1 Electron Microscopic Reconstruction of Neural Circuitry in the Cochlea

2 Yunfeng Hua^{1-5*}, Xu Ding^{2-3*}, Haoyu Wang^{4*}, Fangfang Wang^{4*}, Yunge Gao^{2,3}, Yan Lu⁴, Tobias

- 3 Moser^{6-8#}, Hao Wu^{1-4#}
- 4

⁵ ¹Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, China

- 6 ²Ear Institute, Shanghai Jiao Tong University School of Medicine, China
- 7 ³Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, China
- 8 ⁴Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, China
- 9 ⁵Department of Connectomics, Max-Planck-Institute for Brain Research, Germany
- 10 ⁶Institute for Auditory Neuroscience, University Medical Center Göttingen, Germany
- 11 ⁷Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Germany
- 12 ⁸Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Germany
- 13
- 14 *These authors contributed equally to this work.
- 15 [#]Correspondence: <u>haowu@sh-jei.org</u> (H.W.), <u>tmoser@gwdg.de</u> (T.M.)
- 16
- 17

18 Abstract

19	Recent studies have revealed great diversity in the structure, function and efferent innervation of
20	afferent synaptic connections between the cochlear inner hair cells (IHCs) and spiral ganglion
21	neurons (SGNs), which likely enables audition to process a wide range of sound pressures. By
22	performing an extensive electron microscopic reconstruction of the neural circuitry in the mature
23	mouse organ of Corti, we demonstrate that afferent SGN-dendrites differ in strength and
24	composition of efferent innervation in a manner dependent on their afferent synaptic connectivity
25	with IHCs. SGNs that sample glutamate release from several presynaptic ribbons receive more
26	efferent innervation from lateral olivocochlear projections than those driven by a single ribbon. Next
27	to the prevailing unbranched SGN-dendrites, we found branched SGN-dendrites that can contact
28	several ribbons of 1-2 IHCs. Unexpectedly, medial olivocochlear neurons provide efferent
29	innervation of SGN-dendrites, preferring those contacting single-ribbon, pillar-side synapses. We
30	propose a fine-tuning of afferent and efferent SGN-innervation.

32 Introduction

33 Acoustic information is encoded into neural signals in the cochlea, the mammalian hearing organ in 34 the inner ear. Sound encoding by afferent spiral ganglion neurons (SGNs) faithfully preserves signal 35 features such as frequency, intensity, and timing (for reviews see ref. 1-3). It also is tightly 36 modulated by efferent projections of the central nervous system to enable selective attention and to 37 aid signal detection in noisy background, sound source localization as well as ear protection against acoustic trauma (see reviews4.5). Sound encoding occurs at the afferent connections between inner 38 hair cells (IHCs) and postsynaptic type-1 SGNs (¹SGNs) that constitute 95% of all SGNs^{6.7}. These 39 40 so-called ribbon synapses exhibit glutamate-mediated neurotransmission at rates of hundreds per second and with sub-millisecond precision $\frac{1.8}{2}$. 41 42 In the mouse cochlea, each IHC is contacted by 10-30 ¹SGNs and it is thought that each IHC active zone drives firing in a single unbranched peripheral SGN-neurite (also referred to as SGN-43

dendrite). These afferent connections exhibit great diversity in synaptic and ¹SGN dendritic 44 morphology⁹⁻¹⁵, physiological properties^{9,12,14,16}, and molecular ¹SGN profile¹⁷⁻¹⁹. Across different 45 animal species, ¹SGN can be classified into three functional subtypes, namely low, medium, and 46 high spontaneous rate (SR) ¹SGNs that also differ in the thresholds and dynamic range of sound 47 encoding $\frac{7,16,20-22}{2}$. In the cat⁶, classical back-tracing experiments linked function to morphology 48 showing that low SR ¹SGNs have thinner dendrites with fewer mitochondria than high SR ¹SGNs. 49 50 Low SR ¹SGNs preferentially innervate the modiolar (neural) side of the IHC, where they face larger and more complex presynaptic active zones (AZs)^{6,23-25}. Larger and more complex AZs at the 51 modiolar side of IHCs were also found in mouse $\frac{11-13}{2}$, guinea pig $\frac{26,27}{2}$, and gerbil $\frac{28}{28}$, suggesting that 52 53 some morphological corollaries of functional ¹SGN diversity may be shared across species.

54	Modiolar AZs, in general, contain larger and/or multiple ribbons as well as more membrane-
55	proximal $SVs^{\underline{13,23}}$ and Ca^{2+} channels that need stronger depolarization for activation than at the pillar
56	(abneural) face ¹² . What might appear as a peculiar biological variance at first glance, is becoming
57	increasingly recognized as a fascinating parallel information processing mechanism by which the
58	auditory system copes with encoding over a broad range of sound pressures downstream of cochlear
59	micromechanics. Specifically, emerging evidence indicates that the full sound intensity information
60	contained in the IHC receptor potential is fractionated into subpopulations of ¹ SGNs that
61	collectively encode the entire audible range of ¹ SGNs (recent reviews in ref. $1,29,30$). Besides,
62	afferent cochlear signaling is dynamically modulated by efferent projections emanating from the
63	medial and lateral superior olivary complex of the auditory brainstem ³¹ . The efferent projections of
64	the medial olivocochlear component (MOC) form cholinergic synapses onto outer hair cells (OHCs)
65	and suppress their electromotility, thereby attenuating cochlear amplification $\frac{32-34}{2}$. The lateral
66	olivocochlear component (LOC) directly modulates ¹ SGNs via axodendritic synapses near the
67	afferent ribbon synapses (for reviews see ref. $5,35$). Efferent innervation seems more pronounced
68	for ¹ SGNs contacting IHCs at the modiolar face and de-efferentation interferes with the modiolar-
69	pillar gradient of ribbon size ³⁶ . In rodents, the LOC fibers express a variety of neurotransmitters
70	including dopamine (DA), acetylcholine (ACh) and Y-amino-butyric acid (GABA) among others
71	(for reviews see ref. $37,38$). LOC control of ¹ SGNs is thought to serve interaural matching ^{39,40} as
72	well as ¹ SGN gain control ⁴¹ .

Despite major efforts on structural investigation of cochlear afferent and efferent innervation using light microscopy⁴²⁻⁴⁵ and electron microscopy (EM)^{15,23,24,46-53}, a comprehensive diagram of the neural circuitry in the organ of Corti remains to be established. Here we report the complete

76	reconstruction of two large EM volumes acquired from the organ of Corti of the mid-frequency
77	cochlear region of mature CBA mice. We employed serial block-face EM (SBEM) imaging ⁵⁴ which
78	offered the spatial resolution required for both comprehensive connectomic analysis and structural
79	studies of afferent and efferent synapses. This revealed a substantial fraction of ¹ SGNs (12 %) with
80	terminal bifurcation, which results in input of two or more AZs from one or two IHCs. Unexpectedly,
81	we found robust MOC innervation of ¹ SGN dendrites preferentially on the pillar IHC side. Efferent
82	innervation, primarily by LOCs, was stronger for ¹ SGN dendrites receiving input from multiple
83	ribbons.

85 Results

86	To perform a comprehensive structural analysis of the mammalian cochlear circuit, we first acquired
87	a SBEM dataset from the left cochlea of a 7-week-old wildtype female mouse (Fig. 1 a & b). We
88	employed CBA mice that are considered as the gold standard for analyzing normal mouse hearing
89	as they, in contrast to C57BL/6 mice, do not show rapid age-related hearing $loss^{55}$. The field of
90	scanning was centered on the organ of Corti of the cochlear mid-turn and encompassed 15 IHCs and
91	45 OHCs. 2500 consecutive image slices were collected, resulting in a 3D-aligned volume of (xyz)
92	$262 \times 194 \times 100 \ \mu\text{m}^3$ at $11 \times 11 \times 40 \ \text{nm}^3$ voxel size (Suppl. video 1 & 2). Dense reconstruction of
93	the inner spiral bundle (ISB) beneath the 15 IHCs (Fig. 1 c) was done by manual annotation using
94	an open-source visualization and annotation software called webKNOSSOS ⁵⁶ . Despite 40 nm
95	cutting thickness, quantification using a redundant-skeleton consensus procedure (RESCOP) $\frac{57}{2}$
96	suggests a tracing quality comparable to the published SBEM cortex datasets of 30 nm cutting
97	thickness (Suppl. Figure 1). Tracing revealed a total of 234 ¹ SGN-dendrites, 32 LOC as well as 39
98	MOC fibers, which contribute 47.2 %, 36.5 %, and 13.0 % to a total circuit path length of 16.97 mm
99	in the ISB region (Fig. 1 d & e). SGN-dendrites were identified as fibers contacting ribbon-type
100	AZs of IHCs (dendrites emanating from ¹ SGNs) or OHCs (dendrites emanating from ² SGNs
101	crossing the tunnel of Corti). Efferent fibers were defined as LOCs if they exclusively synapsed
102	onto ¹ SGNs and IHCs (not further analyzed in this study) and as MOCs if they crossed the tunnel
103	of Corti and also contacted the OHCs. All MOCs were thick compared to LOCs and ² SGNs and
104	formed presynaptic terminals onto OHCs. A total of 1517 efferent synapses onto ¹ SGNs were
105	annotated in the dataset. A second dataset (26 IHCs, 366 ¹ SGN-dendrites, Fig. 1 f & g) was acquired
106	from an 8-week-old female mouse and analyzed after completing the analysis of the first EM volume.

