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Abstract 13 

Asexual proliferation of the Plasmodium parasites that cause malaria follow a developmental 14 

program that alternates non-canonical intraerythrocytic replication with dissemination to new 15 

host cells. We carried out a functional analysis of the Plasmodium falciparum homolog of 16 

Protein Phosphatase 1 (PfPP1), a universally conserved cell cycle factor in eukaryotes, to 17 

investigate regulation of parasite proliferation. PfPP1 is indeed required for efficient replication, 18 

but is absolutely essential for egress of parasites from host red blood cells. A phosphoproteomic 19 

screen and chemical-genetic analysis provided evidence for a HECT E3 protein-ubiquitin ligase, 20 

as well as a fusion protein with guanylyl cyclase and phospholipid transporter domains, as 21 

functional targets of PfPP1. Extracellular phosphatidylcholine stimulates PfPP1-dependent 22 

egress. Parasite PfPP1 acts as a master regulator that can integrate multiple cell-intrinsic 23 

pathways with external signals to direct parasite egress from host cells. 24 

 25 
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Main Text 27 

Malaria parasites from the genus Plasmodium follow an unusual developmental program during 28 

infection of erythrocyte host cells, utilizing a non-canonical style of asexual proliferation, known 29 

as schizogony, to undergo multiple cycles of nuclear replication before a single cytokinesis event 30 

(1-3). Merozoites, the mature parasite forms, must infect new host cells to initiate new 31 

intraerythrocytic developmental cycles (IDC) and sustain proliferation, achieved only through 32 

egress from the host cell for release into circulation. Protein phosphorylation in parasites is 33 

developmentally regulated in blood-stage growth (4), and genetic studies show that roughly one-34 

half of the Plasmodium protein kinase and protein phosphatase genes are essential for the IDC 35 

(5-16). Protein Phosphatase 1 (PP1) is a highly conserved and ubiquitous enzyme in eukaryotes 36 

that regulates mitotic exit and cytokinesis (17-21). With functions also in non-cell cycle-related 37 

processes [reviewed in (22)], PP1 is a dominant contributor to total cellular phosphatase activity 38 

(23-26). For the Plasmodium falciparum homolog of PP1 (PfPP1) (27), genetic evidence for 39 

likely essentiality (6, 8, 28), high levels of expression compared to other protein phosphatase 40 

genes (29, 30) (fig. S1A), and the identification of several binding proteins (31-39), suggest 41 

multiple roles in blood-stage parasites. 42 

To investigate PfPP1-mediated regulation of the IDC and parasite proliferation, we initiated a 43 

reverse genetic analysis. With a transgenic P. falciparum line expressing a triple-hemagglutinin 44 

(HA3) tag at the 3’-end of the endogenous pfpp1 gene (fig. S1B,C), we found that PfPP1 protein 45 

is expressed throughout the 48-hr IDC, becoming upregulated from approximately the midpoint 46 

until the end (Fig. 1A). In accord with recent reports for PP1 in the rodent malaria parasite 47 

Plasmodium berghei (35), we observed nuclear and cytoplasmic localization of the enzyme, with 48 

cytoplasmic PfPP1 becoming predominant as the parasite matures (fig. S1D). Cell cycle stage-49 
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dependent compartmentalization of PP1 has been reported in lower eukaryotes, consistent with 50 

distinct functions for the enzyme (40). To assess the function of PfPP1 in blood-stage 51 

proliferation, we generated a transgenic line of P. falciparum for inducible knockout of the pfpp1 52 

gene (pfpp1-iKO), based on the dimerizable Cre recombinase (DiCre) system (fig. S1E-G) (41, 53 

42). Induction of pfpp1-knockout by rapamycin treatment early in the IDC, ~3-5 hrs post-54 

invasion (hpi), results in strong reduction of PfPP1 protein levels by ~30 hpi (Fig. 1B; fig. 55 

S1B,G). By following DNA replication through the IDC, we found that early-iKO of pfpp1 56 

delays parasite development before resulting in the accumulation of multinucleate schizont 57 

forms, blocked prior to egress (Fig. 1C). Reverse genetic analysis by inducible expression thus 58 

establishes the essentiality of PfPP1 for asexual proliferation. 59 

To investigate PfPP1-function at specific times through the IDC, we used a transgenic P. 60 

falciparum line for conditional knockdown (fig. S2A-C). Knockdown of PfPP1 fused to a 61 

Destabilization Domain (DD)-tag, induced through depletion in culture of the DD-stabilizing 62 

small molecule Shield-1 (Shld1) (11, 43, 44), confirms essentiality of the enzyme to blood-stage 63 

parasites (Fig. 1D,E; fig. S2D,E). We confirmed late IDC-stage expression of the enzyme and 64 

cytoplasmic localization in mature parasites (fig. S2F,G). To map the time of function of PfPP1, 65 

we induced knockdown at different stages of the IDC and measured DNA replication. We 66 

measured phenotypes with knockdown induced at the immature ring stage preceding the growth 67 

phase (4 hpi), at trophozoites before the onset of DNA replication (24 hpi), and early in 68 

schizogony (33 hpi) (Fig. 1F). With destabilization of PfPP1-DD in rings, we observed 69 

significant defects in DNA replication (Fig. 1F; fig. S2H). Knockdown induced in trophozoites 70 

or early schizonts permits DNA replication (Fig. 1F; fig. S2I) but results in parasites with 71 

reduced numbers of nuclear centers (Fig. 1G; fig. S2J), suggesting defects in nuclear division. 72 
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Electron microscopy of PfPP1-DD knockdown parasites indicate failure to complete the terminal 73 

mitosis and cytokinesis step of the IDC (fig. S2K), suggesting cell cycle-regulatory functions for 74 

PfPP1 conserved from non-parasitic eukaryotes (19-21). Defects upstream of cytokinesis with 75 

PfPP1-DD knockdown are supported by immunofluorescence analysis; we observe that the inner 76 

membrane complex (IMC, antigen PfGAP45) that separates replicated, intracellular parasites 77 

fails to form (fig. S2L). 78 

To map functions for PfPP1 late in the IDC, we induced knockdown in schizonts (~44 hpi), 79 

revealing an acute requirement of the phosphatase for egress after complete DNA replication and 80 

nuclear segregation (Fig. 1H,I). Knockdown elicits a complete block in host cell egress and 81 

erythrocyte re-invasion (Fig. 1H; fig. S2M,N). Partial knockdown late in the IDC elicits 82 

sublethal defects in egress without additional defects observed in the further transition to invaded 83 

erythrocytes (egress-to-invasion) (Fig. 1J), suggesting a specific and primary function in late 84 

stage schizonts. 85 

The effects of late PfPP1-DD knockdown are recapitulated in the pfpp1-iKO line with induction 86 

of Rapa-mediated iKO later in the IDC (30 hpi, fig. S3A), resulting in depletion of PfPP1 protein 87 

at the late schizont stage (Fig. 2A). Late iKO blocks passage to new erythrocytes without defects 88 

in DNA replication or nuclear segregation (Fig. 2B,C; fig. S3B). Electron microscopy shows that 89 

parasites having undergone late pfpp1-iKO display gross morphology typical of maturation, 90 

including intact erythrocyte membranes, parasitophorous vacuoles that completely house 91 

parasites within, and individual parasite cells physically distinguished by plasma membranes 92 

indicating the completion of cytokinesis (Fig. 2D). Immunofluorescence microscopy to image 93 

markers for the parasite plasma membrane (antigen PfMSP1) and the underlying IMC (antigen 94 

PfMTIP1) confirm cytokinesis and segregation of these structures into replicated parasites (Fig. 95 
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2E,F). Immunofluorescence shows also that secretory organelles utilized for invasion, 96 

micronemes (antigen PfAMA1) and rhoptry necks (antigen PfRON4), form normally with iKO 97 

of pfpp1 (Fig. 2E,F). In the PfPP1-DD line, immunofluorescence shows that parasites induced 98 

for knockdown late in the IDC undergo cytokinesis (IMC antigen PfGAP45) and form normal 99 

rhoptries (antigen PfRhopH3) (fig. S3E,F). 100 

To initiate egress from erythrocytes at the close of the IDC, parasites secrete the protease 101 

PfSUB1 in a regulated fashion from exoneme organelles into the lumen of the parasitophorous 102 

vacuole and activate a proteolytic cascade for sequential rupture of the vacuolar (PVM) and host 103 

cell membranes (45-47) (Fig. 2G). To permit assessment of PVM rupture, we endogenously 104 

tagged the PVM protein PfEXP2 at the C-terminus with GFP (48) in the pfpp1-iKO background 105 

(fig. S3H-J). Late in the IDC, PfEXP2-GFP in intact PVMs presents intraerythrocytically as a 106 

circular label around the parasites or between replicated parasites, while disintegration of the 107 

