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Abstract 
 
Learning in dynamic environments requires integrating over stable fluctuations to 
minimize the impact of noise (stability) but rapidly responding in the face of 
fundamental changes (flexibility). Achieving one of these goals often requires 
sacrificing the other to some degree, producing a stability-flexibility tradeoff. 
Individuals navigate this tradeoff in different ways, with some people learning 
rapidly (emphasizing flexibility) and others relying more heavily on historical 
information (emphasizing stability). Despite the prominence of such individual 
differences in learning tasks, the degree to which they relate to broader 
characteristics of real-world behavior or pathologies has not been well explored. 
Here we relate individual differences in learning behavior to self-report measures 
thought to collectively capture characteristics of the Autism spectrum. We show 
that that young adults who learn most slowly tend to integrate more effective 
samples into their beliefs about the world making them more robust to noise 
(more stability), but are more likely to integrate information from previous 
contexts (less flexibility). We show that individuals who report paying more 
attention to detail tend to use high flexibility and low stability information 
processing strategies. We demonstrate the robustness of this inverse 
relationship between attention to detail and formation of stable beliefs in a 
heterogeneous population of children that includes a high proportion of Autism 
diagnoses. Together, our results highlight that attention to detail reflects an 
information processing policy that comes with a substantial downside, namely the 
ability to integrate data to overcome environmental noise.    
 
 
Keywords: 
 
Learning, Autism, Integration, Flexibility, Cognitive Control.  
 
 
 
Introduction 
 
Successful decision making requires inferring important quantities such as the 
values and probabilities associated with potential decision outcomes through 
sequential observations over time. This inference process is difficult in changing 
environments, where optimal inference requires tracking the environmental 
statistics necessary to determine the most appropriate rate of learning (Behrens, 
Woolrich, Walton, & Rushworth, 2007; Browning, Behrens, Jocham, O'Reilly, & 
Bishop, 2015; McGuire, Nassar, Gold, & Kable, 2014; Nassar, McGuire, Ritz, & 
Kable, 2019b; Nassar et al., 2012; Prescott Adams & MacKay, 2007; Wilson, 
Nassar, & Gold, 2010; Yu & Dayan, 2005). In general, learning should be slow 
during periods of environmental stability in order to average over as many 
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relevant observations as possible, but fast during periods of environmental 
change that render prior observations irrelevant to the problem of predicting 
future ones (Behrens et al., 2007; Browning et al., 2015; Nassar et al., 2016; 
Nassar, Wilson, Heasly, & Gold, 2010; Vaghi et al., 2017; Wilson, Nassar, & 
Gold, 2013). Human behavior, fMRI BOLD responses, and measures of 
physiological arousal display qualitative hallmarks of this sort of learning rate 
adjustment, suggesting that the brain implements meta-control over its own rate 
of learning in order to optimize behaviorally relevant inferences (Behrens et al., 
2007; Browning et al., 2015; McGuire et al., 2014; Nassar et al., 2012; Nassar, 
McGuire, Ritz, & Kable, 2019b; Prescott Adams & MacKay, 2007; Wilson et al., 
2010; Yu & Dayan, 2005). 
 
However, learning rate, and adjustments thereof, differ dramatically across 
individuals, age groups, and clinical populations (Behrens et al., 2007; Browning 
et al., 2015; Nassar et al., 2010; 2016; Vaghi et al., 2017; Wilson et al., 2013). 
Some individuals tend to adjust beliefs rapidly irrespective of environmental 
statistics, leading to flexible but unstable beliefs, whereas others tend to adjust 
more slowly giving rise to inflexible but stable beliefs (Nassar et al., 2010). In 
principle, such differences might arise through learning about environmental 
statistics over a much longer time course, such as over development (Nassar et 
al., 2016) or even evolution (Krugel, Biele, Mohr, Li, & Heekeren, 2009; Stein, 
Newman, Savitz, & Ramesar, 2006). This longer timescale meta-learning might 
in some cases appropriately bias an individual towards one end of the 
stability/flexibility spectrum; however in other cases it could potentially go awry 
and give rise to pathological belief updating. For example, recent work has 
suggested individuals with obsessive compulsive disorder tend to over-learn from 
new information (Vaghi et al., 2017), limiting stability of beliefs. Consistent with a 
prominent theory of autism (Sinha et al., 2014), similar conclusions have been 
made about autistic individuals under some conditions (Lawson, Mathys, & Rees, 
2017), although other studies have failed to identify differences between autistic 
individuals and controls (Manning, Kilner, Neil, Karaminis, & Pellicano, 2016).  
 
