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Summary: 
 
Despite decades of intense genetic, biochemical, and evolutionary characterizations of bacterial                     
promoters, we still lack the basic ability to identify or predict transcriptional activities of                           
promoters using primary sequence. Even in simple, well-characterized organisms such as E. coli                         
there is little agreement on the number, location, and strength of promoters. Here, we use a                               
genomically-encoded massively parallel reporter assay to perform the first full characterization                     
of autonomous promoter activity across the E. coli genome. We measure promoter activity of                           
>300,000 sequences spanning the entire genome and precisely map 2,228 promoters active in                         
rich media. We show that antisense promoters have a profound effect on global transcription                           
and how codon usage has adapted to encode intragenic promoters. Furthermore, we perform a                           
scanning mutagenesis of 2,057 promoters to uncover regulatory sequences responsible for                     
regulating promoter activity. Finally, we show that despite these large datasets and modern                         
machine learning algorithms, the task of predicting promoter activity from primary sequence                       
sequence is still challenging.   
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Introduction 
 
In 1961, François Jacob and Jacques Monod outlined the concept of the bacterial promoter                           
derived from an accumulation of genetic and biochemical studies of metabolic regulation in                          
Escherichia coli (Jacob and Monod, 1961). Bacterial promoters have since become a foundation                         
for understanding molecular biology and gene regulation, with countless studies probing their                       
genetic, evolutionary, structural, thermodynamic and kinetic properties (Haugen, Ross and                   
Gourse, 2008; Lee, Minchin and Busby, 2012; Feklístov et al., 2014; Browning and Busby, 2016).                             
Several model promoters such as the lac, trp, and phage promoters have been the subject of                               
in-depth mechanistic studies for how RNA polymerase (RNAP) recognizes promoter sequences,                     
as well as the stepwise process to initiate transcription (Murakami et al., 2002; Johnson and                             
Hinton, 2006; Hook-Barnard and Hinton, 2007). In addition, many transcription factors have been                         
described in similar detail, revealing the processes through which these proteins modulate the                         
behavior of RNAP and activity of the promoter (Lawson et al., 2004; Newberry and Brennan,                             
2004; Lee, Minchin and Busby, 2012; Liu et al., 2017). The majority of the binding motifs for                                 
these transcription factors have been studied at high resolution using modern methods (Kinney                         
et al., 2010; Bonocora et al., 2015; Peano et al., 2015; Ishihama, Shimada and Yamazaki, 2016).                               
In short, the myriad components that define E. coli promoter function have been extensively                           
cataloged and characterized, establishing them as one of the most well-understood systems in                         
molecular biology. 
 
Despite this extensive knowledge, we still cannot answer many simple and fundamental                       
questions about E. coli promoters. For example, how many promoters exist in E. coli at a given                                 
growth condition? To what extent is promoter regulation responsible for protein level                       
remodeling during environmental changes? Given a sequence, can we predict if a promoter is                           
contained within it as well as its strength and/or its regulation? Answers to these questions                             
remain difficult for many reasons. Although the consensus sequences for RNAP recognition                       
motifs have been known for decades, a simple search of the genome based on these motifs                               
yields many false positives. In fact, within a region, there are often sequences closer to the                               
RNAP recognition motifs than the actual functional promoter (Huerta and Collado-Vides, 2003;                       
Rhodius, Mutalik and Gross, 2012). Experimental efforts to identify promoters using 5’ RNA-Seq                         
have found tens of thousands of putative transcription start sites (TSSs) that presumably mark                           
sites with functional promoter activity. However, there is little overlap between studies and                         
several claim many more TSSs than there are actual genes in the genome (Conway et al., 2014;                                 
Thomason et al., 2015). Furthermore, although many E. coli promoters have been verified with                           
strong biochemical evidence (Gama-Castro et al., 2008), identifying the cis-regulatory elements                     
responsible for their activity is challenging. As a consequence, roughly two-thirds of the 2,565                           
reported E. coli operons do not contain any transcription factor binding site annotations                         
(Gama-Castro et al., 2008; Belliveau et al., 2018). Finally, even amongst well-studied promoter                         
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sequences, we are still unable to quantitatively predict the activity or behavior of these                           
promoters in the context of perturbations such as moving, mutating, or removing transcription                         
factor binding sites. 
 
There are several confounding factors which make it difficult to accurately gauge if a sequence                             
can confer promoter activity. First, recent work has shown that promoter activity varies                         
depending on location in the genome due to factors such as variance in chromosomal copy                             
number (Sousa, de Lorenzo and Cebolla, 1997; Block et al., 2012), the distribution of                           
transcription factors within a cell (Kuhlman and Cox, 2012), and the chromatin accessibility                         
(Scholz et al., 2019) masking the effects of cis-regulatory elements. Efforts to normalize these                           
effects have utilized reporters on high copy number plasmids that can saturate endogenous                         
transcriptional machinery (Brewster et al., 2014). Second, inferring promoter strength from                     
endogenous transcript production is problematic because these transcripts often contain                   
sequences that alter their processing and stability independent of the promoter sequence                       
(Esquerre et al., 2013; Chen et al., 2015). Third, multiple promoters within close proximity,                           
whether co-directional or opposing, can affect each other’s strength and resulting transcription                       
through mechanisms such as RNAP collisions and antisense RNA (Callen, Shearwin and Egan,                         
2004; Shearwin, Callen and Egan, 2005; Brophy and Voigt, 2016). Finally, not all sequences that                             
initiate RNA transcription are capable of producing mature and translatable RNA (Yus et al.,                           
2012).  

 
Here we investigated promoter regulation in E. coli using a massively-parallel reporter assay                         
(MPRA) designed to isolate promoter activity from other confounding factors influencing                     
genetic regulation (Urtecho et al., 2018). We measured promoter activity at 17,189 reported                         
TSSs and find that a majority are not autonomous promoter sequences capable of gene                           
transcription. We then measured promoter activity of 321,123 sheared genomic fragments                     
spanning both strands of the E. coli genome (8.5x coverage) and identified promoter-containing                         
regions in rich and minimal media. We then systematically tiled these regions to precisely map                             
promoter boundaries, revealing many regions with multiple promoters, as well as many                       
antisense promoters within genes that shape both codon usage and transcription levels. To                         
characterize sequence motifs encoding promoter activity, we systematically shuffled 10 bp                     
regions tiled every 5 bp across 2,057 active promoters and identified cis-regulatory elements                         
that modulate activity. With this approach, we characterized the regulatory effects of 568                         
transcription factor binding sites reported by RegulonDB as well as 2,583 novel sites, thereby                           
providing functionally annotated profiles for promoters driving expression in rich LB media for                         
1,158 of the 2,565 operons in E. coli. Lastly, we trained several machine learning models on                               
these datasets to better understand the features that best identify E. coli promoter sequences                           
as well as better assess how far we are from the more general abilities to predict sequence                                 
from function.  

 
Results  
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Functional characterization of 17,635 previously reported E. coli promoters reveals many           
are transcriptionally inactive 
 
We first sought to validate predicted promoters and TSSs from several genome-wide studies.                         
We assembled previously reported TSSs from three sources: the RegulonDB E. coli database                         
(Gama-Castro et al., 2008) (8,486 TSSs), a directional RNA-Seq study by Wanner et. al (Conway                             
et al., 2014) (2,123 TSSs), and a RNA-Seq study by Thomason et. al (Thomason et al., 2015)                                 
(14,868 TSSs). These three sources contain 23,798 unique TSSs despite there being only 4,419                           
known E. coli genes and many are within polycistronic transcripts. In addition, there was little                             
agreement regarding the location of TSSs between studies, with only 93 exact matches shared                           
between all three (Figure 1A). Even when we collapsed clusters of TSSs within 20 bp of each                                 
other to the most upstream TSS to minimize redundancy, 17,635 unique TSSs remained. These                           
TSSs are likely some combination of true promoters and false positives due to RNA processing,                             
transcriptional noise, or experimental and computational artifacts.  

 
To see if these TSS regions could drive gene expression in an exogenous context, we used a                                 
genomic MPRA we developed (Urtecho et al., 2018) to quantitatively measure the autonomous                         
promoter activity of 17,635 TSSs (Figure 1B). This system allows for single-integration of large                           
reporter libraries into a defined locus. The promoter activity reporter is insulated by multiple                           
transcriptional terminators and the reporter transcript contains processing elements that                   
standardize the transcript produced. For each TSS, we synthesized oligonucleotides spanning                     
120 bp upstream to 30 bp downstream of the TSS, which should encode the majority of                               
promoter activity driving expression at a given TSS (Garcia et al., 2012). We included 96                             
well-characterized promoters from the BioBricks registry(Mutalik et al., 2013) designed to span                       
a wide range of expression to serve as positive controls. We also included 500 negative controls                               
that were selected 150 bp sequences from the E. coli genome that are more than 200 bp from                                   
the nearest TSS. We engineered these 18,222 unique sequences to express a uniquely barcoded                           
sfGFP transcript and subsequently integrated this pooled library of reporter constructs into the                         
nth-ydgR intergenic locus within the E. coli chromosomal terminus using a                     
recombination-mediated cassette exchange system (Enyeart et al., 2013). We determined                   
expression levels by quantifying the transcript abundance in Luria broth (LB) of each barcode                           
normalized to the DNA-seq abundances, and precisely measured expression for 97.5%                     
(17,767/18,222) of TSSs in this library (Figure 1C) with an average of 69.5 barcodes measured                             
per library member (Figure S1A). Expression measurements were consistent between replicates                     
which were separately barcoded, cloned, and quantified (Figure S1B). To call a TSS active we                             
set a threshold of at least greater than two standard deviations above the median of the                               
negative control distribution, and defined this threshold value to be 1 (Figure 1D). Among the                             
17,635 original TSSs, we confidently quantitated 17,189 (97.4%) and 2,670 exhibited expression                       
above our experimentally determined threshold (Figure 1E). Notably, this number of active                       
promoters is more consistent with the number of operons identified using long-read sequencing                         
to characterize full-length E. coli transcripts (Yan et al., 2018). Amongst these 2,670 confirmed                           
promoters, we recovered expression data for many well known promoters and three of the                           
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strongest corresponded to the 16S and 23S polycistronic operon, the most highly expressed                         
operon in the E. coli genome (Schneider, Ross and Gourse, 2003). 
 