107	Ribbon synapse heterogeneity in IHCs. Volume EM techniques have been recently employed to
108	investigate ribbon synapse morphology in the apical cochlea of C57BL/6 mice at different
109	developmental stages ¹³ . Our SBEM datasets now provide detailed structural insight into the mature,
110	most sound sensitive, mid-cochlear region of the organ of Corti ^{10,16,42} . The high spatial resolution
111	and large volume of the dataset allowed for precise structural quantification of ribbons as well as
112	the postsynaptic ¹ SGN-dendrites (Fig. 2 a & b). From 15 reconstructed IHCs, a total of 308 ribbons
113	were identified and volume traced by human annotators. Ribbon positions within IHCs were
114	determined in the plane perpendicular to the IHC habenular-cuticular axis (same as described in ref.
115	$\frac{36}{10}$). The ribbon volume tended to be smaller in the 26 IHCs of the 2 nd animal which did not reach
116	significance for the mean ribbon volume (0.0136 \pm 0.0056, n = 308 for the 1st animal vs. 0.0128 \pm
117	0.0069, $n = 468$ for the 2 nd animal, $p = 0.0932$) but was significant for the ribbons on the pillar IHC
118	side (Fig. 2 c, $0.0117 \pm 0.0049 \ \mu m^3$, $n = 142 \ vs. \ 0.0098 \pm 0.0043$, $n = 192$, $p = 0.0183$). We consider
119	this to represent biological variance as technical reasons are unlikely (no indication for shrinkage
120	based on other structures such as mitochondria or axon calibers for the 2 nd animal, data not shown).
121	In agreement with previous quantifications using light microscopy $\frac{11,12}{2}$, a prominent modiolar-
122	pillar size gradient of ribbon sizes was observed in both animals (Fig. 2 c). On average, ribbons
123	designated to the modiolar side of the IHCs were 40 % larger than those at the pillar side (in the 1 st
124	animal, 0.0153 ± 0.0055 vs. $0.0117\pm0.0049~\mu m^3,~p<0.0001;$ in the 2^{nd} animal, 0.0147 ± 0.0074
125	vs. 0.0098 \pm 0.0043 $\mu m^3,$ p $<$ 0.0001). In addition to the heterogeneity of ribbon size within IHCs,
126	we found differences in the distributions of ribbon abundance and size between IHCs, even in
127	neighbors (Fig. 2 d & e), which have not yet been reported to our knowledge. In some extreme
128	cases, individual IHCs can exclusively contain large or small ribbons, which we, different from ³⁶ ,

129 found to be unrelated to the characteristic staggering arrangement of IHCs in the cochlear mid-turn.

- 130 The amount of cellular ribbon material might be conserved as the mean size of ribbons in an IHC
- 131 negatively correlates with its total number of ribbons (**Fig. 2** e).
- 132

133	Quantification of afferent and efferent inputs on ¹ SGN-dendrites. Besides receiving
134	glutamatergic input from ribbon-type AZs of IHCs, ¹ SGN-dendrites are the primary postsynaptic
135	target of efferent LOC projections. A prior study of the effects of lesioning the LOC projections
136	indicated that innervation by LOCs is required for maintaining the modiolar-pillar ribbon size
137	gradient ³⁶ . Here, we mapped the efferent innervation on ¹ SGN-dendrites to relate it to the position
138	of afferent ¹ SGN-boutons on IHCs and to the morphology of the corresponding IHC AZ.
139	Reconstruction of ¹ SGN-dendrites together with their complete afferent and efferent inputs in the
140	ISB region revealed several unexpected findings. First, we found that three morphologically distinct
141	subpopulations of ¹ SGNs coexist in the mature cochlea (Fig. 3 a). Out of in total 234 ¹ SGNs in the
142	1 st animal, 170 (72.6 %) were identified as unbranched ¹ SGNs receiving input from an IHC AZs
143	holding a single ribbon ("single-ribbon variant", Fig. 3 a1), 35 (15.0 %) as unbranched ¹ SGNs but
144	input from multiple ribbons ("unbranched multi-ribbon"), and strikingly 29 (12.4 %) as branched
145	or bifurcated ¹ SGN-dendrites with input from multiple ribbons of one or two IHCs ("branched
146	multi-ribbon", Fig. 3 a2 & a3 and Suppl. Figure 2). Analysis performed in the 2 nd animal
147	corroborated these results: this and further classification of ¹ SGN-dendrites of both animals are
148	summarized in Table 1. Branched ¹ SGN-dendrites more commonly connected to AZs of
149	neighboring IHCs (24 out of 29 of the 1 st sample and 42 out of 46 of the 2 nd sample) instead of to
150	AZs of a single IHC. Branched ¹ SGNs preferentially contacted the modiolar face of the IHCs: 29

out of 29 (1st sample) and 45 out of 46 (2nd sample) contacted at least one modiolar AZ. Exclusive
input from modiolar AZs was found for 13 out of 29 (1st sample) and 23 out of 46 branched (2nd
sample) ¹SGNs. As previously reported for the apex of the mouse cochlea¹³, AZs with multiple
ribbons preferred the modiolar IHC side (20 out of 35, 1st sample and 38 out of 48, 2nd sample) also
in our mid-cochlear datasets.

156 Analysis of the efferent innervation of the unmyelinated segments of ¹SGN-dendrites revealed a varying number of efferent synapses ranging from 0 up to 20 (Fig. 3 b). Significantly more efferent 157 158 contacts are formed on unbranched and branched multi-ribbon ¹SGNs than on unbranched, singleribbon ¹SGNs (**Fig. 3 c.** 8.82 ± 3.70 for multi-ribbon ¹SGNs vs. 5.70 ± 2.53 for single-ribbon ¹SGNs, 159 p < 0.001). For unbranched, single-ribbon ¹SGNs a stronger efferent innervation was observed for 160 modiolar ¹SGNs than for pillar ¹SGNs (6.37 ± 2.95 for the modiolar ¹SGNs vs. 5.26 ± 2.20 for the 161 pillar ¹SGNs, Fig. 3 c inset, p = 0.0073). Considering that AZs with large and multiple ribbons, 162 163 which likely provide greater maximum rates of transmitter release, are more prevalent on the IHC 164 modiolar side, our data indicates the strength of efferent modulation of ¹SGNs correlates with stronger afferent input. We controlled this result by mapping all efferent innervation on randomly 165 selected single- and multi-ribbon ¹SGN-dendrites in the 2nd animal (Fig. 3 d). Again, we found more 166 efferent synapses formed on multi-ribbon ¹SGN-dendrites than on those of single-ribbon ones (7.70 167 ± 2.29 vs. 4.43 ± 2.16 , Fig. 3 e). Note that the increased efferent innervation was achieved by more 168 efferent synapses along the ¹SGN-dendrites in the ISB region rather than in the direct vicinity of 169 170 ribbon synapse (Suppl. Figure 3). 171

172 ¹SGNs are innervated by efferent terminals of both LOC and MOC fibers. We note that the

173	above analysis of efferent innervation did not distinguish synapses formed by LOC and MOC fibers.
174	Due to the extent of the reconstruction, it was possible to distinguish MOC fibers from LOC fibers
175	(Fig. 4 a to c), unambiguously by their characteristic crossing of the tunnel of Corti (Fig. 4 d) and
176	OHC innervation (Fig. 4 e), while LOC fibers remain exclusively in the ISB region. Unexpectedly,
177	we found that ¹ SGNs were also frequently contacted by MOC fibers, which showed parallel calibers
178	of varying length with much less branching in the ISB before turning to cross the tunnel (Fig. 4 d
179	to f). Compared to LOC synapses (Fig. 4 c), MOC terminals on ¹ SGN-dendrites showed larger
180	bouton size but sparser vesicle content (Fig. 4 f). Extended structural quantification of all 39 MOC
181	and 32 LOC fibers revealed that MOC fibers form fewer efferent synapses in the ISB region (Fig.
182	4 g) and preferentially innervate ¹ SGN-dendrites contacting the pillar IHC side (Fig. 4 h). This is
183	consistent with the observation that MOC-innervated ¹ SGNs have small ribbon size (Fig. 4 i) and
184	receive weaker efferent innervation (Fig. 4 j). In conclusion, this data suggests a hitherto unreported
185	function of MOC fibers in modulating ¹ SGNs, particularly those contacting the IHC pillar side.
186	Together with the preference of LOC fibers to innervate modiolar ¹ SGNs, the data indicates a
187	differential modulation of ¹ SGNs by projections from medial and lateral subdivisions of the superior
188	olivary complex.

190 Spatial organization of efferent innervation on ¹SGNs. As described above, both LOC and MOC 191 innervation coexists on individual ¹SGN-dendrites and their presynaptic terminals have distinct 192 appearances (Fig. 4 c & f). By these criteria, we identified 1175 putative LOC and 342 putative 193 MOC terminals out of the total of 1517 efferent contacts on ¹SGN-dendrites. Consistent with the 194 relative innervation specificity of LOC and MOC projections reported above, the dendrite-based

195	analysis of efferent input indicates that both modiolar ¹ SGNs, and multi-ribbon ¹ SGNs in particular,
196	receive strong LOC innervations (Fig. 5 a) but weak MOC innervations (Fig. 5 b). In fact, MOC
197	synapses skip more than half of modiolar and multi-ribbon ¹ SGNs (Fig. 4 h) and preferentially
198	contact the pillar ¹ SGNs that in return featured only few LOC synapses. In conclusion, the efferent
199	innervation showed a ¹ SGN-subdivision-specific dichotomy: LOC preferentially synapse on
200	modiolar and multi-ribbon ¹ SGNs and MOC predominantly on pillar ¹ SGNs (Fig. 5 c).
201	Finally, we found a segregation of MOC and LOC innervation sites on ¹ SGN-dendrites with
202	LOC terminals being more proximal to the ribbon synapses and MOC terminals synapsing more
203	distally, towards the heminode (Fig. 5 d inset). We further measured the afferent dendritic
204	pathlength and concluded that distinct innervation sites of LOC and MOC synapses were not a
205	consequence of variability in their path length within the ISB (Fig. 5 d). A similar result was
206	obtained from the same quantification on randomly selected ¹ SGNs in the 2 nd animal (Suppl. Figure
207	4). The spatial distribution of efferent terminals (Fig. 5 e) as well as the efferent fiber trajectories
208	(Fig. 5 f) show a spatial segregation of the MOC and LOC projections within the ISB, which might
209	instruct their preferred ¹ SGN innervation.
210	