These mixed results may result in part from heterogeneity within the autism 
spectrum. Autism is a broad diagnostic category characterized by deficits in 
social communication as well as restricted and repetitive patterns of behavior 
(RRBs). RRBs include inflexible adherence to routines, inflexibility to changing 
contexts, rigid thinking patterns, and increased attention to detail. Although the 
neural origins of an increased focus on details remains unknown, it has been 
described colloquially as “missing the forest for the trees” and theoretically as 
“weak central coherence” (Frith, 1989; Happé & Frith, 2006), “enhanced 
discrimination and reduced generalization” (Plaisted, 2001), and “enhanced 
perceptual functioning” (Mottron, Dawson, Soulières, Hubert, & Burack, 2006). 
Studies investigating increased attention to detail tend to employ experimental 
tasks that require an individual to extract smaller feature from a larger whole (i.e. 
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Navon figures, block design task, embedded figures), in which performance can 
indicate a preference or bias towards local features or the more global whole. 
Several studies have found individuals with autism spectrum disorder (ASD) to 
have a local perceptual bias (Dakin & Frith, 2005; Happé, 1999; Simmons et al., 
2009). Such a local bias, if extended to learning through time, might predict an 
over-reliance on recent information (supporting flexibility), at the expense of 
integration over relevant historical information (limiting stability).  
 
One factor limiting much of the previous research on attention to detail is the 
focus on dichotomous groups of individuals with or without an ASD diagnosis, a 
study design that does not take into account that behavioral manifestations of 
ASD are heterogeneous within the disorder and also are present in the general 
population. Importantly, local/global perception has also been shown to vary in 
the general population (Dale & Arnell, 2013; McKone et al., 2010; Scherf, 
Behrmann, Kimchi, & Luna, 2009). Recent work has shown that quantitative traits 
of autism measured both in the general population and within clinically-diagnosed 
cohorts are associated with the ability to disembed a smaller figure from a larger 
shape (Sabatino DiCriscio & Troiani, 2017; 2018).  Further, it has been shown 
that the ability to disembed a local part from a global whole are not present in 
every individual with ASD, indicating that measuring trait dimensions is important 
in heterogeneous disorders like autism (DiCriscio, Hu, & Troiani, 2019). 
 
Here we use a trait dimension approach to examine the relationship between 
attention to detail, a prominent feature of autism, and the degree to which 
individuals implement learning policies favoring either stability or flexibility. We 
relate individual differences in learning behavior (stability/flexibility tradeoff) to a 
quantitative measure of autism traits (Autism Spectrum Quotient; AQ), designed 
to capture characteristics of autism that extend outside of traditional diagnostic 
boundaries. We examine this in two separate populations: healthy young adults 
and children with a range of developmental abilities, including autism. We show 
that the young adults who update beliefs the least in the face of conflicting 
information integrate more effective samples into their beliefs about the world, 
making them more robust to noise (more stability), but also are more likely to 
integrate information from previous contexts (less flexibility). The individuals who 
show the opposite pattern of results (high flexibility/low stability), tended to score 
higher on the attention to detail subscale of the AQ. We confirm this inverse 
relationship between attention to detail and formation of stable beliefs in a 
population of children that includes a high proportion of clinical autism diagnoses. 
Together, our results highlight that attention to detail reflects an information 
processing policy that comes with a substantial downside, namely the inability to 
integrate data to overcome environmental noise.   
 
Methods 
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Subject populations: 
 
Experiment 1: 43 young adults (20 female, mean[std] age = 2.4[3.4] years, 
Mean[std] WASI FSIQ = 112[10.4]) were recruited from a local community 
population to participate in our first behavioral study.  
 
Experiment 2: 37 children (17 female, mean[std] age = 9.5 [2.5]) were recruited to 
participate in our second behavioral study. In order to obtain a range of autism 
traits in the sample, we identified participants using a broad recruitment 
strategy.  This included identifying participants based on patient referral to a 
neurodevelopmental clinic in Lewisburg, Pennsylvania, as well as from health 
system wide advertisement and the surrounding community. On the day of 
research testing, all participants completed a cognitive assessment to document 
IQ (WASI-II: Wechsler abbreviated scale of intelligence, 2nd edition; Wechsler, 
2011). If an IQ test was ascertained as part of their clinic appointment that day, 
we used the clinically ascertained IQ score. All participants assented to protocols 
approved by the institutional review board (IRB) at the authors’ home institution. 
Twelve of our participants had a clinical diagnosis of autism or ASD based on 
assessment by our neurodevelopmental pediatricians and support staff.   
 
Study Session: 
 
Each experimental session involved performing a computerized predictive 
inference task (Nassar et al., 2016; Nassar, Bruckner, & Frank, 2019a), 
completing the Autism Quotient questionnaire, and a cognitive assessment 
(WASI FSIQ).  
 
Predictive inference task: 
 
Each participant completed a computerized predictive inference task that 
required them to infer the location of an unobservable helicopter based on the 
locations of bags that had previously fallen from it (McGuire et al., 2014). The 
task included two conditions that favor different adaptive learning strategies 
(d'Acremont & Bossaerts, 2016; Nassar, Bruckner, & Frank, 2019a). In one 
condition the helicopter was generally stationary but occasionally underwent 
“changepoints” at which its position was reset to a random horizontal position on 
the visible screen, in the other condition the helicopter “drifted” slightly from trial-
to-trial. On each trial a bag would fall from the top of the screen, providing the 
participant with some information about the helicopter location. In the 
changepoint condition this information was always relevant – as bag locations 
were normally distributed around the helicopter position. However, in the 
condition with the drifting helicopter, bags were occasionally sampled from a 
uniform distribution extending across the entire screen, giving rise to “oddball” 
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events that were unrelated to the true helicopter location. Both conditions were 
fully instructed using an extended training period in which the true helicopter 
position was visible to the participants. On each task trial, participants were 
asked to move a bucket to the inferred location of the helicopter in order to catch 
tokens in the bags that were translated into points.  
 
