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ABSTRACT 

When making decisions, should one exploit known good options or explore potentially better 
alternatives? Exploration of spatially unstructured options depends on the neocortex, striatum, and 
amygdala. In natural environments, however, better options often cluster together, forming structured 
value distributions. The hippocampus binds reward information into allocentric cognitive maps to 
support navigation and foraging in such spaces. Using a reinforcement learning task with a spatially 
structured reward function, we show that human posterior hippocampus (PH) invigorates exploration 
while anterior hippocampus (AH) supports the transition to exploitation. These dynamics depend on 
differential reinforcement representations in the PH and AH. Whereas local reward prediction error 
signals are early and phasic in the PH tail, global value maximum signals are delayed and sustained in 
the AH body. AH compresses reinforcement information across episodes, updating the location and 
prominence of the value maximum and displaying goal cell-like ramping activity when navigating 
toward it. 

Keywords: exploration, explore/exploit, reinforcement learning, prediction error, hippocampus, fMRI, 
entropy, decision making, memory, reinforcement, cognition 
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INTRODUCTION 

Decisions under uncertainty involve a difficult tradeoff between exploiting familiar valuable options 
and exploring unfamiliar and potentially superior ones1. Much has been learned about the neural 
mechanisms of exploration in the prefrontal and cingulate cortex2–5, as well as the striatum and 
amygdala6, using reinforcement learning (RL) paradigms with unstructured discrete options. Unlike 
these paradigms, however, most real-world environments have a complex spatial, temporal, or abstract 
structure7,8. Efficient exploration and exploitation in these settings requires allocentric cognitive maps 
of the type found in the hippocampus9, and exploration can be defined not only as sampling of lower-
valued options, but also as distance traveled through space. Here, bridging the RL and cognitive 
mapping literatures, we propose a new account of how the human brain resolves the explore/exploit 
dilemma: posterior hippocampus invigorates exploratory shifts while anterior hippocampus supports 
convergence on the best option. 

The hippocampus displays a functional long-axis gradient (Fig. 2a), dorsal-ventral in rodents and 
posterior-anterior in primates (hereafter: posterior and anterior hippocampus; PH and AH). This 
domain-general gradient was initially thought of as cognitive-motivational10 and more recently, as fine-
coarse11–13, an account inspired by the finding that the size of place field representations increases along 
the long axis (e.g., 14). Furthermore, while dorsal (posterior) hippocampus rapidly develops 
representations of specific objects and locations, ventral (anterior) hippocampus gradually learns to 
identify relationships among objects, locations, and contexts that predict rewards15. This rich literature, 
however, is mostly atheoretical and does not formally distinguish between hippocampal substrates of 
exploitative, reward-guided actions and those of exploratory actions that forego short-term rewards. 

Researchers have sought to explain how the hippocampus maps rewards using models that rely on 
reward prediction error (RPE) signals to back-propagate reinforcement to previous states and 
actions16,17. Empirical studies have found that PH is required for this process18–20, supporting ‘model-
based’ learning. RPEs are reported by the dopaminergic mesostriatal pathway. Furthermore,  
dopaminergic inputs into the dorsal hippocampus from the midbrain21 and the locus coeruleus22 
enhance spatial memory for rewarded and salient locations and promote exploratory behavior23. RPEs 
have also been found in rat dorsal CA124. Likewise, a handful of human imaging studies25,26 find RPEs 
in the PH, though PH is not prominent in imaging meta-analyses (see Fig. S1 and 27,28).  

AH, by contrast, responds to global features of reinforcement: whether the environment is aversive29, 
whether one is approaching the goal30–32, and whether one is at the location of the preferred reward in 
the environment33. Whereas PH is critical for the development of cognitive maps that support 
allocentric navigation, AH supports behavioral flexibility in reaching the goal34. In addition, the AH is 
preferentially connected with ventromedial prefrontal cortex (rodent prelimbic cortex), which 
represents abstract reward value, and this connectivity is important for motivated behavior29. One 
resource-efficient way to map the goal is to compress value representations by selectively maintaining 
values of preferred actions and forgetting inferior alternatives. We have found that this compression 
strategy facilitates the transition from exploration to exploitation35. AH, having access to values of 
remote states and carries coarse representations, may implement such compression to track global 
statistics of the environment. 

Altogether, we hypothesized that PH and AH play functionally dissociable roles in exploration and 
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exploitation, respectively. PH holds detailed, concrete representations of specific states and invigorates 
exploratory movement through space23. AH encodes more global value information15,36 and guides 
exploitation by means of an information-compressing strategy. In order to test whether the 
contribution of the hippocampus to reward learning varies along the long axis, we examined the 
contributions of PH and AH to exploration and exploitation in a continuous action space that requires 
mapping. We used the ‘clock task,’ where action values vary along an interval marked by time and 
visuospatial cues37. Participants need to explore this interval extensively to discover the most 
rewarding options2. Critically, on discrete-choice tasks (e.g. multi-armed bandits), it is hard to judge 
how exploratory a given choice is. In contrast, in continuous space we can define exploration in terms 
of the distance between consecutive choices, a spatial metric encoded in the human hippocampus38, 
corresponding to trial-by-trial response time (RT) swings on the clock task. 

To dissect the decision processes that underlie choices on this task, we applied our computational RL 
model (SCEPTIC), which learns the values of alternative actions using a basis function representation. 
Relative to traditional discrete-choice RL models, SCEPTIC provides a smooth approximation of the 
value function over the clock task interval (details below; Fig 1). Thus, the model maps the global value 
maximum, allowing us to quantify its prominence as the reverse of Shannon’s entropy (information 
content) of the value representation35. Our model can dissociate this global reinforcement statistic from 
state-wise RPEs. We observed a double dissociation wherein PH encodes local reinforcement (trial- and 
location-specific RPEs) whereas AH responds to the prominence of the global value maximum (low 
entropy). Furthermore, by comparing the neural fit of our information-compressing selective 
maintenance model to that of its full maintenance counterpart, we demonstrate value information 
compression in AH. Consistent with functionally separable roles in resolving the explore/exploit 
dilemma, PH responses predicted further exploration whereas AH responses predicted convergence on 
the global value maximum. Furthermore, AH displayed goal cell-like ramping responses as one 
approached the learned value maximum. Finally, responses to reinforcement were immediate and 
phasic in the PH, consistent with local processing and delayed and sustained in AH, consistent with 
integrative processing. 

RESULTS 

Clock task: RT swings capture exploration 

On the clock task (Fig. 1a), participants explore and learn reward contingencies in a challenging 
unidimensional environment, namely a four-second time interval. The passage of time is marked by the 
rotation of a dot around a clock face, reducing demands on internal timing. They were told to find the 
“best” response time based on reinforcement provided in the form of points. In each of the eight 50-
trial blocks, one of the four contingencies with varying probability/magnitude tradeoffs determined the 
rewards. Two contingencies were learnable (increasing and decreasing expected value, IEV and DEV) 
and two were unlearnable (constant expected value, CEV, and constant expected value-reversed, 
CEVR, with a reversed probability-magnitude tradeoff). The task encourages extensive exploration and 
trial-by-trial learning. While people’s responses shifted toward value maxima in learnable 
contingencies (Fig. 1c), even the more successful participants tended not to respond as early as possible 
in DEV. Likewise, most participants rarely responded as late as possible in IEV, where the value 
maximum has low probability. Thus, participants did not grasp that contingencies were monotonic, 
instead converging on a perceived value maximum in each block. Trial-wise changes of response times 
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(aka ‘RT swings’) reflect the magnitude of exploration. Early in learning, better-performing participants 
displayed very high RT swings followed by a decline as they shift to exploiting the subjective value 
maximum. Less successful participants keep exploring stochastically, with moderately high RT swings 
throughout, and never settle on a clear value maximum. Curiously, successful participants transition 
from early exploration to later exploitation even in unlearnable contingencies where no objective value 
maximum exists, as we have reported previously (Fig. 1d 35). As detailed in the next section, these 
results reflect how participants adaptively maintain value information. 

The SCEPTIC reinforcement learning model captures local and global reinforcement (Fig. 1e-g) 

Our SCEPTIC reinforcement learning model35 estimates local reinforcement (state-wise reward 
prediction errors) and global reinforcement (global value maximum). SCEPTIC approximates the 
expected value function along the time-varying reward contingency with a set of learning elements 
whose temporal receptive fields cover the four-second trial interval39,40. Each element learns from 
temporally proximal rewards, updating its predicted reward (weight) by reward prediction errors 
(RPEs), which reflect the discrepancy between model-predicted reward at the chosen RT and the 
obtained reward (Fig. 1e). As detailed in the Methods, SCEPTIC learns the time-dependent contingency 
by integrating the delta learning rule41 with a set of temporal basis functions. The location of the global 
maximum (aka RTVmax) is defined as highest-valued RT within model-estimated value function (Fig. 1f). 
The prominence of the global value maximum relative to alternatives is quantified by Shannon’s 
entropy of the normalized element weights, a log measure of the number of advantageous actions. 
Early in learning, the values of all actions are similar, entropy is high, and no clear global maximum 
exists. Later in learning, a subset of high-valued actions – or the global maximum – dominates, and the 
entropy declines. We have shown that selective maintenance of favored actions, compared to full 
maintenance, accelerates the entropy decline later in learning, accentuating the global maximum, 
decreasing the amount of information held online, and facilitating the transition from exploration to 
exploitation35. 

Posterior hippocampus responds to local reinforcement (reward prediction errors), whereas anterior 
hippocampus responds to the global value maximum (low entropy) 

We first examined neural encoding of local reinforcement in model-based whole-brain fMRI analyses. 
As expected, RPE signals were found in a canonical circuit encompassing the ventral striatum, 
thalamus, midbrain, and the cingulo-opercular (salience) network (see Table S1). Activation in the 
bilateral PH was also detected at the whole-brain threshold (FWE-corrected p < .05, Fig. 2c, blue voxels). 
Responses to a prominent global value maximum (low entropy) were seen in the AH and the 
ventromedial prefrontal cortex (FWE-corrected p < .05; Fig. 2c, orange voxels; Table S2). 

Furthermore, a double dissociation emerged within the hippocampus, with PH selectively responding 
to RPEs and AH selectively responding to the global value maximum (Fig. 2b), anteroposterior location 
´ signal 𝜒2(11) = 3235.36, p < 10-16. The posterior third of the hippocampus (four slices) was modulated 
by RPEs, adj. ps < .01, corrected for multiple comparisons using the method of Hothorn and 
colleagues42. Conversely, the anterior two-thirds of the hippocampus (eight slices) was positively 
modulated by low entropy (quantified by the SCEPTIC selective maintenance model), adj. ps < .01. 

One important question is whether RPEs in PH are indeed location-specific and do not simply signal 
changes in the overall reward rate. Supporting the former account, PH was more weakly modulated by 
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RPEs from a standard delta rule learning model (⍺ = .10) that lacked a detailed representation of 
expected value across the interval (cf. 37) compared to the SCEPTIC selective maintenance model, RPE 
type, 𝜒2(1) = 13.78, p < .0002. SCEPTIC RPE modulation was particularly stronger than trial-level RPE 
modulation in the posterior quarter of the hippocampus (RPE type × anteroposterior location 
interaction 𝜒2(11) = 29.76, p < .001, post-hoc: adj. ps < .01 in posterior three slices). The superiority of 
SCEPTIC PE representations in the three most posterior hippocampal slices was qualitatively the same 
across a range of learning rates (⍺ = .05–.20) for the standard delta rule model, all adj. ps < .05. 

The SCEPTIC selective maintenance model further predicts that the mapping of the global value 
maximum depends on information compression whereby values of less preferred options are forgotten 
and preferred option values are selectively maintained (detailed in 35). Consistent with this prediction, 
AH responses to low entropy were only detected using estimates from the SCEPTIC selective 
maintenance model and not from its full-maintenance counterpart (Fig. 2d), anteroposterior location × 
SCEPTIC variant 𝜒2(11) = 187.27, p < 10-16. Entropy-related modulation was nonsignificant in all slices of 
the long axis according to the full-maintenance model (adj. ps > .2). These findings suggest that value 
representations in AH are compressed by selective maintenance. 

