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Abstract: Most commonly-used molecular phylogenetic methods assume that the sequences12

evolved on a single bifurcating tree and that the evolutionary processes operating at the13

variable sites are Markovian. Typically, it is also assumed that these evolutionary processes14

were stationary, reversible and homogenous across the edges of the tree and that the multiple15

substitutions at variable sites occurred so infrequently that the historical signal (i.e., the signal16

in DNA that is due to the order and time of divergence event) in phylogenetic data has been17

retained, allowing for accurate phylogenetic estimates to be obtained from the data. Here, we18

present two metrics, λ and δCFS , to quantify the strength of the historical and compositional19

signals in phylogenetic data. λ quantifies loss of historical signal, with λ = 0.0 indicating20

evidence of a strong historical signal and λ = 1.0 indicating evidence of a fully eroded21

historical signal. δCFS quantifies compositional distance from full symmetry of a divergence22

matrix generated by comparing two sequences, with δCFS = 0.0 indicating no evidence of23

evolution under dissimilar conditions and δCFS > 0.0 indicating increasing evidence of lineages24

diverging under different conditions. The metrics are implemented in methods intended for25

use after multiple sequence alignment and before model selection and phylogenetic analysis.26

Results generated using these methods allow users of phylogenetic tools to select phylogenetic27

data more wisely than it previously was possible. The merits of these metrics and methods are28

illustrated using simulated data and multi-gene alignments obtained from 144 insect genomes.29

Keywords: Phylogeny, historical signal, compositional signal, compositional distance,30

multiple substitutions, saturation plot, redundancy plot.31
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Model-based molecular phylogenetic methods typically assume that the sequences of32

nucleotides or amino acids have diverged over the edges of a bifurcating tree, and that the33

evolutionary processes that operate at the variable sites of these data (i.e., sites that are free34

to change) can be approximated by independent, identically-distributed Markov processes.35

Also, it is assumed that the evolutionary processes were stationary, reversible, and36

homogeneous (SRH)—for details, consult Bryant et al. (2005), Jayaswal et al. (2005),37

Ababneh et al. (2006a,b) and Jermiin et al. (2017, 2020a). These assumptions apply equally38

to single-gene, concatenated-gene, and gene tree/species tree approaches in phylogenetics. The39

only difference is that the topologies of gene trees are assumed to be identical in the40

concatenated-gene approach but are free to vary in the gene tree/species tree approach.41

Inferring phylogenetic estimates from sequence data is aided by a growing number of42

phylogenetic programs, including PAUP* (Swofford 2002), PHYLIP (Felsenstein 2005),43

PhyML (Guindon et al. 2010), MrBayes (Ronquist et al. 2012), PhyloBayes (Lartillot et al.44

2013), Garli (Bazinet et al. 2014), RAxML (Stamatakis 2014), HAL-HAS (Jayaswal et al.45

2014), IQ-TREE (Nguyen et al. 2015) and BEAST (Bouckaert et al. 2019). All of these46

methods accommodate the fact that multiple substitutions at the same variable site erase all47

evidence of previous substitutions at these sites. However, there is a limit to how far apart48

sequences can diverge before the historical signal (i.e., the signal in DNA that is due to the49

order and timing of divergence events) has eroded so much that it is pointless attempting to50

infer a phylogeny from these data.51

Visually, an alignment may appear conserved, but that is because we tend to focus on52

the presence and abundance of constant sites in the alignment. If we were to focus our53

attention on the differences at the variable sites, we may actually find that the nucleotides at54

these sites have changed so frequently that the historical signal is erased. Unfortunately, while55

it is well known that multiple substitutions at the same sites will erode a historical signal in56

an alignment (Ho and Jermiin 2004) and, therefore, that there is a phylogenetic twilight zone57