 
Autism Spectrum Quotient (AQ): 
The AQ is a self-report measure aimed to assess ASD-like traits across the 
general population (Baron-Cohen, Wheelwright, Skinner, Martin, & Clubley, 
2001). This measure assesses five trait domains, including communication, 
social skills, attention switching, imagination, and attention to detail. Using a 4-
point Likert scale, a participant responds with how strongly they agree or 
disagree with a given statement. Each item is scored based on whether a given 
trait is endorsed, with half of the items requiring an agree and half requiring a 
disagree response to endorse an ASD-like trait. Item scores are summed to 
generate both a total score as well as subscale scores.  In Experiment 1, young 
adults completed a self-report version of the AQ, while in Experiment 2, parents 
completed a parental-report version of the AQ on their child’s behavior. 
 
Subject Exclusion 
 
For both studies, subjects were excluded if they did not meet a basic 
performance standard designed to determine whether they were actually 
attempting to complete the task (mean distance between bucket and helicopter 
position of less than 45 units). This performance standard was met by all 
participants in the young adult population but did lead to exclusion of one 
participant in the developmental cohort (see figure S2). In addition, 8 participants 
in the developmental cohort did not complete the AQ due to time constraints, and 
thus were not included in the correlations between AQ measures and task 
performance. After participant exclusion, our developmental cohort included 29 
participants, 11 of whom had an autism diagnosis.  
 
Normative learning model: 
 
Normative learning was assessed using a reduced Bayesian model that has 
been described previously for the changepoint (Nassar et al., 2010) and oddball 
(Nassar, Bruckner, & Frank, 2019a) conditions.  
 
Single trial learning rates: 
 
Participant bucket positions and computer generated bag locations were used to 
compute trial-by-trial prediction errors (the difference between bag location and 
the center of the bucket on a given trial) and prediction updates (the bucket 
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location on a subsequent trial minus the bucket location on the current trial). In 
order to estimate the degree of influence of each bag on the subsequent 
behavior of the participant, we computed a single trial learning rate by dividing 
the update made on each trial by the prediction error observed on that trial 
(Nassar et al., 2010). Learning rates computed in this way that were greater than 
1 or less than 0 were set to 1 or 0, respectively. Single trial learning rates were 
categorized into three groups: 1) total updates [>.8], 2) moderate updates [.2 to 
.8], and 3) non-updates (<.2).  
 
 
Characterizing the content of participant beliefs 
 
To better understand how the exact sequence of learning rates employed by 
each participants affected the precision and flexibility of their beliefs, we re-
represented participant beliefs (bucket position) on each trial as a weighted 
mixture of previous outcomes (bag locations). To do so, we stepped through the 
sequence of single trial learning rates and for each trial 1) assigned weight to the 
newest outcome in proportion to the learning rate on that trial, and 2) updated the 
weight assigned to all previous outcomes by multiplying their weight (computed 
on the previous trial) by one minus the current trials learning rate. This procedure 
produced a vector of weights that, when multiplied by the corresponding vector of 
outcomes, resulted in the exact belief of the participant.  
 
In order to assess the flexibility of beliefs, we quantified the proportion of the 
weight profile that was attributed to relevant outcomes. In the changepoint 
condition, relevant outcomes were defined as those having occurred since the 
most recent changepoint (eg. bags that fell from the current helicopter location). 
In the oddball condition, all non-oddball outcomes were considered to be relevant 
(eg. bags normally distributed around helicopter).    
 
In order to assess precision beliefs, we quantified the effective number of 
outcomes from which they were composed. Specifically, we computed effective 
samples as follows: 
 
 

𝜏 =  
1
𝜎!"!!

=
1

𝑤!𝜎!"#$
! +  𝑤!𝜎!"#$

!…+  𝑤!!!𝜎!"#$
! 

 
𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 =  

𝜏
𝜎!"#$!  

 
where 𝜏 reflects the precision (inverse variance) of beliefs, 𝜎!"!!  is the variance on 
the weighted mean of samples,  𝜎!"#$%&!  is the variance on each sample, and w 
reflects the weight given to that sample during updating. Our effective samples 
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measure simply normalized the belief precision in terms of the precision of a 
belief based on a single observation.  
 
 
Statistical analysis: 
 
Rank order correlations between task measures and AQ sub-scale measures 
were computed using Spearman’s Rho. Linear regression was used for followup 
analyses designed to statistically control for other factors including IQ, age, and 
gender. All analyses and models were implemented in Matlab (The MathWorks, 
Natick, MA) and all code and anonymized data will be made available upon 
publication on the corresponding authors website 
(https://sites.brown.edu/mattlab/resources/).  
  