PVM can be observed by the appearance of fluorescent membrane fragments in parasites treated 108 

with E64 to prevent host cell rupture (Fig. 2H) (48). We used labeling by PfEXP2-GFP to test 109 

the requirement for PfPP1 in PVM rupture, finding that late induction of iKO blocks the process 110 

in virtually all parasites examined (Fig. 2H). We further used immunofluorescence analysis to 111 

assess PfSUB1 release required to initiate PVM rupture (47), finding that rapamycin-treated 112 

pfpp1-iKO parasites fail to secrete the protease from exonemes (Fig. 2I). We observed that 113 

discharge of micronemes is also blocked by pfpp1-iKO (Fig. 2J). Our findings indicate an 114 

essential function for PfPP1 at an early step of egress, following merozoite formation but 115 

upstream of discharge of the specialized parasite organelles carrying proteases and other factors 116 

utilized for rupture of surrounding membranes. 117 
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Our reverse genetic analysis establishing the function of PfPP1 at egress places a factor typically 118 

associated with the conventional cell cycle of eukaryotes at a post-replicative stage of the IDC, 119 

specifically required for parasitism and spread of infection. To test if dephosphorylation of 120 

protein substrates accounts for the requirement for PfPP1 in parasites late in the IDC, we 121 

implemented a chemical-genetic approach (49) to measure functional interaction between PfPP1 122 

and calyculin A, an active-site inhibitor of eukaryotic PP1 (50, 51) (Fig. 3A). We found that 123 

knockdown significantly increases the sensitivity of egress-to-invasion by parasites to 124 

calyculin A but not to the control antimalarial drug dihydroartemisinin (DHA) (Fig. 3B), 125 

supporting a role for PfPP1 phosphatase activity for function. To identify potential substrates of 126 

PfPP1 and probe regulation of parasites in the late IDC, we carried out a global 127 

phosphoproteomic analysis of PfPP1-DD function spanning a period in the IDC from post-128 

replication through egress, collecting samples from highly synchronized (+/-45 min) PfPP1-DD-129 

intact and knockdown parasites at 48-hpi (4 hrs induction), and at 55-hpi (11 hrs induction) (Fig. 130 

3C). We identified a total of 4720 phosphorylation sites from 1170 phosphoproteins, indicating 131 

phosphorylation of ~1/3 of all P. falciparum proteins detected in late-stage parasites (Fig. 3D; 132 

Tables S1-S3). We detected a comparable or greater number of phosphorylation sites than totals 133 

reported in other phosphoproteomic studies of late-stage P. falciparum (12, 52-55). Our dataset 134 

thus provides a comprehensive view of phosphorylation events with tight time-resolution 135 

through the course of egress. At the earliest timepoint following induction of PfPP1-DD 136 

knockdown in late in the IDC, there are minimal changes in either the global proteome or 137 

phosphoproteome between Shld1-supplemented and knockdown samples, indicating the absence 138 

of widespread global changes that may complicate assessment of specific phosphatase functions 139 

(Fig. 3D; see Supplementary Text related to figs. S4A-C).  140 
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P. falciparum homologs of established PP1 regulators for cell cycle progression (18, 19, 56-59), 141 

the nuclear protein sds22 [in parasites, termed LRR1 for leucine-rich repeat protein 1 (39)] and 142 

inhibitor-2 (I2) (38), are among the two most strongly increased factors in protein expression 143 

upon PfPP1-knockdown (Fig. 3D). Perturbed expression of these regulators may indicate a 144 

conserved function mediated by parasite PfPP1, while an increase in factors for glycolysis and 145 

the pentose phosphate pathway suggest association with the proliferative state of parasites (Table 146 

S4) (60). At 48 hpi, we observe by both phosphoproteomics and separately by immunoblot 147 

analysis increased phosphorylation (by up to ~5-fold) of Ser-29 of Pfhistone H3 (Fig. 3D; fig. 148 

S4D), homologous to Ser-28 in the human ortholog studied as a phosphorylation site targeted by 149 

PP1 during mitotic exit and interphase (61, 62). We thus observe among both putative regulators 150 

and substrates evidence for conserved PP1 activity in P. falciparum.    151 

The 50 proteins increased >2-fold in phosphorylation upon PfPP1-DD knockdown (Fig. 3D, 152 

Table S3) include chromatin factors (histone H3 variant, histone deacetylase 1, chromodomain-153 

binding protein), transcription factors from the AP2 family, and vacuolar-protein-sorting family 154 

proteins (VPS11 and VPS18). To focus on potential substrates for essential PfPP1 function at 155 

egress, we identified gene products that specifically increase in transcriptional expression late in 156 

the IDC (Fig. 3D). The top hit from our phosphoproteomic screen, based on magnitude of change 157 

in phosphorylation with PfPP1-knockdown, is a previously uncharacterized, late IDC-stage 158 

protein carrying a ~300-amino acid HECT E3 protein-ubiquitin ligase domain at the C-terminus 159 

(PF3D7_0628100) (Fig. 3D,E; fig. S4E). In addition to the highly upregulated phosphorylation 160 

site (Ser-6138), knockdown of PfPP1-DD also reveals a strongly downregulated site (>4-fold, 161 

Tyr-9244); the protein also contains a previously predicted site for interaction with PfPP1 (34) 162 
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near the HECT domain  (Fig. 3E; fig. S4E). At >10,000 amino acids, the protein is the largest in 163 

the P. falciparum proteome (Fig. 3E; fig. S4E). 164 

The large protein, which we name here PfHECT1, is the one HECT domain-containing gene of 4 165 

total in P. falciparum to become increased in expression late in the IDC (fig. S4E). To test for 166 

specific HECT activity in parasites late in the IDC, we tested for susceptibility to the small 167 

molecule heclin (Fig. 3F). Heclin was identified as a broad-spectrum inhibitor of mammalian 168 

HECT enzymes, with biophysical studies suggesting that direct binding by the compound 169 

interferes with conformational changes necessary to catalyze transfer of ubiquitin from the E2 170 

adaptor protein to an active-site cysteine in the E3 ligase (63). In PfPP1-DD parasites stabilized 171 

with Shld1, we established the anti-malarial activity of heclin toward parasites, with short (~4 172 

hrs) and longer periods of exposure (~24 hrs) preceding egress exhibiting similar potency toward 173 

establishment of ring-stage parasites (IC50 ~20 µM), indicating major inhibitory activity in 174 

schizonts (Fig. 3F). While PfPP1-DD destabilization does not increase DNA replication defects 175 

induced by heclin (fig. S4F), knockdown in parasites late in the IDC strongly increases 176 

susceptibility of egress-to-invasion to the inhibitor, reducing the IC50 by >100-fold to 177 

submicromolar levels (Fig. 3G; fig. S4G). An assessment of schizont rupture confirms specific 178 

inhibition by heclin toward egress, with dependence on PfPP1 (fig. S4H). Phosphoproteomic 179 

analysis (Fig. 3D) with chemical-genetic analysis (Fig. 3G) indicates a critical role for PfPP1 in 180 

activation of PfHECT1-mediated E3 protein-ubiquitin ligase activity.      181 

Among other late IDC-stage P. falciparum genes showing increased phosphorylation with 182 

PfPP1-knockdown is a guanylyl cyclase (GC) domain-containing protein encoded by the gene 183 

PF3D7_0381400 (Fig. 3D, 4A), required for production of cyclic guanosine monophosphate 184 

(cGMP) to stimulate the downstream effector PfProtein Kinase G (PfPKG) and egress from 185 
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infected erythrocytes (9, 47, 64). Termed GCα, the protein is present across apicomplexan 186 

parasites, and in Toxoplasma gondii is also essential for egress (65-68). Given the function we 187 

identified for PfPP1 in egress, we implemented chemical-genetics to test for functional 188 

interaction with components of cGMP-mediated signal transduction. To artificially raise cellular 189 

cGMP in parasites late in the IDC, we used zaprinast, a cGMP-specific phosphodiesterase (PDE) 190 

inhibitor (47, 69, 70) (Fig. 4A). The susceptibility of egress-to-invasion by PfPP1-DD parasites 191 

to zaprinast becomes sharply increased with knockdown: IC50 values drop by as much as ~400-192 

fold to submicromolar levels (Fig. 4A; fig. S5B). Functional interaction of PfPP1 with the 193 

PfPKG inhibitor Compound-1 (Cpd1) (9), by contrast, is weak, with measurements of egress-to-194 

invasion showing no chemical-genetic interaction (Fig. 4A). An assessment of egress shows 195 

increased sensitivity to Cpd1 with PfPP1-DD knockdown, though much less than the level of 196 

functional interaction observed with zaprinast (Fig. S5C). Our analysis of parasites late in the 197 

IDC indicates a primary function for PfPP1 in suppression of guanylyl cyclase activity, 198 

restricting cGMP-mediated activation of PfPKG upstream of numerous egress and invasion 199 

processes (54, 71). We note that in parental, genetically unmodified parasites, Shld1 does not 200 

affect sensitivity to calyculin A, heclin, or zaprinast (fig. S5D), indicating that the chemical-201 

genetic interactions we have observed here with PfPP1-DD knockdown result from impairment 202 

of phosphatase function. 203 

The protein GCα implicated by our analysis is fused at its N-terminus to a putative P4-ATPase 204 

phospholipid transporter (PLT) domain predicted to translocate phospholipids from the 205 

exoplasmic to the cytoplasmic face of membranes. The fusion of PLT with the GC domain is a 206 

structure found only in alveolates (72), and we observed that PfPP1-responsive phosphorylation 207 

sites (1.4-2.6-fold upregulation with knockdown) cluster in a parasite-specific cytoplasmic loop 208 
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of PLT containing a catalytic site predicted essential for P4-ATPase activity (Fig. 4A; fig. S5A). 209 