211 Discussion

212 In the last decade, high throughput volume EM techniques have rendered dense reconstruction of large-scale mammalian neural circuits realistic within reasonable time and costs^{58,59}. SBEM and 213 214 FIB-SEM offer several advantages over other volume EM techniques based on thin slice manual 215 collection, including less image distortion and slice loss, as well as fully automated acquisition 216 cycle^{59,60}. Despite lower z-resolution, in the end we chose SBEM instead of FIB-SEM in order to 217 cover a larger volume for a more comprehensive circuit level analysis in the organ of Corti. 218 Additional iterations of system optimization were made to overcome technical issues like charging 219 artefacts and limited cutting thickness. Finally, by combining optimized sample preparation to 220 increase tissue conductivity, implementing focal charge compensation to minimize charging from 221 pure resin areas, and cutting along the direction of efferent calibers to improve the traceability at 40 222 nm z-resolution, we managed to acquire a dataset that allowed dense circuit reconstruction in the 223 mature cochlea. The volume EM analysis of this study reveals an unprecedented complexity of the 224 neural circuitry of the organ of Corti, rigorously tests established concepts on cochlear circuitry, and 225 provides novel observations that allowed us to generate new hypotheses to be tested in the future. 226 Novel findings regarding afferent and efferent innervation include a substantial fraction of branched 227 SGN-dendrites and a differential efferent innervation of modiolar and pillar SGN-dendrites by LOC 228 and MOC projections. Hence, afferent information mixing occurs and potentially improves the signal-to-noise relation of coding in a subset of ¹SGNs. Efferent control of ¹SGN-dendrites 229 230 contacting the modiolar and pillar faces of the IHCs seems to involve fine-tuned innervation by MOC and LOC and likely contributes to diversifying ¹SGN response properties for wide dynamic 231 232 range sound encoding.

Afferent connectivity of ¹SGNs: graded synaptic strength and postsynaptic information mixing

The prevailing view on the afferent connectivity of ¹SGNs in the mature mammalian cochlea is the 236 237 mono-synaptic contact of an unbranched ¹SGN-dendrite with a single-ribbon IHC AZ. 238 Reconstructing a large volume of the mouse organ of Corti, we reveal a considerable fraction of branched ¹SGN-dendrites (12 %). The bifurcation of the ¹SGN-dendrite enables multiple synaptic 239 240 contacts with one or, more frequently, two neighboring IHC(s) (Fig. 3 a and Suppl. Figure 2). Substantial branching of ${}^{1}SGN$ -dendrites was reported for the human cochlea⁵¹, while its prevalence 241 in other species such as guinea $pig^{49,61}$ and $cat^{24,62}$ remains less clear. We do not consider this to 242 243 reflect a pathology as the number of afferent synapses per IHC (17.5 afferent synapses) agrees 244 closely with other estimates for the mid-cochlear mouse organ of Corti obtained by immunofluorescence or electron microscopy^{10,63,64}. The observation of branched, multi-ribbon 245 246 ¹SGNs adds further complexity to the afferent SGN connectivity: with regard to presynaptic IHCs, site of contact as well as ribbon morphology. It is tempting to speculate that such information mixing 247 248 on the level of SGNs might improve the signal-to-noise ratio of sound coding. Peripheral branching 249 of afferent auditory neurons is commonly found in the hearing organs of birds and lower 250 vertebrates^{65,66}.

So far, the presence of multiple ribbons at a single AZ was considered the exception to the rule and, if encountered, to occur at modiolar $AZs^{13,23,25,67}$. Note that the multi-ribbon synapses described here and in other studies differ from complex synapses found in cat, which were defined as having an extended AZ with a single ribbon²⁴. Here, we found that about 14 % afferent synapses contain

255	more than one ribbon and together with another 12 % branched ¹ SGN with multiple afferent contacts
256	constitute a considerable fraction (more than 1/4) of ¹ SGNs with enhanced excitation in the middle
257	turn of the mouse cochlea (Fig. 3 a). In addition, we demonstrate the modiolar-pillar size gradient
258	of ribbon size and abundance for IHC AZs at the level of electron microscopy for a large sample of
259	308 synapses (Fig. 2 c). This corroborates previous light microscopy ^{11,12} and electron microscopy ²³⁻
260	$\frac{25.67}{100}$ studies. Together with the notion of the preference of low spontaneous rate, high threshold
261	¹ SGNs for modiolar AZs, this begs the questions how presynaptic strength can relate to weaker
262	sound responses. One candidate mechanism to explain this apparent conundrum is the more
263	depolarized activation range of the Ca^{2+} influx at the modiolar $AZs^{\underline{12}}$. Our present study suggests
264	that stronger efferent modulation of ¹ SGNs facing multi-ribbon AZs also contributes to ¹ SGN
265	diversity (see next section).

As previously described for the mid-turn of the mouse cochlea by immunofluorescence microscopy³⁶, we found the IHCs to be arranged in a partially staggered fashion. However, the influence of the staggered IHC arrangement on ribbon size seems minor if present at all (**Fig. 2**): IHCs closer to the pillar side tended to have smaller ribbons on average than those closer to the modiolus, which however did not reach significance. Interestingly, the notable negative correlation between the size and abundance of ribbons in IHCs (**Fig. 2** e) suggests an endogenous control of total supply of ribbon material.

273

274 Tuning the strength of afferent and efferent inputs into ¹SGNs

275 A key result of the present study is the observation that the likely stronger maximal afferent input

276 by multi-ribbon AZs and/or multiple synapses into SGNs is accompanied by stronger efferent

277 innervation (Fig. 3 c & e). This contrasts findings in cat, where a modiolar-pillar gradient of efferent 278 inputs on ¹SGN-dendrites primarily resulted from efferent innervation of SGNs forming complex synapses at the IHCs' modiolar face $\frac{24.25}{2}$. We postulate that the maximal synaptic strength of afferent 279 transmission might co-determine the extent of efferent innervation by LOC projections. Previous 280 281 studies showed a shifted acoustic sensitivity of ¹SGNs to higher sound pressure levels during efferent activation^{68,69}, resetting the dynamic range. We speculate that matching the strengths of 282 283 afferent (ribbon) and efferent (LOC) transmission to modiolar ¹SGNs may allow a tuning of sound 284 encoding to fit the range of sound pressure "on demand". Surgical de-efferentation of the mature 285 mouse cochlea was shown to attenuate the modiolar-pillar gradient of ribbon size, suggesting a key role for the efferent system in maintaining functional heterogeneity of the afferent synapses $\frac{36}{2}$. Hence, 286 287 efferent innervation might contribute to shaping neural response diversity underlying wide dynamic range coding by modulating ¹SGNs as well as by instructing the synaptic properties in a position-288 289 dependent manner.

290 To our knowledge, this comprehensive EM circuit analysis of a large cochlear volume for the first time found MOC fibers to make considerable amounts of synaptic contacts with ¹SGN-291 292 dendrites before leaving the ISB region towards OHCs (Fig. 4 d). Efferent ¹SGN innervation seems to be a general feature of MOC innervation, because this kind of connections was found in 37 out 293 294 of 39 annotated MOC fibers (Fig. 4 g), indicating a novel function of MOC modulation in ¹SGN activities beyond its well-identified suppressive effect on OHC motility³²⁻³⁴. Previous EM studies, 295 296 to our knowledge, did not report synapses onto ¹SGN-dendrites in the ISB of tunnel-crossing MOC fibers, possibly because the reconstructed datasets were limited to 2-3 IHCs^{13,24,25,51,53}. Moreover, 297 298 as MOC fibers form *en passant* synapses instead of branched nerve endings with ¹SGN-dendrites (Fig. 4 d), they likely escaped detection in single-fiber tracing experiments using light microscopy^{52,70}. Nevertheless, *en passant* boutonal structures within the ISB can be appreciated in traced single MOC calibers⁴⁴.

302 It remains to be studied whether MOC fibers employ acetylcholine as the only neurotransmitter 303 in terminals on both ¹SGN-dendrites and OHCs. If that was the case, based on the observation of an 304 acetylcholine injection experiment⁷¹ one might expect an elevation of spontaneous firing in ¹SGNs 305 in addition to the classic MOC-mediated suppression of cochlear amplification. This way, MOC 306 modulation might contribute to the high spontaneous firing rate of ¹SGNs contacting the pillar IHC side (Fig. 5 b). MOC terminals tend to innervate SGNs closer to the heminode (Fig. 5 d), which 307 may overlap with the proposed innervation site of putative inhibitory dopaminergic LOC fibers⁷². 308 309 This notion seems supported by the observation in a LOC-lesion experiment that a narrow band of 310 acetylcholine positive puncta colocalized partially with sparse dopamine positive puncta⁴⁵. However, 311 at least for the basal high frequency cochlea, such colocalization might alternatively reflect 312 terminals of intrinsic cholinergic LOC neurons co-releasing dopamine⁷³.

This study presents a comprehensive circuit diagram with quantification that enriches our insight into the structure underlying auditory signal processing. Besides novel insight into normal cochlear structure, the result of circuit analysis serves as a baseline for future structural investigations, including noise-induced synaptopathy⁷⁴, aging-related structural alteration⁷⁵⁻⁷⁷ and putative tinnitus-related synaptic plasticity changes⁷⁸.