 
Results  
 
Experiment 1 
 
Young adults made predictive inferences in both changepoint and oddball 
contexts. Participants specified predictions about the location of an unobservable 
helicopter (Fig 1A, prediction panel) in order to catch bags (Fig 1A, outcome 
panel). Predictions were updated on each trial (Fig 1A, update panel) according 
to the most recently observed bag location, and knowledge of the underlying 
generative structure (changepoint/oddball). In the changepoint condition, 
normative learning (Fig 1B, pink line) prescribed rapid updating in response to 
unexpected bag locations, as these outcomes were likely associated with a 
change in the helicopter location. In contrast, in the oddball condition normative 
learning (Fig1B, pink) required ignoring unexpected bag locations, which were 
likely to be oddballs unrelated to the actual helicopter position. Predictions made 
by an example participant (Fig1B&C, blue) conform well to normative model 
predictions. The normative learning model adjusts learning rate from trial to trial 
according to the probability that the observed outcome reflects a changepoint 
(Fig 1D, orange) or oddball (Fig 1E, orange), depending on the current task 
condition, as well as an estimate of uncertainty about the current helicopter 
location (Fig 1D&E, yellow; (Nassar et al., 2012)).  
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Figure 1: Predictive inference task measures learning in different statistical contexts. A) On each 
trial, participants were required to adjust the position of a bucket to catch bags of coins that would 
be dropped from an unobservable helicopter. Subjects were not able to observe the helicopter, 
and thus forced to use the history of bag locations and knowledge about the environmental 
statistics to inform bucket placement. B-C) Example data from a single subject performing the 
predictive inference task in changepoint (B) and oddball (C) conditions. B) In the changepoint 
condition, the helicopter (not shown) remained in a single screen position (ordinate) for a number 
of trials (abscissa), before occasionally relocating to a new screen position (changepoint). Bag 
locations (yellow and gray points) were drawn from a normal distribution centered on the 
helicopter location. Inferences about the helicopter location made by a normative learning model 
(pink line) and bucket placements made by an example subject (blue line) are both rapid to adjust 
after changepoints in the helicopter location. C) In the oddball condition, the helicopter position 
drifted slowly from one trial to the next, and bag positions were either drawn from a normal 
distribution centered on the helicopter location (90% of trials) or a uniform distribution across the 
entire task space (10% of trials). D&E) The normative learning model adjusted learning rate 
(green line) on each trial according to uncertainty (yellow) and surprise (orange). In the 
changepoint condition (D) surprise was indicative of changepoints and increased learning rates, 
whereas in the oddball condition (E) surprise was indicative of an uninformative oddball and thus 
promoted lower learning rates. 
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The distribution of single trial learning rates used by participants differed across 
the two conditions, qualitatively in accordance with the normative predictions. On 
changepoint trials, participants tended to use high learning rates (Fig 2A), 
whereas on oddball trials where bag locations were equally surprising but 
unrelated to the true helicopter location, participants tended to use learning rates 
near zero (Fig 2B). Distribution of learning rates across unsurprising trials tended 
to be more similar across the conditions, with a fair number of small and 
moderate learning rates employed (Fig 2C&D). These relative patterns of 
learning were consistent across subjects, with total-updates (learning rate > 0.8) 
decreasing with increasing trials after a changepoint (Fig 2E; linear effect of trials 
after changepoint on total updating: t = -8.0, df = 42, p=5x10-10) and non-updates 
(learning rate < 0.2) elevated on oddball trials (Fig 2F; contrast non-updating on  
oddball versus other trials: t = 2.9, df = 42, p=0.007). 
 

 
 
Figure 2: Participant learning rates were sensitive to task condition and surprising outcomes.  
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A-D) Single trial learning rate frequency histograms for changepoint (A) and oddball (B) trials, as 
well as for non-changepoint (C) and non-oddball (D) trials. Single trial learning rates are 
categorized into three types: non updates, moderate updates, and total updates, depending on 
their value with respect to criterion values (dotted vertical lines). E-F) Mean/SEM proportion of 
each category of learning rates used as a function of time since the previous surprising event 
[changepoint (E) or oddball (F)].  
 
 
Despite the preservation of relative learning patterns, participants differed 
markedly in their overall learning rate distributions, with some participants almost 
never making a total update and others using total updates on approximately six 
out of ten trials. In principle, these differences could reflect different policies 
toward optimizing either the stability or flexibility of beliefs. In order to test 
whether such a stability/flexibility tradeoff exists, we examined how individual 
differences in total update frequency related to performance in each of the task 
conditions. In the changepoint condition, higher total update frequency tended to 
be associated with smaller errors on changepoint trials (Figure 3A; Spearman’s 
rho = -0.34, p = 0.02) but larger errors during periods of stability (Figure 3C; 
Spearman’s rho = 0.66, p = 1.5 x 10-6), supporting the idea that individuals may 
differ in their relative concern for stability versus flexibility of beliefs. Performance 
in the oddball condition, in contrast, tended to favor more stable belief updating 
strategies, with more frequent total updates leading to worse performance on 
oddball trials (Fig 3B&D; Spearman’s rho = 0.66, p = 1.5 x 10-6). Thus, individual 
differences in learning, specifically the frequency of total updating, predicted 
individual differences in performance in a manner that suggests different policies 
regarding toward optimizing stability or flexibility.  
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Figure 3: Individual differences in performance were driven by individual differences in the 
frequency of total updates.  A-D) Relative error magnitude (ordinate) is plotted against frequency 
of total updating (abscissa) for each individual subject (points) in the two task conditions 
(changepoint = blue, oddball = green). Top panels reflect performance on the trial subsequent to 
a surprising outcome (A = post-changepoint, B = post-oddball) whereas bottom panels reflect 
performance during periods of stability (>5 trials after most recent changepoint (C) or oddball (D)). 
Relative error would be zero if participants were using only the most recent relevant outcome in 
order to make their prediction (dotted line) and thus achieving negative relative errors requires 
using bucket placements that integrate information from more than one previous outcome.  
 