Mutational analysis in T. gondii GCα indicates the requirement for fusion of the PLT and GC 210 

domains as well as ATP-dependent catalysis by the PLT (65, 66), raising the possibility of a role 211 

for phospholipids in proper function of the protein, perhaps in egress. To directly assess 212 

involvement of phospholipids in PfPP1-regulated egress, we administered synthetic 213 

phospholipids to parasites late in the IDC. We tested phosphatidic acid (PtdA), known to 214 

stimulate host cell egress in T. gondii when added extracellularly (65) and also through 215 

endogenously synthesized forms resulting from intracellular phosphorylation of the neutral lipid 216 

diacylglycerol (DAG) (73, 74). We also tested phosphatidylcholine (PtdC), the major species of 217 

phospholipid in host serum at concentrations of ~1-2 mM (75, 76). In parasites with intact 218 

PfPP1-DD (300 nM Shld1), neither phospholipid influences egress (fig. S5E). In parasites with 219 

partially destabilized PfPP1-DD, however, PtdA and PtdC stimulate egress by up to ~1.5 and ~3-220 

fold, respectively, with effects observed at as low as 5 µM phospholipid (Fig. 4B). An effect for 221 

PtdA might be explained by the proposal that the molecule provides one of multiple signals 222 

required for efficient egress, acting on targets to activate microneme secretion and parasite 223 

motility, downstream of cGMP and phosphatidylinositol signaling (71, 74, 77). We indeed 224 

observed that knockdown of PfPP1-DD late in the IDC increases susceptibility to the DAG-225 

kinase inhibitor R59022 that restricts endogenous PtdA synthesis (fig. S5F), consistent with a 226 

pro-egress function for the phospholipid in Plasmodium parasites (73).  227 

A role for PtdC in egress, has not been described. We found that extracellular DAG stimulates 228 

egress to similar levels at similar doses as PtdC, suggesting convergent targets or efficient 229 

conversion between the two lipids upon incorporation into the parasite from the extracellular 230 

medium (Fig. 4B). In contrast, lysophosphatidylcholine (LPC), which drives parasite PtdC 231 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 6, 2020. ; https://doi.org/10.1101/2020.01.05.890483doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.05.890483


 

12 
 

biosynthesis via the Kennedy Pathway (78, 79), stimulates egress weakly in comparison to direct 232 

administration of the phospholipid (Fig. 4B); and glucose supplementation to increase 233 

endogenous DAG (78, 80) does not stimulate egress (Fig. S5G). 234 

While erythrocyte membranes housing developing P. falciparum parasites block access to free 235 

PtdC (78), host cells abruptly become permeable to extracellular solutes in the seconds to 236 

minutes preceding egress (46, 48, 81), presenting a route for direct interaction between parasites 237 

and circulating phospholipids. We thus tested accessibility of parasites to PtdC during egress, 238 

using a fluorescent analog (labeled with TopFluor, TF). In most conditions we observed that TF-239 

PtdC marks only the outer membranes of erythrocytes housing multinucleate schizonts (Fig. 4C). 240 

We observed clear labeling of parasites within infected erythrocytes, however, only at a later 241 

timepoint when parasites have naturally entered the egress program and acquired host cell 242 

permeability (Fig. 4C). The intact schizont with permeable erythrocyte membrane is a transient 243 

state prior to egress, stabilized by E64-treatment (46, 81-83). We conclude that circulating PtdC 244 

accesses parasites when host cells become permeable to the extracellular environment, shortly 245 

before natural host cell rupture. 246 

Endogenous PtdC is promoted with the addition of the precursor choline (78, 79). We found that 247 

choline stimulates egress in parasites with partially destabilized PfPP1-DD; albeit in contrast to 248 

PtdC, only at non-physiological serum levels (84) (Fig. 4D). Identical, high concentrations of 249 

choline do not influence egress by parasites with intact PfPP1-DD (300 nM Shld1) (fig. S5H). 250 

We found that high choline decreases susceptibility of parasites specifically to heclin and 251 

zaprinast (Fig. 4E). Our analysis suggests that the extrinsic PtdC signal for egress interacts with 252 

cell-intrinsic pathways regulated by PfPP1. 253 
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We have functionally characterized PfPP1 through the blood-stage IDC of malaria parasites. In 254 

addition to potential conserved roles in development, PfPP1 is absolutely essential for egress. At 255 

the pre-erythrocytic liver-stage, analysis by other researchers shows the non-essentiality of PP1 256 

for intrahepatocytic development, though a function for the phosphatase in egress into the 257 

bloodstream was not assessed (28). PfPP1 regulates egress of parasites through multiple 258 

pathways including PfHECT1 (fig. S6). Chemical inhibition by heclin (63) suggests a role for 259 

ubiquitination alongside well-established pathways for phosphorylation and proteolysis. At 260 

multiple stages of the Plasmodium lifecycle, signaling by cGMP is utilized for colonization of 261 

new host niches, and studies indicate that a specific timing of activation and level of the second 262 

messenger are critical for infectivity (47, 85-87). The use of PfPP1 at the blood-stage to suppress 263 

cGMP upstream of PfPKG and PfSUB1 may suggest an interface between the parasite 264 

maturation and egress programs (Fig. 4F; fig. S6). We additionally discovered extracellular PtdC 265 

as an extrinsic serum factor to stimulate egress from erythrocytes, distinct from the extracellular 266 

LPC signal that suppresses differentiation to sexual-stage forms at an earlier point in the IDC 267 

(78). We propose that P. falciparum uses PLT-GCα to translocate PtdC from the serum across 268 

the parasite plasma membrane to provide a late signal to stimulate egress (Fig. 4F; fig. S6). Our 269 

study demonstrates that the Plasmodium homolog of PP1 is a regulatory nexus for egress from 270 

erythrocytes, balancing cell-intrinsic pathways with environmental signals to ensure release of 271 

invasive parasites into circulation and infection of new host cells. 272 

 273 

  274 

 275 

276 
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Methods 277 

Reagents and antibodies  278 

Rapamycin (LC laboratories), E64 (Sigma-Aldrich, Cat. No E3132); dihydroartemisinin (Sigma-279 

Aldrich, Cat. No. D7439), calyculin A (Sigma-Aldrich, Cat. No. C5552), heclin (Sigma-Aldrich, 280 

Cat. No. SML1396), zaprinast (MP Biomedicals, Cat. No. ICN15693180), were each prepared in 281 

DMSO.  Choline chloride (Sigma-Aldrich, Cat. No. 7527) was prepared in water. DAG and all 282 

phospholipids with mono-unsaturated diacylglycerol backbone (16:0, 18:1) from Avanti [PtdA, 283 

Cat. No. 840857; PtdC, Cat. No. 850457; TopFluor-PtdC, Cat. No. 810281; and DAG, Cat. No. 284 

800815] were solubilized at 1 or 5 mM in 100% methanol, except PtdC (water: ethanol: 285 

methanol; 1:1:2). LPC (Cat. No. 855675) was solubilized at 200 mM in a 1:1 mixture of ethanol 286 

and water. Compound-1 (DMSO-based) was a gift from Dr. Jeffrey Dvorin (Boston Children’s 287 

Hospital). Dilutions and sources for antibodies for immunoblot or immunofluorescence analysis 288 

are as follows: rabbit anti-GAP45 (1:5000, gift from Dr. Julian Rayner, Wellcome Trust Sanger 289 

Institute, Hinxton, UK); mouse anti- RhopH3 (1:200, gift from Jean-Francois Dubremetz); rabbit 290 

α-MTIP (1:500, gift from Tony Holder, The Francis Crick Institute, UK), mouse α-MSP1.19 291 

(1:1000, gift from M. Blackman, The Francis Crick Institute, UK), mouse α-RON4 [1:200, 292 

home-made (89)], mouse α-SUB1 (1:2, gift from M. Blackman), rabbit α-AMA1 (1:1000, gift 293 

from M. Blackman ); rabbit anti-histone H3 (1:10,000, Abcam); rat anti-HA antibody 3F10 294 

(1:1000, Roche); rabbit anti-Pfaldolase-HRP (Abcam, 1:2000) , mouse anti-GFP (Roche, 295 

1:1000). Shield-1 (Shld1) was synthesized as described (43, 90, 91) and dissolved to 1 mM stock 296 

concentration in absolute ethanol before use. 297 

Plasmids 298 
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Primers for PCR amplification and verification of transgenesis in P. falciparum are shown in 299 

Table S5. Transgenic parasites pfpp1-HA3 were obtained using the plasmid pLN-PP1-HA3-loxP. 300 

To generate the plasmid pLN-PP1-HA3-loxP , we first introduced between the BamHI and HpaI 301 

sites in pLN-ENR-GFP (92) a synthetic fragment with sequence for a triple hemagglutinin tag 302 

(HA3) followed by a stop codon and a loxP site (IDT DNA), and multiple cloning sites upstream 303 

of the tag. The resulting plasmid pLN-PP1-HA3-loxP was further modified to target endogenous 304 

pfpp1 with HA3 and loxP by introduction of a 5’ homology region for the gene (HR1, 682 bp of 305 

genomic DNA sequence for exons 2 and 3) fused to a recodonized synthetic fragment (IDT 306 

DNA) for exons 4 and 5. The PCR-amplified elements were ligated in a single reaction step by 307 

In-Fusion cloning (Clontech) upstream of the HA3 tag in XmaI and AfeI sites of pLN-HA3-loxP. 308 