Separability of hippocampal responses from other cortico-striatal activation 

Given that we initially identified RPE and low entropy activity using whole-brain analyses, we sought 
to examine whether individual differences in hippocampal responses to these signals were distinct 
from responses in other regions significant at the whole-brain level (Tables S1 and S2). More 
specifically, in exploratory factor analyses, we examined whether mean regression coefficients within 
the significant hippocampal clusters loaded onto the same latent factors as other cortico-striatal 
coefficients. Individual differences in PH RPE responses loaded on a factor distinct from all other 
whole-brain-significant RPE-sensitive regions (factor 1, 43% variance, encompassing the bilateral 
striatum, opercular-insular and frontoparietal regions; factor 2, 20% variance, encompassing the 
bilateral PH; Table S3). Analyses of entropy coefficients, however, revealed that low-entropy AH 
responses were on the same factor as ventromedial prefrontal cortex (vmPFC) and ventral stream 
responses, suggesting shared representations (factor 1, 31% variance, encompassing high-entropy 
responsive dorsal attention network regions; factor 2, 28% variance, encompassing the left AH, vmPFC, 
fusiform gyrus, right operculum and left precentral gyrus; Table S4). Thus, for our analyses of 
behavioral relevance, we used PH RPE factor scores and the mean regression coefficient from the 
significant AH cluster as predictors. 

Posterior hippocampal responses to local reinforcement (prediction errors) promote exploration 

If the PH binds states together, its activity should promote visits to remote states, or exploration. 
Indeed, individuals whose PH was more responsive to RPEs explored more, as indicated by larger RT 
swings (indicated by the effect of RTt-1 on RTt; RTt-1 × PH: t = -11.31, p < 10-15, Fig. 2e; complete model 
statistics: Table S5). Furthermore, these individuals were relatively more likely to short RT swings post-
reward, abandoning a just-rewarded location in favor of exploration (RTt-1 × last outcome × PH: t = 5.71, 
p < 10-7). Confirming that these RT swings represented true exploration rather than a return to 
previously sampled high-value options, individuals with stronger PH RPEs chose lower-valued RTs 
following greater swings in learnable contingencies (RT swing × PH: t = 2.28, p = .034, RT swing × 
contingency × PH: t = 2.73, p < .001). Continual exploration on the clock task is predominantly 
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 7 
stochastic, due to the difficulty of learning the values of the best RTs (high entropy); indeed, poorly 
performing participants exhibit persistently high RT swings (Fig. 1d). Interestingly, the effects of PH 
activity on exploration were not explained by poor task performance as reflected in high subject-level 
entropy or low subject-level maximum available value, ruling out the trivial explanation that people 
who responded randomly (e.g. from being off-task) experienced more surprising feedback, triggering 
PH responses (Table S5). Furthermore, participants with stronger PH responses did not win fewer 
points in the learnable conditions (PH: t = -0.18, p = .86, PH × trial: t = 0.05, p = .96). 

Participants completed two sessions of the clock task in counterbalanced order, one in the MR scanner 
and one during magnetoencephalography recording (MEG; only behavioral results are reported in this 
study). This allowed us to test whether hippocampal signals recorded with fMRI predicted behavior 
during the MEG session. The effect of PH RPE responses on RT swings replicated out of session (RTt-1 × 
PH: t = -5.80, p < 10-8, RTt-1 × last outcome × PH: t = 3.97, p < 10-4; Fig. 2e, Table S6), suggesting that 
exploration-related PH responses did not merely encode visits to various states during the fMRI 
session, but reflected one’s relatively stable tendency to explore. 

Anterior hippocampal encoding of the global value maximum promotes exploitation 

Stronger neural encoding of the global value maximum in the AH should promote exploitation. 
Indeed, people with the strongest AH responses to the global value maximum were more likely to 
choose RTs near it (RTVmax × AH: t = 3.39, p < 0.001). As expected, this convergence was strongest late in 
learning (-1/trial × RTVmax × AH: t = 2.86, p = 0.004, Fig. 2H). AH responses had no significant effect on 
exploration (RTt-1 × AH: t = 0.91, p = .36, RTt-1 × last outcome × AH: t = 1.85, p = .064; Fig. 2f, Table S5). 

In the replication session, RTs in people with the strongest AH responses to the global value maximum 
in fMRI were also more likely to converge on the global maximum (RTVmax × AH: t = 2.31, p = 0.021, Fig. 
2H), particularly late in learning (-1/trial × RTVmax × AH: t = 3.11, p = 0.002; details in Table S6). 

PH/AH effects on exploration and exploitation are not explained by novelty, behavioral confounds, 
differences in performance, modeling choices, or effects of responses in other regions 

Critically, PH RPE and AH global value responses were not an artifact of novelty or some other time-
dependent shift in activity unrelated to exploration/exploitation, as these signals persisted when early 
and late parts of each run were analyzed as separate regressors. More specifically, when we extracted 
GLM regression coefficients in the hippocampus from regressors representing the first and second 
halves of the task, the double dissociation between PH RPE and AH global value responses held in 
both the first half (trials 1-25; anteroposterior location x signal 𝜒2(11) = 1361.03, p < 10-16) and second 
half (trials 26-50; anteroposterior location x signal 𝜒2(11) = 1685.54, p < 10-16). In a model that treated 
run half as a categorical moderator, we found an anteroposterior location x signal x half interaction, 
𝜒2(11) = 192.50, p < 10-16, such that entropy modulation was more pronounced in mid-anterior slices 
early than late in learning, while RPEs became more focally associated with positive PH modulation 
late in learning (see Fig. S2). 

In further sensitivity analyses, we ascertained that the effects of PH vs. AH responses on exploration 
vs. exploitation were unchanged after controlling for behavioral variables (trial, contingency, 
maximum available value, uncertainty, and their interactions), subject-level performance (mean 
entropy and value) and for interactions between these potential confounds and hippocampal responses 
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 8 
(Table S5). Since we used the SCEPTIC RL model to generate RPE and entropy estimates, we further 
verified that our brain-behavior findings were not tautologically explained by inclusion of other model-
derived covariates (e.g. maximum available value) into statistical models predicting behavior. Finally, 
given the established role of cortico-striatal networks in reward learning, we ascertained that 
hippocampal signals predicted behavior above and beyond cortico-striatal signals identified in the 
literature and our study (Tables S1-S4). Details of these analyses are provided in the Supplemental 
Results. 

AH promotes uncertainty aversion while PH does not modify uncertainty preferences 

Our previous behavioral analysis of these data revealed that humans are uncertainty-averse in the large 
continuous space of the clock task, even after controlling for the value confound35. This was in part 
because they selectively remembered the values of preferred response times, allowing the rest to decay, 
a form of information compression. At the same time, since PH responses were associated with 
exploratory RT swings, we sought to test whether they also predicted choosing relatively uncertain 
response times. To test for uncertainty effects, we used a Kalman filter variant of SCEPTIC that 
estimated local uncertainty for each 0.1s bin on each trial (see Methods for details). To test how 
hippocampal responses modified the influence of uncertainty, we predicted the hazard (i.e., 
momentary response probability conditional on not responding earlier) of making a response during 
the decision phase in a mixed-effects continuous-time Cox survival model, treating uncertainty and 
value as time-varying covariates. This more nuanced analysis also accounts for censoring of later parts 
of the interval by earlier responses. Since individual SCEPTIC model parameters may influence the 
scaling of value and uncertainty estimates43, we rescaled value and uncertainty within participants to 
eliminate this confound. Our survival analyses confirmed that AH facilitated exploitation (AH × value: 
z = 8.14, p < 10-15, see Table S7 for full model statistics) and PH facilitated true exploration, i.e. a relative 
preference for lower-valued response times (PH × RTt-1: z = 6.12, p < 10-9, PH × value: z = -3.95, p < .0001). 
The hypothesis of uncertainty-directed PH-driven exploration was not supported (PH × uncertainty: z 
= -1.11, p = .27). AH promoted uncertainty aversion (AH × uncertainty: z = -2.60, p < .009), supporting 
the hypothesis of AH information compression. Participants may miss the opportunity to respond early 
in the interval and also avoid the end of the interval to avoid forfeiting a reward for reasons unrelated 
to value or uncertainty. We censored these no-go zones, and the results remained qualitatively 
unchanged (AH × value: z = 4.64, p < 10-5, PH × value: z = -2.39, p = .017, PH × uncertainty: z = -0.26, p = 
.79, AH × uncertainty: z = -2.43, p < .015). Confirming that these findings were not an artifact of 
predictor rescaling, the relevant effects remained and became stronger without the within-subject 
scaling of value and uncertainty (|z| ≥ 5.71, p < 10-7). 

On-off ramps of AH activity upon approach and departure from the global maximum 

The preceding analyses show that AH session-level encoding of the global maximum location 
facilitates behavioral convergence on it (i.e., exploitation), but tell us little about real-time activity in the 
AH that may guide this convergence. Indeed, if AH represented the location of the global value 
maximum in a goal cell-like manner, we would expect its activity to increase on approach, as the most 
valuable action becomes available, and decrease when moving away. Whereas our model-based fMRI 
general linear model analyses captured the average magnitude of responses in the AH across trials, 
they could not reveal the temporal dynamics of AH activity with respect to the global value maximum. 
To investigate these dynamics, we estimated real-time voxelwise hippocampal activity with a 
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 9 
deconvolution algorithm44, then event-locked the responses to the global value maximum (most 
advantageous response time in a given trial), resulting in a time course of activity for each trial. We 
examined these trial-wise hippocampal responses in multilevel models vis-à-vis behavioral variables 
(additional details in Methods). This analysis gives us a more direct view of hippocampal activity, 
overcoming the assumptions of the standard GLM, and it does not depend on predictions of the 
SCEPTIC model for decoding the BOLD signal. 

In analyses of online responses (i.e., during the decision-making phase) activity in the AH but not PH 
ramped up toward the global maximum (RTVmax) and ramped down as the clock advanced past it (Fig. 
3). We would expect such inverted-U ramps to scale with the prominence of the global maximum 
relative to alternative response times and this was the effect we observed. Specifically, inspection of 
smoothed raw data suggested the presence of inverted-U ramps aligned with the RTVmax (Fig. 3a), 
particularly when entropy was low. A multilevel model with completely general time (i.e., treating 
time as an unordered factor to avoid parametric assumptions) revealed a time × anteroposterior 
location interaction (c2[5] = 43.8, p < 10-5) indicating more prominent ramps in AH than in PH (Fig. 3b), 
and a time × entropy interaction (c2[5] = 20.0, p = .001), indicating more prominent ramps on low-
entropy trials (the time × location × entropy interaction was not significant in this model). The activity 
in AH seemed highest one second before RTVmax, suggesting anticipation or response preparation. 
Furthermore, a more parsimonious model specifically testing linear and quadratic effects of time 
revealed a significant time2 × location × entropy interaction (c2[1] = 5.4, p = .02), in addition to the time2 × 
anteroposterior location (c2[1] = 23.3, p < 10-5) and time2 × entropy (c2[1] = 24.1, p < 10-6) interactions. This 
analysis suggested that activity ramps specifically in AH (vs. PH) were more prominent on low-
entropy trials. Ramps were modulated by entropy, but not by preceding reward (time2 × reward c2[1] = 
0.1, ns; time2 × location × reward c2[1] = 0.01, ns), indicating that they reflected global reinforcement 
aggregated over multiple episodes rather than the immediately preceding episode. 

Responses to reinforcement in PH are early and phasic; delayed and sustained responses in AH 
encode the shifting global maximum 

Once the subject traverses the space obtaining a reward or omission, this reinforcement needs to be 
bound to the cognitive map, both across states (possible response times) and learning episodes (trials). 
In order to examine how hippocampal activity during the post-feedback period may support 
integration of reinforcement into a structured representation, we aligned deconvolved hippocampal 
time series to the feedback period using the approach described above and detailed in Methods. If PH 
bound recent rewards to local states, we would expect relatively early responses following feedback. 
Conversely, if AH integrated rewards across distant states and learning episodes, its responses might 
be later and slower. Indeed, PH exhibited rapid, on-off responses to reinforcement, whereas responses 
in AH were delayed and sustained (Fig. 4a,b). These differences were most pronounced after a reward 
(vs. omission, time point × anteroposterior location × reward: c2[9] = 23.7, p < .005). 