 
In order to more explicitly test for individual differences in the stability and 
flexibility of beliefs, we used the sequence of learning rates preceding each 
prediction to determine the weighted contribution of each previous outcome to 
that prediction (see methods). When applied to simple fixed learning rate models, 
this method revealed the expected exponential decay of weight across previous 
outcomes, with higher learning rates corresponding to higher rates of decay 
(Fig4A, blue&yellow). Normative learning relies on weights with more complex 
dynamics, which are approximately uniform across trials since the most recent 
changepoint, but zero on trials prior to the most recent changepoint (Fig4A, 
green). The lack of weight attributed to outcomes prior to the previous 
changepoint affords the normative model flexibility, whereas the roughly uniform 
weighting of outcomes since the previous changepoint facilitates precise beliefs 
by averaging over the noise associated with each relevant outcome. This benefit 
in precision can be quantified through the number of effective samples 

0 0.2 0.4 0.6
0

20

40

60
Re

lat
ive

 E
rro

r
Post CPA

0 0.2 0.4 0.6-50

0

50

100

150

Re
lat

ive
 E

rro
r

Post OddballB

0 0.2 0.4 0.6
Total update freq

-10

-5

0

5

10

Re
lat

ive
 E

rro
r

CP stableC

0 0.2 0.4 0.6
Total update freq

-10

-5

0

5

10

Re
lat

ive
 E

rro
r

non oddballD

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2020. ; https://doi.org/10.1101/2020.01.03.894014doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.03.894014
http://creativecommons.org/licenses/by-nc-nd/4.0/


comprising the current prediction, which grows nearly linearly for the normative 
model during periods of stability but rapidly decays to one after a changepoint 
(Fig 4b, yellow). Note that a simple high fixed learning rate model, which is 
flexible in that it rapidly discards old and potentially irrelevant information (Fig 4a, 
blue), never accumulates even two effective samples (Fig 4b, blue), and is 
therefore highly sensitive to noise. This illustrates the stability flexibility tradeoff – 
rapid learning can promote flexibility at the expense of precision during periods of 
stability.   
 
The stability flexibility tradeoff was also evident from individual differences in our 
task. Individuals who were most flexible (eg. had a high proportion of weight 
associated to relevant outcomes) tended to base predictions on fewer samples 
(Fig 4C; Spearman’s rho = -0.49, p = 9.1 x 10-4) in the changepoint condition. 
Conversely, individuals who incorporated more outcomes into their predictions, 
tended to include a higher proportion of irrelevant outcomes, making their 
predictions less flexible in the face of changepoints. In the oddball condition, 
where task-relevance was unrelated to recency, this relationship reversed such 
that participants who incorporated the most samples, also tended to have the 
highest proportion of relevant ones (Fig4d; Spearman’s rho = 0.53, p = 3.1 x 10-

4). Taken together, these results suggest that individuals differ in their relative 
emphasis on the precision of beliefs, or their flexibility in the face of changing 
contexts.  
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Figure 4: Individual differences in performance are attributable to a fundamental tradeoff in the 
quantity and relevance of samples from which a belief is composed. A) Bucket placements on a 
given task trial can be decomposed into a weighted average of previous observations. Higher 
learning rates correspond to a greater proportion of weight attributed to recent observations 
(compare blue and yellow lines) and normative learning approximates a flat weighting of all 
observations since the previous changepoint (green). Observations occurring prior to the most 
recent changepoint are irrelevant to the inference process, and thus the proportion of weights 
attributed to observations occurring since the last changepoint quantifies the relevance of 
samples from which the belief is composed.  B) For a bucket placement on a given trial, the 
distribution of weights over previous observations can be used to infer the effective number of 
samples incorporated into that belief (which scales with the precision – or inverse variance – of 
that belief). High learning rate models, which rely predominantly on the most recent observations, 
rely on beliefs with the fewest effective samples (blue). Normative learning approximates linear 
growth of effective samples during periods of stability, but rapid collapse of effective samples 
after observing a changepoint (green). C-D) Participants who incorporated the most samples into 
their beliefs (abscissa) tended to rely on less relevant information (ordinate) in the change-point 
condition (C), whereas this relationship reversed in the oddball condition (D).  
 