The pfpp1 3’ homology region (HR2) carrying 440 bp of the pfpp1 3’-UTR was PCR-amplified 309 

and inserted by In-Fusion reaction 3’ of the loxP site between PstI and HpaI. The guide RNA 310 

sequence for targeting pfpp1 near exon 3 was cloned into the BbsI sites in pDC2-cam-co-Cas9-311 

U62-hDHFR (gift from M. Lee). For subsequent engineering of a pfpp1 conditional knockout in 312 

parasites, the pLN-PP1-loxPint plasmid was modified with introduction of the following 313 

elements ligated in 5’ to 3’ order between the BamHI and ApaI sites of pLN-ENR-GFP: PCR-314 

amplified fragment of pfpp1 encompassing 5’UTR and part of exon 1 (382 bp), a synthetic 315 

fragment for a recodonized 3’ sequence of exon 1 followed by the artificial loxPint (IDT DNA), 316 

and a PCR-amplified fragment of the 5’ end of pfpp1 exon 2 (601 bp). The plasmid for the guide 317 

RNA targeting pfpp1 near exon 1 was constructed as above. To endogenously tag PfEXP2 with 318 

GFP, we generated plasmid pLN-PfEXP2-GFP as described (48). Two homology regions for the 319 

gene pfexp2 were cloned in pLN-ENR-GFP on both sides of the GFP coding sequence: 549 bp of 320 

pfexp2 3’ coding sequence without the stop codon in frame with GFP, and 453 bp of pfexp2 321 
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3’UTR downstream of GFP. The pfexp2 guide RNA sequence (48) was cloned into the BbsI sites 322 

of pDC2-cam-co-Cas9-U62-hDHFR. Plasmid pAK8 for 3’-single crossover HA-DD-tagging at 323 

endogenous pfpp1 was constructed in the pJDD41 background (11) with the PCR-amplified 324 

genomic insert ligated between the NotI and XhoI restriction sites. All plasmid sequences were 325 

verified before downstream applications. 326 

Parasite culture, transfection, and synchronization 327 

D10 or 3D7 (Walter and Eliza Hall Institute), or p230p-based parasites (41) were cultured 328 

continuously in human erythrocytes (93) obtained from a commercial source (Research Blood, 329 

Boston) or anonymous donors from the French Bloodbank (Etablissement Français du Sang, 330 

Pyrénées Méditerranée, France). Continuous culture was typically carried at 2-5%-hematocrit in 331 

RPMI-1640 (Sigma Aldrich, Cat. No. R6504) supplemented with HEPES, 25 mM; Albumax II, 332 

4.31 mg/ml (Thermo Fisher Scientific), or 10% human serum; sodium bicarbonate, 2.42 mM; 333 

and gentamycin (20-25 µg/ml). Parasites were cultured at 37º C in hypoxic conditions (1-5% O2, 334 

5% CO2, with N2 as balance) in modular incubator chambers. Parasites were transfected by 335 

electroporation (94), and treated with WR99210 (2.5-5 nM) or blasticidin (2.5 µg/ml). 336 

PfPP1-DD transfectants were further selected for single-crossover integrants by cycles of on-337 

drug and off-drug treatment (10, 95). All transgenic lines were cloned by limiting dilution and 338 

genotyped by PCR. Unless otherwise noted, all experiments with PfPP1-DD parasites indicate a 339 

line constructed in the D10 background. 340 

We synchronized parasites with heparin (100 units/ml) to define restricted periods of invasion 341 

(96). Alternatively, we isolated schizonts by magnetic-affinity purification (MACs LS column, 342 

Miltenyi, fitted with a 23-gauge needle) or 70% Percoll cushion, and allowed invasion into 343 

uninfected erythrocytes for a defined period. Following invasion, we either added heparin to 344 
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block further invasion, selectively lysed remaining schizonts by sorbitol treatment (5% w/v in 345 

double-distilled water), or separated recently invaded rings from unruptured schizonts by 346 

magnetic affinity purification (MACs LS with 27-gauge needle). 347 

Statistical significance testing 348 

We carried out all tests for statistical significance in Prism software (GraphPad). Unless 349 

otherwise stated, P-values indicate the results of paired, two-tailed t-tests.  350 

Induction of PfPP1-phenotypes through conditional expression 351 

For assays, we induced parasites for either knockout of pfpp1 [mock- (DMSO) versus Rapa, 10 352 

nM] or knockdown of PfPP1-DD [Shld1 (0.2-0.5 µM) versus ethanol vehicle]. In knockout 353 

parasites, we washed away Rapa 4 hrs following addition.  354 

Immunoblot analysis 355 

For immunoblot analysis, we released parasites from erythrocytes with cold PBS containing 0.1-356 

0.2% saponin, and boiled in SDS-PAGE sample buffer as previously described (10). Following 357 

electrophoretic separation, proteins were transferred to a nitrocellulose membrane, and 358 

immunoblot analysis was carried out using the LI-COR system (Lincoln, USA), or the Chemidoc 359 

system (Bio-Rad).  360 

Microscopy  361 

Light microscopy. For quantitative assessment of nuclear centers in terminally developed 362 

PfPP1-DD parasites [~54-60 hpi; +E64 (50 µM) since ~45 hpi], we collected ~500,000 infected 363 

cells onto glass slides by cytospin centrifugation, followed by fixation in methanol and staining 364 

with May-Grünwald-Giemsa. All infected cells encountered in visual fields by conventional light 365 

microscopy were counted, typically >80 per sample. In the pfpp1-iKO line, we used 366 
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immunofluorescence microscopy (see below) to identify segmented parasites that stained 367 

positive for the antigen PfMTIP before counting nuclei stained with DAPI. Immunofluorescence 368 

analysis was carried out essentially as described (97). Thin smears were fixed in 4%-369 

paraformaldehyde in PBS for 10 minutes at room-temperature or overnight at 4º C in a 370 

humidified chamber followed by extensive washing in buffer; permeabilized with 0.1%-Triton-371 

X-100/PBS for 10 minutes at room temperature before further washing; blocked with 3% 372 

BSA/PBS for >1 hr at room temperature or overnight at 4º C; treated with primary antibody 373 

overnight at 4º C; washed extensively before treatment with the appropriate Alexa-488 374 

secondary antibody (1:1000 dilution) for 1 hr at room temperature; washed and prepared in 375 

DAPI-containing mounting solution for imaging. Images were taken with a Zeiss Axioimager Z2 376 

or AxioObserver.Z1, and processed with Zen blue edition software (Zeiss) or Fiji (98). For 377 

immunofluorescence assays for PVM rupture or secretion of exoneme or microneme antigens, 378 

parasites were treated at 41 hpi with 50 µM E64 and smeared 4-5 hrs later for analysis. 379 

For assessment of TF-PtdC labeling of P. falciparum, we treated synchronous (+/-1 hr) 380 

PfPP1-DD parasites (+0.5 µM Shld1) with or without E64 (50 µM) for ~7 hrs before image 381 

acquisition at the indicated timepoints. After evaporation of TF-PtdC on the surface of multiplate 382 

wells, we added parasites in standard media (2%-hematocrit) for a final concentration of 383 

fluorescent label of 100 µM. After ~30 minutes at 37º C in standard culture conditions, cells 384 

were collected and stored at 4ºC until imaging carried out over the course of the next ~2 hrs. Just 385 

before imaging, parasites were spotted and mixed with Hoechst dye on coverslips (No. 1.5) pre-386 

treated with Concanavalin-A (Sigma-Aldrich, Cat. No. C5275, 0.5 mg/ml in PBS; spread and 387 

dried at 37º C for ~30 minutes) immediately before sealing by surface tension and dispersion of 388 

cell suspension with a glass slide. Images were acquired with a 63x-objective on the Zeiss 389 
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Axioimager Z2 in the DIC, DAPI, and GFP channels. We scored 40-66 multinucleate, infected 390 

cells per condition to estimate internal labeling of parasites.   391 

Transmission electron microscopy. For pfpp1-iKO cells, we directly added 25% glutaraldehyde 392 

(EM grade) to the culture medium to obtain a final concentration of 2.5%. After 10 min 393 

incubation at room temperature, we centrifuged the cells and resuspended the pellet in 20 394 

volumes of cacodylate buffer (0.1 M) containing 2.5% glutaraldehyde and 5 mM CaCl2.The 395 

suspension was left 2 hours at RT before long-term storage at 4°C in fixative until further 396 

processing. All the following incubation steps were performed in suspension, followed by 397 

centrifugation using a benchtop microcentrifuge. Cells were washed with cacodylate buffer and 398 

post-fixed with 1% OsO4 and 1.5% potassium ferrocyanide in cacodylate buffer for 1 hr.  After 399 

washing with distilled water, samples were incubated overnight in 2% uranyl acetate in water 400 

and dehydrated in graded series of acetonitrile. Impregnation in Epon 812 was performed in 401 

suspension on a rotary shaker for 1hr in Epon: acetonitrile (1:1) and 2x 1hr in 100% Epon. After 402 

the last step, cells were pelleted in fresh epon and polymerized for 48 hrs at 60° C. 70 nm 403 

sections were made with an ultramicrotome Leica UC7, contrasted with uranyl acetate and lead 404 

citrate and imaged for transmission electron microscopy (TEM) on a JEOL 1200 EX. All 405 

chemicals were purchased from Electron Microscopy Sciences (USA). 406 

TEM analysis of PfPP1-DD parasites was carried out similarly, with some modifications. For 407 

fixation, 1 volume of suspended culture (> ~5 µl packed cell volume) was supplemented with 1 408 

volume of a 2x fixative solution (5% glutaraldehyde, 2.5% paraformaldehyde, 0.06% picric acid 409 

in 0.2M cacodylate buffer, pH 7.4), spun briefly at 500g, and stored at 4º C before further 410 

processing. Following fixation, cells were washed in water, then maleate buffer before 411 

incubation in 2% uranyl acetate (1 hr). Following washes in water, dehydration was done in 412 
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grades of alcohol (10 min each at 50%, 70%, 90%, and 2x 100%). The samples were then put in 413 

propyleneoxide for 1 hr and infiltrated overnight in a 1:1 mixture of propyleneoxide and TAAB 414 