318

319 Acknowledgements

320 We thank Dr. M. Lei (SHIPM) for discussion and comments on the manuscript; Dr. M. Helmstaedter

321	(MPI-BR) for support in the initial phase of the project; Drs. R. Redman, P. Bastians from Zeiss
322	(APAC) for technical advice; Dr. J. Neef for comments on the manuscript; D. Li, J. Pan, J. Lu, H.
323	Liu, B. Feng, Z. Jiang, C. Jin, L. Zhou, X. Yu, W. Wang, G. Li and Z. Chen for the tracing work.
324	This study was supported by The Program for Professor of Special Appointment (Eastern Scholar)
325	at Shanghai Institutions of Higher Learning (QD2018015 to Y.H.), the National Natural Science
326	Foundation of China (81800901 to Y.H. and 81730028 to H.W.), the National Basic Research
327	Development Program of China (SQ2017YFSF080012 to H.W.) and Shanghai Key Laboratory of
328	Translational Medicine on Ear and Nose Diseases (14DZ2260300), Joint Research Initiative
329	Shanghai Jiao Tong University School of Medicine (to Y.H. and T.M.). Work by T.M. was supported
330	by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
331	Germany's Excellence Strategy - EXC 2067/1- 390729940 to T.M. as well as by the DFG's
332	Leibniz Program to T.M.
333	
334	Declarations of interest
335	The authors have declared that no conflicts of interest exist.
336	
337	Author contributions
338	Y.H., H.W. and T.M. designed and supervised the study. Y.H., X.D. and F.W. performed the SBEM
339	experiment. Y.H. and H.H.W. analyzed the data. X.D., Y.G., Y.L. assisted with the data analysis. Y.H.

- 340 and T.M. wrote the manuscript with the help of the other authors.
- 341

342 Figure legends

343	Figure 1. SBEM imaging and dense reconstruction of the mouse organ of Corti. (a) Left:
344	location of the SBEM dataset (green box) in the resin-embedded cochlea. Right: dimension of the
345	dataset. Red box: virtual cross-section at the position as indicated in (left). (b) High-resolution
346	example image of neurites beneath IHCs and a representative ¹ SGN bouton was indicated by
347	asterisk (green). Scale bar 2 µm. (c) Reconstruction of all 322 neurites in the dataset. Left: skeletons
348	of all radial ¹ SGN-dendrites (green) and one representative ² SGN-dendrite with a characteristic turn
349	towards the cochlear base (grey). Right: skeletons of all LOC fibers (blue) and MOC fibers (magenta)
350	with main trunks extending into habenula perforatae and, for MOC, tunnel-crossing fibers towards
351	the OHC region. Small grey spheres represent OHCs and large dark spheres represent IHCs. Scale
352	bar 20 µm. (d, e) Quantification of circuit components. All 234 ¹ SGN-dendrites (green), 32 LOC
353	fibers (blue) and 39 MOC fibers (magenta) contribute 47.2 % (8.01 mm), 36.46 % (6.19 mm) and
354	13.05 % (2.21 mm) of circuit path length (total: 16.97 mm) in the ISB region, respectively. Others
355	include e.g. ² SGN-dendrites. (f) Snapshot of the second SBEM dataset. (g) Reconstruction of all
356	366 ¹ SGN-dendrites (green), all 468 ribbons (red) and 26 IHC nuclei (grey) of the second SBEM
357	dataset. Scale bar 20 μm.
358	

359	Figure 2 Quantification of synaptic ribbons in the IHCs. (a) Consecutive slices showing a
360	representative ribbon synapse (red box) and the postsynaptic ¹ SGN bouton (green) co-innervated by
361	an efferent terminal (blue). Scale bar 1 μ m. (b) Volume reconstruction of an exemplary IHC with
362	all ribbon synapses (red) and ¹ SGNs (green), and a representative LOC fiber (blue). Scale bar 5 μ m.
363	IHC location as indicated in Suppl. Figure 1. (c) Boxplot of measured ribbon sizes. All identified
364	ribbons (308 in the 1 st animal and 468 in the 2 nd animal) were classified as two classes according to
365	their locations (pillar or modiolar face of the IHCs). Exceptions are 12 (CBA-1) and 24 (CBA-2)
366	cases with ribbons located at the bottom of IHCs that were grouped to the modiolar ribbons. Note
367	that ribbons at the IHC pillar face (black dots and triangles, 0.0117 \pm 0.0049 μm^3 and 0.0098 \pm
368	$0.0043 \ \mu m^3$) were significantly smaller than their counterparts at the IHC modiolar face (circles and
369	open triangles, 0.0153 \pm 0.0055 μm^3 and 0.0145 \pm 0.0074 $\mu m^3).$ (Two-sample t-test, ****p $<$
370	0.0001). (d) Cumulative probability distribution of ribbon sizes from all 15 IHCs in the CBA-1 (red
371	dash line) and 26 IHCs in the CBA-2 (light red dash line), as well as individual IHCs (CBA-1: black
372	lines; CBA-2: grey lines). Note the remarkable cell-to-cell variability between IHCs. (e) Negative
373	correlation between number and mean size of ribbons in individual IHCs (CBA-1: back dots; CBA-
374	2: cycles). Linear fit: CBA-1 (red dash line, adjusted- $R^2 = 0.67$) and CBA-2 (light red dash line,
375	adjusted- $R^2 = 0.41$).

Figure 3. Quantification of afferent and efferent inputs on the ¹SGN-dendrites (a) Volume
reconstruction of three distinct ¹SGN classes characterized by single-ribbon (unbranched ¹SGN,
left), multi-ribbon (unbranched ¹SGN, middle), and bifurcation (branched ¹SGN, right). Scale bar 5
μm. Right: (a1-a4) cross-sections through synaptic structures indicated in (a) with arrows. Single-

381	ribbon AZ (a1), dual-ribbon AZ (a2), ribbons on a bifurcated ¹ SGN-dendrite (a2 & a3), and a
382	representative efferent synapse on a ¹ SGN dendritic shaft (a4). Scale bar 1 μ m. (b) Display of full-
383	length unmyelinated ¹ SGN-dendrites (green) with presynaptic ribbons (red dots) and efferent
384	synapses (OC inputs, blue dots) in the 1^{st} SBEM dataset. Scale bar 20 μ m. (c) Histograms of the
385	number of efferent synapses on ¹ SGN-dendrites grouped according to ribbon structures. Multi-
386	ribbon ¹ SGNs (red, $n = 64$) received more efferent innervation than single-ribbon ¹ SGNs (black,
387	n = 170), while the difference in efferent synapse number between ¹ SGNs postsynaptic to single
388	modiolar ribbons (grey, $n = 71$) and those to single pillar ribbons (black, $n = 99$) was less prominent.
389	On average 5.70 ± 2.53 and 8.82 ± 3.70 efferent synapses were found innervating ¹ SGN with single-
390	(black) and multi-ribbon (red) synapses. For ¹ SGNs with single-ribbon synapses, the number of
391	efferent synapses innervating pillar ¹ SGNs (black, inset) and modiolar ¹ SGNs (grey, inset) were 5.25
392	\pm 2.19 and 6.47 \pm 2.81, respectively. Two-sample t-tests suggested statistical significance between
393	single- and multi-ribbon ¹ SGNs (***p <0.001) and between ¹ SGNs with single pillar and modiolar
394	ribbon synapses (** $p = 0.0028$). (d) Display of full-length unmyelinated ¹ SGN-dendrites (grey,
395	n = 266) in the 2 nd animal. 30 single- and 30 multi-ribbon ¹ SGNs (green) were randomly selected.
396	Their presynaptic ribbons (red dots) and efferent synapses (OC inputs, blue dots) were annotated.
397	Scale bar 20 μ m. (e) Histograms of the number of efferent synapses on randomly selected ¹ SGN-
398	dendrites grouped according to ribbon structures. On average 4.43 \pm 2.16 (n = 30) and 7.70 \pm 2.29
399	(n = 30) efferent synapses were found innervating ¹ SGNs with single- (black) and multi-ribbon (red)
400	synapses. Two-sample t-test, ***p < 0.001.
401	

403	Figure 4 Efferent innervation of ¹ SGN-dendrites: selectivity of LOC and MOC control.
404	(a) Display of a representative LOC fiber (blue) with all 25 innervated ¹ SGN-dendrites (green) in
405	the dataset. Scale bar 20 μ m. (b-c) High-resolution exemplary images of a presynaptic LOC terminal
406	contacting an IHC (blue arrow, open) and LOC synapses with a ¹ SGN-dendrite (blue arrows, filled).
407	Scale bar 1 µm. (d) Display of a representative MOC fiber (magenta) with all seven innervated
408	¹ SGN-dendrites (green). Scale bar 20 µm. (e & f) High-resolution example images of presynaptic
409	MOC synapses onto an OHC (magenta arrow, open) and on a ¹ SGN-dendrite (magenta arrows,
410	filled). Scale bar 1 μ m. (g) Boxplot showing the comparison between the number of efferent
411	synapses formed by individual MOC fibers (magenta) and LOC fibers (blue). (h) Innervation
412	selectivity of MOC fibers (magenta) and LOC fibers (blue) on ¹ SGNs postsynaptic to IHC pillar
413	versus modiolar face, selectivity index S = $(\#^1SGN_{modiolar} - \#^1SGN_{pillar}) / (\#^1SGN_{modiolar} + $
414	$\#^{1}SGN_{pillar}$). Note that 30 out of 39 MOC fibers exclusively innervated pillar ¹ SGNs. (i) Boxplot
415	showing the mean ribbon size of MOC-innervated ¹ SGNs (magenta) compared to that of LOC-
416	innervated ¹ SGNs (blue). (j) Cumulative probability distribution of the number of efferent synapses
417	on individual MOC-innervated ¹ SGNs (magenta) compared to that of LOC-innervated ¹ SGNs (blue).
418	(For g to i, two-sample t-test, ***p < 0.001; for j, two-sample Kolmogorov-Smirnov test, ***p <
419	0.001).