Several recent studies have shown that promoter expression levels can be highly variable                         
between genomic locations (Kuhlman and Cox, 2012; Bryant et al., 2014; Scholz et al., 2019).                             
However, these studies integrate single promoters into many locations to find differences,                       
making it unclear if such effects are promoter-specific or a more general scaling effect. We                             
integrated the entire TSS promoter library in both left and right chromosomal midreplichores                         
and compared expression measurements between these positions and the E. coli chromosomal                       
terminus (Figure S1B). Promoter measurements remained highly consistent between locations,                   
although the two midreplichore positions exhibited slightly higher concordance with each other                       
(r = .97, p < 2.2 x 10-16), than either midreplichore to the terminus (r = 0.95, p < 2.2 x 10-16). We                                             
conclude that genome-position effects are mostly consistent across promoters. 
 
Inactive promoters resemble nonproductive tssRNA promoters 
 
A majority of E. coli promoters are regulated by the housekeeping sigma factor σ70 (Cho et al.,                                 
2014), and thus we expected that active promoters would be enriched for the canonical σ70                             
motifs. Promoters of the σ70 family are well known for containing two hexamer motifs, the -10                               
and -35 motifs, which recruit RNAP and are named after their position relative to the TSS. We                                 
used a widely-used σ70 position-weight matrix (PWM) (Huerta and Collado-Vides, 2003) to                       
analyze whether active TSS promoters were enriched for these motifs. Although both active and                           
inactive TSS-associated promoters were enriched for the canonical -10 motif compared to our                         
negative controls (p < 2.2 x 10-16, p = 6.2 x 10-8), we found the -35 scores of inactive promoters                                       
were generally no greater than negative controls (p = 0.33) (Figure 1E). Conversely, active                           
TSS-associated promoters contained significantly higher -35 scores than negative controls (p =                       
1.4 x 10-8) or inactive TSS-associated promoters (p < 2.2 x 10-16). Recent work has shown that                                 
promoters containing a -10 but lacking a correctly positioned -35 motif produce short, 35-50 bp                             
transcripts known as tssRNAs and do not result in mature, translated products (Yus et al., 2012;                               
Lloréns-Rico, Lluch-Senar and Serrano, 2015). Notably, these short transcripts could be                     
indistinguishable from biologically productive transcripts in 5’ RNA-Seq studies, yet would not                       
be detected by our assay, which requires transcription of a barcode within the 3’ UTR of the                                 
~850 bp sfGFP gene.  
 
Genome-wide Identification of E. coli promoters  
 
Despite functionally screening 17,635 previously implicated TSS regions, we found several                     
instances where we had not identified promoters for essential operons, implying we were still                           
missing promoters from the genome. For instance, despite screening several reported TSS                       
regions upstream of the essential yrbA-murA operon, none exhibited expression greater than our                         
activity threshold. To comprehensively detect all promoters, we cloned, barcoded, and                     
measured the transcriptional activity in LB of 321,123 sheared genomic 200-300 bp fragments                         
(median = 244 bp) providing ~8.5x coverage per strand of the E. coli genome (Figure S2A,                               
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Figure S2B). We averaged the expression of fragments overlapping each genomic position to                         
achieve highly replicable values of strand-specific promoter activity at single-nucleotide                   
resolution (Figure S2C). This data may be viewed using a custom interactive visualizer we                           
created, revealing defined regions of promoter activity across the entire E. coli genome (Figure                           
2B). We identified candidate promoter regions by identifying contiguous regions of at least 60                           
bp with activity measurements higher than an empirically-derived threshold. This threshold was                       
determined by relating the number of active and inactive TSSs found within candidate regions.                           
With the chosen threshold, we found candidate promoter regions overlapping 2,293/2,670                     
(85.8%) active TSSs identified in LB, 3,193/14,493 (22.0%) inactive TSSs, and 47/482 (9.75%)                         
negative controls. Active TSSs not overlapping a candidate promoter region generally exhibited                       
weak activity, near the threshold used to identify active TSSs (Figure S2D). Furthermore, we                           
detected strong promoter activity at active TSSs with little promoter activity at inactive TSS                           
promoters (Figure 2C). In total, we found 3,477 candidate promoter regions in LB. 

 
Fine-mapping of E. coli promoters within transcriptionally active regions 
 
Our survey of genomic fragments identified candidate regions of promoter activity that were                         
well above the expected size of typical promoters (Figure S2E) (Garcia et al., 2012). To further                               
refine if these candidate regions contained one or more promoters, we designed a library of                             
48,379 150 bp oligos tiling the lengths of each of the 3,477 promoter regions identified in LB at                                   
10 bp intervals (Figure 2D). For candidate promoter regions under 150 bp, we synthesized a                             
single oligo encoding the region without including additional surrounding sequence context. We                       
recovered highly replicable data for 45,201(93.4%) of these variants with an average of 8                           
barcodes per variant (Figure S2F, S2G). This approach allowed us to precisely identify the                           
boundaries of sequence elements encoding promoter activity by determining where along the                       
promoter region tiled oligos gained and lost expression (Figure 2E). This analysis revealed that                           
1,889 of the previously identified promoter regions contained one or more discrete promoters,                         
including 278 regions containing multiple promoters (Figure 2F). The number of promoters                       
within a given region correlated with the size of the candidate region (Figure S2H). We did not                                 
identify promoters within 1,465 of the candidate regions. Candidate regions without promoters                       
were generally near the threshold and under 150 bp in length suggesting they were mostly false                               
positives (Figure S2I). Considering the multiple promoters found within a single region, our                         
approach found 2,228 distinct promoters active in LB. Furthermore, by determining the overlap                         
of all active oligos tiling a promoter, we were able to infer the minimal sequence necessary for                                 
each promoter. When comparing the sizes of the minimal sequence necessary for promoter                         
activity, we observed an enrichment for sequences of approximately 40 bp, which is a typical                             
size for σ70 promoters (Hawley and McClure, 1983; Krummel and Chamberlin, 1989; He et al.,                             
2018) (Figure 2G). We also observed an enrichment for 150 bp minimal promoter regions,                           
although these were generally weak indicating that our resolution is limited when tiling weaker                           
promoters. Overall, we were able to precisely map boundaries for 2,228 promoters active in LB.                             
Considering the active promoters identified during our TSS screen, we find 2,859 distinct                         
promoters. Amongst these promoters, we identified promoters regulating 99 out of 100                       
randomly sampled essential genes including the promoter for the essential yrbA-murA operon                       
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which missed in the TSS screen (Supplementary Table 1). The missing promoter was for the                             
yjeE, which had a very atypical operon structure (the first gene in the operon overlaps a gene                                 
encoded in the opposite direction).  
 
Intragenic promoters are widespread, often found in the antisense orientation, and alter                       
transcript levels and codon usage of the genes they are within. 
 
Many studies have found pervasive antisense transcription in prokaryotes (Güell et al., 2009;                         
Dornenburg et al., 2010; Georg and Hess, 2011), though there is controversy over the functional                             
relevance and whether they are just due to a noisy transcriptional apparatus (Lloréns-Rico et al.,                             
2016). At the same time, it has been functionally shown that antisense promoters can alter a                               
sense gene’s transcription, translation, and steady-state message level (Brantl, 2007; Brophy                     
and Voigt, 2016). Amongst the 2,228 promoters we identified boundaries for, 1,131 were                         
primarily contained within intergenic regions while 944 were found to fully or mostly overlap                           
intragenic regions (Figure 3A, Figure S3). Although intergenic promoters were predominantly                     
positioned in the sense orientation relative to the nearest downstream gene, 300 of the 944                             
intragenic promoters were positioned antisense relative to the genes they overlapped.  
 
Given that we have the locations of the antisense promoters driving transcription, we evaluated                           
whether genes regulated by antisense promoters were associated with a reduction in gene                         
expression. We performed RNA-Seq on E. coli MG1655 grown in LB and compared the transcript                             
coverage of all genes with sense promoters, antisense promoters, and both sense and                         
antisense promoters. We found that overall, genes with both sense and antisense promoters                         
exhibited a two-fold decrease in expression compared to strictly sense-regulated genes (Figure                       
3B). On average sense-regulated genes exhibit similar promoter activity to genes with both                         
sense and antisense promoters, suggesting this result cannot be explained by sense-regulated                       
genes simply having stronger promoters. Genes with only antisense promoter activity generally                       
did not exhibit any sense gene expression.  
 
The sequences of intragenic promoters are inherently constrained by the coding regions they                         
overlap, therefore we were curious how the E. coli genome had adapted sequence content to                             
enable promoter activity despite these restrictions. After comparing the amino acid composition                       
within intragenic promoters, we found that these sequences were particularly enriched for stop                         
codons and showed a preference for several other amino acids (Figure 3C). We found several                             
codons were preferentially used within intragenic promoter regions. (Figure 3D). In particular,                       
we found the most notable bias amongst arginine codons, with a strong preference for AGA and                               
AGG codons. The most enriched codons within intragenic promoters were typically rare in the                           
genome, which may indicate a role of preferential codon usage in avoiding promoter-like                         
sequences.  