Epon (Marivac Canada Inc. St. Laurent, Canada). The following day, the samples were 415 

embedded in TAAB Epon and polymerized at 60º C for 48 hrs. Ultrathin sections (about 60nm) 416 

were cut on a Reichert Ultracut-S microtome, picked up on to copper grids stained with lead 417 

citrate and examined in a JEOL 1200EX or a TecnaiG² Spirit BioTWIN. Images were recorded 418 

with an AMT 2k CCD camera. 419 

Flow-cytometry and analysis 420 

All measurements of parasitemia through flow-cytometry were carried out with staining of fixed 421 

cells with SYBR-Green I (Invitrogen) to distinguish DNA-containing parasitized erythrocytes 422 

from uninfected, enucleate erythrocytes (10, 13, 99, 100). Fixation of PfPP1-DD cell suspension 423 

was carried out by addition of >3 volumes of PBS supplemented with paraformaldehyde (4% 424 

final concentration) and glutaraldehyde (0.0075-0.015% final concentration), followed by 425 

storage at 4º C for >12 hrs before further washes in buffer. For quantitative measurements of 426 

cellular DNA, fixed cells were permeabilized with Triton-X-100 (0.1%) and RNase-treated (~0.3 427 

mg/ml) before staining (13). For pfpp1-iKO parasites, cells were fixed by addition of an equal 428 

volume of PBS-paraformaldehyde (8%); fluorescence was measured with a BD FACS Canto I 429 

cytometer. For PfPP1-DD parasites, flow-cytometry was carried out with a MacsQUANT 430 

(Miltenyi) on the FITC channel. All flow-cytometry data were analyzed with FlowJo software. 431 

To calculate cellular DNA content, we used fluorescence measurements from uninfected 432 

erythrocytes (zero genomes), singly-infected rings (1 genome), and doubly-infected rings (2 433 

genomes), to build standard curves for translation of total fluorescence of an infected erythrocyte 434 

population into “genome equivalents.” In some measurements, we applied a background 435 
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correction across all samples to subtract the contribution of parasite cells that did not advance 436 

into DNA replication by 48-hpi (i.e. in +Shld1-conditions). To calculate egress from parasites 437 

late in the IDC in an experiment, we used the remaining schizont populations measured at the 438 

end of an assay. We treated schizont levels in No-Shld1 conditions (or 50 nM Shld1, fig. S5E,H) 439 

as a measure of no-egress (zero), and levels with high-Shld1 as full egress (100%). We similarly 440 

calculated egress-to-invasion from parasites late in the IDC using ring-stage parasite levels. 441 

Fold-change in egress, as reported in Fig. 4, is the quotient of schizont levels at the end of the 442 

assay in the absence of chemical (numerator) to schizonts levels left in the presence of chemical 443 

(denominator).      444 

Proteomic and phosphoproteomic profiling 445 

Parasite collection and processing for downstream analysis. Proteomic and phosphoproteomic 446 

analysis was carried out as described (13, 101), with modifications. PfPP1-DD parasites were 447 

synchronized as described above using MACs purification of schizonts and was treated with 448 

sorbitol (5% w/v in water) after 1.5 hours of invasion into uninfected erythrocytes to eliminate 449 

remaining schizonts and isolate freshly re-invaded rings. Approximately 10x1010 synchronous 450 

ring-stage PfPP1-HA-DD parasites in Shld1 (0.3 µM) were cultured to 44 hpi with a preceding 451 

change of warm media at ~24 hpi, washed extensively and replated in warm (37º C) complete-452 

RPMI at ~5x106 parasitized erythrocytes per ml of culture +/-0.3 µM Shld1. At 48 hpi, for each 453 

Shld1 condition, 2 technical replicates each with or without Shld1 (~1x1010 parasitized 454 

erythrocytes per replicate) were centrifuged at room temperature (500 g), and the pellet was 455 

frozen at -80º C for downstream processing. Remaining cultures (3 technical replicates, each 456 

with or without Shld1) were supplemented with E64 (15 µM) for further culture until 55 hpi for 457 

collection as described above. 458 
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Further protein extraction steps for each of 10 samples were carried out in solutions 459 

supplemented with cOmplete protease inhibitors (Roche) and PhosSTOP phosphatase inhibitor 460 

cocktail (Roche). We released parasites with 0.05% saponin in PBS administered over several 461 

washes, for a total of ~6.5 volumes of buffer for 1 packed erythrocyte volume of frozen pellet. 462 

Following additional washes in PBS without saponin, we added >1 volume of 8 M urea lysis 463 

buffer (100 mM NaCl, 25 mM Tris-HCl/pH 8), and subjected each sample to 5x freeze (-80ºC)-464 

thaw cycles before centrifugation at room temperature to separate protein-containing supernatant 465 

from pelleted cellular debris. Yields for each of the 10 samples ranged from 5-7 mg as assessed 466 

with the Pierce BCA (Bicinchoninic acid) protein assay. We reduced disulfide bonds with 5 mM 467 

tris(2-chloroethyl) phosphate (TCEP) for 30 min at room temperature, alkylated cysteines with 468 

15 mM iodoacetamide for 30 min at room temperature in the dark, and quenched excess 469 

iodoacetamide by treatment with 5 mM dithiothreitol (DTT) for 15 min at room temperature. We 470 

precipitated protein in chloroform-methanol (102) before resuspension (8 M urea, 50 mM 471 

HEPES pH 8.5) and before dilution of urea to 1 M (50 mM HEPES pH 8.5) for digestion with 472 

LysC protease (1:100 protease-to-protein ratio, 3 h at 37 °C) before the addition of trypsin (1:100 473 

protease-to-protein ratio) and continued digestion overnight at 37 °C. We quenched the reaction 474 

with 1% formic acid, carried out C18 solid-phase extraction (Sep-Pak, Waters), and precipitated 475 

peptides with vacuum-centrifugation.  476 

Isobaric labeling with tandem mass tags (TMTs). 200 µg of peptides from each sample was 477 

dissolved in Buffer 1 (100 mM HEPES, pH 8.5). We carried out labelling with TMT reagents as 478 

previously described (103), according to manufacturer instructions (Thermo-Fisher Scientific). 479 

Following combination of the 10 TMT-labeled samples to match protein mass between samples, 480 
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the mixture was vacuum-centrifuged and subjected to C18 solid-phase extraction (Sep-Pak, 481 

Waters) and eluate was collected. 482 

Phosphopeptide enrichment. Peptides were resuspended in Buffer 1, followed by enrichment of 483 

phosphopeptides with “High-Select™ Fe-NTA Phosphopeptide Enrichment Kit” (Thermo-484 

Scientific Cat. No. A32992) (104). The flow-through was retained for analysis of the proteome. 485 

Peptides and enriched phosphopeptides were dried by vacuum centrifugation. 486 

Offline basic pH reversed-phase (BPRP) fraction. For proteomic analysis, the TMT-labeled 487 

peptide pool was fractionated via BPRP high-performance liquid chromatography (103). Eluted 488 

fractions were desalted, dried by vacuum-centrifugation, and resuspended in a solution of 5% 489 

acetonitrile and 5% formic acid, for mass spectrometry-based measurements. 490 

For phosphopeptide analysis, we used the Pierce Off-line BPRP fractionation kit (Thermo 491 

Scientific), collecting and processing fractions for LC-MS/MS-based analysis as described 492 

previously (13). 493 

Liquid chromatography and tandem mass spectrometry. We collected MS/MS data using an 494 

Orbitrap Fusion mass spectrometer (Thermo Fisher Scientific) coupled to a Proxeon EASY-nLC 495 

1000 liquid chromatography (LC) pump (Thermo Fisher Scientific). For each analysis, 1 µg 496 

protein was loaded onto the LC onto an in-house pulled C18 column [30-35 cm, 2.6 um 497 

Accucore (Thermo Fisher), 100um ID] for MS-analysis (13). 498 

Global proteome and phosphoproteome analyses each employed the multi-notch MS3-based 499 

method (13, 105). Global proteome and phosphoproteome analyses used an MS3-based TMT 500 

method (106, 107), which has been shown to reduce ion interference compared to MS2 501 

quantification (108). 502 
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Mass spectrometry data analysis. Mass spectra were analyzed with a SEQUEST-based pipeline 503 