(Chang et al. 2008), little has been done to quantify how eroded a historical signal in an58

alignment of sequence data may be. An exception to this is Xia et al.’s (2003) index of59

substitution saturation. Using an entropy-based approach, this method computes the average60

entropy per site, H̄, for the alignment and compares it to the expected value, HFSS , which is61

computed by assuming that the nucleotide frequencies at each site can be drawn from a62

multinomial distribution. Computer simulations suggest that the index is a reliable estimator63

of the decay of a phylogenetic signal (Xia et al. 2003), but a closer look at the underpinning64

algebra shows that it is not suitable for sequences that have diverged under complex65

evolutionary conditions (e.g., non-homogeneous conditions). Furthermore, it assumes that all66

sites are variable, so the method may yield misleading results, even if the estimates of H̄ and67

HFSS are derived from just the variant sites.68

Here, we propose a method that quantifies the loss of historical signal from pairs of69

sequences that may have acquired different nucleotide frequencies since they diverged from70
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their last common ancestor, and the presence of invariable sites is allowed for. In addition, we71

explore a recently proposed standardised compositional distance (Jermiin et al. 2020a) as a72

means of measuring emergence of compositional signals from pairs of sequences. Here, the73

compositional signal is one of the non-historical signals that might arise over time due to74

lineage-specific differences in the evolutionary process (Jermiin et al. 2020a).75

Within the phylogenetic protocol (Jermiin et al. 2020b), the methods are intended for76

use after the initial multiple sequence alignment has been completed and before model77

selection is commenced. The methods are accurate, fast to use, and easy to employ.78

Materials and Methods79

Three Useful Metrics80

Consider a multiple sequence alignment (A) of nucleotides with a sequences and b variable81

sites. This set of sites includes all the variant sites (i.e., those displaying evidence of having82

changed). For each sequence pair [i, j], obtain a 4× 4 divergence matrix, N:83

N =



A C G T

A n11 n12 n13 n14

C n21 n22 n23 n24

G n31 n32 n33 n34

T n41 n42 n43 n44


,

where nkl represents the number of sites with nucleotide k in sequence i and nucleotide l in84

sequence j (here, the indices k, l = 1, . . . , 4, correspond to the nucleotides A, C, G, and T ).85

Furthermore, let nk• =
∑

l nkl, n•l =
∑

k nkl and n•• =
∑

k,l nkl. Finally, let86 Y ={yk} = (n12, n13, n14, n23, n24, n34)

Z ={zk} = (n21, n31, n41, n32, n42, n43)
,

where m = 1, . . . , 6 (here, m is the number of elements in Y and Z).87

Given these definitions, we can compute:88

δobs(ij) =
n•• −

∑
nkk

n••
, (1)

δran(ij) = 1−
∑
k

nk•
n••
× n•k
n••

, (2)

and89
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δCFS(ij) =

√
X2

B

ν
, (3)

where δobs(ij) is the proportion of variable sites with different nucleotides in sequences i and j,90

δran(ij) is the proportion of variable sites with different nucleotides in sequences i and j,91

assuming they have evolved for infinitely long time under independent stationary92

conditions—which implies that each sequence will be in equilibrium—and δCFS(ij) is a93

standardised compositional distance between two vectors containing compositional data (i.e.,94

X and Y). Equation (4) is obtained from the matched-pairs test of symmetry by Bowker95

(1948), where X2
B is the test statistic and ν is the number of degrees of freedom (Jermiin et al.96

2020a). Given these metrics, three distance matrices (i.e., Dobs, Dran and DCFS) can be97

computed from A, allowing us to survey the historical and compositional signals from pairs of98

sequences in phylogenetic data.99

Measuring the Decay of a Historical Signal100

To determine whether the historical signal between two sequences has been lost, we define the101

loss of historical signal between two sequences as:102

λ =
δobs
δran

, (4)

where λ ≥ 0.0. If the nucleotides at the variable sites are identical, λ = 0.0 and there is no103

evidence of a loss of historical signal between the sequences. On the other hand, if the two104

sequences are random with respect to each other, λ = 1.0 and the historical signal will be fully105

decayed. Occasionally, λ > 1.0, in which case δobs or δran may be inaccurate, perhaps due to a106

finite length of the alignment or due to sequencing or alignment error.107

The main advantage of this method of estimating loss of historical signal is that λ108

allows for cases where the sequences have diverged under different Markovian conditions;109

hence, λ is less likely to be overestimated. Likewise, δobs and δran can be obtained from all110

sites in an alignment or just the variant sites in the alignment. This allows the investigator to111

decide whether the constant sites should be regarded as variable or invariable. That decision112

has to be made before any survey is begun and whatever is decided will apply to all of the
(
a
2