 
An important motivating question of this work was to examine the degree to 
which such differences in stability/flexibility policy might relate to broader patterns 
of real-world behavior, with respect to traits that are elevated in ASD. In line with 
this idea, healthy young adults who scored highest on the attention to detail sub-
domain of the AQ incorporated fewer effective samples into beliefs in the 
changepoint condition (Fig 5A; Spearman’s rho = -0.43, p = 0.005), but those 
samples were more relevant (Fig 5C; Spearman’s rho = 0.33, p = 0.03). No 
relationships between these measures of stability and flexibility were observed in 
relation to other sub-domains of the AQ (Fig S1; all 8 p values > 0.1) or in relation 
to IQ (p = 0.16, 0.28). There was a trend toward the same negative relationship 
between precision and attention to detail in the oddball condition (Spearman’s 
rho = -0.30, p = 0.06), however the advantage of high attention to detail 
individuals in terms of sample relevance was not apparent in this condition 
(Spearman’s rho = -0.22, p = 0.17). Taken together, these results suggest 
“attention to detail”, one specific aspect of behavioral variability that has been 
associated with ASD, directly relates to stability/flexibility policy, with individuals 
higher on “attention to detail” favoring flexibility even at the expense of stability.  
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Figure 5: Attention to detail predicts individual differences in stability/flexibility policy.  A-B) 
Individual differences in the effective sample size of beliefs (ordinate) were negatively related to 
self reported scores on the attention to detail subscale of the Autism Spectrum Questionnaire 
(abscissa) in both changepoint (A) and oddball (B) conditions. C-D) Individual differences in the 
proportion of samples attributed to relevant observations (ordinate) were positively related to self 
reported scores on the attention to detail subscale of the Autism Spectrum Questionnaire 
(abscissa) in the changepoint (A) but not the oddball (B) conditions.  
 
 
 
Experiment 2 
 
In order to test the generality of the relationship between attention to detail and 
stability/flexibility and to examine it across a wider range of behavioral 
phenotypes that includes individuals with ASD, we conducted a second 
behavioral study in a heterogenous population of children (N = 37, mean[STD] 
age = 9[2.5], 17 female). The group included 12 participants diagnosed with ASD, 
as well as 25 children recruited from the local community.  
 
In general, behavior of the children included far fewer updates than that of the 
young adult population. Non-updates were the most common updating category, 
even on changepoint trials that should require total updates (Figure 6). In 
principle, non-updates could limit flexibility by reducing responsiveness to new 
information after a changepoint, but could also limit precision of beliefs during 
periods of stability by preventing incorporation of new information into existing 
beliefs. Consistent with this idea, there was no evidence for a stability flexibility 
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tradeoff in either condition for the developmental cohort (Figure 7A; Spearman’s 
Rho 0.21, p = 0.2 for the changepoint condition and Rho -0.03, p = 0.87 for the 
oddball condition).  
 

 
 
Figure 6: Non-updates are increased and condition-differences are less pronounced in a 
heterogeneous population of children. A-D) Single trial learning rate frequency histograms for 
changepoint (A) and oddball (B) trials, as well as for non-changepoint (C) and non-oddball (D) 
trials. Single trial learning rates are categorized into three types: non updates, moderate updates, 
and total updates, depending on their value with respect to criterion values (dotted vertical lines). 
E-F) Mean/SEM proportion of each category of learning rates used as a function of time since the 
previous surprising event [changepoint (E) or oddball (F)].  
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Figure 7: Stability/flexibility tradeoff does not explain individual differences in updating among a 
heterogeneous population of children. A-B) For each participant (points), the mean proportion of 
samples composing the belief that are relevant to the current statistical context (abscissa) is 
plotted against the total number of effective samples composing the belief (ordinate) separately 
for changepoint (A) and oddball (B) conditions. Trend lines indicate least squares fit to data.  
 
 
 
Despite the lack of evidence for a stability flexibility tradeoff in this heterogenous 
population of children, attention to detail was still related across participants to 
lower precision beliefs. The average number of effective samples in participant 
beliefs aggregated across conditions was greatest for individuals with the lowest 
attention to detail scores  (Spearman’s Rho = -0.50, p = 0.006). This relationship 
was similar in the two conditions (Fig 8A&B), but only reached statistical 
significance in the oddball condition (Spearman’s Rho for CP and ODD 
conditions: -0.25, -0.56; p values: 0.19, 0.001). Unlike in the young adult 
population, attention to detail did not confer any advantage in terms of flexibility 
to children (Fig 8C&D; p-value for correlations in both conditions > 0.5), likely due 
to additional variance in flexibility measures attributable to non-updating at 
changepoints (Fig 6E, pink). The relationship between attention to detail and 
belief precision was robust to inclusion of IQ, age, and gender into the 
explanatory model (Mean[95% conf int] beta for extended regression model = -
0.20[-0.33, -0.06], t = -3.0, dof = 24, p = 0.006). Taken together, these results 
suggest that attention to detail comes at a significant cost to the precision of 
beliefs, whereas the potential benefits of attention to detail in terms of belief 
flexibility are population dependent.  
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Figure 8: Attention to detail is inversely related to the number of effective samples composing 
beliefs in a heterogeneous population of children. A-B) For each participant (points), the total 
number of effective samples composing the belief (abscissa) is plotted against self reported 
scores on the attention to detail subscale of the AQ (ordinate) revealing a negative relationship in 
both changepoint (A) and oddball (B) conditions. C-D) In contrast, the proportion of relevant 
samples (abscissa) was unrelated to attention to detail scores (ordinate) for both changepoint (A) 
and oddball (B) conditions. 
 
