactions, addecderror by the size of the signal. The SNR metric
thousands of true negative interactions, andvas effective at eliminating suspect fits, while
removed false negative results due to inactiveejecting very few high quality measurements
protein. We also report the minimum replicate(Fig. S9). Nevertheless, this metric may not be
measurement instead of the mean — an appropriaé@propriate for all types of data, particularly data
approach when protein concentrationwith a large prevalence of single point outliers.
overestimation errors are the largest source dlNe extensively explored using alternate metrics,
variance in the data. including confidence intervals (Cl). Bootstrapped
Although raw data from only two Cls, established by parametric boot strapping via
experiments was available for detailed analysisiesidual resampling, can add more information
we were fortunate that it consisted of a largghan a single fit result because they provide a
guantity of measurements from FP, a well-range of certainty for a given measurement.
established solution-based experimental systerowever, we found that this method had
commonly used for analytical biochemical assayssignificant limitations on this data, and performed
All in vitro experimental methods have limitations worse than the SNR metric. In this data,
when attempting to understand behavior in vivopootstrapped Cls have even greater vulnerability
but early high-throughput experiments used array® errors from outliers, are limited by small sample
that had limitations and biases for higher affinitysizes (only 12 residuals per measurement), and
interactions 13). Those experiments had either thesuffer from heteroscedasticity of residuals
peptide 11, 12) or the protein {=10) mounted on (causing the high variability in low-concentration
a surface, and are less preferable to a methathta points to be assigned to high-concentration
where both molecules were measured in solutiordata points) ultimately resulting in unrealistic
So despite limited availability of raw data, the datantervals for affinity.
available is likely to be the best type for further Several analysis methods implemented in
analysis. the original publications served as sources of
We saw very high variance in affinity randomizing error, and may suggest a reason for
within replicate measurements in this data. On itshe failure to agree with other published SH2
face, such high variation suggests a significaninteraction experiments. First, background
problem with either experimental design orsubtraction caused an unpredictable increase or
experimental method. At a minimum, it suggestdecrease of affinity due to forced errors in model
that another (uncontrolled for) variable is beindfitting. The magnitude of the error depended on
measured instead of the desired variable beingshether the published background was higher or
tested. In the worst case, the remedy requirdswer than optimum, and on the affinity of the
identifying and controlling for the source of interaction being measured. Even small deviations
variation, and redoing the experimentalcould result in significant errors. Another
measurements. Even the authors of the origin@eemingly innocuous choice — averaging multiple
publication argued that the “greatest source ofeplicates containing degraded protein — is likely
variability in the FP assay...is batch-specificto be a significant source of error in the originally
differences in protein functionality.” 18) published results from this experiment. Taking the
However, we have shown that the patterns foundhean of multiple replicates is a standard practice,
in the data are consistent with proteinbut serves to randomize reported values when
concentration errors, and that the likely sources gfrotein concentration overestimation is the
error (purification and degradation) result inprimary source of variation.
overestimation of protein concentration. Because Other high-throughput SH2 domain-
these types of errors all result in unknown amountpeptide experiments share many critical methods
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with the data reviewed here. In all publishedaffinity if a fully functional protein was never
experiments measuring affinity, protein wasmeasured. Nevertheless, the highest measured
minimally filtered after production. The limited affinity still represents the measured value closest
purification is likely to result in errors in protein to the true value. However, not all variation in the
concentration measurements due to inactivélata is consistent with our hypothesis of protein
protein contaminants. Furthermore, in none of theoncentration error, and some variation may
experiments was protein assessed for activityepresent other unknown sources of variation
before being measured. This has two criticalvhich we have not controlled for. For example,
consequences: the inability to separate nomene key assumption of the receptor occupancy
binding results from negative interactions due tanodel requires measuring the reaction at
non-functional protein, and additional errors inequilibrium. Since no data is provided to prove
active protein concentration with respect thethat the 20-minute incubation time given to all
measured protein concentration. Even if proteirsamples was sufficient to bring all reactions to
concentration errors were solely due toequilibrium, it is possible that some variation is
purification, it could be the cause of the significantdue to measurements made in non-equilibrium
discrepancies between published numericatonditions.
results. Furthermore, incorrect use of statistical It is concerning that an entire body of
methods to evaluate models was common to apublished work has developed from this class of
published work — particularly the improper use ofproblematic results. These experiments have had a
the coefficient of determination?jrto determine wide-reaching effect in many areas of SH2 domain
the quality of fit of a non-linear model, and usingresearch: the data has been used to draw specific
only a single model to fit data. These choicexonclusions about SH2 domain biology such as
result in a high false negative rate, and mask thelentification of EGFR recruitment targe®4j, to
high variance in replicates that our revisedexplain quantitative differences in RTK signaling
analysis revealed. Our results suggest that, if th(), and as evidence to understand the promiscuity
raw data were available, some of these issued EGFR tail binding 5). In addition, this work
could be corrected in other experiments. Howevethas been used to guide experimental design by
due to the lack of correlation between anyfiltering potential binding proteins by affinity36),
published high-throughput SH2 domain data, ando reconcile confusing experimental resul®y)(
the likelihood that similar issues plague all similarand to guide new experimental hypothesis testing
data sets, we would recommend against use @¢88). It has played a role in cancer research as
these previously published data sets in futureontext to understand kinase dependencies in
research or models of SH2 domain behavior. Weancer 89), and as evidence of HER3 and PI3K
further recommend that all derivative work shouldconnections as relevant to PTEN loss in cancer
be carefully reviewed for accuracy. (40). It has influenced evolutionary analys#il)|