)
113

sub-alignments.114

Measuring the Emergence of a Compositional Signal115

It is well known that the historical signal in a sequence alignment decays over time and that116

the strength of the non-historical signals (e.g., due to compositional heterogeneity arising117

across the sequences) may increase over time (Ho and Jermiin 2004). It seems less widely118
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known that the historical and non-historical signals might interact synergistically (i.e., the119

signals align, supporting each other) and antagonistically (i.e., the non-historical signals may120

conceal the historical signal, making it difficult to extract the historical signal using121

commonly-used phylogenetic methods) in a phylogenetic analysis (Ho and Jermiin 2004).122

Obviously, inspecting the inferred phylogenetic tree does not allow us to conclude whether the123

estimate is biased by non-historical signals. However, it is possible to assess whether there is124

an association between the values of λ and δCFS . If such an association exists (e.g., with high125

values of λ concurring with high values of δCFS), then there might be cause for concern126

because it means that lineage-specific differences in the evolutionary process may have arisen.127

These differences might bias estimates of phylogenetic trees (Ho and Jermiin 2004; Jermiin et128

al. 2004) unless they are modelled optimally in terms of the parameters assumed to be129

necessary.130

New Tools for Surveying Phylogenetic Data131

To enable the surveys described above, three newly-released programs are available from:132

• http://www.github.com/lsjermiin/SatuRation.v1.0/133

• http://www.github.com/ZFMK/SatuRationHeatMapper/134

• http://www.github.com/ZFMK/RedundancyHeatMapper/135

and are described below.136

SatuRation.—SatuRation v1.0 is a data-surveying program written in C++ and is released137

under a GNU General Public License v3.0. It computes δobs, δCFS and λ for all pairs of138

sequences in an alignment and can be executed using the following commands:139

saturation <infile> <a|v> <b|f> <1|...|31>140

or141

saturation <infile> <a|v> <b|f> <1|...|31> > README142

where infile is a text file with an alignment of characters in the fasta format, a|v refers to143

whether all sites or just the variant sites should be used, b|f refers to whether a brief or full144

report of the results should be printed, and 1|...|31 refers the data type and how the data145

should be analysed. If b is used, SatuRation prints a line with key statistics to the user’s146

terminal; if f is used, it prints six files with the values of δobs, δCFS , and λ, three files in the147

.dis format and three files in the .csv format. Likewise, if v is used, it prints a file with an148

alignment of the variant sites used. A summary of the results is also printed to the terminal or149

to the README file (doing the latter is useful if multiple data sets are surveyed).150

SatuRation is designed to analyse alignments of nucleotides, di-nucleotides, codons, 10-151

and 14-state genotypes, and amino acids. If the infile contains sequences of:152
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• Single nucleotides (4-state alphabet), the sequences may be recoded into six 3-state153

alphabets or seven 2-state alphabets,154

• Di-nucleotides (16-state alphabet; i.e., AA,AC, . . . , TG, TT ), the sequences may be155

divided into alignments with 1st or 2nd position sequences,156

• Codons (a 64-state alphabet; i.e., AAA,AAC, . . . , TTG, TTT ), the sequences may be157

divided into three alignments with di-nucleotide sequences and three alignments with158

single-nucleotide sequences,159

• Amino acids (a 20-state alphabet), the letters may be recoded to a 6-state alphabet.160

This type of recoding was recently used to study early evolution of animals (Feuda et al.161

2017). Other types of recoding amino acids have been used (Kosiol et al. 2004; Susko162

and Roger 2007) but are not considered.163

The 10- and 14-state genotype data cater for diploid and triploid genomes. For example, if a164

locus in a diploid genome contains nucleotides A and G, then the genotype sequence will165

contain an R at that locus. There are 10 distinguishable genotypes for each locus in diploid166

genomes and 14 for every locus in triploid genomes. For further detail about the data types167

and how the data may be analysed, simply type:168

saturation169

on the command line and follow the instructions.170

The output from SatuRation falls into two categories: .csv files and .dis files. The171

table.csv file contains the estimates obtained for all pairs of sequences. It can be opened172

and viewed by, for example, Microsoft Excel. The dobs.csv, dcfs.csv and lambda.csv173

files, respectively, contain the δobs, δCFS , and λ values, set out in a format that can be read by174