Time courses of post-feedback responses throughout learning also differed across the long axis. An 
analysis treating trial and location as completely general (i.e. unordered factors avoiding the parametric 
assumption that responses scale linearly with trial or location) revealed that AH responses increased 
more markedly than PH responses throughout the first 20 trials. As with responses to low entropy, this 
pattern was weaker in the anterior-most part of the head and in the PH (trial [5 bins] × anteroposterior 
location [6 bins]: c2(20) = 99.5, p < 10-11; Fig. 4c,d), suggesting greater integration of reinforcement across 
episodes in the anterior body. 
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 10 
Building on these descriptive results, we explored how the hippocampus encoded the location of the 
global value maximum (RTVmax) in the post-outcome time interval and across the long axis. To check the 
power of this analysis to detect the encoding of behavioral variables, we first examined the trivial effect 
of preceding trial’s RT on voxelwise deconvolved signals, which was robust and positive throughout 
the long axis in the first 2s after the outcome (Fig. S3). Thus, our post-outcome analyses included 
preceding RT as a covariate to control for this possible confound. As an additional check, we 
reproduced our conventional whole-brain analysis finding of entropy signals in AH (Fig. 4e). Finally, 
our substantive analysis revealed that the RTVmax location on the current trial was signaled throughout 
the long axis before and during feedback (Fig. 4f), while the shift in RTVmax (cf. Fig. 1f) was signaled 
early in PH and then later and more prominently, in AH (Fig. 4g). Thus, when the global value 
maximum shifted closer (earlier in the interval) compared to the preceding trial due to reinforcement, 
AH activity increased. 

CONCLUSIONS 

Whereas previous studies of the explore/exploit dilemma have primarily focused on the neocortex, 
striatum and amygdala2–6, we show that the hippocampus plays a key role in resolving this dilemma 
when values are organized spatially. Using a basis function RL model of a unidimensional continuous 
space, we observed doubly dissociated representations of reinforcement along the hippocampal long 
axis: rapidly evolving state-wise RPE signals in the PH facilitated exploration and slowly evolving 
global value maximum signals in the AH drove the transition to exploitation. 

We found that RPEs in the human PH invigorated exploration, as shown by greater distances between 
consecutive choices, shifts toward lower-valued options and costly win-shift responses. These 
exploratory shifts were not driven by uncertainty: participants, regardless of the strength of their PH 
RPE responses, avoided more uncertain parts of the interval. PH may thus simply drive random 
exploration, akin to increasing softmax temperature. It is also possible that PH invigorates a systematic 
movement through space unguided by value or uncertainty. PH-mediated exploration is consistent 
with the finding that optogenetic stimulation of the rodent dorsal dentate gyrus (DG) granule cells 
promotes exploration of novel environments23. Notably, dorsal DG-mediated exploration depends on 
dopaminergic input23, supporting the idea that exploration is invigorated by dopaminergic RPE signals. 
Indeed, RPEs are found in rodent dorsal hippocampus24 and may depend on the dopaminergic inputs 
from the VTA21 and the locus coeruleus (LC)22, which enhance memories for novel events45, as well as 
functional connections with reward-sensitive ventral striatal neurons46. While previous imaging studies 
using spatially unstructured paradigms have generally not detected RPE signals in human PH (Fig. 
S1)27,28, some reported analogous de-activations to error47 and activations to reward48. 

By contrast, the human AH tracked the global value maximum, both across episodes as participants’ 
choices converged on it (Fig. 2h, 4d-g), and within-episode as they navigated toward or away from the 
best response time (Fig. 3). Our SCEPTIC model predicts that values of non-preferred actions are 
compressed out late in successful learning, accentuating the global maximum and promoting 
exploitation35. Indeed, only the information-compressing model and not its otherwise identical 
counterpart predicted AH responses (Fig. 2d), indicating that a fine-grained representation of values in 
the environment is compressed to summary statistics of a single global maximum or ‘value bump’. 
Furthermore, stronger AH responses predicted avoidance of uncertain options beyond the degree 
predicted by the SCEPTIC model, pointing to additional mechanisms through which AH shifts the 
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 11 
choices toward the rich parts of the environment, away from unrewarding or uncertain alternatives. 
The functional co-activation of the vmPFC and AH to low entropy suggests that their interactions29,49–51 
may facilitate the binding of compressed value representations into a map that guides choices toward 
preferred options34,52–54 and shifts between egocentric and allocentric navigation34.  

During online navigation, AH responses ramped up in anticipation of the global value maximum in a 
manner reminiscent of dopamine ramps in the meso-striatal circuit55,56. After the space was traversed 
and the outcome was obtained, PH displayed early, on-off reward-modulated responses. AH reward-
modulated responses, on the other hand, were delayed and sustained. Furthermore, AH encoded 
directional shifts of the global value maximum (Fig. 4g). The coupling between hippocampal BOLD 
response and theta power is poorly understood57–59. Nevertheless, the delay between PH and AH in 
both overall responses to reinforcement (Fig. 4a,b) and specifically in responses to the advancing global 
maximum (Fig. 4g) matches the postero-anterior (in rodents: dorso-ventral) direction of traveling theta 
waves60,61. Our observations are thus consistent with a unidirectional spread of information from PH to 
AH, with AH integrating reinforcement across states and episodes. These responses could also 
correspond to diverging replay patterns in the PH vs. AH, with PH replaying actual and counterfactual 
trajectories toward recently obtained rewards and AH replaying trajectories leading to value maxima 
in a goal cell-like pattern7,62,63. 

Responses within the AH were heterogenous: sustained post-reinforcement signals were strongest in 
the anterior body whereas online goal cell-like responses to the global value maximum were most 
evident in the head. Aside from long axis location, this may reflect the folding of human AH, with the 
anterior portion of the head being comprised mostly of CA3/CA1 and lacking the dentate gyrus (DG)64. 
Thus, goal-cell like responses in the head likely originate in the CA3/CA1 or the subiculum and not in 
the DG. More speculatively, it is possible that the global maximum is encoded in the early nodes of the 
trisynaptic pathway (DG) and that its location and prominence are signaled in the hippocampal output 
from CA1 during online navigation65. 

Among the strengths of our study are the task and an information-compressing basis function RL 
model that give us access to a spatially structured value vector, dissociating the global value maximum 
from local RPEs. Hippocampal representations of these signals were not simply explained by novelty 
or epoch in learning. This approach echoes earlier models of hippocampal learning with a basis 
function representation of continuous states or actions63,66. Our results could not have been obtained 
with a spatially unstructured paradigm. Our novel multilevel analysis of deconvolved BOLD signals 
revealed the within-trial temporal dynamics of hippocampal responses and allowed us to detect goal 
cell-like activity. This approach may prove useful for testing strong hypotheses about functional 
gradients in regional activation, especially for event-related designs where trials are sampled at 
multiple TRs and jittered ITIs offer a window into post-stimulus processing. State-of-the-art fMRI 
methods including high spatial (2.3 mm3) and temporal (TR = 1s) resolution, a large number of trials (n 
= 400), and a reasonably large sample (n = 70) allowed us to detect hippocampal reward signals 
generally not observed in earlier studies (Fig. S1). Finally, out-of-session replication of brain-behavior 
relationships strengthens the case for hippocampal contributions to exploration and exploitation. 

Within the inherent constraints of fMRI, our design and analyses provide excellent resolution on 
coordinated neural activity, yet these constraints also preclude us from addressing questions about cell-
level representations and oscillations in the hippocampus. Furthermore, our whole-brain analyses 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 9, 2020. ; https://doi.org/10.1101/2020.01.02.893255doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.02.893255
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 
revealed distributed responses to both RPEs and entropy across frontostriatal circuits. Yet we did not 
further investigate the interactions between the hippocampus and regions such as vmPFC, which may 
be important for anticipating upcoming rewards67. Our experiment provided reinforcement based on 
response timing; thus, participants always traversed the environment in a single direction. Future 
experiments with k-dimensional spaces could, for example, test for goal-like AH responses more 
robustly by controlling participants’ movement relative to the goal and, in general, establish whether 
our findings generalize beyond the time domain. It also remains unclear whether our findings 
generalize to environments with rewards distributed less smoothly and even discontinuously. Such 
“Easter egg” environments in which reward-rich locations are hidden among reward-poor areas are 
harder to capture by a coarse representation, making value information less compressible. Our 
computational experiments using the SCEPTIC model, however, show that even value functions 
containing discontinuous local maxima can be effectively compressed using a policy that selectively 
maintains preferred options35. Finally, while our sample varied substantially in age (14-30), we did not 
test for age-related changes in the hippocampus to exploration or exploitation. This is an important 
topic for future research given emerging evidence of changes in both exploration68,69 and learning from 
ambiguous and aversive outcomes70,71 between adolescence and adulthood. 

Altogether, our findings revealed that PH and AH exert complementary influences on value-guided 
choices, with PH invigorating exploration that updates local values and AH promoting exploitative 
choices of the action perceived to be the best. Combined, these processes use reinforcement to guide 
allocentric navigation and stand in contrast to egocentric win-stay/lose-shift responses supported by 
the amygdala72 or learning of spatially unstructured values in the meso-striatal circuit73. 

METHODS 

Participants 

Participants were 70 typically developing adolescents and young adults aged 14–30 (M = 21.4, SD = 5.1). 
Thirty-seven (52.8%) participants were female and 33 were male. Prior to enrollment, participants were 
interviewed to verify that they had no history of neurological disorder, brain injury, pervasive 
developmental disorder, or psychiatric disorder (in self or first-degree relatives). Participants and/or 
their legal guardians provided informed consent or assent prior to participation in this study. 
Experimental procedures for this study complied with Code of Ethics of the World Medical Association 
(1964 Declaration of Helsinki) and the Institutional Review Board at the University of Pittsburgh 
(protocol PRO10090478). Participants were compensated $75 for completing the experiment.  

Behavioral task 

Participants completed eight runs of the exploration and learning task (aka the "clock task," based on 
Moustafa et al., 2008) during an fMRI scan. Runs consisted of 50 trials in which a green dot revolved 
360° around a central stimulus over the course of 4s (see Figure 1a). Participants pressed a button to 
stop the dot, which ended the trial. They then received a probabilistic reward for the chosen response 
time (RT) according to one of four time-varying contingencies, two learnable (increasing and 
decreasing expected value) and two unlearnable. All contingencies were monotonic but featured 
reward probability/magnitude tradeoffs that made learning difficult. RT swings were the index of 
exploration (Badre et al., 2011). After each response, participants saw the probabilistic reward feedback 
for 0.9s. If participants failed to response within 4s, they received zero points. Each trial was followed 
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by an intertrial interval (ITI) that varied in length according to an exponential distribution. To 
maximize fMRI detection power, the sequence and distribution ITIs were derived using a Monte Carlo 
approach implemented by the optseq2 command in FreeSurfer 5.3. More specifically, we simulated five 
million possible ITI sequences consisting of 50 trials each and retained the top 320 orders based on their 
estimation efficiency. For each subject, the experiment software randomly sampled 8 of these efficient 
ITI sequences, which were used for the durations of ITIs in the task. 

The central stimulus was a face with a happy expression or fearful expression, or a phase- scrambled 
version of face images intended to produce an abstract visual stimulus with equal luminance and 
coloration. Faces were selected from the NimStim database74. All four contingencies were collected with 
scrambled images, whereas only IEV and DEV were also collected with happy and fearful faces. The 
effects of the emotion manipulation will be reported in a separate manuscript because they are not 
central for the examination of the neural substrates of exploration and exploitation on this task. 
Likewise, age-related differences in brain activity will be reported separately. We note that fitted 
parameters for the SCEPTIC model did not vary significantly as a function of age (ps > .2), though 
overall performance (number of points earned) increased somewhat with age, r = 29, p = .01. 

As part of a larger study, participants also completed this task during a separate 
magnetoencephalography (MEG) session. The order of the fMRI and MEG sessions was 
counterbalanced (fMRI first n = 34, MEG first n = 36) and the sessions were separated by 3.71 weeks on 
average (SD = 1.59 weeks). The behavioral data from the MEG session were used for out-of-session 
replication tests in which we examined how brain activity during the fMRI scan predicted behavior 
during the MEG session. (Neural data for the MEG study will be reported separately.) This enabled us 
to establish whether individual differences in hippocampal activity and exploration/exploitation 
represented stable tendencies vs. patterns incidental to a single experimental session. 