We want to address the best uses of thbeen used to design mechanistic EFGR models
revised affinity results we present, as well as thé42, 43), and has been used in algorithms for
limits of the current analysis. The negativedomain binding predictiond4-18, 44).
interactions we report represent a significant Finally, we would like to discuss best
improvement over theoretical methods ofpractices for future data gathering and reporting.
simulating negative interactiond8), as they are HTP studies have great value, and provide a vast
based on real measurements rather than statistiggllantity of often never before measured data.
assumptions. Furthermore, the negativelhese methods have been useful to a wide variety
interactions we report are controlled for falseof domain-motif interactions, for example SH3-
negative results from non-functional protein —polyproline interactions 46, 46), PDZ domains
something no other SH2 domain data can claimnteracting with C-terminal tails 47—49), and
Thus, our revised results have significant potentialnajor  histocompatibility = complete (MHC)
to improve the quality of models built on interactions with peptide$(, 51). However, just
categorical (binary) binding data. The limitation ofas quickly, errors in these studies propagate
the quantitative data we report is that the highestapidly and thereby into research results of other
affinity measured value may not be the trueinvestigators. This suggests that an even higher
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than normal standard of care is necessary wheRegardless of the specific method, it should be a
evaluating such publications. A set of bestbest practice to account for or control for the
practices for HTP methods should be establishedoncentration of active protein within the
in the community. We recommend all raw datameasurement of total protein concentration.

from high throughput experiments should be

published, along with all code used to process thd#l ethods

data. This would make the initial data far more Raw Data. Upon receipt of the Jones
valuable for future research, much like the raw2012-14 raw data, we examined the data for
arrays stored Gene Expression Omnibus (GEO), @monsistency and completeness. We found that the
the raw experimental measurements are storedhta did not cover all interactions described in the
along with the protein structure in the Protein Databriginal publication. However, by limiting our
Bank (PDB). To this end, we have provided therevised analysis to interactions of single SH2
original raw data and our full revised datadomains with phosphopeptides from the ErbB
(including intermediate steps) on Figshare (DOIlfamily, as well as KIT, MET, and GAB1, we were
https://doi.org/10.6084/m9.figshare.1148268%,vand  able to limit the effect of missing raw data. Within
provided the code for the analysis pipeline orthis scope, only a handful of individual replicate
GitHub (https://github.com/NaegleLab/SH2fp) sointeractions were then missing (approximately 138
that future evaluation can be more easilyreplicate-level measurements out of over 37,000
accomplished by other researchers. Althoughmeasurements) and were limited to 3 domain-
portions of our code are highly specific to thepeptide pairs. Fortunately, two of the domain-
format of these datasets, the code is written in peptide pairs were represented by other replicate
modular fashion that can be easily repurposed imeasurements. The data we examined for this
other studies. We also recommend that method®vised analysis cover the interactions of 84 SH2
for quantifying activity should be a best practice indomains with 184 phosphopeptides. The peptides
studies  quantitatively measuring  protein.came from receptor proteins from the four ErbB
Alternatively, methods which do not depend sodomains (EGFR/ErbB1, HER2/ErbB2, ErbB3,
heavily on accurate protein concentration shouldErbB4) as well as KIT, MET, and GAB1. Of SH2
be preferred. One such concentration-independeproteins containing a single SH2 domain, 66
method of measuring interaction affinity wasdomains were measured: ABL1, ABL2, BCARS,
recently developed by the Stormo 1&2) In that BLK, BLNK, BMX, BTK, CRK, CRKL, DAPP1,
method, a 2-color competitive fluorescenceFER, FES, FGR, GRAP2, GRB2, GRB7, GRB10,
anisotropy assay measures the relative affinity o6RB14, HCK, HSH2D, INPPL1, ITK, LCK,
two interactions in solution. By measuring LCP2, LYN, MATK, NCK1, NCK2, PTKS6,
interaction against two peptides at once from th&H2B1, SH2B2, SH2B3, SH2D1A, SH2D1B,
same pool of proteins, the concentration of thésH2D2A, SH2D3A, SH2D3C, SH3BP2, SHB,
protein and the proportion of active protein is theSHC1, SHC2, SHC3, SHC4, SHD, SHE, SHF,
same in both interactions. When the ratios ar&LA, SLA2, SOCS1, SOCS2, SOCS3, SOCSS,
calculated, the concentration and activity dropSOCS6, SRC, STAP1, SUPT6H, TEC, TENCI,
from the calculation of affinity. Although this TNS1, TNS3, TNS4, TXK, VAVI1, VAV2Z,
method only provides relative affinity, if one could VAV3, and YES1. From SH2 proteins with double
carefully establish absolutely affinity for a single domains, C-terminal and N-terminal domains were
peptide (or panel of peptides), absolute affinityindividually measured from 10 proteins: PIK3R1,
could be extended to all interactions. AnotheiPIK3R2, PIK3R3, PLCG1, PTPN11l, RASAL,
recent experiment also uses competitiveéSYK, ZAP70, PLCG2 (N-terminal only) and
fluorescence anisotropy, but measures &TPN6 (C-terminal only). One peptide had no
competitive titration curve in a single well with an measurements in the raw data (EGFR pY944).
agarose gradient 58). Diffusion forms a Within this revised scope, the available raw data
spatiotemporal gradient for the interaction, and seovered approximately 99.6% of the originally
one can produce a full titration curve in each welkvailable raw data.