Figure 5. Spatial arrangement of OC innervation on ¹SGN-dendrites (a) Cumulative probability
distribution of the number of LOC synapses on individual ¹SGNs with pillar single-ribbon (light
blue, thin line), modiolar single-ribbon (dark blue, thin line), and multi-ribbon (blue, thick line)
contacts. (b) Similar to (a), cumulative probability distribution of the number of MOC synapses on

425 individual ¹SGNs with pillar single-ribbon (light magenta, thin line), modiolar single-ribbon (dark 426 magenta, thin line), and multi-ribbon (magenta, thick line) contacts. Note that MOC synapses were 427 lacking from more than 50 % modiolar and/or multi-ribbon ¹SGNs (magenta). (c) Fraction of efferent synapses onto ¹SGNs that are classified as LOC synapses with respect to pillar single-ribbon 428 429 (small black dots), modiolar single-ribbon (small grey dots), as well as multi-ribbon (large grey dots) 430 contacts. (d) Relative position of MOC synapses (magenta, n = 342) and LOC synapses (blue, 431 n = 1175) on normalized dendritic paths between the ribbon-type AZ and heminode of ¹SGN-432 dendrites. Inset: dendritic path lengths in μ m measured from OC synapses to the heminode. (e & f) 433 3D-illustration showing spatial segregation of LOC synapses (blue) from MOC synapses (magenta) (e), as well as traced trajectories of LOC (blue) from those of MOC fibers (magenta) (f). TC: Tunnel 434 435 of Corti. (For a, b and d two-sample Kolmogorov-Smirnov test, ***p < 0.001).

436

Suppl. Figure 1. Quantification of tracing accuracy (a) 7-fold skeletonization of the ¹SGNdendrites and an efferent axon traced by trained non-experts in the dataset. For ¹SGN-dendrites, all tracing started from the ribbon-type AZ and proceeded to the heminode of the ¹SGN-dendrite. Grey spheres represented the nuclei of IHCs which were arranged in a staggered manner. Scale bar 5 μ m. (b-d) RESCOP analysis of traceability: histogram of edge votes (b), estimated edge-detection probability $p(p_e)$ distribution for all traced neurites (c), and prediction of tracing accuracy as a function of annotation redundancy (d).

444

Suppl. Figure 2. Morphology of branched ¹SGN-dendrites. (a) Ten example skeletons of
 branched ¹SGN-dendrites, on which ribbon synapses and OC synapses were indicated by red and

447 blue dots, respectively. Scale bar 10 μm.

448

449	Suppl. Figure 3. Similar efferent innervation of postsynaptic ¹ SGN boutons at the modiolar
450	versus pillar IHC faces. (a) Exemplary image of a ¹ SGN bouton (green). Efferent synapse
451	(indicated by physical contact of SV-filled terminal) was marked by red asterisk and those within a
452	4- μ m-sized box (white) but without physical contact by white asterisks. Scale bar 1 μ m. (b) Boxplot
453	of efferent synapse number on ¹ SGN boutons postsynaptic to IHC modiolar face (left) versus pillar
454	face (right). Two-sample t test: $p = 0.0837$.
455	
456	Suppl. Figure 4. Same spatial arrangement of efferent innervation in the 2 nd animal. (a)
457	Dendritic pathlengths in μm measured from efferent synapses to the heminode. (b) Relative position
458	of MOC synapses (magenta, $n = 86$) and LOC synapses (blue, $n = 286$) on normalized dendritic
459	paths between ribbon AZ and heminode of ¹ SGN-dendrites.

461 Material and Methods

462 Animals. CBA/Ca mice were purchased from Sino-British SIPPR/BK Lab.Animal Ltd (Shanghai,
463 China). This study was conducted at the Shanghai Institute of Precision Medicine and Ear Institute
464 of Shanghai Ninth People's Hospital. All procedures were reviewed and approved by the
465 Institutional Authority for Laboratory Animal Care of the hospital (SH9H-2019-A387-1).

Whole cochlea EM preparation. Animals were anesthetized through intraperitoneal injection of 467 468 chloride hydrate (500 mg/kg) and temporal bones were removed after decapitation. The cochleae were fixed by perfusion through the round window with ice-cold fixative mixture containing 0.08 M 469 cacodylate (pH 7.4), 2 % freshly-made paraformaldehyde (Sigma), and 2.5 % glutaraldehyde 470 471 (Sigma), and then immersion-fixed for 5 hours, followed by a 4-hour decalcification in the same 472 fixative with addition of 5 % EDTA (ethylenediaminetetraacetic acid, Sigma-Aldrich) at 4 °C. The *en bloc* EM staining was performed following the previously published protocol^{$\frac{19}{29}$} with 473 474 modifications. In brief, the decalcified cochleae were washed twice in 0.15 M cacodylate (pH 7.4) for 30 min each and sequentially immersed in 2 % OsO₄ (Ted Pella), 2.5 % ferrocyanide (Sigma), 475 476 and again 2 % OsO₄ at room temperature for 2, 2, and 1.5 hours, respectively, without intermediate 477 washing step. All staining solutions were buffered with 0.15 M cacodylate (pH 7.4). After being 478 washed twice in nanopore filtered water for 30 min each, the cochleae were incubated at room 479 temperature in filtered thiocarbonhydrazide (saturated aqueous solution, Sigma) for 1 hour, 480 unbuffered OsO₄ aqueous solution for 2 hours and lead aspartate solution (0.03 M, pH 5.0 adjusted 481 by KOH, EMS) at 50 °C for 2 hours. Between steps, double rinses in nanopore filtered water for 30 482 min each were performed.

483	For embedding, the cochleae were first dehydrated through a graded acetone series (50 %, 75 %,
484	90 %, 30 min each, all cooled at 4 °C) into pure acetone (3 \times 100 %, 30 min at room temperature),
485	followed by sequential infiltration with 1:1 and 1:2 mixtures of acetone and Spurr's resin monomer
486	(4.1 g ERL 4221, 0.95 g DER 736, 5.9 g NSA and 1 % DMAE; Sigma-Aldrich) at room temperature
487	for 6 hours each on a rotator. Infiltrated cochleae were then incubated in pure resin overnight before
488	being placed in embedding molds (Polyscience, Germany) and incubated in a pre-warmed oven
489	(70 °C) for 72 hours.

SBEM imaging of cochlea. Embedded samples were trimmed to a block-face of $\sim 800 \times 800 \ \mu m^2$ 491 492 and imaged using a field-emission scanning EM (Gemini300, Zeiss) equipped with an in-chamber 493 ultramicrotome (3ViewXP, Gatan) and back-scattered electron detector (Onpont, Gatan). For the 1st 494 CBA dataset, serial images were acquired in single tile mode (20,000 × 15,000 pixels) of 11 nm pixel size and nominal cutting thickness of 40 nm; incident beam energy 2 keV; dwell time 1 µs. 495 2500 slices were collected. For the 2^{nd} CBA dataset, 2952 serial images (16,000 × 9,000 pixels) 496 were acquired at 12 nm pixel size and nominal cutting thickness of 50 nm; incident beam energy 2 497 eV; dwell time 1.5 μ s. For both datasets focal charge compensation⁸⁰ was set to 100 % with a high 498 vacuum chamber pressure of $\sim 2.8 \times 10^{-3}$ mbar. The datasets were aligned using self-written 499 500 MATLAB script based on cross-correlation maximum between consecutive slices. Then the aligned datasets were split into cubes (128 × 128 × 128 voxels) for viewing and neurite-tracing in a browser-501 based annotation tool (webKNOSSOS $\frac{56}{5}$). 502

503

504 Neurite reconstruction and traceability test. Seed points were generated from 17 annotated

505	afferent and one efferent terminal beneath an IHC at a central region of the dataset. These
506	coordinates were delivered to annotators as starting points for neurite-tracing in all directions within
507	the data volume. This yielded $19 \times 7 = 133$ skeletons with a total length of 7.185 mm, which were
508	further analyzed using the RESCOP ^{57} routine as described previously ^{79} . In brief, each set of seven
509	redundant skeletons was compared computing the number of 'pro' votes and total votes for each
510	edge in each skeleton-tracing. This resulted in a vote histogram that was corrected for the
511	redundancy of each tracing, yielding the measured vote histogram. Next, the underlying prior of
512	edge probability $p(p_e)$ was determined by fitting the vote histogram under the simplifying
513	assumption that tracing decisions were independent between tracers and locations. Then, the
514	predicted mean error-free path length as a function of the number of tracings per seed point ('tracing
515	redundancy') was computed from the fitted prior $p(p_e)$ for the setting of annotators reconstructing a
516	neurite.

Ribbon size measurement and synapse counting. The ribbon size was measured by counting519voxels which belonged to individual ribbon structures via volume-tracing tool in webKNOSSOS.520Efferent synapse annotation was done by three independent annotators on traced skeletons and the521result was proof-read by inspection of a 4th annotator at annotated locations. All data analysis522including statistic tests were conducted using self-written script and build-in functions in MATLAB523(Mathworks).