 
 
Discussion 
 
Autism is a multi-dimensional construct with a broad behavioral profile. One autism-
linked dimension, attention to detail, has been related to a focus on local, as opposed to 
global, stimulus information. Here we explored whether this local bias might exist in time 
as well as in space, and whether such a bias would manifest in highly flexible but 
unstable beliefs. We confirmed high attention to detail young adults were more prone to 
completely updating beliefs in the face of contradictory information, and that this led 
them to form beliefs that were more flexible but which incorporated fewer observations, 
and thereby less robust to noise during periods of stability. We replicated the negative 
relationship between attention to detail and belief precision in a developmental cohort 
that included both typically developing and children with autism, but did not identify any 
advantages of higher attentional to detail individuals in this population with respect to 
flexibility. Taken together, our results highlight that high attention to detail, a prominent 
feature of autism, has profound implications for the way that information is used over 
time – promoting the use of recent, rather than historical information, and limiting the 
degree to which beliefs integrate over multiple observations.  
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To a first approximation, our results are consistent with basic tenants of “Weak Central 
Coherence Theory” (Frith, 1989; Happé & Frith, 2006). Specifically, the “global” aspect of 
our task might be considered to be the entire sequence of bag locations falling from the 
current helicopter location, whereas the “local” aspect might be considered to be the 
most recent bag location. We found that individuals who are high on attention to detail, a 
trait sometimes associated with autism, tend to focus on temporally local information, 
and form beliefs that incorporate fewer samples from the “global” category. This work 
nicely parallels work in the perceptual domain that has defined local and global in terms 
of space (O'Riordan & Plaisted, 2001; Plaisted, Dobler, Bell, & Davis, 2006; Sabatino 
DiCriscio & Troiani, 2017; Suzanne Scherf, Luna, Kimchi, Minshew, & Behrmann, 2008). 
However, our work did not focus on the binary autism distinction, but rather directly 
linked to measures of attention to detail. This is only one of many traits that is prevalent 
in ASD and indeed, in our populations was only very minimally related to other autism-
linked traits (See supplementary figures 1&3). Our focus on traits might have heightened 
our ability to see such an effect, where other recent work that has compared autism to 
controls has had mixed results (Lawson et al., 2017; Manning et al., 2016). 
 
Our results also speak to the more general tradeoff that the brain faces with respect to 
controlling the use of recent versus historical information. In stable regimes, optimizing 
this tradeoff requires integrating over all relevant historical observations, but changes in 
the environment require rapidly refocusing on recent observations to afford flexibility. We 
found, as had been reported previously, dynamic adjustments in the use of information 
according to environmental statistics, but we also noted an extremely wide range of 
overall learning behaviors (Figure 3). Note that this need not be the case from a 
computational perspective; participants were trained explicitly on the generative structure 
of the task, and had more than enough experience to estimate the rate of changepoints 
and oddballs, were they inferring these meta-parameters from the task observations 
(Nassar, Bruckner, & Frank, 2019a; Wilson et al., 2010). Thus, if participants came into 
the task without strong predispositions towards favoring either stability or flexibility, then 
they should have all arrived at similar policies by the end of the training session. 
However, this is not what we observed. One might argue that the heterogeneity across 
the individual participants reflects completely different task strategies, however the link 
between attention to detail and learning policy observed in our two experiments (Figures 
5&8) suggests that participants come to the task with a systematic predisposition toward 
a specific learning strategy, either favoring the use of recent information for flexibility 
(high attention to detail) or favoring the integration of data over time for stability (low 
attention to detail).  
 
One interesting question stemming from this work relates to the developmental timescale 
and origin of these predispositions from a neural perspective. For example, many 
aspects of RRBs present in ASD are considered age appropriate for most neurotypical 
toddlers (i.e. insistence on sameness, circumscribed/hyperfocused interests, inflexibility).  
One reason these behaviors are considered atypical in ASD is that they persist in older 
children and adults with the diagnosis, significantly contributing to impairment in real-
world situations. From the neural perspective, the heterogenous behavioral traits of ASD 
are not thought to stem from specific regions of the brain, but rather from atypical 
connectivity between brain regions. Atypical connectivity has been identified in 
numerous studies across multiple brain networks in ASD using various neuroimaging 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2020. ; https://doi.org/10.1101/2020.01.03.894014doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.03.894014
http://creativecommons.org/licenses/by-nc-nd/4.0/


methods, including structural and functional MRI, EEG and MEG, and fNIRS (for 
reviews, see Hull et al., 2017; O’Reilly, Lewis, & Elsabbagh, 2017; Rane et al., 2015; 
Zhang & Roeyers, 2019). Although the findings of altered connectivity in ASD are vast, 
one finding that is particularly relevant to the current design is that Inflexibility of neural 
circuitry has been linked to behavioral inflexibility in ASD.  For example, it is more 
difficult to discriminate functional connectivity of specific brain networks (namely, the 
salience network (SN), default mode network (DMN), and central executive network 
(CEN)) from each other in ASD relative to typical controls (Uddin et al., 2014). The SN 
and CEN networks are associated with salient information processing and cognitive 
control, respectively and nodes include the insula (SN), anterior cingulate (SN), 
dorsolateral prefrontal cortex (CEN) and posterior parietal cortex (CEN), which have 
been found to be relevant in performing the current task (see below).  
 