Neuroimaging acquisition 

Neuroimaging data during the clock task were acquired in a Siemens Tim Trio 3T scanner at the 
Magnetic Resonance Research Center, University of Pittsburgh. Due to the varying response times 
produced by participants as they learned the task, each fMRI run varied in length from 3.15 to 5.87 
minutes (M = 4.57 minutes, SD = 0.52). Imaging data for each run were acquired using a simultaneous 
multislice sequence sensitive to BOLD contrast, TR = 1.0s, TE = 30ms, flip angle = 55°, multiband 
acceleration factor = 5, voxel size = 2.3mm3. We also obtained a sagittal MPRAGE T1 scan, voxel size = 
1mm3, TR = 2.2s, TE = 3.58ms, GRAPPA 2x acceleration. The anatomical scan was used for 
coregistration and nonlinear transformation to functional and stereotaxic templates. We also acquired 
gradient echo fieldmap images (TEs = 4.93ms and 7.39ms) for each subject to quantify and mitigate 
inhomogeneity of the magnetic field across the brain. 

Preprocessing of neuroimaging data 

Anatomical scans were registered to the MNI152 template75 using both affine (ANTS SyN) and 
nonlinear (FSL FNIRT) transformations. Functional images were preprocessed using tools from NiPy76, 
AFNI (version 19.0.26)77, and the FMRIB software library (FSL version 6.0.1)78. First, slice timing and 
motion coregistration were performed simultaneously using a four-dimensional registration algorithm 
implemented in NiPy79. Non-brain voxels were removed from functional images by masking voxels 
with low intensity and by a brain extraction algorithm implemented in the program ROBEX80. We 
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reduced distortion due to susceptibility artifacts using fieldmap correction implemented in FSL 
FUGUE. 

The participants’ functional images were aligned to their anatomical scan using the white matter 
segmentation of each image and a boundary-based registration algorithm81, augmented by fieldmap 
unwarping coefficients. Given the low contrast between gray and white matter in echoplanar scans 
with fast repetition times, we first aligned functional scans to a single-band fMRI reference image with 
better contrast. The reference image was acquired using the same scanning parameters, but without 
multiband acceleration. Functional scans were then warped into MNI152 template space (2.3mm 
resolution) in one step using the concatenation of functional-reference, fieldmap unwarping, reference-
structural, and structural-MNI152 transforms. Images were spatially smoothed using a 5mm full-width 
at half maximum (FWHM) kernel using a nonlinear smoother implemented in FSL SUSAN. Whereas 
all voxels were spatially smoothed in our whole-brain analyses, our detailed analyses of hippocampal 
timecourses used a 5mm FWHM smoother within the anatomical mask to reduce partial volume effects 
(details below). To reduce head motion artifacts, we then conducted an independent component 
analysis for each run using FSL MELODIC. The spatiotemporal components were then passed to a 
classification algorithm, ICA-AROMA, validated to identify and remove motion-related artifacts 82. 
Components identified as noise were regressed out of the data using FSL regfilt (non-aggressive 
regression approach). ICA-AROMA has performed very well in head-to-head comparisons of 
alternative strategies for reducing head motion artifacts83. We then applied a .008 Hz temporal high-
pass filter to remove slow-frequency signal changes84; the same filter was applied to all regressors in 
GLM analyses. Finally, we renormalized each voxel time series to have a mean of 100 to provide similar 
scaling of voxelwise regression coefficients across runs and participants. 

Computational modeling of behavior 

Behavior was fitted with the SCEPTIC (StrategiC Exploration/Exploitation of Temporal Instrumental 
Contingencies) reinforcement learning model35. Building on models of Pavlovian conditioning of 
Ludvig and colleagues39, SCEPTIC uses Gaussian temporal basis functions (TBFs) to approximate the 
time-varying instrumental contingency. Each function has a temporal receptive field with a mean and 
variance defining its point of maximal sensitivity and the range of times to which it is sensitive. The 
weights of each TBF are updated according to a delta learning rule. While in temporal difference 
models, learning and choice take place on a moment-to-moment basis, humans tend to strategically 
consider the decision space as a whole37. Accordingly, SCEPTIC applies updates and makes choices at 
the trial level. Crucially, SCEPTIC maintains action values selectively, allowing for forgetting of action 
values not selected on the current trial. Selective maintenance facilitates the transition from exploration 
to exploitation in computational experiments and accounts for uncertainty aversion in humans35. 

Model parameters were fitted to individual choices using an empirical Bayesian version of the 
Variational Bayesian Approach85. The empirical Bayes approach relied on a mixed-effects model in 
which individual-level parameters are assumed to be sampled from a normally distributed population. 
The group’s summary statistics, in turn, are inferred from individual-level posterior parameter 
estimates using an iterative variational Bayesian algorithm in which the algorithm alternates between 
estimating the population parameters and the individual subject parameters. Over algorithm iterations, 
individual-level priors are shrunk toward the inferred parent population distribution, as in standard 
multilevel regression. Furthermore, to reduce the possibility that individual differences in voxelwise 
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 15 
estimates from model-based fMRI analyses reflected differences in the scaling of SCEPTIC parameters, 
we refit the SCEPTIC model to participant data at the group mean parameter values. This approach 
supports comparisons of regression coefficients across subjects and also reduces the confounding of 
brain-behavior analyses by the individual fits of the computational model to a participant’s behavior. 
We note, however, that our fMRI results were qualitatively the same when model parameters were free 
to vary across people (additional details available from the corresponding author upon request). 

To examine the emergence of the global value maximum that guides the transition from initial 
exploration to exploitation, we estimated Shannon’s entropy (or information content) of the normalized 
vector of TBF weights (action values). Entropy provides a log measure of the number of good actions 
(in this case, temporal segments). Entropy is high during the initial exploration, when action values are 
close and decreases as one action begins to dominate, corresponding to the perceived global value 
maximum. These entropy dynamics are only observed under selective maintenance, which compresses 
the amount of information retained later in learning and accentuates the global value maximum35. 

Core architecture of SCEPTIC model 

The SCEPTIC model represents time using a set of unnormalized Gaussian radial basis functions 
(RBFs) spaced evenly over an interval T in which each function has a temporal receptive field with a 
mean and variance defining its point of maximal sensitivity and the range of times to which it is 
sensitive, respectively (a conceptual depiction of the model is provided in Figure 1). The primary 
quantity tracked by the basis is the expected value of a given choice (response time). To represent time-
varying value, the heights of each basis function are scaled according to a set of b weights, 𝐰 =
[𝑤!, 𝑤", … , 𝑤#]. The contribution of each basis function to the integrated value representation at the 
chosen response time, t, depends on its temporal receptive field: 

 𝜑#(𝑡) = 	 exp 2−
(𝑡 − 𝜇#)"

2𝑠#"
7	 (1) 

where 𝜇# is the center (mean) of the RBF and 𝑠#" is its variance. And more generally, the temporally 
varying expected value function on a trial i is obtained by the multiplication of the weights with the 
basis: 

 𝑽(𝑖) = 𝐰(𝑖)𝝋 (2) 

In order to represent decision-making during the clock task, where the probability and magnitude of 
rewards varied over the course of four-second trials, we spaced the centers of 24 Gaussian RBFs evenly 
across the discrete interval and chose a fixed width, 𝑠#", to represent the temporal variance (width) of 
each basis function. More specifically, 𝑠#" was chosen such that the distribution of adjacent RBFs 
overlapped by approximately 50% (for additional details and consideration of alternatives, see 35). 

The model updates the learned values of different response times by updating each basis function b 
according to the equation:  

 𝑤#(𝑖 + 1) = 	𝑤#(𝑖) + 𝑒#(𝑖|𝑡)𝛼[reward(𝑖|𝑡) − 𝑤#(𝑖)] (3) 

 where i is the current trial in the task, t is the observed response time, and reward(𝑖|𝑡) is the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 9, 2020. ; https://doi.org/10.1101/2020.01.02.893255doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.02.893255
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 
reinforcement obtained on trial i given the choice t. The effect of prediction error is scaled according to 
the learning rate 𝛼 and the temporal generalization function 𝑒#. To avoid tracking separate value 
estimates for each possible moment, it is crucial that feedback obtained at a given response time t is 
propagated to adjacent times. Thus, to represent temporal generalization of expected value updates, we 
used a Gaussian RBF centered on the response time t, having width 𝑠$" and normalized to have an area 
under the curve of unity. The eligibility of a basis function 𝜑# to be updated by prediction error is 
defined by the area under the curve of its product with the temporal generalization function: 

 𝑒#(𝑖|𝑡) = D 𝒩(𝑡
%

&
, 𝑠$")𝜑#𝑑𝑡 (4) 

This parameterization leads to a scalar value for each RBF between zero and one representing the 
proportion of overlap between the temporal generalization function and the receptive field of the RBF. 
In the case of perfect overlap, where the response time is perfectly centered on a given basis function 
and the width of the generalization function matches the basis (i.e., 𝑠$" = 𝑠#"), 𝑒# will reach unity, 
resulting a maximal weight update according to the learning rule above. Conversely, if there is no 
overlap between an RBF and the temporal generalization function 𝑒# will be zero and no learning will 
occur in the receptive field of that RBF. 

The SCEPTIC model selects an action based on a softmax choice rule, analogous to simpler 
reinforcement learning problems (e.g., two-armed bandit tasks 1). For computational speed, we 
arbitrarily discretized the interval into 100ms time bins such that the agent selected among 40 potential 
responses. The agent chose responses in proportion to their expected value: 

 𝑝(𝑟𝑡(𝑖 + 1) = 	𝑗	|	𝑉(𝑖)) = 	
exp	(𝑉(𝑖)'/𝛽)

∑ exp	(𝑉(𝑖)(/𝛽)%
()&

 (5) 

where j is a specific response time and the temperature parameter, 𝛽, controls the sharpness of 
the decision function (at higher values, actions become more similar in selection probability). 

Importantly, as described extensively in our earlier behavioral and computational paper35, a model that 
selectively maintained frequently chosen high-value actions far outperformed alternative models. More 
specifically, in the selective maintenance model, basis weights revert toward zero in inverse proportion 
to the temporal generalization function: 

 𝑤#(𝑖 + 1) = 	𝑤#(𝑖) + 𝑒#(𝑖|𝑡)𝛼[reward(𝑖|𝑡) − 𝑤#(𝑖)] − 𝛾O1 − 𝑒#(𝑖|𝑡)P(𝑤#(𝑖) − ℎ) (6) 

where 𝛾 is a selective maintenance parameter between zero and one that scales the degree of 
reversion toward a point h, which is taken to be zero here, but could be replaced with an alternative, 
such as a prior expectation. As detailed in our previous report, late in learning, selective maintenance 
compresses the amount of value information represented by the agent by 1/3 to 1/2 (more in 
exploitative subjects) and accelerates the transition from exploration to exploitation by accentuating the 
global value maximum and effacing the values of non-preferred segments35. All of our primary fMRI 
analyses were based on signals derived from fitting the selective maintenance SCEPTIC model to 
participants’ behavior. 

As noted in the Results, we sought to examine whether anterior hippocampal responses to low entropy 
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were specific to the selective maintenance model, consistent with information compression. To test the 
specificity, we compared entropy representation from the SCEPTIC selective maintenance mode to a 
full-maintenance counterpart that did not decay the values of the unchosen response times (more 
detailed model comparisons provided in 35). More specifically, the learning rule for the full 
maintenance model was: 

 𝑤#(𝑖 + 1) = 	𝑤#(𝑖) + 𝑒#(𝑖|𝑡)𝛼[reward(𝑖|𝑡) − 𝑤#(𝑖)] (7) 

Quantification of uncertainty 

In our earlier computational modeling and behavioral analyses of these data35, we tested a number of 
alternative models, including those that explicitly represented sampling uncertainty about alternative 
actions. More specifically, these models implemented variants of a Kalman filter for each temporal 
basis function such that the basis approximated both the posterior expectation (i.e., mean) and 
uncertainty (i.e., standard deviation) for each possible response time. Although uncertainty-tracking 
models were inferior in behavioral Bayesian model comparisons, for our neural analyses, we 
nevertheless wished to examine whether the hippocampus may be involved in promoting or 
discouraging actions based on their uncertainty. 