(13, 109). Peptide spectral matches (PSMs) were carried out a 1% false discovery rate (FDR), 504 

and filtered as previously described with minor modifications (13). To quantify the TMT-505 

reporter ion, in each channel (0.003 Th range to distinguish reporters) we extracted the summed 506 

signal-to-noise (S/N) ratio and found the closest matching centroid to the expected mass. For 507 

proteomic analysis, PSMs (1% FDR) were collapsed to whole proteins (1% FDR). We used 508 

principles of parsimony to assemble the protein set, aiming to identify the smallest number of 509 

distinct polypeptides required to explain the observed PSMs. Relative protein levels were 510 

quantified by calculating the sum of reporter ion counts across associated PSMs (109). MS3 511 

spectra represented in <2 TMT channels, and MS3 spectra with TMT reporter summed spectra of 512 

<100, or no MS3 spectra, were not considered for further analysis (105). Protein quantitation 513 

values were exported to Microsoft Excel. To normalize for variations in sample loading, within 514 

each TMT reporter ion channel, each parasite protein was normalized to the total signal of the P. 515 

falciparum proteome measured in that channel (13). For phosphoproteomics, the level of each 516 

phosphopeptide in a single TMT channel was normalized to the level of the parent protein in the 517 

same experimental conditions (i.e. average of normalized values for technical replicate 518 

measurements from proteomics). We did not apply this adjustment for the <2% of 519 

phosphopeptides that could not be mapped to a parent protein in proteomics. 520 

Gene Ontology analysis of proteins upregulated with PfPP1-knockdown. For the 19 proteins 521 

shown to be increased in expression (>1.3-fold) in two proteomics measurements from separate 522 

experiments (Tables S1 and S2), we carried out gene ontology enrichment analysis using the 523 

webtool at PlasmoDB (http://www.plasmodb.org). The 10 most enriched GO categories are 524 

shown in Table S4. 525 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 6, 2020. ; https://doi.org/10.1101/2020.01.05.890483doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.05.890483


 

25 
 

Prioritization of late IDC-stage genes. For restriction of candidate substrates of PfPP1 to 526 

proteins expressed late in the IDC, we used web-based tools at PlasmoDB 527 

(https://www.plasmodb.org) relying on published transcriptome data (30) to identify P. 528 

falciparum genes that are upregulated at the 40- or 48 hpi-mark of the IDC by at least 3-fold over 529 

levels at the midpoint of the IDC (average expression of 16 and 24 hpi), and by at least 1.5-fold 530 

over levels at 32 hpi. 531 

Chemical genetic assays 532 

Compounds in DMSO (10 mM) were printed onto the surface of standard 96-well plates, using a 533 

D300e automated dispenser (Hewlett Packard), and stored at -20º C until addition of parasites. 534 

Chemicals in water were added individually onto the surface of 96-well plates, or added directly 535 

at the high concentration to parasites in wells before serial dilution in-plate. Phospholipids (or 536 

methanol vehicle) at 10x final concentration were added to the surface of plates and allowed to 537 

evaporate before addition of parasites. Synchronized PfPP1-DD parasites were washed 538 

extensively in media without Shld1 and supplemented with varying concentrations of Shld1 539 

(constant volume of ethanol carrier across doses), as indicated in the data. Parasites with Shld1, 540 

set at 0.5%-hematocrit, were added at 100 µl volume to wells with compounds to attain the 541 

reported final concentrations. Wells immediately surrounding the samples were filled with water 542 

or aqueous solution to prevent evaporation through the course of the assay. Parasites were 543 

allowed to incubate with inhibitor for ~20 hrs before fixation and measurement of egress from 544 

schizonts and reinvasion to rings by flow-cytometry. 545 

Data availability  546 

All data are available in the manuscript or supplementary materials.   547 

548 
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  856 

Fig. 1. Isolating an essential PfPP1-function late in the intraerythrocytic developmental 857 

cycle. (A) PfPP1-HA3 expression during intraerythrocytic development (hours post-invasion, 858 

hpi), assessed by immunoblot. Relative PfPP1 levels (below lanes) are normalized to histone H3 859 

loading controls. (B) iKO of pfpp1 was initiated at 5 hpi with addition of rapamycin (Rapa) and 860 

protein levels were assessed by immunoblot at 30 hpi. (C) Left: Parasitemia and DNA synthesis 861 

over the IDC following +/-Rapa-treatment at 5 hpi in pfpp1-iKO parasites, monitored by flow-862 

cytometry (mean +/- s.d.; n=3 technical replicates). Representative of 4 experiments. Right: 863 

Images of parasites along the IDC, following +/-Rapa-treatment at 5-hpi. (D) HA-tagged 864 
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PfPP1-DD protein from schizont-stage parasites (~48 hpi) grown +/-Shld1 for 6 hrs, assessed by 865 

immunoblot. (E) Proliferation of PfPP1-DD and parental D10 parasites (wild type), +/-Shld1, 866 

monitored by flow-cytometry. Knockdown was induced in cycle-zero. Representative of 2 867 

experiments. (F) DNA replication in PfPP1-DD parasites following knockdown (+/-Shld1) at the 868 

indicated timepoints and stages of the IDC, monitored by flow-cytometry (mean +/- range; n=2 869 

technical replicates; representative of 3 experiments for early ring induction, 2 experiments for 870 

late-ring/trophozoite induction). (G) Left: Nuclear centers in terminally developed parasites, 871 

assessed by light microscopy, with or without knockdown of PfPP1-DD since the midpoint of 872 

the IDC, 22-30 hpi (mean +/- s.e.m.; n=4 experiments). Right: Representative images of terminal 873 

parasites +/-Shld1 (Giemsa-stained thin-blood smears). (H) Top: Schizont and ring-stage 874 

parasites monitored by flow-cytometry following induction of PfPP1-DD knockdown (+/-Shld1) 875 

late in the IDC. Bottom: DNA content in the parallel samples, with addition of E64 (50 µM). 876 

Representative of 2 biological replicates. (I) Nuclear centers following PfPP1-DD knockdown at 877 

44 hpi, as in (G). (J) Egress and egress-to-invasion following induction of partial PfPP1-DD 878 

knockdown at sublethal doses of Shld1. For this and all remaining panels, egress is based on the 879 

rupture of schizonts, and egress-to-invasion is based on the number of ring-stage parasites 880 

following experimental treatment late in the IDC. 881 
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 883 

Fig. 2. PfPP1 function an early step of parasite egress from erythrocytes. (A) PfPP1-HA3 884 

expression +/- Rapa-mediated iKO of pfpp1 at 30 hpi, assessed by immunoblot. (B) Parasitemia 885 

and DNA synthesis following iKO of pfpp1 at 30 hpi, as in Fig. 1C (mean +/- s.d.; n=3 technical 886 

replicates). Representative of 4 experiments. (C) Nuclear centers in terminally developed 887 

parasites following Rapa-mediated iKO of pfpp1 at 30 hpi, as in Fig. 1 (mean +/- s.e.m.; n=3 888 
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experiments). (D) Electron microscopy of terminally developed pfpp1-iKO parasites treated +/-889 

Rapa at 30-hpi. In both images, the different membranes are indicated as follows: erythrocyte 890 

(black arrowhead), PV (white arrowhead), and parasite (white arrow). (E-F) 891 

Immunofluorescence analysis of the microneme antigen PfAMA1 (E) or the rhoptry-neck 892 

antigen RON4 (F) in terminally developed parasites +/-iKO of pfpp1 at 30 hpi. The images also 893 

show the parasite plasma membrane marker MSP1 (E) and the inner membrane complex marker 894 

MTIP (F). For both apical organelle markers, representative of 2 biological replicates. (G) In a 895 

mature parasite, regulated secretion of PfSUB1 from exonemes stimulates a proteolytic cascade 896 

leading to sequential rupture of the PVM and the erythrocyte host membranes. (H) Assessment 897 

of PVM rupture at 45 hpi in pfpp1-iKO / PfEXP2-GFP parasites treated +/- Rapa at 30 hpi. Left: 898 

immunofluorescence images of parasites with intact or ruptured PVMs. Right: Proportion of 899 

infected cells exhibiting PVM rupture (mean +/- S.E.M.; n=3 experiments). Parasites in (H)-(J) 900 

were treated with E64 (50 µM) at 41 hpi; the completion of cytokinesis was assessed with the 901 

inner membrane complex marker PfMTIP or the parasite plasma membrane marker PfMSP1. (I) 902 

With +/- Rapa-treatment at 30 hpi in pfpp1-iKO parasites, quantification of PfSUB1 secretion 903 

from exonemal compartments (loss of punctate fluorescence in images at left), as in (H) (mean 904 

+/- S.E.M.; n=3 experiments). (J) Assessment of AMA1 secretion from micronemes, as in (H-I) 905 

(mean +/- S.E.M.; n=3 experiments). 906 

 907 
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 909 

Fig. 3. PfPP1 regulation of a HECT E3 protein ubiquitin-ligase for egress. (A) Chemical-910 

genetics of PfPP1-DD. We assessed the influence of inhibitors on PfPP1-mediated egress-to-911 

invasion (Fig. 1J) following administration to parasites late in the IDC. To test for functional 912 

interactions between PfPP1 and processes targeted by inhibitor, we measured shifts in chemical 913 

sensitivity with partial destabilization of the DD-protein. (B) The sensitivity (IC50) of PfPP1-914 

mediated egress-to-invasion to the indicated inhibitors at 200 or 90 nM Shld1 (mean +/- s.e.m.; 915 

n=4 experiments). (C) Scheme for phosphoproteomic analysis of PfPP1-DD knockdown late in 916 

the IDC, with samples obtained at 48- and 55-hpi. (D) Left: At 48 hpi, levels of individual 917 
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proteins (summed signal-to-noise) and shift in intensity with PfPP1-knockdown. PfInhibitor 2 918 