 
The E. coli promoter landscape is dynamic in response to environmental conditions 
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Cells reconfigure their proteome to facilitate the cellular response to environmental conditions.                       
The extent to which this proteome remodeling is achieved through differential promoter usage                         
is still unclear. To test this, we measured promoter activity of our genomic fragment library in                               
exponentially growing cells under glucose minimal media conditions. Compared to LB, cells                       
grown in glucose minimal media do not have access to environmental amino acids and must                             
synthesize these and other essential compounds on their own (Tao et al., 1999). We recovered                             
replicable promoter activity measurements for 318,457 genomic fragments in glucose minimal                     
media, spanning the genome with 8.38x coverage (Figure S4A, Figure S4B). We identify 3,321                           
candidate promoter regions in glucose minimal media with an average length of 293 bp (Figure                             
S4C). Although 2,466 of these regions overlapped with regions found in LB, we found 960 only                               
found in LB and 1,029 exclusive to M9 (Figure 4A). Many of the condition-dependent promoter                             
regions were weak compared to those identified in both conditions and so are likely due to                               
noise (Figure S4D), however, there were many strongly activated regions unique to each                         
condition. To identify regions that were truly activated in each condition, we identified regions                           
greater than 60 bp in length that exhibited greater than two-fold activity in one condition                             
compared to the other. With this criteria, we found 278 regions more activated in LB and 644                                 
regions more activated in glucose minimal media. In glucose minimal media, the greatest                         
increase in promoter activity occurred at ryhB, a Fur-regulated gene encoding a small RNA that                             
regulates iron-binding and iron-storing proteins when available iron is limited (Massé and                       
Gottesman, 2002; Massé, Vanderpool and Gottesman, 2005) (Figure S4E). In LB, the strongest                         
activated region is positioned to drive expression of the rbsDACBKR operon, which is essential                           
for uptake and utilization of extracellular ribose (Barroga et al., 2008)  (Figure S4E).  

 
For each condition, we matched activated intergenic and sense promoter regions with the                         
nearest downstream gene and found 159 genes poised for activation in LB and 392 genes                             
poised for activation in glucose minimal media. To see if promoter activation resulted in an                             
increase in expression of these genes, we compared RNA-Seq coverage of the genes with the                             
top 100 strongest promoter activation in each condition (Figure 4B). In each condition,                         
promoter activation resulted in a concomitant increase in RNA-Seq coverage (LB: p = 1.1 x 10-5,                               
M9: p = 1.9 x 10-5, Wilcox rank-sum test). To see how promoter activation mediates the cellular                                 
response, we used the RAST annotation engine (Aziz et al., 2008; Overbeek et al., 2014) to                               
assign functional categories to activated genes and identify enriched cellular processes. Genes                       
activated by LB promoter regions predominantly played a role in carbohydrate utilization                       
whereas genes activated by glucose minimal media promoters were involved in processes                       
related to amino acid utilization (Figure 4C).   
 
We reasoned that this dynamic promoter response was mediated by condition-dependent                     
transcription factors and therefore evaluated the transcription factor binding site (TFBS)                     
composition of activated promoter regions in each condition (Figure 4D). Examining TFBSs                       
reported by RegulonDB, we found 470 TFBS annotations overlapping regions activated in LB and                           
653 annotations in regions activated in glucose minimal media. Upon comparing TFBS content                         
of these regions we found that binding sites for several global transcriptional regulators (Fang                           
et al., 2017), including IHF, Lrp, and Fis occurred at similar frequencies between these                           
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conditions. Conversely, binding sites for Fur, another global transcription factor, were enriched                       
by roughly 20-fold within regions activated in glucose minimal media compared to regions                         
activated in LB. This transcription factor is essential for maintaining iron homeostasis (Braun,                         
2003; Lee and Helmann, 2007), and is a known regulator of ryhB, the most activated gene we                                 
found in glucose minimal media. Binding sites for CRP were enriched by more than two-fold in                               
regions activated in LB compared to glucose minimal media. This transcription factor is                         
activated in glucose-limited conditions and so would likely not induce promoter activity in                         
glucose minimal media. In addition to global regulators, we found many TFBSs that appear to be                               
entirely condition-dependent with relatively few regulatory targets. Transcription factors MetJ,                   
GadX, and GadW were exclusively found in regions activated in glucose minimal media whereas                           
FlhDC, GlpR, and CytR were the most enriched amongst regions activated in LB.  
 
Mutational scanning of 2,057 E. coli promoters identifies regulatory elements controlling                     
transcription 
 
After globally identifying promoter regions in the bacterial genome, we sought to develop an                           
approach to identify sequence motifs regulating these promoters. Recent work by Belliveau et                         
al. (Belliveau et al., 2018) demonstrated a high-resolution saturation mutagenesis approach to                       
identify regulatory motifs within individual uncharacterized promoters. Inspired by this work, we                       
implemented a scanning mutagenesis strategy to explore the sequence features that regulate                       
active promoters. For 2,057 active TSS-associated promoters identified in LB, we systematically                       
scrambled individual 10 bp sequences spanning the -120 to +30 positions at five bp intervals                             
(Figure 5A). Using this approach, we would expect that disrupting a repressor site would                           
increase expression, whereas disrupting a RNAP or activator site would decrease expression.                       
These scrambled sequences were designed to maximize distance from the original sequence,                       
thereby further guaranteeing that we could perturb any motifs at each position contributing to                           
transcription regulation. In total, we designed a library of 59,653 sequences consisting of 2,057                           
active TSS-associated promoters, their scrambled variants, and the previously described set of                       
negative and positive controls. We measured promoter activity of this library as before and                           
recovered replicable expression measurements for 52,900/59,653 (89%) of this library in LB,                       
with an average of eight barcodes per variant (Figure S5A, S5B). Using this approach, we                             
identify regions that either increased or reduced expression across thousands of promoters in a                           
single assay (Figure 5B). These sequences were enriched at the -35 and -10 positions for                             
regions that increased expression, which is expected considering the majority of promoters are                         
σ70 dependent. However, many sequences outside of these -10 and -35 regions also                         
contributed to regulation. 
 
We first examined the lacZYA promoter, a classic gene regulation model whose sequence                         
motifs are well characterized. This promoter is known to contain a variety of regulatory motifs,                             
including twin LacI repressor sites centered at +11 and -82 (Flashner and Gralla, 1988), a CAP                               
activator site centered at -61 (Czarniecki, Noel and Reznikoff, 1997), and a σ70 RNAP binding                             
site. Our analysis revealed distinct signals corresponding to each of these sites, as well as                             
quantitative measurements for their contribution to expression (Figure 5C). Additionally,                   
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scanning mutagenesis of the previously characterized relBE promoter achieved similar results,                     
identifying a reported RelBE repressor site at the +1 position (Li et al., 2008) as well as -10 and                                     
-35 σ70 recognition motifs (Li et al., 2008).  

 
Given that our approach could capture the effects of known binding sites, we next explored                             
whether we could effectively identify regulatory sites within uncharacterized promoters.                   
Although we performed this scanning mutagenesis for 2,057 TSS-associated promoters, here                     
we highlight a few examples to demonstrate the utility of this method (Figure 5D). The                             
cyclopropane fatty acyl phospholipid synthase gene, cfa, exhibits dynamic expression (Grogan                     
and Cronan, 1984) and is responsible for a major component of the cell membrane necessary                             
for cell survival in acidic conditions (Chang and Cronan, 1999). While there have been several                             
transcription factors implicated in regulation of cfa, the motifs responsible for its direct                         
regulation are still unknown. Our approach identified a candidate σ70 promoter regulating this                         
gene with a -10 motif centered 34 nucleotides upstream of the reportedly associated TSS as                             
well as a -35 motif 57 bp upstream, implying that the reported TSS is likely not the primary site                                     
for transcription initiation. Furthermore, we identified two repressor sites located in the spacer                         
region and upstream of the -35 motif. We also identified novel regulatory motifs for an                             
uncharacterized promoter regulating rpsL, an essential gene and component of the 30S                       
ribosomal subunit. For this gene, we have found a candidate σ70 RNAP binding site with                             
predictably positioned -10 and -35 motifs as well as an unknown repressor positioned over the                             
transcription start site which, once mutated, results in a 3-fold increase in expression of the                             
promoter. Although further experiments (Belliveau et al., 2018) are necessary to identify the                         
transcription factors acting on these promoters, these results identify clear promoters                     
responsible for the regulation of these genes and candidate motifs for further dissection. 
 
Global identification of 7,293 E. coli promoter regulatory motifs 
 
We expanded the scope of our analysis to examine regulatory motifs throughout all 2,057 tested                             
promoters. We used the individual barcode measurements, across four replicates, to find                       
significant differences between the mean expression of the unscrambled sequence and the                       
scrambled sequence (Student’s t-test with 1% FDR). Amongst scrambles that significantly                     
altered expression, 1,885 increased expression whereas 5,408 decreased expression (Figure                   
6A). These sites were located throughout promoters and scrambling resulted in dramatic                       
changes in expression, some over 100-fold (Figure S6A). We observed markedly different                       
distributions for the positions of sequences that increased expression compared to regions that                         
decreased expression (Figure 6B). Regions that increased expression were particularly enriched                     
at the -10, -35, and -70 positions, which is consistent with the σ70 RNAP binding motif as well as                                     
the typical position of transcriptional activators amongst class I bacterial promoters (Ebright,                       
1993; Williams et al., 1997; Browning and Busby, 2004). Regions that decrease expression                         
localized to the TSS, spacer, and -35, which is consistent with known mechanisms of RNAP                             
occlusion by steric hindrance (Rojo, 1999; Browning and Busby, 2004).   
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Next we cross-referenced these regulatory regions with the extensive collection of putative and                         
experimentally determined regulatory sites reported by RegulonDB. First, we merged adjacent                     
significant scrambled sequences corresponding to the same site(s) and identified 1,414 and                       
1,903 regulatory regions that increase or decrease expression, respectively. Sites were 20 bp on                           
average (indicating four consecutive 10 bp scrambles spaced 5 bp apart disrupted them)                         
(Figure S6B) with effect sizes largely independent of their lengths (Figure S6C). Of the 2,453                             
unique TFBSs reported by RegulonDB, 1,156 overlap with regulatory regions identified by our                         
analysis and 49% (567/1,156) resulted in a significant change in activity of the promoter. The                             
effect we observed after disrupting these reported TFBSs often did not agree with the annotated                             
effect. Our scrambling results agreed with the reported effect for 65% (185/253) of activators                           
and 43% (196/450) of repressors (Figure 6C). We presumed the lower concordance with                         
repressors could be due to scrambling mutations disrupting both a repressor and -35 or -10                             
element, resulting in a decrease in expression which would appear to contradict a reported                           
repressor site. Looking at the distribution of concordance for merged scrambles by position                         
relative to the TSS, we observed a higher proportion of disagreement near the -35 and -10                               
elements, suggesting overlapping scrambles may be disrupting crucial promoter elements in                     
addition to reported repressor sites (Figure S6D, S6E). This may be expected considering that                           
many repressors operate by binding regions proximal to the RNAP binding site. Regardless, we                           
found several examples where the regulatory effects predicted by RegulonDB were contradicted                       
with strong evidence, which may indicate that the effect of the reported annotation is incorrect                             
or that these sites may support multiple transcription factors (Figure 6D). Overall, we                         
characterized regulatory sequences in promoters driving expression of 1,158 of the 2,565                       
(Salgado et al., 2013) operons in E. coli as well as many other confirmed promoters. Thus, we                                 
conclude that this approach is an efficient method to rapidly characterize regulatory motifs                         
within thousands of experimentally verified promoter regions. 
 