525 Additional information

Suppl. Video 1: Down-sampled cochlea SBEM data with alignment (scale bar 10 μm)

527 **Suppl. Video 2:** High resolution cochlea SBEM data in the ISB region (scale bar 2 μm)

528

529 References

- 5301Moser, T., Grabner, C. P. & Schmitz, F. Sensory Processing at Ribbon Synapses in the Retina531and the Cochlea. *Physiol Rev* 100, 103-144, doi:10.1152/physrev.00026.2018 (2020).
- Fettiplace, R. Hair Cell Transduction, Tuning, and Synaptic Transmission in the Mammalian
 Cochlea. *Compr Physiol* 7, 1197-1227, doi:10.1002/cphy.c160049 (2017).
- 5343Huet, A. *et al.* Sound Coding in the Auditory Nerve: From Single Fiber Activity to Cochlear535MassPotentialsinGerbils.Neuroscience407,83-92,536doi:10.1016/j.neuroscience.2018.10.010 (2019).
- Reijntjes, D. O. J. & Pyott, S. J. The afferent signaling complex: Regulation of type I spiral
 ganglion neuron responses in the auditory periphery. *Hear Res* 336, 1-16,
 doi:10.1016/j.heares.2016.03.011 (2016).
- 540 5 Fuchs, P. A. & Lauer, A. M. Efferent Inhibition of the Cochlea. *Cold Spring Harb Perspect*541 *Med* 9, doi:10.1101/cshperspect.a033530 (2019).
- 542 6 Liberman, M. C. Single-neuron labeling in the cat auditory nerve. *Science* 216, 1239-1241,
 543 doi:10.1126/science.7079757 (1982).
- 5447Kiang, N. Y. S. Discharge patterns of single fibers in the cat's auditory nerve. With the545assistance of Takeshi Watanabe [et al.].(M. I. T. Press, 1965).
- 5468Safieddine, S., El-Amraoui, A. & Petit, C. The auditory hair cell ribbon synapse: from547assembly to function. Annu Rev Neurosci 35, 509-528, doi:10.1146/annurev-neuro-548061010-113705 (2012).
- Frank, T., Khimich, D., Neef, A. & Moser, T. Mechanisms contributing to synaptic Ca2+
 signals and their heterogeneity in hair cells. *Proc Natl Acad Sci U S A* 106, 4483-4488,
 doi:10.1073/pnas.0813213106 (2009).
- Meyer, A. C. *et al.* Tuning of synapse number, structure and function in the cochlea. *Nat Neurosci* 12, 444-453, doi:10.1038/nn.2293 (2009).
- Liberman, L. D., Wang, H. & Liberman, M. C. Opposing gradients of ribbon size and AMPA
 receptor expression underlie sensitivity differences among cochlear-nerve/hair-cell
 synapses. J Neurosci **31**, 801-808, doi:10.1523/JNEUROSCI.3389-10.2011 (2011).
- 557 12 Ohn, T. L. *et al.* Hair cells use active zones with different voltage dependence of Ca2+
 558 influx to decompose sounds into complementary neural codes. *Proc Natl Acad Sci U S A*559 **113**, E4716-4725, doi:10.1073/pnas.1605737113 (2016).
- Michanski, S. *et al.* Mapping developmental maturation of inner hair cell ribbon synapses
 in the apical mouse cochlea. *Proc Natl Acad Sci U S A* 116, 6415-6424,
 doi:10.1073/pnas.1812029116 (2019).
- 56314Neef, J. *et al.* Quantitative optical nanophysiology of Ca(2+) signaling at inner hair cell564active zones. Nat Commun 9, 290, doi:10.1038/s41467-017-02612-y (2018).
- Liberman, M. C., Dodds, L. W. & Pierce, S. Afferent and efferent innervation of the cat
 cochlea: quantitative analysis with light and electron microscopy. *J Comp Neurol* 301,
 443-460, doi:10.1002/cne.903010309 (1990).

- 56816Taberner, A. M. & Liberman, M. C. Response properties of single auditory nerve fibers in569the mouse. J Neurophysiol 93, 557-569, doi:10.1152/jn.00574.2004 (2005).
- 570 17 Shrestha, B. R. *et al.* Sensory Neuron Diversity in the Inner Ear Is Shaped by Activity. *Cell* 571 **174**, 1229-1246 e1217, doi:10.1016/j.cell.2018.07.007 (2018).
- Sun, S. *et al.* Hair Cell Mechanotransduction Regulates Spontaneous Activity and Spiral
 Ganglion Subtype Specification in the Auditory System. *Cell* **174**, 1247-1263 e1215,
 doi:10.1016/j.cell.2018.07.008 (2018).
- 57519Petitpre, C. *et al.* Neuronal heterogeneity and stereotyped connectivity in the auditory576afferent system. *Nat Commun* **9**, 3691, doi:10.1038/s41467-018-06033-3 (2018).
- 577 20 Liberman, M. C. Auditory-nerve response from cats raised in a low-noise chamber. J
 578 Acoust Soc Am 63, 442-455, doi:10.1121/1.381736 (1978).
- Winter, I. M., Robertson, D. & Yates, G. K. Diversity of characteristic frequency rateintensity functions in guinea pig auditory nerve fibres. *Hear Res* 45, 191-202,
 doi:10.1016/0378-5955(90)90120-e (1990).
- Sachs, M. B. & Abbas, P. J. Rate versus level functions for auditory-nerve fibers in cats:
 tone-burst stimuli. *J Acoust Soc Am* 56, 1835-1847, doi:10.1121/1.1903521 (1974).
- Kantardzhieva, A., Liberman, M. C. & Sewell, W. F. Quantitative analysis of ribbons, vesicles,
 and cisterns at the cat inner hair cell synapse: correlations with spontaneous rate. *J Comp Neurol* 521, 3260-3271, doi:10.1002/cne.23345 (2013).
- Liberman, M. C. Morphological differences among radial afferent fibers in the cat cochlea:
 an electron-microscopic study of serial sections. *Hear Res* 3, 45-63, doi:10.1016/03785955(80)90007-6 (1980).
- Merchan-Perez, A. & Liberman, M. C. Ultrastructural differences among afferent synapses
 on cochlear hair cells: correlations with spontaneous discharge rate. *J Comp Neurol* 371,
 208-221, doi:10.1002/(SICI)1096-9861(19960722)371:2<208::AID-CNE2>3.0.CO;2-6
 (1996).
- 594 26 Furman, A. C., Kujawa, S. G. & Liberman, M. C. Noise-induced cochlear neuropathy is 595 selective for fibers with low spontaneous rates. *J Neurophysiol* **110**, 577-586, 596 doi:10.1152/jn.00164.2013 (2013).
- 597 27 Song, Q. *et al.* Coding deficits in hidden hearing loss induced by noise: the nature and
 598 impacts. *Sci Rep* 6, 25200, doi:10.1038/srep25200 (2016).
- Zhang, L., Engler, S., Koepcke, L., Steenken, F. & Koppl, C. Concurrent gradients of ribbon
 volume and AMPA-receptor patch volume in cochlear afferent synapses on gerbil inner
 hair cells. *Hear Res* 364, 81-89, doi:10.1016/j.heares.2018.03.028 (2018).
- Heil, P. & Peterson, A. J. Basic response properties of auditory nerve fibers: a review. *Cell Tissue Res* 361, 129-158, doi:10.1007/s00441-015-2177-9 (2015).
- Pangrsic, T., Singer, J. H. & Koschak, A. Voltage-Gated Calcium Channels: Key Players in
 Sensory Coding in the Retina and the Inner Ear. *Physiol Rev* 98, 2063-2096,
 doi:10.1152/physrev.00030.2017 (2018).
- 607
 31
 Warr, W. B. & Guinan, J. J., Jr. Efferent innervation of the organ of corti: two separate

 608
 systems. *Brain Res* 173, 152-155, doi:10.1016/0006-8993(79)91104-1 (1979).
- Evans, M. G., Lagostena, L., Darbon, P. & Mammano, F. Cholinergic control of membrane
 conductance and intracellular free Ca2+ in outer hair cells of the guinea pig cochlea. *Cell Calcium* 28, 195-203, doi:10.1054/ceca.2000.0145 (2000).

612 33 Dallos, P. *et al.* Acetylcholine, outer hair cell electromotility, and the cochlear amplifier. *J*613 *Neurosci* 17, 2212-2226 (1997).

- 61434Blanchet, C., Erostegui, C., Sugasawa, M. & Dulon, D. Acetylcholine-induced potassium615current of guinea pig outer hair cells: its dependence on a calcium influx through616nicotinic-like receptors. J Neurosci 16, 2574-2584 (1996).
- Nouvian, R., Eybalin, M. & Puel, J. L. Cochlear efferents in developing adult and
 pathological conditions. *Cell Tissue Res* 361, 301-309, doi:10.1007/s00441-015-2158-z
 (2015).
- Sin, Y., Liberman, L. D., Maison, S. F. & Liberman, M. C. Olivocochlear innervation maintains
 the normal modiolar-pillar and habenular-cuticular gradients in cochlear synaptic
 morphology. *J Assoc Res Otolaryngol* 15, 571-583, doi:10.1007/s10162-014-0462-z
 (2014).
- 524 37 Eybalin, M. Neurotransmitters and neuromodulators of the mammalian cochlea. *Physiol* 625 *Rev* 73, 309-373, doi:10.1152/physrev.1993.73.2.309 (1993).
- 62638Ruel, J. *et al.* Physiology, pharmacology and plasticity at the inner hair cell synaptic627complex. *Hear Res* 227, 19-27, doi:10.1016/j.heares.2006.08.017 (2007).
- Barrow, K. N., Maison, S. F. & Liberman, M. C. Cochlear efferent feedback balances
 interaural sensitivity. *Nat Neurosci* 9, 1474-1476, doi:10.1038/nn1807 (2006).
- 40 Irving, S., Moore, D. R., Liberman, M. C. & Sumner, C. J. Olivocochlear efferent control in
 sound localization and experience-dependent learning. *J Neurosci* **31**, 2493-2501,
 doi:10.1523/JNEUROSCI.2679-10.2011 (2011).
- Eybalin, M., Caicedo, A., Renard, N., Ruel, J. & Puel, J. L. Transient Ca2+-permeable AMPA
 receptors in postnatal rat primary auditory neurons. *Eur J Neurosci* 20, 2981-2989,
 doi:10.1111/j.1460-9568.2004.03772.x (2004).
- Ehret, G. & Frankenreiter, M. Quantitative analysis of cochlear structures in the house
 mouse in relation to mechanisms of acoustical information processing. *Journal of Comparative Physiology* 122, 66-85, doi:<u>https://doi.org/10.1007/BF00611249</u> (1977).
- Maison, S. F., Adams, J. C. & Liberman, M. C. Olivocochlear innervation in the mouse:
 immunocytochemical maps, crossed versus uncrossed contributions, and transmitter
 colocalization. *J Comp Neurol* 455, 406-416, doi:10.1002/cne.10490 (2003).
- Warr, W. B. & Boche, J. E. Diversity of axonal ramifications belonging to single lateral and
 medial olivocochlear neurons. *Exp Brain Res* 153, 499-513, doi:10.1007/s00221-0031682-3 (2003).
- 645 45 Darrow, K. N., Simons, E. J., Dodds, L. & Liberman, M. C. Dopaminergic innervation of the
 646 mouse inner ear: evidence for a separate cytochemical group of cochlear efferent fibers.
 647 *J Comp Neurol* **498**, 403-414, doi:10.1002/cne.21050 (2006).
- 64846Fuchs, P. A., Lehar, M. & Hiel, H. Ultrastructure of cisternal synapses on outer hair cells of649the mouse cochlea. J Comp Neurol 522, 717-729, doi:10.1002/cne.23478 (2014).
- Thiers, F. A., Nadol, J. B., Jr. & Liberman, M. C. Reciprocal synapses between outer hair
 cells and their afferent terminals: evidence for a local neural network in the mammalian
 cochlea. *J Assoc Res Otolaryngol* 9, 477-489, doi:10.1007/s10162-008-0135-x (2008).
- Liberman, M. C. Efferent synapses in the inner hair cell area of the cat cochlea: an electron
 microscopic study of serial sections. *Hear Res* 3, 189-204, doi:10.1016/03785955(80)90046-5 (1980).