Therefore, we estimated a Kalman filter variant (hereafter called Fixed U+V) in which a fixed learning 
rate was used for updating the expected value, whereas the posterior uncertainty estimates were 
updated according to the Kalman gain. The learning rule for Fixed U+V was  

 𝜇#(𝑖 + 1) = 𝜇#(𝑖) +	𝑒#(𝑖|𝑡)𝛼[reward(𝑖|𝑡) −	𝜇#(𝑖)] (8) 

where 𝜇#(𝑖) represents the expected value of basis function b on trial i, and 𝛼 represents the 
learning rate. The gain for a given basis function, 𝑘#(𝑖) is defined as 

 𝑘#(𝑖) =
𝜎#(𝑖)"

𝜎#(𝑖)" + 𝜎*+,"
 (9) 

where 𝜎*+,"  represents the expected volatility (measurement noise) of the environment. Here, 
we provide the model the variance of returns from a typical run of the experiment as an initial estimate 
of measurement noise, although other priors lead to similar model performance. We also initialize prior 
estimates of uncertainty for each basis function to be equal to the measurement noise, 𝜎#&" = 𝜎*+," , 
leading to a gain of 0.5 on the first trial (as in 86). 

Under the KF, uncertainty about expected value for each basis function is represented as the standard 
deviation of its Gaussian distribution. Likewise, posterior estimates of uncertainty about responses 
proximate to the basis function b decay in inverse proportion to the gain according to the following 
update rule: 

 𝜎#(𝑖 + 1) = [1 − 𝑒#(𝑖|𝑡)𝑘#(𝑖)]𝜎#(𝑖) (10) 

Estimates of the time-varying value and uncertainty functions are provided by the evaluation of the 
basis over time: 
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 𝑽(𝑖) = 𝝁(𝑖)𝝋 (11) 

 𝑼(𝑖) = 𝝈(𝑖)𝝋 (12) 

The Fixed U + V policy represents a decision function, 𝑄(𝑖), as a weighted sum of the value and 
uncertainty functions according to a free parameter, 𝜏. As uncertainty decreases with sampling and 
expected value increases with learning, value-related information will begin to dominate over 
uncertainty. Positive values of 𝜏 promote uncertainty-directed exploration, whereas negative values 
yield uncertainty aversion. 

 𝑸(𝑖) = 𝑽(𝑖) + 𝜏𝑼(𝑖) (13) 

For the purpose of fMRI analysis, we fit the Fixed U+V model to participants’ behavior, then extracted 
trial-wise estimates of uncertainty. More specifically, we obtained the model-estimated uncertainty of 
the chosen action for each trial. Given that uncertainty for a given process decays exponentially under a 
KF approach, we computed the percentile of the uncertainty of the chosen action relative to the 
alternative actions on the same trial. This trial-wise normalization ensured that the fMRI analyses of 
uncertainty were not confounded by slower changes in overall uncertainty over the entire learning 
episode. 

Trial-level alternative model of reinforcement learning 

The SCEPTIC model is based on a temporal basis function architecture that provides a state-wise 
representation of value and RPEs (i.e., the model estimates these quantities at every response time 
within each trial). A simpler alternative is that participants represent value and RPEs at the whole-trial 
level, instead tracking the expected value of responding during the trial and not discriminating among 
alternative response times. This alternative model was considered primarily to test whether posterior 
hippocampal RPE responses were more consistent with SCEPTIC state-wise RPEs or simpler trial-level 
RPEs. More specifically, the alternative model was a variant of the Rescorla-Wagner delta rule: 

 𝑉(𝑖 + 1) = 	𝑉(𝑖) + 𝛼[reward(𝑖) − 𝑉(𝑖)] (14) 

where i denotes the trial and 𝛼 is the learning rate. For simplicity, we tested the performance of 
this model using learning rates in the set, 𝛼 = {.05, .1, .15, .2}. 

Conceptual comparison of SCEPTIC model to earlier TC model 

Previous papers describing behavior on the clock task have suggested that some humans tend to shift 
toward more uncertain response times86 and that this tendency is associated with greater activity in the 
rostrolateral prefrontal cortex2. These findings are largely founded on a different computational model 
of the task, called the TC (‘time clock’) model, which represents response times on each trial i as a linear 
combination of several potentially neurobiological processes: 

 RTa(𝑖) = 	𝐾 + 𝜆RT(𝑖 − 1) + 𝜈eRT-+./ − RT012f − Go(𝑖) + 	NoGo(𝑖)
+ 𝝆[𝝁𝐬𝐥𝐨𝐰(𝑖) − 𝝁𝐟𝐚𝐬𝐭(𝑖)] + 𝜺[𝝈𝐬𝐥𝐨𝐰(𝑖) − 𝝈𝐟𝐚𝐬𝐭(𝑖)] 

(15) 

The details of each parameter and the underlying representation are provided in previous reports86. 
Briefly, however, with respect to value-based decisions, the TC model separately updates the 
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probability of a positive prediction error for RTs that are slower or faster than the subject’s average 
(𝜇.:;, and 𝜇<0./, respectively). With learning, the model predicts that subjects shift toward faster or 
slower RTs that are associated with a greater expectation of a positive prediction errors according to a 
free parameter, 𝜌. The definitions of ‘fast’ and ‘slow’ responses are based on a comparison to the 
running average of recent response times. TC tracks the expected value (𝜇) and uncertainty (𝜎) using 
two beta distributions, one for ‘fast’ and one for ‘slow’ responses. Our previous computational and 
behavioral analyses found that the TC model has problems with parameter identifiability, that its 
substantive parameters for value and uncertainty do not contribute to model fit in empirical data, and 
that the model performs poorly in more complex time-dependent contingencies35. 

Perhaps more important than these limitations are the conceptual differences between the TC and 
SCEPTIC models, which render SCEPTIC particularly well-suited for detailed analyses of exploration 
and exploitation on the clock task. The representation of value over time involves a tradeoff between 
the generality of representation on one hand and the number of free parameters or values stored on the 
other. A completely general temporal value representation is exemplified by temporal difference (TD) 
models, which we have previously tested. On the other end, parsimonious parametric models such as 
Frank’s TC often turn out to explain a narrow range of phenomena; they break down more easily at 
boundary conditions. 

Radial basis function representation, in our opinion, finds the middle ground between these two 
extremes: it reduces the memory and computational load compared to TD, while maintaining 
generality of representation, which enables it to learn virtually any contingency in one continuous 
dimension. Furthermore, by approximating the value function over the time interval of the task, the 
SCEPTIC model enables one to test hypotheses about both the chosen action (e.g., its expected value, or 
reward prediction error) and global statistics such as the entropy of the value function. Moreover, the 
function approximation approach of SCEPTIC can be extended to test whether humans prefer or are 
averse to more uncertain options (the Fixed U+V model above). Thus, variants of the SCEPTIC model 
can disentangle stochastic versus uncertainty-related exploration on the clock task. The former is 
related to the entropy of learned values that enter into the softmax choice rule; the latter depends on 
explicit tracking of the sampling uncertainty in a Kalman filter. By comparison, the fast vs. slow 
parametric representation of TC provides a coarser view of the task that does not distinguish between 
stochastic and uncertainty-directed exploration and or provide the statistics of the global value 
maximum. 

Voxelwise general linear model analyses 

Voxelwise general linear model (GLM) analyses of fMRI data were performed using FSL version 6.0.178. 
Single-run analyses were conducted using FSL FEAT v6.0, which implements an enhanced version of 
the GLM that corrects for temporal autocorrelation by prewhitening voxelwise time series and 
regressors in the design matrix84. For each design effect, we convolved a duration-modulated unit-
height boxcar regressor with a canonical double-gamma hemodynamic response function (HRF) to 
yield the model-predicted BOLD response. All models included convolved regressors for the clock and 
feedback phases of the task.  

Moreover, GLM analyses included parametric regressors derived from SCEPTIC. For each whole-brain 
analysis, we added a single model-based regressor from SCEPTIC alongside the clock and feedback 
regressors. Results were qualitatively unchanged, however, when all SCEPTIC signals were included 
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as simultaneous predictors, given the relatively low correlation among these signals. We further 
verified that the key double dissociation between prediction errors and entropy along the long axis of 
the hippocampus (Fig. 2) held when entropy and reward prediction errors were included 
simultaneously in the fMRI GLMs. As shown in Fig. S4, there was no meaningful difference in the 
double dissociation when GLM coefficients were extracted from models with one model-based 
regressor each (i.e., separate models for entropy and prediction errors) versus a model that included 
both of these regressors simultaneously. 

Importantly, the results of these and other fMRI analyses would only diverge if the model-based 
regressors had a moderate to strong correlation with each other, leading to collinearity problems. To 
examine this possibility, we computed the correlation between the convolved regressors for reward 
prediction errors and entropy for all subjects and runs. We then modeled the correlation in a Bayesian 
multilevel model (implemented in the brms R package87) that included a random intercept of subject 
and allowed for heterogeneity between runs in the variability of the RPE-entropy correlation. This 
analysis revealed a very small average correlation between PE and entropy, r = 0.07, 95% highest 
posterior density interval = .05 – .09. Following Cohen's rules of thumb, we further tested for the 
probability that the RPE-entropy correlation is small, |r| < .10 using a region of parameter equivalence 
(ROPE) test on the posteriors from the Bayesian multilevel model. This test revealed that 100% of the 
posterior samples of the PE-entropy correlation fell within this range, providing strong evidence that 
the correlation between entropy and PE is small. Altogether, the low level of correlation between these 
convolved model-based signals indicates that any additional analyses based on regression coefficients 
from the fMRI GLMs would be very similar regardless of whether the signals were modeled 
individually or simultaneously, consistent with Fig. S4. 

For each model-based regressor, the SCEPTIC-derived signal was mean-centered prior to convolution 
with the HRF. The reward prediction error signal was aligned with the feedback, whereas entropy and 
uncertainty were aligned with the clock (decision) phase. Furthermore, for regressors aligned with the 
clock phase, which varied in duration, we sought to unconfound the height of the predicted BOLD 
response due to decision time from the parametric influence of the SCEPTIC signal. Toward this end, 
for each trial, we convolved a duration-modulated boxcar with the HRF, renormalized the peak to 1.0, 
multiplied the regressor by the SCEPTIC signal on that trial, then summed across trials to derive a 
single model-based regressor (cf. processing time versus intensity of activation in (cf. processing time 
versus intensity of activation in   88). This approach is equivalent to the dmUBLOCK(1) 
parameterization provided by AFNI for duration-modulated regressors in GLM analyses. 

Parameter estimates from each run were combined using a weighted fixed effects model in FEAT that 
propagated error variances from the individual runs. The contrasts from the second-level analyses 
were then analyzed at the group level using a mixed effects approach implemented in FSL FLAME. 
Specifically, we used the FLAME 1+2 approach with automatic outlier deweighting89, which 
implements Bayesian mixed effects estimation of the group parameter estimates including full Markov 
Chain Monte Carlo-based estimation for near-threshold voxels90. In order to identify statistical 
parametric maps that best represented the average response, all group analyses included age and sex as 
covariates of no interest (esp. given the developmental sample). 

To correct for familywise error at the whole-brain level, we computed the voxelwise residuals of a one-
sample t-test for each contrast of interest in the group analysis, then generated 10,000 null datasets by 
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randomizing the sign of the residuals (implemented by AFNI 3dttest++ -Clustsim). These null datasets 
were then analyzed to identify the threshold for clusters that were significant at a whole-brain level at p 
< .05 (implemented by AFNI 3dClustsim). For these calculations, we used a voxelwise threshold of p < 
.00191. Importantly, the sign randomization approach does not assume any parametric form for the 
spatial autocorrelation of the data, overcoming concerns about high false positive rates for cluster 
thresholding methods that assume a Gaussian autocorrelation function92. Cluster thresholds were 107 
voxels for reward prediction error analyses and 117 voxels for entropy analyses. 

Treatment of head motion 

In addition to mitigating head motion-related artifacts using ICA-AROMA, we excluded runs in which 
more than 10% of volumes had a framewise displacement (FD) of 0.9mm or greater, as well as runs in 
which head movement exceeded 5mm at any point in the acquisition. This led to the exclusion of 11 
runs total, yielding 549 total usable runs across participants. Furthermore, in voxelwise GLMs, we 
included the mean time series from deep cerebral white matter and the ventricles, as well as first 
derivatives of these signals, as confound regressors83. 