Predicting promoter activity from sequence remains a challenge 
 
In this study we generated a powerful dataset linking 117,556 unique 150 bp sequences to a                               
quantitative measurement of in vivo promoter activity. Using this unique dataset, we evaluated                         
our ability to determine whether a promoter was active or inactive (classification) and the                           
precise level of activity (regression). We trained several machine learning models of varying                         
complexity for both classification and regression. As many sequences are highly similar due to                           
library design and close proximity of previously reported TSSs, we split the data into 75% for                               
training (n = 87,164) and 25% (n = 30,392) for testing according to genomic location, ensuring                               
the two sets contain sequences equidistant to the origin (see Methods). For classification, we                           
determined a threshold independently for each library based on the negative controls.                       
Sequences are considered active if their expression is greater than two standard deviations                         
above the negative median value and inactive if expression falls below this threshold. 

 
We trained several different classifiers to predict whether a given sequence was active or                           
inactive (Figure 7A). All classifiers output the predicted probability for each class, rather than                           
directly predicting the class, allowing them to be compared using precision-recall curves.                       
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Further details for all models are included in the methods. We trained a simple logistic                             
regression based on four biophysical features known to be associated with promoter strength:                         
max -10 σ70 motif position weight matrix (PWM) score, max σ70 -35 motif PWM score, paired                               
-10 and -35 PWM score (PWMs scanned jointly allowing for, 16, 17, or 18 gap between the -10                                   
and -35), and percent GC content. We trained this model only using variants from the TSS library,                                 
which contained the greatest diversity, as the model was unable to converge when trained on                             
the full dataset. For comparison, we trained a gapped k-mer SVM (gkm-SVM) model with                           
word-length 10 and 8 informative columns (L = 10, K = 8) on the same training set, as this model                                       
is best suited for sample sizes under 20,000, and observed decreased performance relative to                           
the logistic regression (AUPRC = 0.43, AUPRC = 0.53, respectively). Furthermore, we created a                           
feature set of all 3 to 6-mer frequencies and trained a logistic regression, partial least squares                               
discriminant analysis (PLS-DA), and multi-layer perceptron (MLP). To observe the effects of                       
reducing dimensionality, we additionally trained on only 6-mer frequencies for the MLP and                         
random forest. For the simpler logistic regression and PLS-DA we performed an additional                         
feature selection step based on the performance of a random k-mer. All of these models                             
performed similarly, with AUPRC ranging from 0.26 to 0.33. 

 
There has been recent work predicting transcriptional regulatory activity from MPRA data using                         
convolutional neural networks (CNNs), which capture intricate sequence features without a                     
priori knowledge (Paggi et al., 2017). Inspired by this work, we trained a CNN using the DragoNN                                 
toolkit which is built on top of the keras python package. We performed hyperparameter tuning                             
for a three layer CNN and achieved an AUPRC = 0.44. Next, we compared the CNN to other                                   
machine learning models that require less hyperparameter tuning and are more interpretable.                       
For comparison, we trained a random forest on one-hot encoded DNA, which is not well suited                               
to categorical features, and achieved an AUPRC = 0.27. Furthermore, we trained this model                           
using frequencies of 6-mers and observed a slight increase in performance (AUPRC = 0.31).                           
Overall, the CNN achieved the highest AUPRC, but the logistic regression fit with biophysical                           
features more accurately at higher levels of recall. However, these two models may not directly                             
comparable, as the logistic regression was trained on only the TSS library rather than the full                               
dataset. 

 
We separately trained all of the models described above, with the exception of gkm-SVM, for the                               
more difficult task of regression (Figure 7B). Additionally, we included a linear regression model                           
that fit to the four “mechanistic” features to predict log-transformed expression. We evaluated                         
each model using root mean squared error (RMSE) and R2 between predicted and observed                           
values for promoter activity. Many models perform similarly to each other, with the CNN                           
achieving the highest R-squared and lowest RMSE (RMSE = 3.12, R2 = 0.31, p < 2.2 x 10-16). We                                     
observe improvement in the linear regression on log-transformed data compared to linear                       
regression without transformation, suggesting there are non-linear relationships that are                   
presumably captured by more complex models. Random forest on one-hot encoded DNA                       
performs worse than random forest on 6-mer frequencies, in line with the heuristic that random                             
forests are not well suited to categorical features. Overall, the CNN performs best in both                             
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classification and regression, although simpler models have some predictive power and have                       
the benefit of faster training times.  

Discussion 
More than fifty years have passed since the first conceptions of what bacterial promoters were.                             
Today, E. coli promoters are arguably the most well-studied gene regulatory element and yet we                             
cannot seem to agree on basic questions of how many promoters exist, what elements define                             
their function, how constrained are they in sequence space, and how far are we from predicting                               
promoter activity from sequence. Systematic identification and characterization based on                   
transcriptional profiling is confounded by genomic location, RNA processing, stability, and                     
detection differences due to differences in sequences expressed.  
 
Here we attempted to separate promoter activity from other mechanisms of gene regulation to                           
systematically identify promoter locations, strength, and internal structure genome-wide in rich                     
media conditions. We systematically probed previous predictions, and combined them with                     
more unbiased approaches to better understand promoter architecture in E. coli. Overall, we                         
found 2,859 ≤150bp promoters during log-phase growth in LB. We found this included many                           
promoters contained within genes, often in the antisense direction, that had large effects on                           
mRNA levels and constrained codon choice within these genes. Have we identified all                         
promoters encoded in the E. coli genome? Considering the differences in the activities of                           
promoter regions between LB and minimal glucose media, it is likely that interrogating other                           
conditions will reveal other condition-dependent promoters. Furthermore, we are skeptical to                     
make the claim that we’ve definitively identified all promoters even in the conditions tested in                             
this work. Here we defined sequences as promoters based on empirically derived thresholds.                         
However, this is a simplification, as promoters that fall below the threshold in this location with                               
this reporter construct, could easily be compensated on the genome by a myriad of other                             
factors including message stability and genomic context.  
 
Our scanning mutagenesis of active TSS-associated promoters identified 3,317 regions with no                       
corresponding TFBS annotation in RegulonDB, revealing that there is a great deal more we can                             
learn about how regulation is encoded in the E. coli genome. For regions that overlapped known                               
sites, an appreciable proportion disagreed with the reported effect. There could be several                         
explanations for this disagreement and the discovery of these missing annotations. First, it                         
could be that the predictions of TFBSs in RegulonDB are actually false positives due to                             
promiscuous binding events. Second, some transcription factors may possess                 
condition-dependent behavior and the conditions tested in our study do not capture the full                           
scope of their regulatory program. Finally, it is plausible that a portion of the sites we identify                                 
represent true functional sites that are missing from current annotation and should be                         
interesting targets for further dissection, such as identifying which transcription factors operate                       
at these motifs. Further studies to determine which sequences within a promoter contribute to                           
regulation may aid efforts towards predicting promoter sequence-function relationships. 
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Taken together, these datasets provides one of the richest datasets on autonomous promoter                         
activity. Overall our data points to the idea that all sequences have some propensity to be a                                 
promoter, and this propensity is modulated by other factors such as stability of the message                             
produced or integration locus to ultimately determine mRNA levels. Moreover, the frequency of                         
promoter-like activity in overall sequence space is seemingly very high. This view is consistent                           
with the surprising ease by which promoters evolve from random sequences (Horwitz and Loeb,                           
1986; Wolf, Silander and van Nimwegen, 2015; Yona, Alm and Gore, 2018). Even without                           
evolution, a recent study found that 4/40 (10%) random 103 bp sequences exhibited promoter                           
activity (Yona, Alm and Gore, 2018). We used our platform to characterize 1,000 random 150 bp                               
sequences, and found nearly 7% of sequences surpassing our empirically derived threshold for                         
promoter activity (Figure S7).  
 
To better understand how promoter activity is modulated by sequence, we trained a suite of                             
machine learning models to identify promoter sequences (classification) and predict the precise                       
level of activity (regression). These models varied in complexity, from simple linear regression                         
models based on a handful of known biological features to CNNs trained on raw sequence.                             
Even with the large training set, and extensive wealth of known mechanistic information, the                           
performance of these predictive models is limited. If we can’t solve the problem right now for E.                                 
coli promoters, what hope do we have for our understanding and prediction of much more                             
complex systems in biology? There are several possible explanations for why this problem                         
remains challenging. First, it is likely challenging to develop a single generalizable model for all                             
promoters as there are several families of sigma factors with distinct motifs. Therefore, models                           
that are sigma-factor specific may be more tractable. Second, although the range of our MPRA                             
is quite dynamic, accurate predictive models may require techniques with even greater                       
quantitative resolution, especially in the noise regime of the assay where most observations fall.                           
Third, high performance models may require even larger and more narrowly focused training                         
sets. For example, one could create a library design to parameterize the binding motifs for                             
various sigma factors, allowing greater exploration of the vast sequence space than possible                         
with the limited sites present in the genome. In previous work, we designed a minimal promoter                               
with various combinations of the core σ70 promoter motifs embedded in a constant                         
background and developed accurate predictive models using the identities of core motifs as                         
features (Urtecho et al., 2018). These types of approaches could be better suited for the                             
prediction task because they limit the amount of varied features, which may promote focused                           
training. Finally, we might simply lack the basic models for how sequences define biological                           
functions, such as promoter activity, and thus we are looking in the wrong places for                             
information. Recent efforts to use much larger libraries of random DNA sequences to identify                           
strong promoters may serve as a better starting point to constrain computational models for                           
how sequences affect function (de Boer et al., 2019). 
 