SatuRationHeatMapper and RedundancyHeatMapper (see below). The three .dis files175

contain the δobs, δCFS , and λ values, and can be analysed further using TreeLikeness (see176

below), FastME (Lefort et al. 2015) and SplitsTree4 (Bryant and Moulton 2004). Finally, the177

used.fst file contains an alignment of the sites used; this alignment may be necessary in178

other analyses not considered here.179

SatuRationHeatMapper.—SatuRationHeatMapper v1.0 is designed to generate a color-coded180

heat map from the lambda file. The colors used range from white (λ < 0.64) to black181

(λ ≤ 1.0), with λ > 1.0 being highlighted using the color red. SatuRationHeatMapper is182

written in Perl and can be executed using the following command:183

SatuRationHeatMapper -i <infile> -<t|f>184

where infile must be the lambda.csv file and where t and f stand for triangle and full,185

respectively. The output is an .svg file with a heat map in scalable vector graphics format.186

This file can be opened and processed using Adobe Illustrator.187
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RedundancyHeatMapper.—RedundancyHeatMapper v1.0 is designed to generate a color-coded188

heat map from the lambda.csv file. The colors used range from white (λ < 0.01) to black189

(λ ≥ 0.29). RedundancyHeatMapper is written in Perl and can be executed using the190

following command:191

RedundancyHeatMapper -i <infile> -<t|f>192

where infile must be the lambda.csv file and where t and f stand for triangle and full,193

respectively. The output is an .svg file with a heat map in scalable vector graphics format.194

This file can be opened and processed using Adobe Illustrator.195

Results196

Measuring Decay of the Historical Signal197

To illustrate the merits of λ, we examined an alignment of 12 nucleotide sequences generated198

by simulation under the F81 model of nucleotide substitutions (Felsenstein 1981) on the tree199

outlined in Figure 1a. All sites had the same probability of change. In practice, the data were200

generated using INDELible (Fletcher and Yang 2009). Given this tree (Fig. 1a), we expected201

the distribution of λ values to be penta-modal (i.e., with one peak based on comparisons202

between SeqI, SeqJ, SeqK, and SeqL, another peak based on comparisons between SeqE, SeqF,203

SeqG, and SeqH, and so forth).204

The histogram in Figure 1b, obtained by pooling the λ values from 100 data sets,205

reveals the expected penta-modal distritution. The left-most peak is due to comparisons206

between SeqA, SeqB, SeqC, and SeqD, the next peak is due to comparisons between SeqE,207

SeqF, SeqG, and SeqH, and so forth. As expected, although the five divergence events are208

separated by the same interval of time (i.e., they occurred 0.89, 0.67, 0.45, 0.23, and 0.01209

substitutions ago), the distance between the neighboring peaks is largest for low values of λ210

and smallest for high values of λ. Interestingly, none of the 6,600 estimates in Figure 1b211

reached 1.0, implying that none of the sequences can be regarded as random with respect to212

each other. In other words, while the historical signal is quite eroded for many pairs of213

sequences (notably, comparisons where SeqA, SeqB, SeqC or SeqD is one of the sequences), it is214

not yet completely decayed.215

A second experiment was done to assess the effect of moving the initial divergence216

back in time from 0.89 to 1.39. The result of doing so was insightful. The righthand peak217

moved further to the right whereas the other peaks remained in the same locations (Fig. 1c).218

The righthand peak now covers λ = 1.0, implying a complete decay of the historical signal for219

some of the sequences (i.e., comparisons where SeqA, SeqB, SeqC or SeqD is one of the220
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sequences). In other words, displaying the values of λ obtained from alignments of nucleotides221

may be a useful first step in assessing usefulness of phylogenetic data.222

Informed Removal of Sequences223

Having found that there might be a problem (i.e., a decayed historical signal) with some of the224

sequences in a phylogenetic data set, there is the issue of identifying the most affected225

sequences—if they can be named, then the intended phylogenetic analysis may be done with226

or without them.227

The heat map in Figure 2a shows the colour-coded λ values for each sequence pair. In228

this example, the focus is on λ values above 0.64, so the map is called a saturation plot. The229

saturation plot shows that the highest values of λ are between one group, consisting of SeqA,230