Analyses of hippocampal responses 

Definition of hippocampal mask and long axis 

We used a hippocampal parcellation from the Harvard-Oxford subcortical atlas to define bilateral 
masks for the hippocampus in the MNI152 space. The atlas was resampled to 2.3mm voxels to match 
the functional data, then thresholded at 0.5 probability, yielding masks of 393 voxels in the left 
hemisphere and 401 voxels in the right hemisphere. To define the long axis, we identified the 10 most 
antero-inferior and postero-superior voxels in each hemisphere mask. We then took the centroid of 
these voxels and computed the slope of a regression line that connected these coordinates. We 
averaged the slopes for the left and right hemispheres to compute the optimal rotation of the 
coordinate space along the long axis of the hippocampus. We computed the slope difference of this 
average line relative to the anterior commissure-posterior commissure (AC-PC) axis, which has a zero 
slope in the sagittal plane. This yielded a rotation of 42.9° clockwise relative to the AC-PC axis. Finally, 
we verified this transformation by eye (gradient depicted in Figure 2a). 

While we view the inclusive Harvard-Oxford mask as more appropriate given the spatial smoothness 
of BOLD data and coregistration noise, in supplementary analyses, we also considered a more 
restrictive hippocampal mask derived using a detailed anatomical segmentation approach developed 
by Winterburn and colleagues93. Briefly, this segmentation approach was applied to the original 
anatomical scans forming the MNI152 template set, yielding a parcellation already in the MNI152 space 
(publicly available here: https://github.com/CoBrALab/atlases/tree/master/mni_models/nifti). We 
retained the following regions from the parcellation in the mask: CA1, CA4/dentate gyrus, CA2/CA3, 
subiculum, and stratum. These masks (265 voxels in the left hippocampus, 273 in the right) were 
approximately one third smaller than the Harvard-Oxford masks. The results using were qualitatively 
the same regardless of the mask (see Supplement for details; Fig. S5 and S6). 

Session-level estimates of hippocampal responses to reinforcement: regression coefficients from model-based fMRI 
GLM analyses 
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To examine how individual differences in hippocampal responses along the long axis relate to 
behavior, we extracted regression coefficients (aka ‘betas’) from model-based whole-brain fMRI GLM 
analyses. We first extracted betas from clusters surviving whole-brain thresholding. For each signal — 
entropy, expected value, RPE — clusters were subjected to between-subject exploratory factor analysis 
(principal axis factoring with oblimin oblique rotation) to identify separable components representing 
each signal. We evaluated the number of factors based on Very Simply Solution and Velicer’s 
Minimum Average Partial criteria94. These analyses were largely motivated to examine whether 
hippocampal responses were separable from other cortico-striatal regions. 

To relate hippocampal betas to exploratory and exploitative choices on the task, we regressed trial-wise 
response times on trial-level signals such as previous outcome, RTVmax, and previous response time, as 
well as subject-level signals, particularly betas from the posterior and anterior hippocampal clusters 
identified in whole-brain analyses. Testing cross-level interactions, we examined how hippocampal 
responses moderated the effects of behavioral variables, such as the tendency to explore or convergence 
on RTVmax. We fitted multilevel regression models using restricted maximum likelihood estimation in 
the lme4 package95 in R96, allowing for a random intercept of subject and run nested within subject. 

Building on our whole brain voxelwise analyses, we examined representations of decision signals along 
the hippocampal long axis. To support these analyses, we extracted voxelwise z-statistics within the 
hippocampal mask for RPEs, entropy of the value distribution, and relative uncertainty of the chosen 
action. We note that using normalized betas in these analyses yielded identical results; we preferred z-
statistics because they better accommodate within-run variation in the precision of effects within the 
GLM framework. To analyze z-statistics along the long axis, we binned voxelwise statistics into 12 
quantiles of even size (i.e., approximately equal numbers of voxels per bin) along the long axis. 
Aggregating the voxels of each bin, we computed the mean z statistic for relevant decision signals and 
analyzed responses to entropy and RPEs along the long axis (Fig. 2b, 2d). 

Analyses of real-time hippocampal responses using voxelwise deconvolution 

Although betas from fMRI GLMs provide a useful window into how decision signals from SCEPTIC 
relate to behavior at the level of an entire session, the GLM approach makes a number of assumptions: 
a) that one correctly specifies when in time a signal derived from a computational model modulates 
neural activity, b) that there is a linear relationship between the model signal and BOLD activity, and c) 
that a canonical HRF describes the BOLD activity corresponding to a given model-based signal. 
Furthermore, a conventional model-based fMRI GLM does not allow one to interrogate whether the 
representation of a given cognitive process varies in time over the course of a trial. For these reasons, 
we conducted additional analyses that could provide a detailed view of how hippocampal activity 
changes both during and following each trial on the clock task. These analyses also attempted to 
overcome statistical and conceptual limitations of the GLM and to provide an index of within-trial 
neural activity that was independent of our computational model.  

We first applied a leading hemodynamic deconvolution algorithm to estimate neural activity from 
BOLD data44. This algorithm has performed better than alternatives in simulated and real fMRI data, 
and it is reasonably robust to variations in the timing of neural events and the sampling frequency of 
the scan 97. Within our anatomical mask of the bilateral hippocampus, we deconvolved the BOLD 
activity for each voxel time series and retained these as a voxels x time matrix for each run of fMRI 
data. Additionally, to reduce the possibility that activity estimates reflected the influence of voxels 
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outside of the hippocampus, for deconvolution, we used fMRI data in which spatial smoothing was 
applied only within the anatomical mask. More specifically, we applied a 5mm FWHM smoothing 
kernel within the hippocampal mask using the AFNI 3dBlurInMask program. The fMRI data for 
deconvolution analyses were otherwise preprocessed using the same pipeline described above. 

Then, to estimate hippocampal activity for each trial in the experiment, we extracted the deconvolved 
signal in two epochs: 1) online (clock onset to RT) responses time-locked to RTVmax, (± 3s) censoring 
feedback and ITI periods, and 2) feedback onset and ITI (-1 to +10 seconds; the second preceding 
feedback was included for reference). This windowing approach allowed us to examine hippocampal 
activity during online decision-making in the clock task, as well as offline activity during the intertrial 
interval. Given the fast event-related design, however, the onset of the next trial in the experiment may 
have occurred before 10 seconds post-feedback had elapsed. In these cases, trial-wise estimates of post-
feedback activity were treated as missing for all times after the onset of the next trial. The exponential 
distribution of intertrial interval times yielded more data for activity proximate to the onset of 
feedback, but there were still several trials per subject with intertrial intervals of 10s or greater. Finally, 
to ensure that discrete-time models of neural activity could be easily applied, we resampled 
deconvolved neural activity onto an evenly spaced 1s grid aligned to the event of interest using linear 
interpolation. The sampling frequency of the fMRI scan was also 1s. Thus, this interpolation was a form 
of resampling, but did not upsample or downsample the data in the time domain. 

To link real-time hippocampal responses with behavior and decision signals from the SCEPTIC model, 
we divided hippocampal voxels into 12 even bins along the long axis, mirroring the regression beta 
analyses described above (illustrations of smoothed raw data use 24 bins for within-trial time courses 
and six bins for across-trials time courses to aid readability). For each trial and timepoint within trial, 
we averaged voxels within each long axis bin. For each subject, this yielded a 400 trial x 11 time point 
(0-10s) x 12 bin matrix for the feedback-aligned data. We then concatenated these matrices across 
participants for group analysis. Within each time x bin combination, we regressed trial-wise neural 
activity on key decision variables in a multilevel regression framework implemented in lmer in R, 
allowing for crossed random intercepts of subject and side (right/left). 

To examine the temporal dynamics of hippocampal reinforcement representations in greater detail, we 
considered treating both time and bin as unordered factors in a combined multilevel regression model, 
rather than running separate models by time and bin. Although statistically estimable, these models 
were unwieldy because of the number of higher-order interactions. Instead, to adjust for multiple 
comparisons in non-independent models separately examining each time point and bin, we applied the 
Benjamini–Yekutieli correction across models to maintain a false discovery rate of .05. 

Analyses of behavior using frequentist multilevel models 

Multilevel regression models 

Since our behavioral observations had a clustered structure (e.g., trials nested within subjects), we used 
multilevel regression models to estimate the effects of interest. Multilevel models were estimated using 
restricted maximum likelihood in the lme4 package95 in R 3.4.096. Estimated p-values for predictors in 
the model were computed using Wald chi-square tests and degrees of freedom were based on the 
Kenward-Roger approximation. Most multilevel regressions were run on trial-level data in order to 
capture the temporal dynamics of learning and performance. To test temporal precedence in trial-level 
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data (e.g., previous reward predicting a change in current RT swing), relevant predictors were lagged 
by one trial. For trial-level analyses, subject and run were treated as random effects. In particular, many 
models examined whether a given decision signal from the SCEPTIC model moderated the influence of 
previous choice (RTt-1) on current choice (RTt) or RT autocorrelation. A weaker autocorrelation 
indicates greater RT swings, and variables that decrease autocorrelation are considered to increase 
exploration. While the absolute RT difference between consecutive trials used in earlier studies2 seems 
to be an intuitive metric of RT swings, it suffers from several measurement problems. First, it has an 
inherently zero-inflated distribution and cannot be treated as approximately normally distributed in 
statistical models. Second, due to time-varying imprecision, this absolute difference scales with the 
RTs. Third, it depends on where the preceding RT is relative to the edge of the interval. Thus, the effect 
of RTt-1 on RTt provides a more precise and less biased estimate of RT swings. 

Within-trial mixed-effects survival analyses of behavior with time-varying value and uncertainty estimates 

We also performed survival analyses predicting the temporal occurrence of response. These mixed-
effects Cox models (R coxme package)98 aimed to examine the effects of model-predicted expected 
value and uncertainty on the likelihood of response, and the impact of session-level hippocampal 
responses on value- and uncertainty-sensitivity. This survival analysis does not assume that the subject 
pre-commits to a given response time, instead modeling the within-trial response hazard function in 
real, continuous time99. The survival approach accounts for censoring of later within-trial time points 
by early responses. Most importantly, it assumes a completely general baseline hazard function, 
allowed to vary randomly across participants. We thus avoid assumptions about the statistical 
distribution of response times and account for trial-invariant influences such as urgency, processing 
speed constraints or opportunity cost. We also modeled only the 1000 – 3500 ms interval, excluding 
early response times that may be shorter than the deliberation and motor planning period and the end 
of the interval which one may avoid in order to not miss responding on a trial. We included learned 
value from the selective maintenance model and uncertainty from the Kalman filter uncertainty + value 
model as time-varying covariates, sampled every 100 ms. Subject-specific intercept was included as a 
random effect.  
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Data and Code Availability 

The code generated during this study is available at: 
https://github.com/PennStateDEPENdLab/clock_analysis. This repository also includes key datasets for 
extracted fMRI regression coefficients and voxelwise hippocampal time course analyses. Full voxelwise 
statistical parametric maps are available from the corresponding author upon request. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 9, 2020. ; https://doi.org/10.1101/2020.01.02.893255doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.02.893255
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 
Acknowledgements 

This work was funded by K01 MH097091, R01 MH067924, and R01MH10095 from the National 
Institute of Mental Health.   

The authors thank Jiazhou Chen (data processing) and Kai Hwang and Rajpreet Chahal (data 
collection). The authors also thank Vishnu Murty and Brad Wyble for helpful comments on an earlier 
draft of the manuscript. 

Author Contributions 

Conceptualization: MNH, BL, AYD. Software: MNH, AYD.  Formal Analysis: AYD, MNH. 
Investigation: MNH, BL.  Resources: MNH, BL.  Data Curation: MNH.  Writing – Original Draft: AYD, 
MNH.  Writing – Review & Editing: MNH, BL, AYD. Project Administration: MNH, BL.  Funding 
Acquisition: BL, MNH, AYD. 

Declaration of Interests 

The authors declare no competing interests. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 9, 2020. ; https://doi.org/10.1101/2020.01.02.893255doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.02.893255
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 
References 

1. Sutton, R. S. & Barto, A. G. Reinforcement learning: An introduction. (MIT Press, 1998). 

2. Badre, D., Doll, B. B., Long, N. M. & Frank, M. J. Rostrolateral prefrontal cortex and individual 
differences in uncertainty-driven exploration. Neuron 73, 595–607 (2012). 