656	49	Hashimoto, S., Kimura, R. S. & Takasaka, T. Computer-aided three-dimensional
657		reconstruction of the inner hair cells and their nerve endings in the guinea pig cochlea.
658		<i>Acta Otolaryngol</i> 109 , 228-234, doi:10.3109/00016489009107438 (1990).
659	50	Nadol, J. B., Jr. Serial section reconstruction of the neural poles of hair cells in the human
660		organ of Corti. II. outer hair cells. Laryngoscope 93, 780-791, doi:10.1288/00005537-
661		198306000-00015 (1983).
662	51	Nadol, J. B., Jr. Serial section reconstruction of the neural poles of hair cells in the human
663		organ of Corti I Inner hair cells <i>Larvngoscope</i> 93 599-614

- 663 organ of Corti. I. Inner hair cells. *Laryngoscope* 93, 599-614,
 664 doi:10.1002/lary.1983.93.5.599 (1983).
 665 52 Brown M C Morphology of labeled efferent fibers in the guinea pig cochlea. *LComp*.
- 66552Brown, M. C. Morphology of labeled efferent fibers in the guinea pig cochlea. J Comp666Neurol 260, 605-618, doi:10.1002/cne.902600412 (1987).
- 66753Brown, M. C. Morphology of labeled afferent fibers in the guinea pig cochlea. J Comp668Neurol 260, 591-604, doi:10.1002/cne.902600411 (1987).
- 54 Denk, W. & Horstmann, H. Serial block-face scanning electron microscopy to reconstruct
 670 three-dimensional tissue nanostructure. *PLoS Biol* 2, e329,
 671 doi:10.1371/journal.pbio.0020329 (2004).
- 672 55 Willott, J. F. *Handbook of mouse auditory research : from behavior to molecular biology.*673 (CRC Press, 2001).
- 674 56 Boergens, K. M. *et al.* webKnossos: efficient online 3D data annotation for connectomics.
 675 *Nat Methods* 14, 691-694, doi:10.1038/nmeth.4331 (2017).
- 676 57 Helmstaedter, M., Briggman, K. L. & Denk, W. High-accuracy neurite reconstruction for
 677 high-throughput neuroanatomy. *Nat Neurosci* 14, 1081-1088, doi:10.1038/nn.2868
 678 (2011).
- 679 58 Helmstaedter, M. Cellular-resolution connectomics: challenges of dense neural circuit
 680 reconstruction. *Nat Methods* 10, 501-507, doi:10.1038/nmeth.2476 (2013).
- Kornfeld, J. & Denk, W. Progress and remaining challenges in high-throughput volume
 electron microscopy. *Curr Opin Neurobiol* 50, 261-267, doi:10.1016/j.conb.2018.04.030
 (2018).
- 684 60 Briggman, K. L. & Bock, D. D. Volume electron microscopy for neuronal circuit 685 reconstruction. *Curr Opin Neurobiol* **22**, 154-161, doi:10.1016/j.conb.2011.10.022 (2012).
- 686 61 Fernandez, C. The innervation of the cochlea (guinea pig). *Laryngoscope* 61, 1152-1172,
 687 doi:10.1288/00005537-195112000-00002 (1951).
- 688 62 Spoendlin, H. Innervation patterns in the organ of corti of the cat. *Acta Otolaryngol* 67,
 689 239-254, doi:10.3109/00016486909125448 (1969).
- 63 Stamataki, S., Francis, H. W., Lehar, M., May, B. J. & Ryugo, D. K. Synaptic alterations at
 691 inner hair cells precede spiral ganglion cell loss in aging C57BL/6J mice. *Hear Res* 221,
 692 104-118, doi:10.1016/j.heares.2006.07.014 (2006).
- 64 Buran, B. N. *et al.* Onset coding is degraded in auditory nerve fibers from mutant mice
 694 lacking synaptic ribbons. *J Neurosci* 30, 7587-7597, doi:10.1523/JNEUROSCI.0389695 10.2010 (2010).
- 65 Fischer, F. P. Quantitative analysis of the innervation of the chicken basilar papilla. *Hear*697 *Res* 61, 167-178, doi:10.1016/0378-5955(92)90048-r (1992).
- 69866Klinke, R. Neurotransmission in the inner ear. Hear Res 22, 235-243, doi:10.1016/0378-6995955(86)90100-0 (1986).

Jean, P. *et al.* The synaptic ribbon is critical for sound encoding at high rates and with
temporal precision. *Elife* 7, doi:ARTN e29275

702 10.7554/eLife.29275 (2018).

- Guinan, J. J., Jr. & Gifford, M. L. Effects of electrical stimulation of efferent olivocochlear
 neurons on cat auditory-nerve fibers. I. Rate-level functions. *Hear Res* 33, 97-113,
 doi:10.1016/0378-5955(88)90023-8 (1988).
- Winslow, R. L. & Sachs, M. B. Effect of electrical stimulation of the crossed olivocochlear
 bundle on auditory nerve response to tones in noise. *J Neurophysiol* 57, 1002-1021,
 doi:10.1152/jn.1987.57.4.1002 (1987).
- 709 70 Liberman, M. C. & Brown, M. C. Physiology and anatomy of single olivocochlear neurons
 710 in the cat. *Hear Res* 24, 17-36, doi:10.1016/0378-5955(86)90003-1 (1986).
- 71 71 Felix, D. & Ehrenberger, K. The efferent modulation of mammalian inner hair cell afferents.
 712 *Hear Res* 64, 1-5, doi:10.1016/0378-5955(92)90163-h (1992).
- 713 72 Maison, S. F. *et al.* Dopaminergic signaling in the cochlea: receptor expression patterns
 714 and deletion phenotypes. *J Neurosci* 32, 344-355, doi:10.1523/JNEUROSCI.4720-11.2012
 715 (2012).
- 716 73 Wu, J. S. *et al.* Sound exposure dynamically induces dopamine synthesis in cholinergic
 717 LOC efferents for feedback to auditory nerve fibers. *Elife* 9, doi:10.7554/eLife.52419 (2020).
- 74 Kujawa, S. G. & Liberman, M. C. Adding insult to injury: cochlear nerve degeneration after
 719 "temporary" noise-induced hearing loss. *J Neurosci* 29, 14077-14085,
 720 doi:10.1523/JNEUROSCI.2845-09.2009 (2009).
- 721 75 Lauer, A. M., Fuchs, P. A., Ryugo, D. K. & Francis, H. W. Efferent synapses return to inner 722 hair cells in the aging cochlea. Neurobiol Aging 33. 2892-2902, 723 doi:10.1016/j.neurobiolaging.2012.02.007 (2012).
- 76 Fernandez, K. A., Jeffers, P. W., Lall, K., Liberman, M. C. & Kujawa, S. G. Aging after noise
 exposure: acceleration of cochlear synaptopathy in "recovered" ears. *J Neurosci* 35, 7509726 7520, doi:10.1523/JNEUROSCI.5138-14.2015 (2015).
- 727 77 Sergeyenko, Y., Lall, K., Liberman, M. C. & Kujawa, S. G. Age-related cochlear synaptopathy:
 728 an early-onset contributor to auditory functional decline. *J Neurosci* 33, 13686-13694,
 729 doi:10.1523/JNEUROSCI.1783-13.2013 (2013).
- 730 78 Knudson, I. M., Shera, C. A. & Melcher, J. R. Increased contralateral suppression of
 731 otoacoustic emissions indicates a hyperresponsive medial olivocochlear system in humans
 732 with tinnitus and hyperacusis. *J Neurophysiol* **112**, 3197-3208, doi:10.1152/jn.00576.2014
 733 (2014).
- 734 79 Hua, Y., Laserstein, P. & Helmstaedter, M. Large-volume en-bloc staining for electron
 735 microscopy-based connectomics. *Nat Commun* 6, 7923, doi:10.1038/ncomms8923
 736 (2015).
- 737 80 Deerinck, T. J. *et al.* High-performance serial block-face SEM of nonconductive biological
 738 samples enabled by focal gas injection-based charge compensation. *J Microsc* 270, 142739 149, doi:10.1111/jmi.12667 (2018).