SeqB, SeqC, and SeqD, and another group, comprising the remaining eight sequences.231

Obviously, a saturation plot may be used to identify the sequences most likely to have lost232

their historical signal (with respect to each other).233

Sometimes an alignment may contain more sequences than we are willing (or able) to234

handle. This situation may arise if a gene tree is to be inferred by maximum-likelihood or235

Bayesian methods. Then, it is important to bear in mind that every sequence added to the236

alignment entails having to estimate at least two more parameters (the edge lengths), and237

that it is recommended that sample size exceeds 40 times the number of parameters that must238

be optimised (Burnham and Anderson 2002). In molecular phylogenetics, this number (i.e.,239

sample size) is determined by the number of sites in an alignment (Posada and Crandall240

2001), which is typically less than a few thousand sites for alignments used to infer gene trees.241

The heat map in Figure 2b shows the colour-coded value of λ for all pairs of sequences. In this242

case, the focus is on λ values below 0.29, so the map is called a redundancy plot. The243

redundancy plot reveals sequences that are so similar to one another that removal of some of244

the sequences may be worth considering. Doing so is unlikely to affect the phylogenetic245

estimate, but it will lower the number of parameters that must be optimised and that can lead246

to smaller variances and faster phylogenetic analyses.247

Prior to generating a saturation plot, it is recommended that the constant sites be248

removed from the alignment. This is because it is impossible to say whether constant sites are249

invariable (i.e., cannot change) or simply have not changed. Removal of constant sites may250

inflate the estimates of λ, but since it is the variant sites that determine the optimal shape of251

a phylogenetic tree, being alerted to cases of a highly-decayed historical signal is preferable.252

On the other hand, if the objective is to reduce the number of sequences in an alignment, then253

the constant sites can be retained in the alignment.254

Measuring the Emergence of a Compositional Signal255
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Figure 3 shows a dot plot, with the δCFS value as a function of the λ value, for all pairs of256

sequences surveyed in Figure 1. The penta-modal distributions of λ in Figures 1b and 1c are257

replicated in Figure 3. An interesting, but also unexpected, feature of Figure 3 is that the five258

distributions of δCFS appear to be largely independent of the value of λ.259

To determine whether this feature represents what to expect under a wider range of260

tree topologies, we repeated the experiment using 25-tipped, random trees simulated under a261

birth-death process (Yang and Runnala 1997). In practice, the trees were obtained using262

evolver, from the PAML program package (Yang 2007), with the birth rate, death rate and263

sampling fraction drawn at random from a continuous uniform distribution on the interval264

[0,1), and with the tree depth set to 0.5, 1.0, 2.0, or 4.0. Twenty-five trees were generated for265

each tree depth. For each tree, we simulated an alignment of 2500 nucleotides under the F81266

model. Data were generated using INDELible (Fletcher and Yang 2009). From each of these267

alignments, we obtained 300 estimates of δCFS , one for each sequence pair.268

Table 1 presents the mean, variance, minimum and maximum of δCFS derived from269

the alignment generated in this experiment. There is no discernible difference among these270

four distributions of δCFS values, except that there might be a subtle rise in the maximum271

value of δCFS as the tree depth increases from 0.5 to 4.0. However, this increase is unlikely to272

have any practical consequences, because the historical signal has already decayed fully273

(λ = 1.0) for 22% and 45% of the sequence pairs obtained on trees with tree depths of 2.0 and274

4.0, respectively (0% was obtained for trees with tree depths of 0.5 and 1.0).275

This result has two implications. If a survey of real data returns: (a) a distribution of276

δCFS that differs markedly from those in Table 1, then there may be evidence that some of the277

sequences have evolved under different conditions, and (b) a maximum value of δCFS greater278

than 2, then the sequences in the corresponding sequence pair may be among those most likely279

to have evolved under different conditions.280

Example: A Pre-phylogenetic Survey of Phylogenetic Data from Insects281

The merits of the methods presented above are highlighted in Figure 4. It shows the values of282