in a multi-well plate, measuring both affinity and The raw data for each measured
active protein concentration simultaneously.interaction consisted of fluorescence polarization
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measurements of an SH2 domain in solution wittslope greater than 5mP/uM were categorized as
a phosphopeptide at 12 concentrations. Thaggregators. Replicates that were fit best by the
measurements were arranged on 384 well plateseceptor occupancy model were subsequently
32 different SH2 domains at each of 12evaluated for signal to noise ratio (SNR, equation
concentrations, all measured against a singl8). If the SNR was greater than one, the replicate
peptide per plate. Protein concentrationsvas categorized as a positive interaction or
represented 12 serial dilutions of 50% startingbinder’, otherwise, it was rejected as a low-SNR

with either 10 uM or 5 uM protein. fit and removed from consideration.

Model Fitting, Model Selection, and Identifying Non-Functional Protein. Once
Replicate-Level Calls. For each replicateall individual fits were complete, runs were
measurement, we fit two models: the linear modeéxamined for non-functional protein. If an entire
(equation 4) and the receptor occupancy modeln lacked even one positive binding interaction,
(equation 2). Model fits were evaluated with theand those same interactions measured positive on
bias corrected Akaike Information Criterion another run, the non-binder, aggregator, and low-
(AICc), and the model with the lower AICc score SNR calls on that run were changed to non-

was selectedl@). functional  protein and removed from
The Akaike Information Criterion (AIC) consideration.
as a quality metric, was calculated by Replicate Handling for Domain-Peptide
Measurements. For each domain-peptide pair, only
AIC =2p —21In(L) (5) replicates that were marked as binders with

sufficiently high signal to noise ratio (SNR) were
wherep is the number of parameters in the modelconsidered. For a given domain-peptide pair, the
and In(L) is the maximum log-likelihood of the minimum numeric value of K(representing the
model. In a non-linear fit, with normally strongest affinity) was reported as the finalfir
distributed errordn(L) is calculated by that domain peptide pair.
Active search. The probability modeéd3)
z used a simple k-nearest neighbor (k = 20) where
In(L) = —0.5N <ln(2”) +1-1n(N) +n <Z xi2>> (6)  distance is defined by average Euclidean distance
=t of corresponding divided physicochemical
property scores (DPPS) features of the amino

where %, ..., % are the residuals from theo?cids 64) comprising the peptide, i.e.:

nonlinear least squares fit and N is the number
residuals. The bias corrected form of AIC, referred 1 n
to as AI(_:c, is a variant which corrects for small dn (0, x) = _2 de(dpps(xi),dpps(x'l)) (8)
sample sizes, e.g. when one has fewer than 30 data néd
points. AlICc is calculated as follows: -

where d,, is the distance used to define nearest
AlCe = AIC + 2p(p+1) @ neighbors,d. is the Euclidean distance, is the
n—p-—1 number of amino acids in the peptide (here 9),
and dpps(¥) is theDPPSfeature vector of the"i
where n is the sample size, and p is the number aimino acid in peptide.
parameters in the model9). Each replicate had a
sample size of 12. The receptor occupancy model
had three parameters (affinity {iKsaturation level
(Fmay), and offset (F)), while the linear model had
two parameters (slopen], and background offset

(Fo).

Replicates that were fit best by the linear
model with a slope of less than or equal to
5mP/uM  were categorized as negative
interactions, or ‘non-binders’. Linear fits with a
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Data L X SH2 .. Results Raw Data
Group Type Publication Peptides Domains Affinity Available | Available Models
Jones et al. Wunderlich/
(2006) 61 159 Yes Yes Mirny
Kaushansk SH2Pepint
aushansky
1 PM et al. (2008) 50 133 Yes Yes
Gordus et al.
(2009) 46 96 Yes Yes Yes (pos)
Koytiger et al. MSM/D,
2 PM (2013) 729 70 Yes Yes FoldX
Hause et al.
(2012) 89 93 Yes Yes Yes (PC)
3 FP N al PEBL
eung et al.
(2014) 85 93 Yes Yes Yes (PC)
Liu et al. .
(2010) 192 50 No (fig)
n/a PA Tinti et al
inti et al. " "
(2013) 6202 70 No (*) No (*)