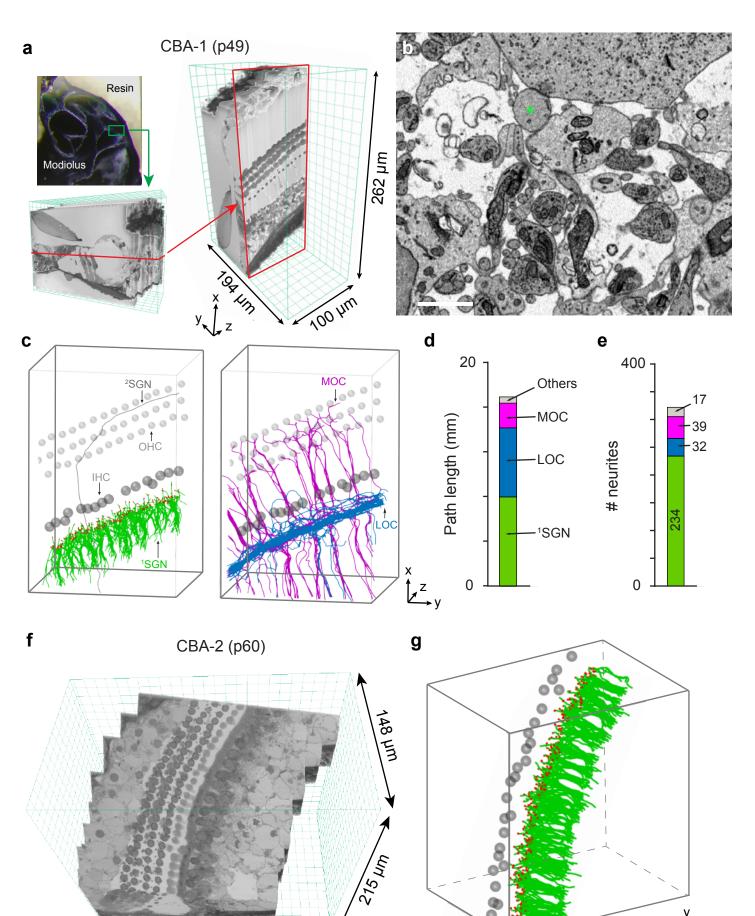
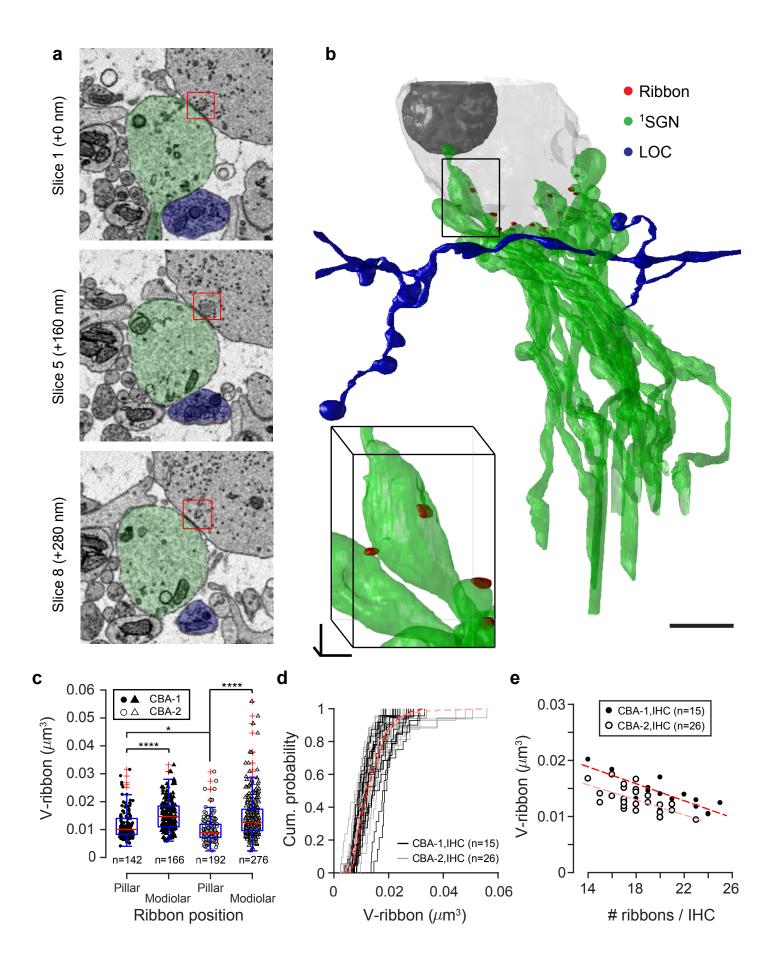


Figure 1


x٠

215 µm

y

000

x

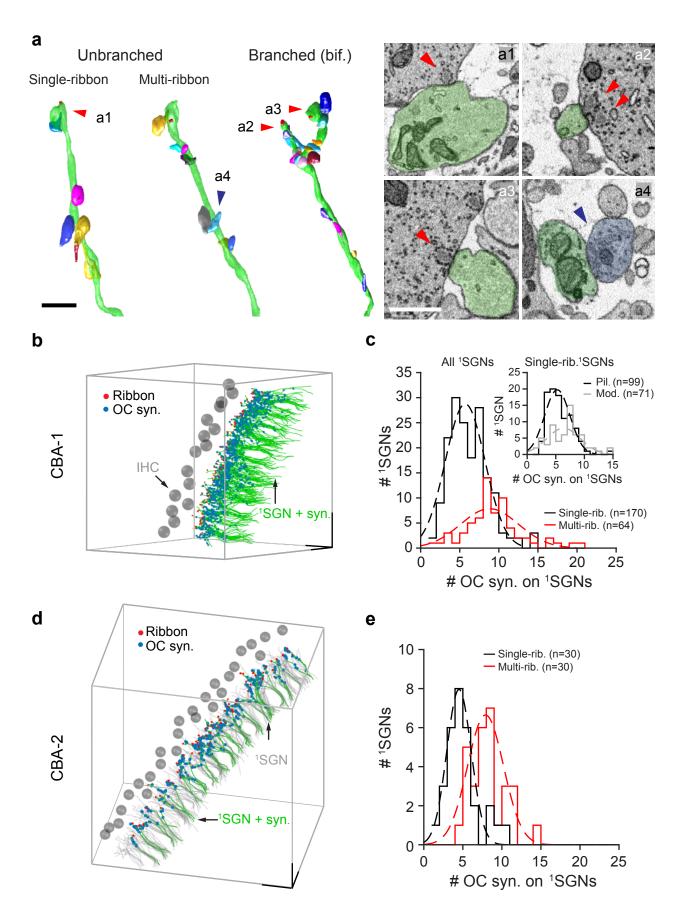
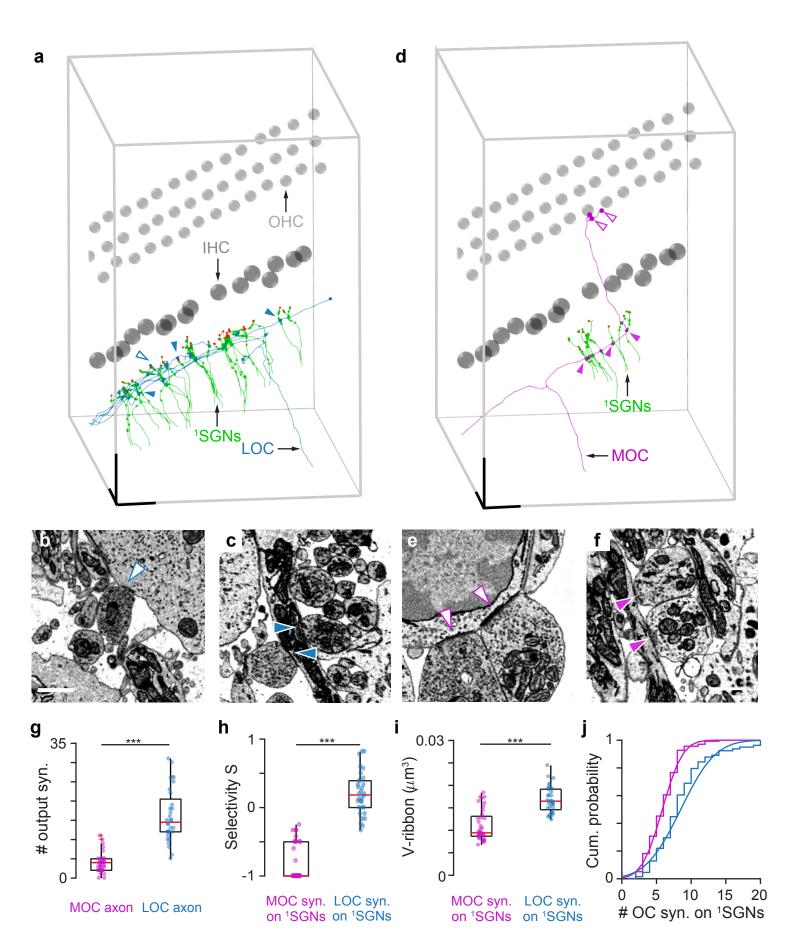



Figure 3

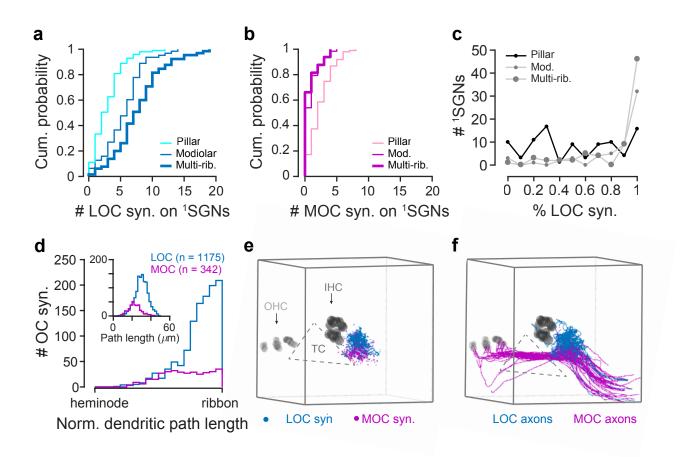


Figure 5