3. Beharelle, A. R., Polanía, R., Hare, T. A. & Ruff, C. C. Transcranial Stimulation over Frontopolar 
Cortex Elucidates the Choice Attributes and Neural Mechanisms Used to Resolve Exploration–
Exploitation Trade-Offs. J. Neurosci. 35, 14544–14556 (2015). 

4. Blanchard, T. C. & Gershman, S. J. Pure correlates of exploration and exploitation in the human 
brain. Cogn. Affect. Behav. Neurosci. 18, 117–126 (2018). 

5. Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B. & Dolan, R. J. Cortical substrates for 
exploratory decisions in humans. Nature 441, 876–879 (2006). 

6. Costa, V. D., Mitz, A. R. & Averbeck, B. B. Subcortical Substrates of Explore-Exploit Decisions in 
Primates. Neuron 103, 533-545.e5 (2019). 

7. Liu, Y., Dolan, R. J., Kurth-Nelson, Z. & Behrens, T. E. J. Human Replay Spontaneously Reorganizes 
Experience. Cell 178, 640-652.e14 (2019). 

8. Wu, C. M., Schulz, E., Speekenbrink, M., Nelson, J. D. & Meder, B. Generalization guides human 
exploration in vast decision spaces. Nat. Hum. Behav. 2, 915–924 (2018). 

9. Lisman, J. et al. Viewpoints: how the hippocampus contributes to memory, navigation and 
cognition. Nat. Neurosci. 20, 1434–1447 (2017). 

10. Moser, M.-B. & Moser, E. I. Functional differentiation in the hippocampus. Hippocampus 8, 608–619 
(1998). 

11. Jung, M., Wiener, S. & McNaughton, B. Comparison of spatial firing characteristics of units in 
dorsal and ventral hippocampus of the rat. J. Neurosci. 14, 7347–7356 (1994). 

12. Poppenk, J., Evensmoen, H. R., Moscovitch, M. & Nadel, L. Long-axis specialization of the human 
hippocampus. Trends Cogn. Sci. 17, 230–240 (2013). 

13. Strange, B. A., Witter, M. P., Lein, E. S. & Moser, E. I. Functional organization of the hippocampal 
longitudinal axis. Nat. Rev. Neurosci. 15, 655–669 (2014). 

14. Kjelstrup, K. B. et al. Finite Scale of Spatial Representation in the Hippocampus. Science 321, 140–143 
(2008). 

15. Komorowski, R. W. et al. Ventral Hippocampal Neurons Are Shaped by Experience to Represent 
Behaviorally Relevant Contexts. J. Neurosci. 33, 8079–8087 (2013). 

16. Mattar, M. G. & Daw, N. D. Prioritized memory access explains planning and hippocampal replay. 
Nat. Neurosci. 21, 1609–1617 (2018). 

17. Stachenfeld, K. L., Botvinick, M. M. & Gershman, S. J. The hippocampus as a predictive map. Nat. 
Neurosci. 20, 1643–1653 (2017). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 9, 2020. ; https://doi.org/10.1101/2020.01.02.893255doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.02.893255
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 
18. Corbit, L. H. & Balleine, B. W. The Role of the Hippocampus in Instrumental Conditioning. J. 

Neurosci. 20, 4233–4239 (2000). 

19. Miller, K. J., Botvinick, M. M. & Brody, C. D. Dorsal hippocampus contributes to model-based 
planning. Nat. Neurosci. 20, 1269–1276 (2017). 

20. Vikbladh, O. M. et al. Hippocampal Contributions to Model-Based Planning and Spatial Memory. 
Neuron (2019) doi:10.1016/j.neuron.2019.02.014. 

21. McNamara, C. G., Tejero-Cantero, Á., Trouche, S., Campo-Urriza, N. & Dupret, D. Dopaminergic 
neurons promote hippocampal reactivation and spatial memory persistence. Nat. Neurosci. 17, 
1658–1660 (2014). 

22. Kempadoo, K. A., Mosharov, E. V., Choi, S. J., Sulzer, D. & Kandel, E. R. Dopamine release from the 
locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. Proc. Natl. Acad. 
Sci. 113, 14835–14840 (2016). 

23. Kheirbek, M. A. et al. Differential Control of Learning and Anxiety along the Dorsoventral Axis of 
the Dentate Gyrus. Neuron 77, 955–968 (2013). 

24. Lee, H., Ghim, J.-W., Kim, H., Lee, D. & Jung, M. Hippocampal Neural Correlates for Values of 
Experienced Events. J. Neurosci. 32, 15053–15065 (2012). 

25. Dickerson, K. C., Li, J. & Delgado, M. R. Parallel contributions of distinct human memory systems 
during probabilistic learning. NeuroImage 55, 266–276 (2011). 

26. Mulej Bratec, S. et al. Cognitive emotion regulation enhances aversive prediction error activity 
while reducing emotional responses. NeuroImage 123, 138–148 (2015). 

27. Chase, H. W., Kumar, P., Eickhoff, S. B. & Dombrovski, A. Y. Reinforcement learning models and 
their neural correlates: An activation likelihood estimation meta-analysis. Cogn. Affect. Behav. 
Neurosci. (2015) doi:10.3758/s13415-015-0338-7. 

28. Garrison, J., Erdeniz, B. & Done, J. Prediction error in reinforcement learning: A meta-analysis of 
neuroimaging studies. Neurosci Biobehav Rev 37, 1297–310 (2013). 

29. Adhikari, A., Topiwala, M. A. & Gordon, J. A. Synchronized Activity between the Ventral 
Hippocampus and the Medial Prefrontal Cortex during Anxiety. Neuron 65, 257–269 (2010). 

30. Burgess, N., Recce, M. & O’Keefe, J. A model of hippocampal function. Neural Netw. 7, 1065–1081 
(1994). 

31. Royer, S., Sirota, A., Patel, J. & Buzsáki, G. Distinct Representations and Theta Dynamics in Dorsal 
and Ventral Hippocampus. J. Neurosci. 30, 1777–1787 (2010). 

32. Viard, A., Doeller, C. F., Hartley, T., Bird, C. M. & Burgess, N. Anterior Hippocampus and Goal-
Directed Spatial Decision Making. J. Neurosci. 31, 4613–4621 (2011). 

33. Rolls, E. T. & Xiang, J.-Z. Reward-Spatial View Representations and Learning in the Primate 
Hippocampus. J. Neurosci. 25, 6167–6174 (2005). 

34. Torres-Berrío, A., Vargas-López, V. & López-Canul, M. The ventral hippocampus is required for 
behavioral flexibility but not for allocentric/egocentric learning. Brain Res. Bull. 146, 40–50 (2019). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 9, 2020. ; https://doi.org/10.1101/2020.01.02.893255doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.02.893255
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 
35. Hallquist, M. N. & Dombrovski, A. Y. Selective maintenance of value information helps resolve the 

exploration/exploitation dilemma. Cognition 183, 226–243 (2019). 

36. Fanselow, M. S. & Dong, H.-W. Are the Dorsal and Ventral Hippocampus Functionally Distinct 
Structures? Neuron 65, 7–19 (2010). 

37. Moustafa, A. A., Cohen, M. X., Sherman, S. J. & Frank, M. J. A role for dopamine in temporal 
decision making and reward maximization in Parkinsonism. J. Neurosci. 28, 12294–12304 (2008). 

38. Theves, S., Fernandez, G. & Doeller, C. F. The Hippocampus Encodes Distances in 
Multidimensional Feature Space. Curr. Biol. CB 29, 1226-1231.e3 (2019). 

39. Ludvig, E. A., Sutton, R. S. & Kehoe, E. J. Stimulus Representation and the Timing of Reward-
Prediction Errors in Models of the Dopamine System. Neural Comput. 20, 3034–3054 (2008). 

40. Ludvig, E. A., Sutton, R. S. & Kehoe, E. J. Evaluating the TD model of classical conditioning. Learn. 
Behav. 40, 305–319 (2012). 

41. Bush, R. R. & Mosteller, F. Stochastic models for learning. (John Wiley & Sons, Inc., 1955). 

42. Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 
50, 346–363 (2008). 

43. Lebreton, M. & Palminteri, S. When are inter-individual brain-behavior correlations informative? 
bioRxiv 036772 (2016) doi:10.1101/036772. 

44. Bush, K. & Cisler, J. Decoding neural events from fMRI BOLD signal: A comparison of existing 
approaches and development of a new algorithm. Magn. Reson. Imaging 31, 976–989 (2013). 

45. Takeuchi, T. et al. Locus coeruleus and dopaminergic consolidation of everyday memory. Nature 
537, 357–362 (2016). 

46. Lansink, C. S., Goltstein, P. M., Lankelma, J. V., McNaughton, B. L. & Pennartz, C. M. A. 
Hippocampus Leads Ventral Striatum in Replay of Place-Reward Information. PLOS Biol. 7, 
e1000173 (2009). 

47. Chevrier, A. & Schachar, R. J. Error detection in the stop signal task. NeuroImage 53, 664–673 (2010). 

48. Wimmer, G. E. & Shohamy, D. Preference by Association: How Memory Mechanisms in the 
Hippocampus Bias Decisions. Science 338, 270–273 (2012). 

49. Campbell, K. L., Madore, K. P., Benoit, R. G., Thakral, P. P. & Schacter, D. L. Increased 
hippocampus to ventromedial prefrontal connectivity during the construction of episodic future 
events. Hippocampus 28, 76–80 (2018). 

50. DeVito, L. M. & Eichenbaum, H. Memory for the Order of Events in Specific Sequences: 
Contributions of the Hippocampus and Medial Prefrontal Cortex. J. Neurosci. 31, 3169–3175 (2011). 

51. Gerraty, R. T., Davidow, J. Y., Wimmer, G. E., Kahn, I. & Shohamy, D. Transfer of Learning Relates 
to Intrinsic Connectivity between Hippocampus, Ventromedial Prefrontal Cortex, and Large-Scale 
Networks. J. Neurosci. 34, 11297–11303 (2014). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 9, 2020. ; https://doi.org/10.1101/2020.01.02.893255doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.02.893255
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30 
52. McCormick, C., Ciaramelli, E., De Luca, F. & Maguire, E. A. Comparing and Contrasting the 

Cognitive Effects of Hippocampal and Ventromedial Prefrontal Cortex Damage: A Review of 
Human Lesion Studies. Neuroscience 374, 295–318 (2018). 

53. Preston, A. R. & Eichenbaum, H. Interplay of Hippocampus and Prefrontal Cortex in Memory. 
Curr. Biol. 23, R764–R773 (2013). 

54. Guise, K. G. & Shapiro, M. L. Medial Prefrontal Cortex Reduces Memory Interference by Modifying 
Hippocampal Encoding. Neuron 94, 183-192.e8 (2017). 

55. Fiorillo, C. D., Newsome, W. T. & Schultz, W. The temporal precision of reward prediction in 
dopamine neurons. Nat. Neurosci. 11, 966–973 (2008). 

56. Howe, M. W., Tierney, P. L., Sandberg, S. G., Phillips, P. E. M. & Graybiel, A. M. Prolonged 
dopamine signalling in striatum signals proximity and value of distant rewards. Nature 500, 575–
579 (2013). 

57. Ekstrom, A., Suthana, N., Millett, D., Fried, I. & Bookheimer, S. Correlation Between BOLD fMRI 
and Theta-Band Local Field Potentials in the Human Hippocampal Area. J. Neurophysiol. 101, 2668–
2678 (2009). 

58. Fellner, M.-C. et al. Spatial Mnemonic Encoding: Theta Power Decreases and Medial Temporal Lobe 
BOLD Increases Co-Occur during the Usage of the Method of Loci. eNeuro 3, (2017). 

59. Kaplan, R. et al. Movement-Related Theta Rhythm in Humans: Coordinating Self-Directed 
Hippocampal Learning. PLOS Biol. 10, e1001267 (2012). 

60. Lubenov, E. V. & Siapas, A. G. Hippocampal theta oscillations are travelling waves. Nature 459, 
534–539 (2009). 

61. Patel, J., Fujisawa, S., Berényi, A., Royer, S. & Buzsáki, G. Traveling Theta Waves along the Entire 
Septotemporal Axis of the Hippocampus. Neuron 75, 410–417 (2012). 