Table 1: Overview of Published SH2 Data and Use in Published Models. Eight high-throughput experiments have
been published since 2006 using experimental techniques such as protein microarrays (PM), peptide arrays (PA),
and fluorescence polarization (FP). Of the published studies, only two studies have raw data available, by personal
communication. Even the published data from several studies is no longer available. (pos) Raw data only published
for positive interactions; (PC) data available only by personal communication; (fig) Published as a figure only,
numerical results are available by private communication; (*) Original results were stored in PepspotDB, but not
published in the journal or supplement. PepspotDB is no longer available.
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Figure 1: Comparison of Published Affinity Data. Correlation of affinity from three data groups is evaluated using
scatter plots (top row). See Table 1 for group definitions. With perfect agreement, data points would fall along the
dashed gray line. Surprisingly, there is very low correlation between affinities from different data groups. Even
results from the same lab published at different times show only mild correlation (r=0.367, MacBeath 2006-09 vs
MacBeath 2013). The data were also examined for agreement on positively interacting domain-peptide pairs
(bottom panel). Positive interactions are identified by blue bars. Of the 347 positive domain-peptide interactions
identified by at least one group, only 55 interactions were found to be positive in all three data groups (15.9%). No
two data groups agreed on more than 29% of positive interactions. Although there are significant differences
between the techniques of protein microarrays (PM) and fluorescence polarization (FP), the differences between
identities of positive interactors did not segregate by experimental technique. The two PM experiments (MacBeath
2013, MacBeath 2006-09) identified 28.0% (97/347) of the positive interactions in common, but a similar number of
positive interactions can be seen (25.9%, 90/347) when comparing one PM experiment with the FP experiment
(MacBeath 2013, Jones 2012-14). The highest correlation was also between experiments of different techniques
((r=0.367, MacBeath 2006-09 vs MacBeath 2013).
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Original Analysis Revised Analysis
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Figure 2: Flowchart of Revised Analysis Process. Comparison between the original analysis process (left panel) and
our revised analysis pipeline (right panel). For our revised process, representative sample fits are shown below each
of the final categorizations.
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Figure 3: Initial Replicate-Level Results and the Results of Non-Functional Protein Identification (NFPI). The
categorization results of individual domain-peptide measurements are shown (Before NFPI). Of the 37,378
measurements, 7.4% (2,753) were initially identified as positive interactions (binders), 7.4% (2,083) as interactions
showing aggregation, 5.6% (2,764) as low signal-to-noise, and 79.7% (29,778) as non-binders. The subsequent
identification and removal of individual domain-peptide measurements made on non-functional protein had a
significant effect on the categorization of non-positive replicate-level measurements. Of the 29778 measurements
initially categorized as non-binders, 56.6% (16,859) were identified as likely to contain non-functional protein and
were removed from further consideration.
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Figure 4: Replicate Measurements Exhibit High Variance. Variance in affinity for domain-peptide interactions was
visualized by distributed dot plots (top row) for examples of higher-affinity<(K.OpM, upper left) and lower-
affinity (Kq> 5.0uM, upper right) interactions. Each row displays all replicate measurements for a single domain-
peptide pair, and the x-axis position of each individual replicate reflects thale of that measurement. Thus
variance can be visualized as the width of spread of points along each line. Domain-peptide interactions are sorted
by minimum replicate K The relationship between variance and affinity was also visualzed for all domain-peptide
interactions (lower left, note the y-axis log-scale). The minimum replicate variance generally increages as K
inceases (trend indicated by the red-dashed line) but worst-case variance is independdhtuefdashed line),

and high variance (e.g. 10) is present at all Kranges. Variance was also quantified for different minimuym K
ranges against different variance ranges (lower right). In extremely low variance cases (e.g. v&i@hgdow Ky
measurements (blue bar) dominate. In moderate to high variance rangedljetbe distributions are more similar.
These two trends support the reasonable inference that highitis Kave higher variance in general, but also
demonstrates that the presence of high variance replicates is independent of affinity.
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Figure 5: Degradation Causes a Decrease in Measured Affinity. Simulated measurements for an ideal binding
saturation experiment are shown for a theoretical protein withaf K uM (row 1). (Measurements in the second
column are the same data as the first column, but plotted as semi-log plots with a logarithmic concentration axis.) In
rows 2 and 3, the results of 50% and 75% degradation are shown. To simulate the effect of degraded protein, we
plotted true activity from the ideal curve (row 1) against the erroneous assumed concentration due to degradation
(rows 2 and 3). For example, to simulate 50% degradation (row 2), the true FP response for 5uM (from row 1) is
plotted at the 10uM position (on row 2). This procedure is repeated at each concentration. When affinity is derived
from these degraded protein measurements, the result is an inaccuhighdé than the true value. Although the
concentration error from degraded protein causes a non-linear change in FP, the griotime#&r and proportional

to the concentration error. For example, if the true active protein concentration is ¥ of the assumed concentration (as
in row 2), the measured affinity is ¥ of the correct value (meaning ¢he Rx the true value). If the true active