(I2) and PfLeucine rich repeat (LRR) protein 1 are indicated in red, with the top 5% of 919 

upregulated proteins indicated in black. Right: For all phosphopeptides detected in late-stage 920 

parasites, a plot of changes in levels with PfPP1-DD knockdown at 48-hpi (y-axis) versus 921 

changes with development from 48 to 55-hpi in parasites on-Shld1 (x-axis). Two-fold increased 922 

phosphorylation (log2,1) with knockdown is indicated. Up-phosphorylated phosphopeptides from 923 

gene products increased in transcription at the schizont-stage (30) are colored; phosphopeptides 924 

in the upper-right quadrant least likely to be affected by secondary, developmental-progression 925 

defects (see Materials and Methods) are indicated with filled circles. Phosphorylation sites from 926 

Pfhistone H3, PfHECT1, and PfPLT-GCα, are marked in red. (E) Schematic of the PfHECT1 927 

protein encoded by PF3D7_0628100, with predicted domains. We show all phosphosites 928 

detected in our study with magnitude of change with PfPP1-DD knockdown at 48 hpi (Fig. 3D). 929 

The most increased (Ser-6138) and decreased phosphorylation sites (Tyr-9244) are indicated 930 

with symbols [*] and [**], respectively. (F) Sensitivity of PfPP1-DD parasites on-Shld1 (0.5 931 

µM) to heclin administered at the midpoint (24 hpi) or late in the IDC (44 hpi), determined from 932 

erythrocyte re-invasion (mean +/- s.e.m.; n=3 experiments). Representative images of parasites at 933 

55-hpi with or without heclin administration (100 µM) at 44 hpi, are shown below datapoints. 934 

(G) The sensitivity of PfPP1-mediated egress-to-invasion to heclin, as in (B) (mean +/- s.e.m.; 935 

n=4 experiments). 936 

937 
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 938 

Fig. 4: Regulation of egress by extracellular phosphatidylcholine. (A) Top: PfPP1-regulated 939 

phosphorylation and cGMP-based signal transduction initiated by the parasite fusion protein 940 

carrying a phospholipid transporter (PLT) and a guanylyl cyclase (GC) domain (PfPLT-GCα, 941 

PF3D7_1138400). We indicate PfPP1-regulated sites in the PLT domain (red) and signature 942 

sequences for phospholipid translocase activity (purple), Ile-396 and Asp-756. cGMP-943 

phosphodiesterase (PDE) and PfPKG, as well as inhibitory small molecules for both targets, are 944 

depicted. Bottom: The sensitivity of PfPP1-mediated egress-to-invasion to zaprinast (left) or 945 

Cpd1 (right), as in Fig. 3 (mean +/- s.e.m.; n=4 experiments). (B) Top: Phospholipids at the 946 

parasite plasma membrane. Interconversion of DAG and PtdA are likely mediated by parasite 947 

homologs of DAG-kinase and phosphatidic acid phosphatase (73, 74). Phospholipase enzymes 948 
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for conversion of PtdC to DAG and PtdC to PtdA (indicated with asterisks) have not been 949 

identified in Plasmodium falciparum (88); PtdC levels are correlated with PtdA (78), indicating 950 

linkage between the species. Extracellular LPC crosses the plasma membrane, providing 951 

substrate for endogenous biosynthesis of PtdC via the Kennedy Pathway (78, 79). Bottom: 952 

Stimulation of egress by exogenously administered lipids in parasites late in the IDC with partial 953 

destabilization of PfPP1-DD (100 nM Shld1), expressed in terms of fold-change relative to 954 

egress without lipid (mean +/- s.e.m., with number of separate experiments indicated in plot). (C) 955 

Labeling of the parasites by PtdC. Left: Representative images of late-stage, P. falciparum-956 

infected erythrocytes (PfPP1-DD with 0.5 µM Shld1 and 50 µM E64, 54 hpi) labeled by TF-957 

PtdC at the erythrocyte membrane (host) or at the plasma membranes of internal parasites. 958 

Nuclei are indicated by Hoechst dye. Right: The proportion of infected erythrocytes with labeled 959 

parasites at the indicated timepoints, +/-E64 (mean +/- s.e.m.; n=3 experiments). (D) Stimulation 960 

of PfPP1-mediated egress with supplementation of choline, as in (B). (E) Modulation of PfPP1-961 

regulated cellular processes by supplemented choline. For each inhibitor, fold-change in IC50 962 

with additional choline in PfPP1-DD parasites in 150 nM Shld1 is indicated (mean +/- s.e.m.; 963 

n=3 experiments; multiple t-tests). (F) A model for the function of PfPP1 through the IDC. 964 

Following activity in growth during the IDC, PfPP1 is essential for the egress program upstream 965 

of PfPKG and the PfSUB1-initiated proteolytic cascade required for disintegration of the PVM. 966 

PtdC enters host cells following natural permeabilization of the erythrocyte membrane, acting on 967 

exposed parasites to stimulate egress. 968 

969 
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Supplementary Text 992 

Assessment of the specificity of PfPP1-function according to phosphoproteomic data. At 48-hpi, 993 

30 phosphopeptides (0.8% of 3884 total detected) exhibit a reduction of >2-fold with PfPP1-DD 994 

destabilization, and 60 (1.5% of total) are increased by >2-fold (Table S3). Other evidence 995 

suggests limited effects secondary to perturbation of PfPP1-function at 48-hpi: (i) proliferation 996 

defects elicited by knockdown are reversible to a large degree with resupplementation of Shld1 997 

at 48-hpi, but not 55-hpi (Fig. S4A); (ii) in contrast to 55-hpi, changes in the global 998 

phosphoproteome with PfPP1-DD knockdown at 48-hpi are not predictive of further 999 

developmental progression (Fig. 3D; fig. S4B); and (iii) overall variability in the phosphopeptide 1000 

levels at 48-hpi, but not 55-hpi, induced by PfPP1-DD-destabilization is comparable to a 1001 

baseline, determined from the distribution of non-phosphorylated peptides in the same sample 1002 

(Fig. S4C) (110). Of the phosphopeptides upregulated by >2-fold with PfPP1-DD knockdown at 1003 

48-hpi (y-axis, Fig. 3D), we regarded sites that did not decrease with IDC progression from 48 to 1004 

55-hpi (x-axis, Fig. 3D) to be least likely to be influenced by effects secondary to perturbation of 1005 

PfPP1. 1006 

1007 
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 1008 

Figure S1. (A) For 29 P. falciparum protein phosphatase genes (8), levels of mRNA expression (frequency per 1009 

kilobase per millions reads, fpkm) over the course of the IDC measured in two separate transcriptome-wide studies 1010 

from Bártfai and colleagues (top), and Otto and colleagues (bottom) (29, 30). (B) Sequential double-crossover 1011 

recombination at the pfpp1 chromosomal locus in the DiCre recombinase-expressing p230p parental parasite line to 1012 

generate (i) the PfPP1-HA3 line with a 3’ loxP site; and (ii) the pfpp1-iKO with a loxP-containing synthetic intron 1013 

(loxPint); followed by (iii) treatment with rapamycin to induce excision of pfpp1. Sites for PCR amplicons to 1014 
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confirm construction of transgenic lines are indicated. Black and white bars represent exons and introns of the pfpp1 1015 

gene, respectively. Grey bars represent recodonized region of the pfpp1 gene and blue bars stand for loxP site. 1016 

Lollipop: stop codon; green lightning bolt: Cas9 double strand break. (C) PCRs to confirm construction of PfPP1-1017 

HA3 with 3’-loxP, as in (B). (D) Localization of PfPP1-HA3, relative to Hoechst-stained nuclei, assessed by 1018 

immunofluorescence. Staging is indicated by IDC progress. (E) PCRs to confirm construction of pfpp1-iKO with 1019 

loxP-containing synthetic intron, as in (B). PCR also confirm unmodified pfpp1 (PCR WT). (F) Immunoblot 1020 

performed with anti-HA antibodies to show that PfPP1-HA3-loxP and pfpp1-iKO parasite lines express a tagged 1021 

version of the protein of the same molecular mass. Anti-histone H3 was used as a loading control. (G) PCRs to 1022 

confirm Rapa-induced excision of the pfpp1 gene in pfpp1-iKO transgenic line following rapamycin treatment at 3 1023 

hpi. NE and E indicate the non excised (1606 bp) and excised (581 bp) versions of pfpp1 gene, respectively. Sizes 1024 

are indicated on the left in bp. (H) A second experiment to measure the effect on DNA replication and proliferation 1025 

in pfpp1-iKO parasites following +/- Rapa-treatment at 5 hpi, as in Fig. 1C. 1026 

1027 
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 1028 
 1029 

Figure S2. (A) Top: Scheme for single-crossover integration of the dd-tag into the endogenous pfpp1 genetic locus, 1030 

with binding sites for diagnostic primers indicated. (B-C) PCR to confirm integration of dd into pfpp1 in the D10 1031 