The experimental workflows demonstrated here enable the rapid and iterative exploration of                       
how sequence affects bacterial promoter function. The convergence of DNA synthesis                     
technologies with multiplexed assays for genetic function now allow an individual to routinely                         
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design, build and test 104-105 designs on a monthly basis. Such empirical power has no                             
equivalent in other physical systems, and has now reached the limits of human experimental                           
design and planning. Thus understanding bacterial promoters might be one of the best                         
problems to develop and test large-scale design-of-experiment and active learning                   
methodologies to build better predictors and discriminate between different mechanistic                   
models of function.  
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Figure 1) Functional characterization of 17,635 previously reported E. coli promoters. A) Three 
sources of genome-wide promoter predictions show little agreement in the reported TSSs at the 
single-nucleotide level. B) We synthesized oligos overlapping the -120 to +30 bp context of 
17,635 reported TSSs and integrated construct into a fixed genomic landing pad. Measuring 
barcode expression using RNA-Seq captures quantitative measurements of transcriptional 
activity for individual TSSs. C) MPRA results are highly replicable across technical replicates (r = 
0.965, p < 2.2 x 10-16). D) The TSS library measurements span over 100-fold with negative 
controls exhibiting low levels of expression and positive controls spanning the entire dynamic 
range. E) A majority of tested TSSs are inactive in LB.  F) Active and inactive TSSs have 
significantly different mean PWM scores for -10 and -35  σ70 motifs (Wilcox signed-rank test, 
“***”=<0.001).  
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Figure 2) Genome-wide Identification of E. coli promoters. A) 321,123 sheared genomic 
fragments were screened using the same MPRA platform. The fragments were 200 to 300 bp in 
size giving an average 8.5x coverage across each strand of the E. coli genome. Promoter 
activity of each fragment was measured and averaged at each position to recover 
nucleotide-specific expression. B) We developed a custom visualization using Bokeh to 
visualize the E. coli promoter landscape. This section of the genome contains five candidate 
promoter regions that appear within intergenic regions. C) Meta-analysis of mean promoter 
activity at experimentally validated active TSSs, inactive TSSs, and negative controls. D) Oligo 
tiling library identifies promoters within candidate promoter regions. We synthesized 150 bp 
oligos tiling all promoter regions identified in rich media at 10 bp intervals. We then determine 
minimal promoter boundaries by identifying the overlap of transcriptionally active tiles. E) Oligo 
tile expression across the mraZ promoter shows two distinct promoters. Positions are defined 
according to the right-most genomic position of each 150 bp oligo. Dashed line indicates the 
threshold for active oligo tiles F) Distribution of the number of promoters per promoter region 
shows many regions contain multiple promoters. G) Left: Distribution of the lengths of the 
minimal promoter boundaries shows enrichment for σ70-promoter sized regions (40 bp). Right: 
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40 bp minimal promoters (red) span a wide range of expression whereas 150 bp promoters are 
typically weak (blue). 
 

 
Figure 3) Intragenic promoters are widespread, often found in the antisense orientation, and 
alter transcript levels and codon usage of the genes they are within. A) Orientation and 
positioning of identified promoters reveals many promoters are intragenic and antisense. B) 
Antisense promoters suppress gene expression genome-wide. Left: Meta-gene analysis of the 
median RNA-Seq coverage across all sense, antisense, and dual-regulated genes. Right: 
Meta-gene analysis of sense promoter activity at sense, antisense, and dual regulated genes. C) 
Intragenic promoters are enriched for specific amino acids relative to whole genome amino acid 
frequencies (Chi-squared test, “*” = p < 0.05). D) Specific, often rare, codons are enriched in 
intragenic promoters. Codon bias within intragenic promoters relative to whole genome. Bars 
are colored by the relative genome-wide usage compared to other synonymous codons 
(Chi-squared test, “*” = p < 0.05). 
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Figure 4) The E. coli promoter landscape dynamically responds to environmental conditions. A) 
Shared and unique promoter regions are found between LB and glucose minimal media. B) 
RNA-Seq expression of the 100 genes with the highest increase in promoter activity in (Left) LB 
and (Right) glucose minimal media shows upregulation in response to promoter activation. C) 
Genes activated by promoters in glucose minimal media are enriched for amino acid-related 
genes according to RAST subsystem annotations. D) Occurrence of reported transcription 
factor binding sites in promoter regions activated in LB compared to glucose minimal media 
(M9). Black lines indicate 2-fold enrichment threshold.  
 
 
 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2020. ; https://doi.org/10.1101/2020.01.04.894907doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.04.894907
http://creativecommons.org/licenses/by-nc/4.0/


 

 
Figure 5) Scanning mutagenesis of 2,057 TSS-associated promoters identifies known and 
novel regulatory motifs A) Scanning mutagenesis of 2,057 E. coli promoters to identify 
regulatory elements. For each promoter, 10 bp regions were mutated across the full length of 
the promoter at 5 bp intervals.B) Mutating each position across E. coli promoters identifies 
sequences that activate and repress promoter activity. Rows are rearranged using hierarchical 
clustering and the intensities are normalized within each row C) Scanning mutagenesis of the 
well-characterized (Left) lacZYA and (Right) relBE promoters captures known regulatory 
elements. D) Scanning mutagenesis of the newly-characterized (Left) cfa and (Right) rpsL 
promoters identifies regions encoding regulation within these promoters. 
 
 
 
 
 
 
 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2020. ; https://doi.org/10.1101/2020.01.04.894907doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.04.894907
http://creativecommons.org/licenses/by-nc/4.0/


 

 
Figure 6) Global identification of 3,317 E. coli regulatory motifs by scanning mutagenesis. A) We 
identified scrambled regulatory regions that significantly increase (N = 1,885) or decrease (N=5,408) 
expression when scrambled relative to the unscrambled promoter. Data are colored by whether the 
regulatory region activates or represses activity of the promoter. B) Activating promoter sequences are 
enriched at the -10, -35, and -80 positions whereas repressing sequences are enriched at  +1, -20, and -50 
positions. C) Identified regulatory regions overlapping reported TFBS annotations shows mixed 
concordance with reported effects; 77.8%  (2,583/3,317) of identified regulatory regions are unreported by 
RegulonDB. D) Scanning mutagenesis of the FadR promoter (bottom) identifies a repressing sequence 
near the -30 that has been reported to be activating (top).     
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Figure 7) Various machine learning models for promoter activity classification and regression. A) 
Performance of various models to classify promoter sequences. Convolutional neural networks 
performed best in the lower recall range, while logistic regression based on simple hand-crafted features 
performs better in the higher recall range. Dashed line represents the expected performance from random 
prediction using full library. B) Performance of regression models to predict a quantitative level of 
promoter activity. We evaluated performance using both root mean squared error (RMSE) and coefficient 
of determination (R2 ) on the held-out test set. Similar to classification, convolutional neural networks 
performed the best with the lowest RMSE and highest R2.  
 
Methods 
 
Strains 
 
All experiments were performed in the E. coli MG1655 background (Blattner et al., 1997) which                             
carries the following genotype: F-, λ-, rph-1 (Yale Coli Genetic Stock Center no. 6300). For the                               
genomically-integrated MPRA, previously reported strains (Urtecho et al., 2018) with engineered                     
landing pads in the right midreplichore (essQ-cspB intergenic locus, Addgene no. 110244),                       
chromosomal terminus (nth-ydgR intergenic locus, Addgene no. 110245), and left midreplichore                     
(ybbD-ylbG intergenic locus, Addgene no. 110243) were used. Briefly, these landing pads encode                         
a fluorescent mCherry reporter as well as chloramphenicol resistance, both of which are flanked                           
by loxP sites for recombination-mediated cassette exchange. 
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TSS library design 
 

The TSS library incorporates all TSSs from the RegulonDB database (Salgado et al.,                         
2013) (Version 8.0, genome version U00096.2) and those identified in two recent genome-wide                         
TSS mapping studies (Conway et al., 2014; Thomason et al., 2015). Recent work provides                           
evidence that most regulatory motifs fall within 100 bp upstream of the TSS (Garcia et al., 2012)                                 
and the initial transcribed region (+1 to +20) can also influence gene expression. Thus, each                             
TSS was synthesized embedded in its local sequence context -120 to +30 relative to the TSS,                               
capturing a majority of the cis-regulatory elements. There were 23,798 unique TSSs across all                           
three sources, many of which were a few base pairs away from each other. We minimized                               
redundancy and collapsed together TSSs within 20 bp and selected the most upstream TSS for                             
our library, yielding 17,635 TSSs for the final synthesized library. Additionally, we included 500                           
negative controls from the E. coli genome that are assumed to have minimal regulatory activity.                             
These were selected from 150 bp regions that are more than 200 bp from a TSS (on either                                   
strand), and many fall within coding regions. We included a set of 112 short synthetic positive                               
controls that were previously characterized (Kosuri et al., 2013; Mutalik et al., 2013) and span a                               
wide range of expression.  
 
TSS library barcoding and cloning 
 
The TSS library was synthesized by Twist Biosciences and delivered lyophilized as a 26 pmol                             
pool. The library was resuspended in 100 uL of TE pH 8.0 and 1 uL was amplified for 12 cycles                                       
using GU72 and GU116 with NEB Q5 High-Fidelity 2x Master Mix (#M0492L). Unless otherwise                           
stated, all amplifications were performed using this polymerase mixture. This product was then                         
ran on a 2% TAE agarose gel and approximately 200 bp amplicons were extracted using a                               
Zymoclean Gel DNA Recovery Kit (#D4008). For barcoding, 1 ng of this eluate was amplified for                               
9 cycles using primers GU72 and GU73. Following cleaning using a Zymo Clean and                           
Concentrator Kit (#D40140), the library was digested using NEB’s SbfI-HF and XhoI. 
  