protein concentration is ¥ of the assumed concentration (as in row 3), the measured affinity is ¥4 of the correct value
(the Ky is 4x the true value). Therefore errors from overestimation of protein concentration always result in higher

measured Kthan the true value.
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Figure 6: Revised Analysis Final Results. A heat map showing the final results of the revised analysis. A significant
fraction a measurements demonstrated patterns consistent with non-functional protein and were removed from the
analysis. Comparison with the original published results can be seen in Supplemental Figures 14 and 15.
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Figure 7: Changes In Calls Between Original Publication and Revised Analysis. Although the numbers of positive
interactions are similar in our revised analysis, the identities of those interactions have changed significantly. The
changes in calls are visualized in the Sankey map above. Of the original 1519 positive interactions found by the

original authors, 166 (10.9%) were found to be non-binders in our analysis. Of the 10330 rejected interactions from
the original publications, 273 (2.6%) positive interactions were recovered in our analysis.
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Figure 8: Correlation between Original Publication and Revised Analysis. Affinity values were compared for for the
common set of positive interactions (n=1245, upper left panel), as well as at lower affinity thresholds (other panels,
as indicated). Our revised affinity values correlate only moderately with the original publication (Pearson r=0.635),
which might be surprising considering the analysis is on the same raw data. Our revised results correlate best when
considering all measurements under 20uM affinity (Pearson r = 0.734). Despite choosing the minimum measured
value for Ky, our revised data often reports highey n€sults than the original publication (i.e. results below the
diagonal). This is due to different categorization and filtering procedures which result in significant additions and
removal of individual measurements in each set of replicates for a domain-peptide pair. It is interesting to note that
correlation does not improve at higher affinity (lowej,Klespite the fact that the chosen raw measurement range is
tailored for highest accuracy forgk 1.0 uM. This suggests that the differences between our revised results are
independent of the accuracy of the original measurements, and more likely due to the need to correctly handle
variation due to protein concentration errors.
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Figure 9: Enhanced Nonmyopic Active Search (ENS) Results. Performance of the active search algorithm
ENS within each dataset (original or revised). The line represents mean result, with shading captures +/- standard
deviation. In this context, ENS seeks to select each successive interaction such that the total number of positive
interactions discovered is maximized.
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New analysis pipeline for high-throughput domain-peptide affinity experiments improves SH2 interaction

data

Tom Ronan', Roman Garnett? and Kristen Naegle®

Supporting Information

Final Revised Affinity Data.xlsx — contains the interaction affinities between domains and
phosphopeptides based on our revised analysis.
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Fig. S1: Domain-Peptide-Level Comparison of Binding Between Published Results. Blue denotes positive
interations (binding). J14: Jones 2012-14; MB13: MacBeath 2013; MB09: MacBeath 2006-09.
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Fig. S2: The Receptor Occupation Model. Saturation plots in both linear (left) and semi-log (right) demonstrate
increasing saturation with increasing fractional occupancy, with full saturation achieveg,.afftie affinity
(quantified by the K) can be derived by fitting a curve to the data, but can also be derived graphically as seen
above. At equilibirum, the Kis equal to the concentration when ¥z of the receptor is occupieg (2l the semi-

log curve, where the concentration axis is inda@gale, K can be identified easily because it corresponds with the
inflection point at the center of the the s-shaped curve.
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Fig. S3: Examples of Background Fluorescence. The raw data exhibited highly varying levels of background FP.
The background FP level should represent the level below which measurements are random noise. For some
measurements, background values were higher than many of the individual low-concentration measurements (first
row). In these cases, the high quality of the data and the fits seem to contradict the limits imposed by the reported
background. In other cases, the background values were significantly lower than the signal level of the lowest
concentration measurements (second row). In some cases, the published background value matched the offset value
from the model fit (third row). Because of the discrepancy with background values we found and the use of the
background subtraction method in the original publication, we decided to evaluate the background data and quantify
the effect of background subtraction on the accuracy of the model fits (see Fig. S4).
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Fig. S4: Background Subtraction Causes Errors in Receptor Occupancy Model Fits. The background subtraction
method forces the receptor occupancy model curve through a fixed y-axis point (the background level) at zero
concentration (top row; most easily seen on the semi-log plots, top row right). For example, given a theoretically
perfect measurement with g f 2.0uM (top row, black line), background subtraction induces an error in affinity.