The neural mechanisms of trial-to-trial adjustments and individual differences in learning 
rate have also been the focus of much recent work. Dynamic fluctuations in learning rate 
relate to overall arousal levels as measured by pupil diameter (Nassar et al., 2012), as 
well as activation in a network that includes insula, dorsomedial prefrontal cortex, and 
parietal cortex, and parts of dorsolateral prefrontal cortex (Behrens et al., 2007; McGuire 
et al., 2014; Payzan-LeNestour, Dunne, Bossaerts, & O'Doherty, 2013). Functional 
connectivity over a subgraph that includes many of these regions, and is closely related 
to both the salience and central executive networks described above, predicts individual 
differences in learning behavior (Kao et al., 2019). Given the well established 
connectivity differences in ASD, it is possible both attention to detail and adaptive 
learning in our task are jointly driven by individual differences in functional connectivity, 
and we hope that our work motivates future explorations of these brain-behavior 
relationships.  
 
One important question is whether the brain networks that reflect learning rate are 
actually implementing a learning signal, or doing something more general such as 
assigning salience to unexpected observations. Two recent studies that clearly 
dissociate salience from learning using a generative structure like our oddball condition 
have suggested that the latter may be the case (d'Acremont & Bossaerts, 2016; Nassar, 
Bruckner, & Frank, 2019a). One recent idea that attempts to rectify differences between 
the relationship between brain activity and learning rate observed across different 
statistical environments is that learning rate adjustments are implemented through 
changes in the active latent state (Nassar, Bruckner, & Frank, 2019a; Nassar, McGuire, 
Ritz, & Kable, 2019b; Wilson, Takahashi, Schoenbaum, & Niv, 2014). When changes to 
this latent state are carried forward in time (eg. changepoints) then they could drive 
increases in learning rate, whereas when they are rapidly replaced (eg. oddballs) then 
they could drive reductions in learning rate. Within this framework, the fronto-parietal 
control network could be thought of as providing a signal to load a new state 
representation, whereas regions including the orbitofrontal cortex seem to reflect the 
newly loaded state itself (Nassar, McGuire, Ritz, & Kable, 2019b). An important question 
raised by our work is where individual differences would fall in such a mechanistic 
process. If the primary determinant of individual differences were in the salience 
assignments then one might expect divergent individual difference relationships across 
the changepoint and oddball conditions. However, we observe similar individual 
difference relationships across the changepoint and oddball conditions, suggesting that 
attention to detail is less related to salience assignments than to the learning itself. This 
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raises important questions about how such individual differences could emerge in the 
mechanistic model above, and should motivate future neuroimaging studies using 
individual differences in both task conditions to dissect the neural mechanisms through 
which attention to detail promotes flexible, but unstable, beliefs.  
 
Conclusions 
 
Our results identify a link between attention to detail, a trait elevated in autism, and 
learning policies that favor flexibility over stability. Individuals high on attention to detail 
pay a price in terms of stability, with beliefs that tend to incorporate fewer observations 
than they would otherwise. These results were specific to attention to detail and 
unrelated to IQ or other autism linked traits. Overall, our findings demonstrate a core 
negative consequence of attention to detail, namely that by focusing attention on the 
newest observation, it limits the ability to integrate relevant information across a broader 
temporal context.  
 
Open	Practices	Statement:	
 
All data and analysis code associated with this paper will be made available upon 
acceptance of the publication on the authors website 
(https://sites.brown.edu/mattlab/resources/). None of the experiments reported here 
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Supplementary Figures 
	

	
Figure	S1:	Attention	to	detail	uniquely	explains	variation	in	precision	and	flexibility	of	beliefs.	
Color	indicates	rank-order	correlation	between	each	pair	of	measures	and	black	dots	indicate	
correlations	exceeding	an	uncorrected	significance	threshold	(p	<	0.05).		
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Figure	S2:	One	subject	was	excluded	from	the	cohort	of	heterogenous	children	based	on	
abnormally	large	mean	errors.		
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Figure	S3:	Precision	(Effective	samples)	combined	across	conditions	was	negatively	related	to	
attention	to	detail	measures	from	the	AQ	in	the	developmental	cohort,	but	not	to	autism	
diagnosis	category	(Dx),	Age,	Gender,	IQ	(FSIQ),	or	other	measures	from	the	AQ	(SocialSkill,	
AttSwitch,	Comm,	Imagination).	Color	indicates	rank-order	correlation	between	each	pair	of	
measures	and	black	dots	indicate	correlations	exceeding	an	uncorrected	significance	threshold	(p	<	
0.05).		
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