The plasmid backbone, pLibacceptorV2 (Addgene #106250) was digested using SbfI-HF and                     
SalI-HF with the addition of rSAP (NEB #M0371S). The digested library was ligated into                           
pLibacceptorV2 using T7 DNA Ligase (NEB #M0318S), cloned into 5-alpha Electrocompetent E.                       
coli (NEB #C2989K), and plated on LB + kanamycin (25 ug/mL) yielding approximately 2.3                           
million colonies estimated by counting simultaneously plated dilutions. After allowing for 24                       
hours of growth on plates, the library was scraped and resuspended in LB, and then 800 million                                 
cells (based on OD600) were inoculated in 450 mL LB + kanamycin (25 ug/mL) overnight. Unless                               
stated otherwise, all plasmids were isolated using a Qiagen Plasmid Plus Maxiprep Kit (#12963)                           
and concentrated using a Promega Wizard SV Gel and PCR Clean-up System (#A9281). 
 
In order to clone the RiboJ::sfGFP reporter construct, the library was digested using NEB’s                           
BsaI-HF and NheI-HF with the addition of rSAP. The reporter construct was digested using                           
NEB’s BsaI-HF and NcoI-HF. Similarly to the previous cloning step, the reporter was cloned into                             
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the library using T7 DNA Ligase, cloned into 5-alpha electrocompetent E. coli, and plated on LB +                                 
kanamycin (25 ug/mL), yielding 6.8 million colonies. The completed plasmid library was isolated                         
as stated above. 
 
Isolation of genomic fragment library 
 
To isolate genomic fragments, 10 ug of E. coli MG1655 gDNA was sheared using a Covaris                               
focused ultra-sonicator. The settings used were as follows: Duty factor was set to 10%, Intensity                             
was set to 4, cycles/burst was set to 200, and time was 60 seconds. The sheared gDNA was ran                                     
on a 3% TAE agarose gel and fragments between 200 and 300 bp were extracted using a                                 
Zymoclean Gel DNA Recovery Kit and eluted in 18 uL water. All 18 uL of the extracted fragments                                   
were end repaired using Enzymatics End Repair Mix (Part # Y9140-LC-L) following                       
manufacturers protocols, cleaned using 45 uL (1.8x volume) of Agencourt AMPure XP Beads                         
(#A63880), and eluted in 20 uL of water. The 20 uL eluate was A-tailed following the New                                 
England Biolabs protocol:  
 
Reaction: 

20 uL End-repaired DNA 
5 uL NEB Buffer 2 (10x) 
0.5 uL dATP (10mM) 
3 uL Klenow Fragment (3’ -> 5’ exo-) (Enzymatics #P7010-HC-L) 
21.5 uL Nuclease-free water 

 
The reaction was Incubated for 30 minutes at 37ºC, then heat inactivated for 20 minutes at                               
75ºC before cleaning using 90 uL Agencourt AMPure XP beads and eluting in 20 uL water.                               
Y-adapters to facilitate fragment amplification and barcoding were ligated to the A-tailed                       
fragments using the following reaction mix: 
 
Reaction: 

20 uL A-tailed DNA 
5 uL NEB T4 DNA Ligase Buffer (10x) (NEB #B0202S) 
2 uL Y-adapter GU Y-Frag (25 uM) 
1 uL NEB T4 DNA Ligase (NEB #M0202T) 
22 uL Nuclease-free water  

 
This reaction was incubated for 20 minutes at 25ºC, heat inactivated for 20 minutes at 65ºC,                               
and subsequently cleaned using 90 uL Agencourt AMPure XP beads and eluting in 12 uL                             
nuclease-free water. 
 
Barcoding and cloning of genomic fragment library 
 
To barcode the genomic fragments, 1 uL of the processed fragments was amplified for 13                             
cycles using GU72 and GU116. This product was then cleaned using a Zymo Clean and                             
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Concentrator Kit and eluted in 12 uL nuclease-free water. For barcoding, 1 ng of this eluate was                                 
amplified for 10 cycles using primers GU72 and GU73. Following cleaning using a Zymo Clean                             
and Concentrator Kit (#D40140), the library was digested using NEB’s SbfI-HF and XhoI. 
 
This library was cloned following the same protocols as the TSS library. The transformation of                             
the barcoded library yielded approximately 3.3 million colonies and the transformation after                       
addition of the RiboJ::sfGFP yielded approximately 1.25 million colonies.  
 
Genomic promoter tiling library design 
 
We used a custom peak caller on the single-nucleotide resolution strand-specific expression                       
pileup generated from our genomic fragment library to define “peaks” of promoter activity. Our                           
peak calling method is simple and conservative, as we wanted to tile the most active regions                               
and keep the library size reasonable. We defined a peak as a continuous region with expression                               
above an empirically determined threshold. We considered a continuous range of thresholds                       
and for each evaluated the percentage of active TSSs, from our previous library, contained in a                               
peak and determined an expression level of 1.1 was sufficient and captured 90% of active TSSs                               
(data not shown). We required that each peak be at least 60 bp, and merged adjacent peaks that                                   
were within 40 bp, yielding 1753 and 1724 peaks for the minus and plus strands, respectively.                               
We tiled each peak by synthesizing 150 bp windows across the region, with no overlap between                               
adjacent tiles, yielding 48,491 peak tiles. Additionally, we included 1000 randomly generated 150                         
bp sequences to test what fraction of random sequence can drive expression. We included the                             
same set of positive and negative controls as described in the TSS library design. 
 
Genomic promoter tiling library barcoding and cloning 
 
The active TSS mutagenesis library was synthesized by Agilent and delivered lyophilized as a 10                             
pmol pool. The library was resuspended in 100 uL of TE pH 8.0 and 1 uL was amplified for 10                                       
cycles using GU120 and GU121. This product was then cleaned using a Zymo Clean and                             
Concentrator Kit and eluted in 12 uL nuclease-free water. For barcoding, 1 ng of this eluate was                                 
amplified for 8 cycles using primers GU120 and GU122. Following cleaning using a Zymo Clean                             
and Concentrator Kit (#D40140), the library was digested using NEB’s SbfI-HF and XhoI. 
 
This library was cloned following the same protocols as the TSS library. The transformation of                             
the barcoded library yielded approximately 1.5 million colonies and the transformation after                       
addition of the RiboJ::sfGFP yielded approximately 5.2 million colonies.  
 
Active TSS mutagenesis design 
 
We systematically mutagenized all active TSSs from our initial TSS library to design a follow-up                             
library. We used 500 negative controls to classify the TSS library into active and inactive TSSs.                               
We set the active threshold at two standard deviations above the median expression for the                             
negative controls, resulting in 2,670 active TSSs. We mutagenized the active sequence by                         
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scrambling 10 bp windows, sliding across the 150 bp at 5 bp intervals, resulting in 5 bp of                                   
overlap between adjacent scrambles. We scrambled the sequence using the existing 10 bp to                           
preserve nucleotide content and selected the scramble that was most dissimilar to the original                           
sequence out of 100 scrambling attempts. Our final library included 59,653 scrambled                       
sequences and 2,057 unscrambled sequences. We also included the same set of negative and                           
positive controls as described above for the TSS library, for a total library size of 62,322. 
 
Active TSS mutagenesis library barcoding 
 
The active TSS mutagenesis library was synthesized by Agilent and delivered lyophilized as a 10                             
pmol pool. The library was resuspended in 100 uL of TE pH 8.0 and 1 uL was amplified for 12                                       
cycles using GU123 and GU124. This product was then cleaned using a Zymo Clean and                             
Concentrator Kit and eluted in 12 uL nuclease-free water. For barcoding, 1 ng of this eluate was                                 
amplified for 10 cycles using primers GU123 and GU125. Following cleaning using a Zymo                           
Clean and Concentrator Kit (#D40140), the library was digested using NEB’s SbfI-HF and XhoI. 
 
This library was cloned following the same protocols as the TSS library. The transformation of                             
the barcoded library yielded approximately 3.7 million colonies and the transformation after                       
addition of the RiboJ::sfGFP yielded approximately 5.2 million colonies.  
 
Library Barcode mapping 
 
We used PCR to individually barcode each library sequence to quantitatively measure                       
expression in our MPRA. Prior to genome integration, DNA-sequencing was performed to                       
computationally map barcodes to sequences. A custom barcode mapper developed by Nathan                       
Lubock (Jones et al., 2019) was used to collapse reads into a barcode-sequence map. We used                               
two filtering steps for barcode quality. First, we required a minimum number of reads for every                               
barcode, assuming reads that appear once or twice correspond to sequencing errors. Second,                         
BBMap (Bushnell, 2016) was used to align the reads associated with a given barcode, and                             
discarded barcodes that map to sequences that are too dissimilar to one another. A                           
Levenshtein distance of 30 was used to discard barcodes that map to two very distinct                             
sequences, while still allowing for a small number of sequence errors.  
 
Library integration into specific genomic loci 
 
Library integration was performed as previously described(Urtecho et al., 2018).  
 
The isolated plasmid library was digested with SalI-HF and NheI-HF to eliminate incompletely 
cloned plasmid before transformation into electrocompetent MG1655 with a landing pad 
engineered in the nth-ydgR locus and plating on LB + kanamycin (25 ug/mL). Colonies were                             
resuspended in LB and 800 million cells were inoculated into 250 mL LB + kanamycin (25                               
ug/mL) and grown overnight. Several 2 mL frozen aliquots were made of this overnight culture. 
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The library was integrated into the nth-ydgR locus as follows. A frozen aliquot of MG1655 with a 
landing pad engineered in the reverse orientation at the nth-ydgR intergenic locus was                         
transformed with the library and grown overnight in 200 mL LB + kanamycin (25 ug/mL).                             
Following overnight growth, 400 million cells of this culture were seeded into 250 mL LB +                               
kanamycin (25 ug/mL) + 0.2% arabinose (g/mL) and grown for 24 hours. After integration of the                               
library, the plasmid backbone was removed through heat-curing. From the 24 hour induced                         
culture, 800 million cells were inoculated into 80 mL of LB + kanamycin (25 ug/mL) and grown                                 
at 42 ºC for approximately 1.5 hours before reaching an OD 600 = 0.3. Upon reaching                               
exponential growth, 200 million cells from this culture library were plated and grown for 16                             
hours at 42 ºC. Heat-cured plates were scraped and resuspended in LB and 400 million cells                               
were inoculated into 200 mL LB + kanamycin (25 ug/mL). This culture, consisting of our                             
integrated and heat-cured library, was grown overnight at 37 ºC and several frozen 2 mL                             
aliquots were made. 
 