A background 10% higher than optimal (top row, green) causes a change in the fitted curve (top row, green dashed
line), which results in a derivedykof 3.59uM (a +179.5% error). A background 10% lower than optimal (top row,
orange) causes a change in the fitted curve (top row, orange dashed line), which results in a gefivdBKM (a

-40.5% error). Background subtraction always results in an increase in residual error (middle row left), which results
in an error in the fitted affinity parameter (middle row, right). Background errors are nonlinear with affinity, and
result in larger errors at lower affinities (middle row, left and right). A background error of +5% results in

a -21%/+26% error in Kat 1.0uM, and a -52%/+195% error ig & 10.0uM. Even a 2% background error results

in a -9%/+10% error in Kat 1.0uM, and a -27%/+43% error i & 10.0uM. Over 25% (652/2569) of all replicate
measurements that demonstrate positive interactions have background errors greater than +5%, and over 54%
(1408/2569) have background errors greater than +2%. Thus, background subtraction causes errors in affinity which
can increase or decrease affinity based on whether the background is high or low, and are non-linear by affinity.
Since the relationship of the background is seemingly random, and the error factors are non-linear, background
subtraction acts as a significant source of random error. Based on these findings, we rejected the background
subtraction method in favor of a fitted offset (Equation 2). Background Error is expressed as a percent of the
saturation value, and is defined as the difference between background ang dixigel by the difference between

True Rk and R« (Saturation).
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Fig. S5: Receptor Occupancy Model Fits for Various Affinity Interactions. High-quality receptor occupancy model
fits showing positive interactions at varying affinitiesg¥rom 0.1uM to 20uM. The range of concentrations
spanned by each 12-concentration measurement was either 2.4nM-5uM or 4.9nM-10pM. For an ideal binding
saturation experiment attempting to quantify e concentrations tested should span above and bglcani the

highest and lowest measured concentrations should establish the plateaus seen on semi-log saturation plots (all rows,
second column). For interactions with 0.1 uM(Krst row), on the semi-log plots, data points are evenly distributed

on either side of the inflection point, and establish the lower plateau of no signal and upper plateau of saturation. For
interactions with a Kof 1.0 uM (second row), the upper plateau of the semi-log saturation curve no longer has any
coverage from the data. For interactions with>X6uM (rows 3 and 4), no data points are found above Kd, which
significantly increases potential inaccuracies in model fitting. Thus, the concentration ranges chosen make this
experiment best suited to identify affinity in the 0.05uM to 0.5uM range. Since data in the original publication was
reported up to 20uM, results with low affinities (highey \Kalues) are likely to be less accurate. In addition, this
pattern of coverage suggests that every data point is critical for accuracy, particularly for concentrationg above K
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Fig. S6: The Receptor Occupancy Model Fails to Accurately Fit Non-binding Measurements In Practice. Non-
binding data generally manifests as data points in a roughly horizontal line, with a level of superimposed noise (row
1, see first column for examples at full scale). Upon close examination (row 1, see second column for zoomed view
of the same measurement), noise in individual data points can be more clearly visualized. Using a least-squares
algorithm to fit the Receptor Occupancy model can result in fit artifacts for non-binding data. The fitting errors
follow two patterns: In the first pattern, noise in the data is over-fit, resulting in a rapidly saturating curve, rather
than a straight horizontal line (row 1, blue dashed line). This saturation curve poorly fits the data and often has a low
saturation value (on the order of 5mP units). Ironically, this artifact results in miscategorization as a binder with a
high affinity, rather than the true result reflecting a failure to interact. In a similar type of fit-artifact (row 2), all but
one data point is considered to be at saturation, while one single point sets the rest of the saturation curve, resulting
in an artifically low K;. In the third pattern (row 3), when there is non-specific binding or aggregation present, data
can also present as a line with a high slope showing no signs of saturation. A saturation value of this size cannot
result from the one-to-one interaction assumption of the receptor occupancy model, and clearly represents a fit
artifact, likely aggregation or other non-specific binding.
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Fig. S7: Model Selection Examples Using AlCc. Both linear and receptor occupancy models are fitted to the data.
AICc scores are calculated and compared between models — the model with the lowest AlCc score is selected as the
best fit. If a linear fit is chosen, and the slope is less than 5mP/uM, the interaction is classified as a non-binding