δCFS as a function of the λ values for the nucleotide sequences that underpin the phylogenetic283

estimate of the evolution of 144 species of insects (Misof et al. 2014). The dot plots, one for284

each codon site, differ markedly from one another but concur in two regards. For these data:285

(a) the historical signal is never fully decayed for any pair of sequence, even when the data286

comprise third codon sites (λmax = 0.9459), and (b) the summary statistics for δCFS differ287

vastly from those in Table 1, with most values being greater than 2. Hence, for these data, a288

preliminary survey of the phylogenomic data would lead to the following conclusions:289

• None of the sequences in alignments of 1st, 2nd or 3rd codon sites can be regarded as290

random with respect to each other, so the historical signal is clearly not eroded fully,291

even though the signal is very low, as expected, at 3rd codon sites.292
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• Most of the sequences in the alignments of 1st, 2nd or 3rd codon sites appear to have293

evolved under different Markovian conditions, so a more rigorous assessment of these294

alignments with the matched-pairs test of symmetry (Ababneh et al. 2006b; Jermiin et295

al. 2020a) is required. Indeed, such an assessment was done by Misof et al. (2014), who296

discovered that most of the sequences in their alignments of genes probably had evolved297

under non-homogeneous conditions.298

Discussion299

In phylogenetics, the historical signal in sequence data is known to decay over time (Ho and300

Jermiin 2004). Conversely, the compositional signal in these data might increase over time.301

That both of these signals might be present in phylogenetic data leaves anyone interested in302

inferring accurate phylogenetic estimates from the data with a big challenge. They can either303

proceed—as most published phylogenetic studies have done so far—and assume that violation304

of the phylogenetic assumptions, while unavoidable, have no effect on the phylogenetic305

estimate, or they can employ a growing body of data-surveying tools intended for306

phylogenetic data, and gain as much information as possible about the data before they307

embark on the actual, sometimes very time-consuming, phylogenetic analysis.308

The methods presented here are intended to fill a gap in our phylogenetic protocol309

(Jermiin et al. 2020b) between the multiple sequence alignment and the model selection. The310

gap exists because commonly-used phylogenetic methods are based on assumptions, and if311

they are violated by the data, there is an elevated risk of error in our phylogenetic estimates.312

Hence, it makes sense to survey phylogenetic data for evidence of violation of the phylogenetic313

assumptions before phylogenetic programs are applied to the data, but such pre-phylogenetic314

surveys are rarely done, and that is a worry because under certain conditions it is possible to315

infer the correct tree topology even though the historical signal is fully decayed (Ho and316

Jermiin 2004). Clearly, under such conditions the non-historical signals will dominate the317

historical signal, and any tree inferred from such data will be of little value to those hoping to318

infer the evolutionary history of species.319

One of these assumptions concerns the historical signal in phylogenetic data. If the320

historical signal is heavily eroded, then other phylogenetic signals—like the compositional321

signal—may be strong enough to return a consistent phylogenetic estimate. However, this322

estimate might not reflect the true evolutionary history and there is no way of finding this323

out, unless parametric bootstrapping or predictive posterior probability analyses are done.324

These analyses are computationally expensive and time-consuming, so it is much better to325

examine the phylogenetic data for evidence of violation of phylogenetic assumptions before326

model selection than at a later stage in the phylogenetic protocol.327

The method to estimate λ is a sensible solution to the problem of measuring decay of328

the historical signal. It relies on δobs (otherwise known as the p distance) and the metric δran,329
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which corresponds to the proportion of variable sites with differences between the two330

sequences that have been allowed to evolve for infinitely long time under independent (and331

possibly different) Markovian conditions. These conditions may be such that the sequences332

will acquire different nucleotide compositions at the homologous sites. That δran is flexible is333

desirable, because it is well known that homologous sequences often differ in nucleotide or334

amino-acid composition (Naser-Khdour et al. 2020). It is for this reason that λ may be more335

informative than the index proposed by Xia et al. (2003). Another reason is that λ applies to336

a pair of sequences whereas the index proposed by Xia et al. (2003) applies to the alignment of337

all the sequences. Using λ, it is possible to identify and delete sequences from an alignment on338

grounds that the historical signal is too eroded for comfort, or on grounds that a cluster of339

sequences are so similar to one another that it may be pointless to include them all in a340

phylogenetic analysis (e.g., Tay et al. (2017)). IQ-TREE (Nguyen et al. 2015) already removes341

all but two of the identical sequences before a phylogenetic analysis is commenced, but any342

sequence that differs from the other sequences at just one site will be kept in the alignment.343