62. Ambrose, R. E., Pfeiffer, B. E. & Foster, D. J. Reverse Replay of Hippocampal Place Cells Is 
Uniquely Modulated by Changing Reward. Neuron 91, 1124–1136 (2016). 

63. Johnson, A. & Redish, A. D. Hippocampal replay contributes to within session learning in a 
temporal difference reinforcement learning model. Neural Netw. 18, 1163–1171 (2005). 

64. Hrybouski, S. et al. Involvement of hippocampal subfields and anterior-posterior subregions in 
encoding and retrieval of item, spatial, and associative memories: Longitudinal versus transverse 
axis. NeuroImage 191, 568–586 (2019). 

65. Basu, J. & Siegelbaum, S. A. The Corticohippocampal Circuit, Synaptic Plasticity, and Memory. Cold 
Spring Harb. Perspect. Biol. 7, a021733 (2015). 

66. Strosslin, T. & Gerstner, W. Reinforcement Learning in Continuous State and Action Space. 4 
(2003). 

67. Iigaya, K. et al. The value of what’s to come: neural mechanisms coupling prediction error and 
reward anticipation. bioRxiv 588699 (2019) doi:10.1101/588699. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 9, 2020. ; https://doi.org/10.1101/2020.01.02.893255doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.02.893255
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31 
68. Somerville, L. H. et al. Charting the expansion of strategic exploratory behavior during adolescence. 

J. Exp. Psychol. Gen. 146, 155–164 (2016). 

69. Schulz, E., Wu, C. M., Ruggeri, A. & Meder, B. Searching for Rewards Like a Child Means Less 
Generalization and More Directed Exploration. Psychol. Sci. 30, 1561–1572 (2019). 

70. Pattwell, S. S. et al. Dynamic changes in neural circuitry during adolescence are associated with 
persistent attenuation of fear memories. Nat. Commun. 7, 11475 (2016). 

71. Tymula, A. et al. Adolescents’ risk-taking behavior is driven by tolerance to ambiguity. Proc. Natl. 
Acad. Sci. 109, 17135–17140 (2012). 

72. Chau, B. K. H. et al. Contrasting Roles for Orbitofrontal Cortex and Amygdala in Credit 
Assignment and Learning in Macaques. Neuron 87, 1106–1118 (2015). 

73. Parker, N. F. et al. Reward and choice encoding in terminals of midbrain dopamine neurons 
depends on striatal target. Nat. Neurosci. 19, 845–854 (2016). 

74. Tottenham, N. et al. The NimStim set of facial expressions: judgments from untrained research 
participants. Psychiatry Res. 168, 242–249 (2009). 

75. Fonov, V., Evans, A., McKinstry, R., Almli, C. & Collins, D. Unbiased nonlinear average age-
appropriate brain templates from birth to adulthood. NeuroImage 47, S102 (2009). 

76. Millman, K. J. & Brett, M. Analysis of functional magnetic resonance imaging in Python. Comput. 
Sci. Eng. 9, 52–55 (2007). 

77. Cox, R. W. AFNI: Software for Analysis and Visualization of Functional Magnetic Resonance 
Neuroimages. Comput. Biomed. Res. 29, 162–173 (1996). 

78. Smith, S. M. et al. Advances in functional and structural MR image analysis and implementation as 
FSL. NeuroImage 23 Suppl 1, S208-219 (2004). 

79. Roche, A. A Four-Dimensional Registration Algorithm With Application to Joint Correction of 
Motion and Slice Timing in fMRI. IEEE Trans. Med. Imaging 30, 1546–1554 (2011). 

80. Iglesias, J. E., Cheng-Yi Liu, Thompson, P. M. & Zhuowen Tu. Robust Brain Extraction Across 
Datasets and Comparison With Publicly Available Methods. IEEE Trans. Med. Imaging 30, 1617–
1634 (2011). 

81. Greve, D. N. & Fischl, B. Accurate and robust brain image alignment using boundary-based 
registration. NeuroImage 48, 63–72 (2009). 

82. Pruim, R. H. R. et al. ICA-AROMA: A robust ICA-based strategy for removing motion artifacts 
from fMRI data. NeuroImage 112, 267–277 (2015). 

83. Ciric, R. et al. Benchmarking of participant-level confound regression strategies for the control of 
motion artifact in studies of functional connectivity. NeuroImage 154, 174–187 (2017). 

84. Woolrich, M. W., Ripley, B. D., Brady, M. & Smith, S. M. Temporal autocorrelation in univariate 
linear modeling of FMRI data. NeuroImage 14, 1370–1386 (2001). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 9, 2020. ; https://doi.org/10.1101/2020.01.02.893255doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.02.893255
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 
85. Daunizeau, J., Adam, V. & Rigoux, L. VBA: A Probabilistic Treatment of Nonlinear Models for 

Neurobiological and Behavioural Data. PLOS Comput Biol 10, e1003441 (2014). 

86. Frank, M. J., Doll, B. B., Oas-Terpstra, J. & Moreno, F. Prefrontal and striatal dopaminergic genes 
predict individual differences in exploration and exploitation. Nat. Neurosci. 12, 1062–1068 (2009). 

87. Bürkner, P.-C. Advanced Bayesian Multilevel Modeling with the R Package brms. R J. 10, 395–411 
(2018). 

88. Poldrack, R. A. Is “efficiency” a useful concept in cognitive neuroscience? Dev. Cogn. Neurosci. 11, 
12–17 (2015). 

89. Woolrich, M. Robust group analysis using outlier inference. NeuroImage 41, 286–301 (2008). 

90. Woolrich, M. W., Behrens, T. E. J., Beckmann, C. F., Jenkinson, M. & Smith, S. M. Multilevel linear 
modelling for FMRI group analysis using Bayesian inference. NeuroImage 21, 1732–1747 (2004). 

91. Woo, C.-W., Krishnan, A. & Wager, T. D. Cluster-extent based thresholding in fMRI analyses: 
Pitfalls and recommendations. NeuroImage 91, 412–419 (2014). 

92. Eklund, A., Nichols, T. E. & Knutsson, H. Cluster failure: Why fMRI inferences for spatial extent 
have inflated false-positive rates. Proc. Natl. Acad. Sci. 201602413 (2016) 
doi:10.1073/pnas.1602413113. 

93. Winterburn, J. L. et al. A novel in vivo atlas of human hippocampal subfields using high-resolution 
3T magnetic resonance imaging. NeuroImage 74, 254–265 (2013). 

94. Revelle, W. & Rocklin, T. Very Simple Structure: An Alternative Procedure For Estimating The 
Optimal Number Of Interpretable Factors. Multivar. Behav. Res. 14, 403–414 (1979). 

95. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. 
Stat. Softw. 67, 1–48 (2015). 

96. R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical 
Computing, 2017). 

97. Bush, K. et al. Improving the precision of fMRI BOLD signal deconvolution with implications for 
connectivity analysis. Magn. Reson. Imaging 33, 1314–1323 (2015). 

98. Therneau, T. M. coxme: Mixed Effects Cox Models. (2018). 

99. Singer, J. D. & Willett, J. B. Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence. 
(Oxford University Press, 2003). 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 9, 2020. ; https://doi.org/10.1101/2020.01.02.893255doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.02.893255
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33 
Figures 

 

 

 
Figure 1. The clock paradigm, typical human behavior, and the SCEPTIC model.  

(a) The clock paradigm consists of decision and feedback phases. During the decision phase, 
a dot revolves 360° around a central stimulus over the course of four seconds. Participants 
press a button to stop the revolution and receive a probabilistic outcome. 
(b) Rewards are drawn from one of four monotonically time-varying contingencies: 
increasing expected value (IEV), decreasing expected value (DEV), constant expected value 
(CEV), or constant expected value–reversed (CEVR). CEV and CEVR thus represent 
unlearnable contingencies with no true value maximum. Reward probabilities and 
magnitudes vary independently.  
(c) Evolution of subjects’ response times (RT) by contingency and performance.  Panels 
represent participants whose total earnings were above or below the sample median.  
(d) Evolution of subjects’ response time swings (RT swings) by contingency and performance.  
(e) When all response times have similar expected values, the entropy of the value 
distribution is high, promoting entropy-guided exploration in the SCEPTIC model. A better-
than-expected reward generates a positive reward prediction error (RPE+), which updates the 
value distribution.  
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(f) Participants often respond near the response time of the global value maximum, RT=>0?. 
However, on this trial the participant explores a later response time and receives a large 
unexpected reward, shifting the global value maximum, ΔRT=>0?, to a later time.  
(g) Late in learning, participants tend to converge on a perceived RT=>0? and to select 
response times near this ‘bump.’ Under the SCEPTIC model, values of preferred options are 
selectively maintained whereas values of non-preferred alternatives decay toward zero. The 
resulting value distribution has a prominent bump and lower entropy, promoting 
exploitative choices of high value response times. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 9, 2020. ; https://doi.org/10.1101/2020.01.02.893255doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.02.893255
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35 

 
 
Figure 2. Encoding of reinforcement along the A-P axis and its behavioral relevance. 

(a) Long axis of the hippocampus. The coloration along the axis denotes the transition from 
more posterior (blue) to more anterior (yellow) portions. This color scheme is used 
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throughout the paper to indicate how representation and effects on behavior vary along the 
long axis. The hippocampal mask is based on the Harvard-Oxford subcortical atlas.  
(b) Double dissociation of signals along the A-P axis: RPE responses predominate in PH and 
global value maximum responses, in AH. The light gray vertical lines denote the standard 
error from of the estimated mean from a multilevel regression model. 
(c) Prediction error responses in the PH and responses to low entropy (prominent global value 
maximum) in the AH, whole-brain FWE-corrected ps < .05.  
(d) The AH only tracks the prominence of the global value maximum as predicted by the 
information-compression selective maintenance SCEPTIC model, but not its full maintenance 
counterpart. The light gray vertical lines denote the standard error from of the estimated 
mean from a multilevel regression model.  
e-h. Double dissociation of behavioral correlates of PH vs. AH response. Full model statistics 
are presented in Table S5. 
(e) PH RPE responses predict greater exploration, particularly after rewards. The ordinate 
axis in (e) and (f) denotes the autocorrelation between previous choice and the current choice, 
with higher values indicating greater RT swings.   
(f) AH global value maximum responses had no consistent relationship with exploration.   
(g) PH responses had no effect on exploitation.  
(h) AH responses predict greater exploitation, particularly late in learning. The ordinate axis 
in (g) and (h) denotes the effect of the RTVmax on RT. Error bars depict 95% CI. 
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Figure 3. Online hippocampal responses time-locked to RTVmax (white dashed line), analysis of 
deconvolved BOLD signal. 

(a) Raw data, GAM smoothing with 3 knots, voxel-wise responses shown in 24 long-axis 
bins   
(b) Multilevel model, completely general time effect. The vertical gray lines denote standard 
errors from the multilevel model. NB: since voxel-wise timeseries are normalized, only 
differences in the shape, but not intercept, of response can be interpreted. 
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Figure 4. Real-time responses to reinforcement along the hippocampal long axis.  

(a) Responses during the ITI time-locked to feedback, raw data with GAM smoothing, 3 
knots.  
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(b) Responses during the ITI time-locked to feedback, multilevel general linear model with 
completely general time and bin location (12 bins) as predictors. 
(c) Evolution of hippocampal responses to reinforcement across trials, raw data with GAM 
smoothing, 3 knots.  
(d) Evolution of hippocampal responses to reinforcement across trials, multilevel general 
linear model with completely general learning epoch (five 10-trial bins) and bin location (12 
bins) as predictors. 
(e) Unfolding hippocampal responses to prior entropy (before current reinforcement) time-
locked to current reinforcement, multilevel model. Negative regression coefficients indicate 
stronger responses to low entropy (prominent global value maximum). 
(f) Unfolding hippocampal responses to prior global value maximum location (before 
current reinforcement) time-locked to current reinforcement, multilevel model. Negative 
regression coefficients indicate stronger responses to a more proximal (earlier) global value 
maximum. 
(g) Unfolding hippocampal responses to prior the shift in the global value maximum 
location following current reinforcement time-locked to current reinforcement, multilevel 
model. Negative regression coefficients indicate stronger responses when the global value 
maximum moves closer (earlier in the interval). 
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