interaction.
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Fig. S8: Model Fitness Examples Using The Signal-to-Noise Ratio (SNR). The model fithess metric, deemed signal-
to-noise ratio (SNR), evaluates the magnitude of residual errors of fit to the model (a form of noise), and weighs this
sum by the overall size of the fluorescent signal measured. As can be seen from the examples above, a signal to
noise ratio of 1.0 or greater represents high-quality fits to the model, with little deviation from the model fit line.
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Fig. S9: Classification and Quantification of Fits with SNR < 1.0. Replicates with SNR<1 made up 5.2% of all fits
(1948/37378). These low-SNR fits fell into three classes: (1) no signal fits that nevertheless fit the receptor
occupancy model better than a linear model, but which consisisted soley of low-level radom noise (76.0%,
1480/1948, row 2); fits with some non-zero signal present but so swamped by noise as to not resemble a saturation
curve 21.9%, 427/1948, row 3), and otherwise good fits to the receptor occupancy model with one large outlier
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(2.1%, 41/1948, row 4) pulling down the SNR metric below 1. Although the metric excludes some viable
measurements that would be kept when reviewing by eye (e.g. 41 single point outlier replicate measurements) this
represents only 1/10th of 1% of all replicate measurements (0.11%, 14/37378). The composition of the three classes
varied with SNR value (top row, right). As SNR increases, fewer non-signal measurements are encountered and
more non-zero signal measurements occur. The metric predominantly functions to exclude artefactual receptor
occupancy fits to random noise in zero-signal measurements. See the Discussion for thoughts on alternate metrics.
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Fig. S10: Replicate Measurements for FGR Interactions with MET pY1313. An example of high-replicate variation
across replicates for a single domain-peptide pair. Each individual measurement represents a high-quality fit to the
receptor occupancy model, yet the resulting affinities vary from ~3um to ~12uM. It is clear from the quality of each
measurement that the variation is not due to noisy data, or fitting artifacts. Rather, each measurement seems to be a
high-quality result of different affinity behavior.
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Domain: PIK3R2-N Domain: RASA1l-N
Run 1 Run 2 Run 3 Run 1 Run 2 Run 3
Peptide Plate| Ky |Plate| Ky [Plate| Ky Peptide Plate| Ky |Plate| Ky |Plate| Ky
ERBB4 0807 129 199 222 8.59 ERBB4 1150 3 2.19 185 0.56 205 0.61
ERBB2 1127 133 3.08 203 226 0.99 ERBB4 1202 4 15.16| 186 206 4.32
227 1.18 ERBB4 1208 11 37.85] 194 7.64 216 6.41
ERBB4 1056 134 2.03 204 0.82 230 ERBB2 1005 19 10.87| 202 | 1.38 ‘ 225 5.14
ERBB4 1056 137 4.23 207 231 ERBB2 1127 20 1.64 203 1.16 | 226 0.96
ERBB3 1159 136 0.26 206 0.26 229 0.09 ERBB3 1159 23 0.31 206 0.44 229 0.19
ERBB3 1159 139 0.70 209 233 0.23 ERBB3 1159 26 4.15 209 4.95 233 2,99
ERBB3 1307 140 0.58 210 0.26 234 0.25 ERBB3 1307 27 1.77 210 1.60 234 1.93
ERBB4 1150 144 214 3.66 238 3.65 ERBB4 1150 31 1.05 214 0.96 238 1.33
ERBB2 0772 148 | 1.54 218 242 2.19 ERBB2 0772 35 I 6.05 | 218 242 9.36
EGFR 0764 152 2.49 223 2.27 246 1.16 ERBB4 1262 37 1.14 220 4.79 244
ERBB3 0823 154 225 248 4.92 ERBB4 0906 38 9.69 222 7.17 300 1.17 ‘
EGFR 1092 160 232 254 13.55 EGFR 0764 39 | 9.94 ‘ 223 246 22.16‘
ERBB3 0868 167 239 261 2.32 ERBB3 0823 41 2.84 ‘ 225 248 2.23
EGFR 1016 168 3.67 240 I 0.94 262 ERBB3 0897 50 235 10.04| 257 2.10
ERBB2 1023 242 244 265 2.22 EGFR 1016 55 1.43 240 I 1.37 ‘ 261 2.24
ERBB3 1054 243 3.14 245 266 ERBB2 1023 174 5.05 244 10.55| 265 9.31
ERBB3 1222 250 252 0.81 273 0.84 ERBB4 1162 176 2.29 246 5.21 267 4.14
ERBB3 1289 257 10.68| 259 282 0.16 ERBB2 1196 178 1.62 248 269 1.71
ERBB4 1202 266 268 292 1.03 ERBB2 1221 179 0.24 249 1.95 270 1.86
ERBB2 1222 180 0.40 250 6.89 271 2.78
Domain: SH2D2A ERBB3 1222 182 0.64 252 2.87 273 1.83
Run 1 Run 2 Run 3 ERBB3 1224 183 0.75 253 2.16 274 1.25
Peptide Plate| Ky |Plate| Ky |[Plate| Ky ERBB3 1262 187 3.69 | 257 280 13.43
ERBB4_1202 61 3.08 186 5.53 206 4.35 ERBB3 1289 189 3.45 259 282 4.35
ERBB4_0807 71 6.90 199 222 21.91 EGFR 0998 190 1.30 260 7.82 283 2.82
ERBB3_1307 82 12.28] 210 234 55.47 ERBB3 1276 191 0.83 261 1.36 284 2.39
ERBB3 0789 87 13.74| 215 239 9.50 ERBB3 1328 192 1.83 262 16.03| 285 9.10
ERBB4_1262 92 15.13| 220 244 9.42 EGFR 1172 193 1.31 263 5.72 286 5.37
ERBB4_0906 93 12.86| 222 300 0.88 EGFR 0727 194 3.01 264 287 6.33
ErBB3 0975 | 101 [7.56] 231 253 20.46| |[ERBR4 1202 | 199 1.31| 268 3.16 | 292 [1.00 |
EGFR 1092 102 5.29 232 I 3.23 254 13.20 ERBB4 1242 204 I 1.53 ‘ 273 1.79 297 5.90 |
EGFR 0900 105 7.50 235 18.59| 257 I 1.9E
ERBB2_1139 106 3.51 198 7.50 220 1.70
236 221 | 1.44
299 3.67
EGFR 0915 108 4.46 | 238 5.55 | 259 | 3,89 :indicates the lowest Kd
ERBB2 1221 213 2.80 249 270 18.26 (highest affinity) across
ERBB3_1222 216 3.12 252 273  21.60 the 3 runs for a domain-peptide
ERBB4_ 1188 219 9.09 255 276 | 7.78 pair.
ErEE3 1328 | 226 [0.86] 262 285 5.90
ERBB4 1202 233 4.36 | 268 292 1.23