The combined approach implemented in the methods described above facilitates naming all of344

the identical and near-identical sequences in an alignment; this means that anyone who uses345

phylogenetic methods to annotate genes will be able to work faster and obtain more accurate346

phylogenetic estimates during the gene annotation process.347

The method to estimate δCFS is a sensible solution to the problem of estimating a348

standardised compositional distance between two sequences. Not only are all the constant349

sites in the data ignored, but the metric is also scaled such that estimates associated with350

different degrees of freedom can be compared directly. The benefit of this is illustrated in351

Figure 4 and by comparing the maximum values of δCFS from 1st (66.5152), 2nd (23.5955)352

and 3rd (166.2780) codon positions to that obtained from the corresponding alignments of353

amino acids (6.7964) and codons (10.6511). Because the size of the alphabet used equals ν in354

equation (4), we are now able to conclude that the maximum compositional distance is355

greatest for the alignment of 3rd codon sites and smallest for the alignment of amino acids.356

Had these results been available during the first analysis of these data (Misof et al. 2014), they357

could have been used to inform the strategy used to analyse the phylogenomic data358

phylogenetically. For example, more importance might have been put on the alignment of359

amino acids and less on the alignments of 1st and 2nd codon positions.360

Finally, it came as a surprise that the historical signal is not completely eroded for 3rd361

codon position of most of the sequences (Fig. 4). This was unexpected because of the long362

time scale over which these sequences have evolved, and it is now clear that such an363

expectation might be ill-guided in many other instances where vertebrate or invertebrate364

nuclear DNA is compared phylogenetically. The matter that needs more attention is the365

analysis of compositionally heterogenous sequences because compositional signals in such data366

will be regarded as a historical signal by most currently-used phylogenetic methods.367
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Table 1: Summary statistics for δCFS based on computer simulations on 25-tipped trees with
different tree depth. For each tree depth, the mean, variance, minimum, and maximum of δCFS

is shown, along with the number of sequence pairs being compared.

Tree depth Mean Variance Min. Max. Pairs

0.5 0.9525 0.0760 0.1433 1.9716 7500
1.0 0.9474 0.0813 0.1100 2.0728 7500
2.0 0.9683 0.0827 0.1997 2.2274 7500
4.0 0.9640 0.0796 0.1929 2.2410 7500
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Figure 1: Diagram showing (a) the 12-tipped tree used to simulate alignments of nucleotides
with 2500 sites, and two histograms (b and c) with the distributions of λ values (based on 100
replicates). The bar in a corresponds to 0.2 substitution per site. In b, the root-to-tip distance
was 0.89 while in c, it was 1.39. All other divergences were kept the same. Sequences were
generated using INDELible (Fletcher and Yang 2009).
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Figure 2: Saturation plot (a) and redundancy plot (b). The two heat maps were obtained for
one of the 100 replicates referred to in Fig. 1.
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Figure 3: Dot plot showing the δCFS values as a function of the λ values for the sequences
analysed in Figure 1.
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Figure 4: Dot plots showing the δCFS values as a function of the λ values for first (left), second
(centre), and third (right) codon sites from an alignment with 144 sequences and 413,459 codons.
The alignments were first used by Misof et al. (2014). Only variant sites were considered. The
summary statistics (mean, variance, minimum, and maximum) for δCFS are: first codon sites
(14.8409, 87.7655, 0.7649, 66.5152); second codon sites (5.2480, 9.5935, 0.5160, 23.5955); third
codon sites (38.6445, 746.3297, 1.3870, 166.2780).
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