To test the TSS library in the essQ-cspB and ybbD-ylbG midreplichore regions, the same protocol                             
was followed using strains engineered with landing pads in these intergenic regions. 
 
Library growth and harvest for expression measurements 
 
To measure expression of all promoter libraries, libraries were grown and harvested as                         
previously described (Urtecho et al., 2018) with minor changes to culture conditions. 
 
For each library and biological replicates, a 2 mL frozen aliquot of the library was inoculated in                                 
200 mL LB (BD#244620) with 25 ug/mL of kanamycin and grown at 30 ºC overnight. The                               
overnight cultures were used to seed new cultures at OD600 = .0005 and grown for approximately                               
5.5 hours at 30 ºC until reaching an OD600 between = 0.5 and 0.55. The genomic fragment library                                   
was also grown in Minimal Media (Fisher Scientific #DF0485-17) with 0.2% glucose (g/mL) and                           
25 ug/mL of kanamycin for 10 hours at 30 ºC until reaching an OD600 between = 0.5 and 0.55.                                     
Cultures were rapidly cooled to 0 ºC in an ice slurry for two minutes. Three 50 mL aliquots were                                     
pelleted at 4 ºC by centrifugation at 13,000xg for two minutes and the supernatants were                             
poured out before snap-freezing the pellets in liquid nitrogen. Three 5 mL aliquots of each                             
library were harvested using the same approach to be processed for genomic DNA extractions. 
 
RNA and DNA sequencing library preparation 
 
RNA was extracted from 50 mL library pellets using a Qiagen RNEasy Midi kit (#75142) and 45                                 
ug of each extract was concentrated using a Qiagen Minelute Cleanup Kit (#74204). Barcoded                           
cDNA was generated from 25 ug of each concentrated RNA extract using Thermo Fisher                           
SuperScript IV (#18090010) primed with GU101. The manufacturer’s protocol was followed                     
aside from extending the reaction time to 1 hour at 52 ºC. The cDNA reaction was cleaned using                                   
a Zymo Research DNA Clean and Concentrator kit (#D40140) before amplification. Barcoded                       
cDNA was amplified via PCR for 13 cycles using primers GU59 and GU102. This reaction was                               
cleaned using a Zymo Research DNA Clean and Concentrator Kit and 1 uL of this reaction was                                 
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used in a second PCR for indexing and addition of flow cell adapters. The second PCR was for 8                                     
cycles and utilized primers GU102 with either GU61, GU62, GU63, or GU64 (which add separate 6                               
bp indices).  
 
gDNA was extracted from 5 mL cell library pellets using a Qiagen Gentra Puregene kit                             
(#158567). Barcoded DNA was amplified from 1 ug of gDNA via PCR for 12-15 cycles using                               
primers GU59 and GU60. The reaction was subsequently cleaned using a Zymo Research DNA                           
Clean and Concentrator kit. To add sequencing adapters and indices to the library, 1 ng of this                                 
reaction was subject to a second PCR for 8 cycles using primers GU70 with either GU63, GU64,                                 
GU65, or GU66 (which add separate 6 bp indices). RNA and DNA sequencing libraries were                             
cleaned using a Zymo Research Clean and Concentrator Kit (#D40140) before quantification                       
using an Agilent Tapestation. 
 
For each library, eight separate sequencing libraries were prepared: Four sequencing libraries                       
for each RNA/DNA with two biological replicates and two technical replicates of each biological                           
replicate. Biological replicates originated from separately grown and harvested glycerol stocks                     
of each library. For each biological replicate, two RNA/gDNA extractions and sequencing library                         
preparations (technical replicates) were performed in parallel. Libraries were submitted to the                       
Broad Stem Cell Research Center at UCLA for sequencing on a HiSeq2500 or to the UCLA                               
Translational Pathology Core Laboratory for sequencing on a NextSeq500. Raw sequencing                     
data and promoter expression measurements will be made available on NCBI’s Gene Expression                         
Omnibus.  
  
RNA-Seq of MG1655 in M9 minimal Media and Rich LB media 
 
To compare the promoter landscape to local transcriptional levels, RNA-Seq was performed on                         
MG1655 grown in M9 minimal media (BD Difco #248510) supplemented with 0.2% glucose, 2                           
mM magnesium sulfate, and 0.1 mM calcium chloride. Similarly, RNA-Seq was performed for                         
MG1655 grown in LB (BD#244620). Cells growth and RNA preps were prepared as previously                           
described (see methods section titled: library growth and harvest for expression                     
measurements). Samples were prepared using an Illumina TruSeq® Stranded mRNA Library                     
Prep (#20020594) following manufacturers protocols to achieve strand-specific coverage. We                   
note that no rRNA depletion was performed to preserve the fully intact transcriptional                         
landscape. Samples were submitted to the UCLA TCGB sequencing core and sequenced on a                           
Hiseq 4000.  
 
Standardizing Promoter Expression Quantification and Activity Thresholding 
 
We processed the TSS, scramble, and peak tiling libraries using the same computational                         
pipeline to facilitate comparisons between libraries. First, we use a set of 96 short synthetic                             
positive controls, designed to span a range of activity (Kosuri et al., 2013; Mutalik et al., 2013), to                                   
fit a robust linear regression (rlm function from MASS package) with the TSS library as the                               
reference. Each library is standardized independently to the TSS library using the set of positive                             
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controls present in both libraries. Next, for each library we independently determined the level of                             
background noise based on the median of 500 negative controls and subtracted this                         
background from the newly fitted measurements. These steps standardize our data so we can                           
train jointly across all datasets.  
 
-10 Motif and -35 Motif characterization 
 
A position weight matrix from bTSSfinder was used to identify and score the best match to the                                   

-10 and -35 motifs within active tss-associated promoters, inactive tss-associated promoters,                     
and a set of 500 negative controls. Best scores were reported regardless of position within the                               
sequence. For all pairwise comparisons of active tss-associated promoters, inactive                   
tss-associated promoters, and the negative controls, the distributions of motif scores were                       
compared and a student’s t-test was performed to determine significance. 
 
Genomic fragment processing, alignment and promoter landscape quantification 
 
To calculate fragment expression, we used measurements from DNA-seq and RNA-seq and                       
excluded fragments with low expression (< 0.1) or high variance (5-fold difference in relative                           
expression between biological replicates). To identify the coordinates of genomic fragments                     
assayed using the MPRA, fragment sequences were aligned using bowtie2 (Langmead and                       
Salzberg, 2012) (version 2.3.4.3 ). To determine nucleotide-resolution calculations for promoter                     
activity, we utilize the script, frag_expression_pileup.py . This script outputs WIG files in                       
a strand-specific manner detailing the median expression of fragments overlapping each                     
nucleotide position. 
 
Identification of minimal promoter regions 
 
To identify minimal sequences necessary for promoter activity, contiguous stretches of                     
candidate promoter region peak tiles were grouped and the minimal shared overlapping region                         
was identified. Peak tiles above the expression threshold were identified and grouped together                         
if they shared an overlap of at least 110 bp of their 150 bp total length. The minimal region                                     
necessary for promoter activity was found by determining the overlap of the outermost                         
sequences within a contiguous stretch of tiles. 
 
Determining promoter-gene associations 
 
To assign genomic promoter peaks to their regulated genes, peaks were first assigned specific                           
nucleotide positions by identifying the maximum activity score within a peak. Promoter peaks                         
were considered intragenic if their maximum scoring nucleotide overlapped with a gene                       
coordinate. For peaks whose maximum scoring nucleotides were within intergenic regions,                     
regulated genes were assigned by identifying the first downstream gene within 500 bp. Once                           
gene associations were identified, promoter peaks were labeled sense or antisense depending                       
on whether the regulated gene shared strand orientation with the promoter peak 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2020. ; https://doi.org/10.1101/2020.01.04.894907doi: bioRxiv preprint 

https://paperpile.com/c/UEnvxp/nW5n
https://paperpile.com/c/UEnvxp/nW5n
https://doi.org/10.1101/2020.01.04.894907
http://creativecommons.org/licenses/by-nc/4.0/


 

 
RNA-Seq alignment and genome transcript coverage  
 
RNA-Seq analysis was performed using the script RNAseq_LB_processing.sh or                 
RNAseq_M9_processing.sh. This script trims reads using the trimmomatic software (ver.                   
0.36+dfsg-3) and aligned to the MG1655 reference genome (U00096.2) using Hisat2 (Kim,                       
Langmead and Salzberg, 2015) (ver. 2.1.0-1). Genome nucleotide-resolution coverage was                   
determined using Samtools depth (ver. 1.7-1). Meta-analysis across gene groups (as in figure                         
3B), was performed using Deeptools (Ramírez et al., 2016) (ver. 2.5.6). Gene expression                         
coverage (as in figure 4B) was calculated using custom script wig_over_bed.py, which                       
calculates the total (.wig) coverage across reported E. coli genes. In all cases, default                           
parameters were used with the exception of allowing for strand-specific quantifications. 
 
Amino acid and codon bias within intragenic promoters 
 
Amino and codon usage was characterized within intragenic promoters and compared to all E.                           
coli coding regions. To identify intragenic promoters, minimal regions necessary for promoter                       
activity were identified by cross referencing genomic coordinates to reported genes. Reported                       
gene coordinates were acquired from RegulonDB Version 8.0 (Salgado et al., 2013). Once                         
intragenic promoters were identified, nucleotide triplets were extracted while conserving the                     
reading frame of the overlapping gene. Similarly, nucleotide triplets were extracted from all                         
reported E. coli coding regions after filtering out sequences which did not have nucleotide                           
lengths of a multiple of three. For these extracted sequences, codon frequencies were                         
normalized to their relative abundance compared to other codons encoding the same amino                         
acid. Amino acid frequencies were normalized to the total number of amino acids within each                             
group. Significantly enriched or depleted codons were identified by performing a chi-squared                       
test within each amino acid group and adjusting the p-value using FDR. Significantly enriched or                             
depleted amino acids were identified by performing a chi-squared test for each amino acid                           
relative to the total pool of amino acids and adjusting the p-value using FDR. 
 