ERBB4 1208 237 5.42 272 13.81| 216 1.98

Fig. S11: Examples of Time-Dependent Affinity Patterns in Domain Data. Variance in affinity from a systemic
source can manifest as non-random patterns of variance in time. Although we don’t have an exact time for each
measurement (and the same peptides were typically measured only once per run) we do have a pseudo-time
substitute in the data. On each run, the peptides were measured in approximately the same order, and hundreds of
peptides were measured in each run, which allows us to see patterns of protein affinity over time and across peptides
from run to run. For example, in PIK3R2-N (upper left panel) we see that Run3 replicates almost always have lower
K4 values (higher affinities) than replicates from other days. This pattern of run to run variation suggests that the
protein samples tested in Runs 1 and 2 may have been degraded or from different protein batches with varying levels
of impurities. For RASAL-N (right panel), no single day dominated the highest affinity until plate 174, after which
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the highest affinity replicates all come from Run 1. A protein sample exhausted mid-run and replaced with a fresh
sample, could manifest as a surge of increased affinity in the middle of a run of lower affinity, such as seen in Run
1. Not all protein data shows such clear patterns. For SH2D2A (lower left panel), significant variation appears

during Runs 1 and 3 with no run showing the lowegtlit Run2 shows consistently highey Walues, as well as

many failures to detect interactions (blanku@lues) suggesting degradation or impurities on the protein from Run

2. The patterns for SH2D2A are not as clearly consistent with a simple concentration error hypothesis, and may be
indicative of additional sources of variation.
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Fig. S12: Non-Functional Protein Identification — Examples. In order to examine the data for patterns of non-
functional protein, we plotted affinity by domain and by run. The results before non-functional protein identification
(NFPI, left column), after NFPI (right column) are shown for three protein domains. A lack of even one positive
interaction on an entire run is suggestive of non-functional protein. When other runs of the same protein show
positive interactions, the runs with no positive interactions are considered to be non-functional and all measurements
in these runs for the protein are removed from consideration. For example, with GRB2 (row 1), runs 2 through 4
showed some positive interactions. On run 1, however, no measurements indicated positive interactions. The lack of
even one positive interaction in run 1 suggests that the protein was completely degraded or non-functional. The
presence of positive interactions in the other runs acts as a positive control. Run 1 is then marked in blue in the right
panel for GRB2, and removed from consideration. A different case of non-functional protein can be seen with BMX
(row 2). For BMX, no positive interactions were found on any run. Although it is a formal possibility that BMX
simply binds none of these peptides, we simply have no information that the protein was ever active, thus we
conservatively identify all runs as non-functional. For PIK3R1-C, no measurements on the fourth run were positive
interactions, while other runs contain positives, thus run 4 was categorized to be non-functional. A binder is
identified by a green cell, a non-binder by a white cell, non-functional protein by a blue cell, and a non-measured
interaction by a gray cell.

S14


https://doi.org/10.1101/2020.01.02.892901

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.02.892901; this version posted May 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

New analysis pipeline improves SH2 affinity data

ABL1 ABL2 BCAR3 BLK BTK CRK CRKL DAPP1 FER FES

GRAP2 GRB10 GRB14

LCK LCP2

m
|l

I“I [ “IIII:

II ‘: I|I
T
e

1\.

PIK3R1-C PIK3R1-N PIK3R2-C PIK3R2-N PIK3R3-C

SH2B1  SH2B2

-

1_.LE:

PTK6 PTPN11-CPTPN11-N PTPN6-C RASA1-C
B EslE == malE =

-
W Ll

-
LI 'I'-; 'I_'I'ITI'I'

SH2D2A SH3BP2 SHC3

- == — T

T T T 11

SLA2 SRC

| =

T T 11 TI?I

TENC1 VAV2 VAV3 YES1 ZAP70-C
i: | : E %

TTTT TTTT TrTT TTTT

Fig. S13: Non-functional Protein in Hause, et al (2012). Non-Functional protein results for all measured interactions
from the first publication, Hause, et al (2012). See legend from Fig. S11.
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Fig. S14: Non-functional Protein in Leung, et al (2014). Non-Functional protein results for all measured interactions
from the second publication, Leung, et al (2014). See legend from Fig. S11.
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Fig. S15: Changes In Calls Between Original Publication and Revised Analysis. A heat map showing the changes in
calls in our revised analysis. Differences in calls with the original publication are found across all domains and all
peptides.
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Fig. S16: Results from the Original Publication. A heat map showing the original published results in the same
format, sorting order, and naming convention — for comparison with our revised analysis.
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