Comparison of condition-dependent promoter and gene activation between rich and minimal                     
media 
 
To identify condition specific promoters, coordinates of candidate promoter regions identified in                       
both M9 and LB conditions were compared to identify overlaps. Coordinates of promoter peaks                           
were cross-compared between conditions using the bedtools intersect tool (bedtools v2.27.1)                     
and considered unique to a particular condition if they had no overlap between conditions. To                             
identify regions that were activated between conditions, we compared the relative promoter                       
activity between conditions at all positions in the genome and identified stretches greater than                           
60 bp that exhibited over 2-fold difference in activity. Regions were called using custom script                             
run_differential_wig.sh available on the Github repository. To identify genes being expressed by                       
differentially active regions, intergenic differentially active regions and matched these to the                       
nearest downstream gene within 500 bp. 
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Identification of SEED subsystem annotations enriched in differentially-activated genes 
 
To identify genetic functions associated with condition-dependent genes, the E. coli MG1655                       
K-12 genome (Genbank: U00096.2) was annotated using the SEED and RAST webserver (Aziz et                           
al., 2008; Overbeek et al., 2014). Genes within 500 bp downstream of promoter regions activated                             
by condition were identified and associated with activation in LB or minimal media. For each                             
media condition, genes were grouped by functional categories and the number of genes for                           
each category was tallied.  
 
Identification of condition-dependent TFBSs 
 
The TFBS content of promoter peaks unique to each condition was evaluated by                         
cross-referencing with TFBSs reported by RegulonDB (Salgado et al., 2013) (Release 8.8).                       
Genomic regions activated in each condition were assigned TFBSs based on overlapping                       
genomic coordinates using the bedtools intersect tool (bedtools v2.27.1) with default                     
parameters and ignoring strand assignments. Incidents of each TFBS overlap were quantified                       
between conditions and normalized to incidencies per 100,000 bp of promoter peak sequence. 
 
Identification of statistically significant scrambling promoter variants  
 
We identified scrambling promoter variants that significantly altered expression compared to                     
the wild-type (WT) variant in the script scramble_ttest.Rmd. We considered each scramble and                         
barcode combination as an independent observation, rather than summarizing expression as an                       
average across all barcodes. A two sample two-sided Student’s t-test (t.test) was performed to                           
test for a significant difference in mean expression levels between barcodes for a scrambled                           
variant and barcodes for the corresponding WT variant. We performed multiple testing                       
correction and identified 1,885 scrambles that increase expression and 5,408 that decrease                       
expression relative to the WT variant, at a false discovery rate of 1%.  
 
Next, bedtools merge was used to merge overlapping adjacent scramble variants to produce                         
“merged” scrambles. These merged sites correspond to a continuous scrambled region that                       
induced significant changes in expression. We identified 1,414 merged scrambles that                     
increased expression and 1,903 merged scrambles that decreased expression, and scrambles                     
were merged separately based on effect. 
 
Comparison of identified regulatory regions to RegulonDB annotations 
 
We compared our identified merged scramble sites to existing RegulonDB annotations. We used                         
bedtools intersect and required that 10% of the TFBS overlapped with a merged scramble site to                               
count as an overlap. Next, we assessed whether the expression effect seen in our MPRA agreed                               
with the direction of effect of the TFBS as indicated in RegulonDB. A merged scramble site was                                 
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marked as “concordant” if any of the component scrambles agreed with existing annotation,                         
and not concordant otherwise. 
 
Machine learning models 
 
We implemented several machine learning models, independently trained for both classification                     
and regression. All reproducible code is provided in the Github and we will briefly describe each                               
model and the appropriate parameters or implementation details.  
 
Data processing 
 
We standardized all datasets as detailed above in “Universal Promoter Expression                     
Quantification and Activity Thresholding”. Next, we split our data, using custom scripts, into                         
75%/25% for training/testing based on genomic location, ensuring the splits are equidistant                       
from the origin, to avoid overfitting (define_genome_splits.py). Briefly, we split the                 
genome into eight chunks, with the first and last chunk adjacent to the origin of replication. We                 
designated the second and seventh chunk as the test set and remaining chunks as training set.                
This splitting maintains roughly the same distance from the origin between the training and test               
sets to avoid any potential effects of genome location. Many of our library designs include high                       
overlap between adjacent positions in the genome. Splitting by genome location mitigates                       
inflated performance due to highly similar sequences present in both train and test sets. Across                             
the three libraries (TSS, peak tiling, scramble) there are 87,164 training samples and 30,392 test                             
samples.  
 
We trained models for both regression and classification. Our data was skewed toward negative                           
examples, with many samples near our determined threshold. For classification, we created a                         
buffer around the threshold and only include sequences with expression <= 0.75 as negatives                           
and >= 1.25 as positives and labeled sequences as active or inactive. Our training set was                               
reduced to 53,326 samples and testing set to 18,567 samples. 
 
We used the classification models to predict probabilities, instead of the class, to derive                           
precision-recall curves. 
 
Simple model with promoter features 
 
For the models in this section we created features only for the TSS library because it is closest                  
to endogenous sequence and is a smaller dataset. The training and test sets were split by                
genomic location, as described above, with 13,118 training samples and 4549 testing samples. 
 
We created a simple model which incorporates four features related to promoter function. We              
calculated the maximum position weight matrix (PWM) score using motifs from bTSSfinder            
(Shahmuradov et al., 2017) for both the -10 and -35 core promoter motifs. We scanned the -10                 
and -35 PWM individually and took the max score at any position using scoring functions from                
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the Bioconductor package Biostrings (Pagès et al., 2017) . Next, we scanned the            
sequence with -10 and -35 PWM jointly, allowing either 16, 17, or 18bp spacing in between the                 
PWMs, reflecting common spacer lengths between core motifs. We assigned the “paired” max             
score as the max score at any position in the sequence across the three length options. Finally,                 
we calculated the GC content (percentage) as this has been shown to be negatively correlated               
with promoter strength (Johns et al., 2018). We constructed models in R with these four features                
and fit 1) a linear regression (lm ), 2) a linear regression on the log-transformed expression               
values (lm ) , and 3) a logistic regression (glm, family = ‘binomial’, type =              

‘response’ ). 
 
We trained the gapped k-mer SVM (gkm-SVM (Ghandi et al., 2016)) model on only the TSS                
dataset because the model is suited for training sets < 20,000. The training and test sets were                 
split by genome position as described above. We specified a word length = 10 with 8 informative                 
columns (L = 10, K = 8). 
 
K-mer frequencies and simple models (linear regression, logistic regression, partial least           
squares regression, partial least squares discriminant analysis) 
 
All of the models described in the remaining sections were trained using all three combined                             
datasets, as described above. 
 
We created a feature set based on k-mer frequencies, with k-mers ranging in length from 3 to                 
6-mers. We generated feature sets and trained models in python. For simpler models we              
performed an additional feature selection step using custom scripts         
(kmer_feature_generator.py ).  
 
We trained four models:  

● linear regression (statsmodel.api.OLS) 
● logistic regression (sklearn.linear_model.LogisticRegression() ) 
● partial least squares regression    

(sklearn.cross_decomposition.PLSRegression() ) 
● partial least squares discriminant analysis     

(sklearn.cross_decomposition.PLSRegression() on binary dependent    
variable) 

 
For each k-mer, we computed the frequency in a set of random genomic sequences, the same                
length and size of the training set. We include a k-mer if the absolute correlation with expression                 
is greater than the “random” k-mer frequency, resulting in 4800/5440 filtered k-mers. We chose              
partial least squares regression because it projects the input features onto a new space and is                
better equipped to handle a large number of features with high collinearity. 
Random forest regression and classification  
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Next, we trained a random forest, for both regression         
(sklearn.ensemble.RandomForestRegressor() ) and classification   
(sklearn.ensemble.RandomForestClassifier() ). We train on one-hot encoded DNA       
as a comparison to the neural network model, although random forest is not well suited to                
categorical input features. To compensate for this, we trained the random forest using             
frequencies of all 6-mers and observed improved performance. 
 
Multi-layer perceptron and neural networks 
 
We trained a multi-layer perceptron for both regression        
(sklearn.neural_network.MLPRegressor() ) and classification   
(sklearn.neural_network.MLPClassifier() ). MLPs are a class of feedforward artificial        
networks and are “vanilla” neural networks consisting of an input layer, hidden layer, and output               
layer. We used two different feature sets: frequency of all 3- to 6-mers and frequency of only                 
6-mers. Feature sets were standardized with      
sklearn.preprocessing.StandardScaler() to remove mean and scale to unit        
variance. We trained all four models with the following parameters: alpha = 0.005,             
hidden_layer_sizes=(800, 30), solver = ‘lbfgs’, random_state=1, max_iter=10000,       
early_stopping=True, learning_rate=’adaptive’, tol=1e-8.  
 
We trained a convolutional neural network (CNN) on one-hot encoded DNA sequence for both              
regression and classification. We performed hyperparameter tuning and training using (Paggi et            
al., 2017), a toolkit for working with CNNs built on keras. We performed a random               
hyperparameter search for a three layer CNN for 100 combinations and the optimal parameters              
are listed below. 
 
Regression: 

● Dropout: 0.1340735187802852 
● Pooling width: 16 
● Convolutional filter width (for each layer): 16, 17, 18 
● Number of filters (for each layer): 19, 39, 54 

 
Classification: 

● Dropout: 0.45541334972592196 
● Pooling width: 7 
● Convolutional filter width (for each layer): 8, 29, 29 
● Number of filters (for each layer): 99, 87, 60 
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