(B) and 3D7 background strains (C). In electrophoresis gel, lanes 1,3,5: wild type parasite background; lanes 2,4,6: 1032 
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clonal PfPP1-DD transgenic parasites. Lanes 1,2: diagnostic primers a,b; lanes 3,4: primers a,c; lanes 5,6: primers 1033 

a,d. Positions by size (bp) are indicated. (D) An immunoblot as in Fig. 1D, schizont-stage PfPP1-DD parasites 1034 

grown +/-0.2 µM Shld1 for ~20 hrs. (E) Proliferation of PfPP1-DD in the 3D7 background, assessed as in Fig. 1E. 1035 

(F) PfPP1-DD expression in synchronized parasites in 0.2 µM Shld1 at the indicated timepoints following 1036 

erythrocyte invasion, assessed with anti-HA tag antibody. Histone H3 levels were measured for loading control. (G) 1037 

Assessment of PfPP1 localization in a recently ruptured PfPP1-DD schizont-stage parasite using an antibody for 1038 

HA. Nuclear staining was carried out with DAPI. (H-I) DNA content in advanced-stage parasites (51-55 hpi) +/- 1039 

induction of PfPP1-DD knockdown early (4 hpi, H) or at a mid-stage of the IDC (24 hpi, I), assessed by flow-1040 

cytometry. (J) Box plot of numbers of nuclear centers (median, outliers at >95% percentile with none observed 1041 

below 5%) in terminally developed parasites with induction of PfPP1-DD knockdown at a mid-stage of the IDC 1042 

(experiment from Fig. 1F, middle panel). Two-tailed Mann-Whitney test. (K) Electron microscopy images of 1043 

terminally developed PfPP1-DD parasites (55 hpi), with knockdown induced at 24 hpi (+/-0.3 µM Shld1). Parasites 1044 

were supplemented with 50 µM E64 at ~47 hpi to block egress. For knockdown-cells (No-Shld1), we show parasites 1045 

arrested at a late stage when incipient cytokinesis in the vicinity of dividing nuclei are apparent (white arrowheads). 1046 

(L) Immunofluorescence microscopy images of terminally developed PfPP1-DD parasite cells, with knockdown and 1047 

sampling as in (K), indicating the inner membrane complex marker PfGAP45. (M-N) Egress and erythrocyte re-1048 

invasion following knockdown of PfPP1-DD in either the D10 (M) or the 3D7 background (N) at 44 hpi, and DNA 1049 

content in E64-treated parasites (50 µM) as described in Fig. 1H. 1050 

1051 
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Figure S3. (A) PCR to confirm excision of the pfpp1 gene following iKO with rapamycin at 30hpi (trophozoite 1053 

stage), as in fig. S1G. (B) A second experiment measuring parasitemia and DNA synthesis following iKO of pfpp1, 1054 

as in Fig. 2B. (C-D) Immunofluorescence images showing depletion of PfPP1-HA3 in parasites assessed in Figs. 2E 1055 

(C) and 2F (D). (E-F) Immunofluorescence microscopy images of PfPP1-DD parasite cells, sampled at 55 hpi, 1056 

indicating the inner membrane complex marker PfGAP45 (E) or the rhoptry marker PfRhopH3 (F), with knockdown 1057 

(+/- 0.5 µM Shld1) induced at 44 hpi. Parasites were supplemented with 50 µM E64 to block egress. (G) Electron 1058 

microscopy images of terminally developed PfPP1-DD parasites treated as in (E-F). (H) Modification of the native 1059 

pfexp2 locus for 3’-tagging with GFP in the pfpp1-iKO background, via Cas9-mediated double-stranded break repair 1060 

(see fig. S1B). (I) PCRs to confirm construction of pfpp1-iKO / PfEXP2-GFP, as in (H). (J) Immunoblot to show 1061 

GFP expression in pfpp1-iKO / PfEXP2-GFP lines. Pfaldoase was assessed to control for loading. 1062 

1063 
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Figure S4. (A) Timecourse of schizont and ring-stage parasitemia in control samples for phosphoproteomic analysis 1065 

of PfPP1-DD knockdown, assessed from thin blood smears. Parasites were maintained continuously on-Shld1 (0.3 1066 

µM) or off-Shld1 (EtOH) following start of experiment at 44 hpi. To assess reversibility of the knockdown-1067 

phenotype, off-Shld1 parasites were supplemented with Shld1 (1 µM) at the two timepoints for sample collection. 1068 

(B) The effect of PfPP1-DD-based perturbation on levels of all detected phosphopeptides at 55-hpi plotted against 1069 

changes with development (+Shld1-parasites) from 48 to 55-hpi, as in Fig. 3D. All phosphopeptides upregulated by 1070 

>2-fold at 48-hpi by PfPP1-DD knockdown (Fig. 3D) are indicated in blue, showing that these hits are masked by 1071 

developmental effects dominant by 55-hpi. (C) Top: Following TiO2-based affinity purification, the distribution of 1072 

the log2-fold differences with PfPP1-DD knockdown for either the enriched phosphopeptides (red) or non-1073 

phosphorylated peptides (black) measured by mass-spectrometry. Data for samples collected at both the 48 (left) and 1074 

55-hpi timepoints (right) are shown. Bottom: The interquartile ranges for data shown in top panel. (D) Phospho-1075 

histone H3 (Ser-29) dynamics with PfPP1-knockdown in parasites late in the IDC, assessed by immunoblot analysis. 1076 

The timepoint of PfPP1-knockdown and timepoints for sampling following knockdown are indicated. The fold-1077 

increase in phospho-histone H3 (S29), normalized to total histone H3, is indicated above the blot (mean of 2 1078 

technical replicate timecourses). (E) Left: Schematic of PfHECT1 as in Fig. 3E with PfPP1-regulated phosphosites 1079 

shown in sequence alignment with orthologs from other Plasmodium spp. (P. reichenowi, Pr; P. vivax, Pv; P. 1080 

berghei, Pb). For Ser-6138, extended sequence is shown to highlight regions of conservation and variation. Position 1081 

of the predicted interaction site for PfPP1 (34) is shown (blue arrow). Right: Relative transcript expression over the 1082 

course of IDC (111) for the 4 HECT domain-containing proteins in P. falciparum, each denoted by the 7-digit suffix 1083 

of the systematic gene ID beginning with “PF3D7_”. (F) DNA replication in PfPP1-DD parasites following 1084 

administration of heclin at 28-hpi with indicated concentrations (DMSO control, black, 15 µM, blue; 30 µM, red;), 1085 

and growth supported by a high (300 nM) or suboptimal (100 nM) concentration of Shld1 (mean +/- s.e.m.; n=3 1086 

experiments). (G) Dose-response curves from a single experiment to measure susceptibility of egress-to-invasion by 1087 

PfPP1-DD parasites to heclin at various Shld1 concentrations, with range of IC50 values indicated. (H) The 1088 

susceptibility of egress by PfPP1-DD parasites to heclin at 200 or 90 nM Shld1 (mean +/- s.e.m.; n=3 experiments). 1089 
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 1091 

Figure S5. (A) Alignment of the multi-phosphorylated cytoplasmic domain between the fourth and fifth 1092 

transmembrane domains of the PLT in PfPLT-GCα (see Fig. 4A).  1093 

The alignment shows orthologs from P. reichenowi (Pr), P. vivax (Pv), P. berghei (Pb), and T. gondii (Tg); and also 1094 

the human protein ATP8A2 (UniProt Q9NTI2.2) to show conservation of a isoleucine residue (396 in PfPLT-GCα) 1095 

in transmembrane 4 required for transport of phospholipids (112), indicated in purple. PfPP1-responsive 1096 

phosphorylation sites are indicated in red. The absolutely conserved catalytic aspartate residue in the consensus 1097 
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sequence DKTGTLT required for ATPase-dependent phospholipid transport is indicated in purple. (B) An 1098 

experiment with dose-responses of PfPP1-DD parasites to zaprinast (egress-to-invasion) elicited over a multiple 1099 

Shld1 concentrations, with range of IC50 values indicated. (C) Sensitivity of egress by PfPP1-DD parasites to 1100 

zaprinast (left) or Cpd1 (right). (D) The sensitivity of egress-to-invasion by D10 parasites (parent to PfPP1-DD) for 1101 

the indicated compounds at the indicated Shld1 concentrations (mean +/- s.e.m.; n=2-4 experiments as indicated). 1102 

(E) In 300 nM Shld1, percent egress for PfPP1-DD parasites in the presence of the lipids in Fig. 4B at the indicated 1103 

concentrations (mean +/- s.e.m.; n=4 experiments). (F) Left: A series of dose-response curves in a single experiment 1104 

showing induced sensitivity of parasite egress-to-invasion to R59022 with knockdown of PfPP1-DD at 1105 

concentrations <10 µM. Shld1 concentrations as in (B). Right: Induced sensitivity of parasites to low concentrations 1106 

(<10 µM) of R59022 with partial knockdown of PfPP1-DD, based on inhibition of egress-to-invasion (mean +/- 1107 

s.e.m.; n=4 experiments). Significance assessed by multiple t-tests. (G) In 100 nM Shld1, the effect of 1108 

supplementation with the indicated concentrations of glucose on egress by PfPP1-DD parasites, expressed as fold-1109 

change compared to no-added glucose (mean +/- s.e.m.; n=4 experiments). The baseline concentration of glucose in 1110 

media is 11.1 mM. (H) In 300 nM Shld1, percent egress for choline (see Fig. 4E) at indicated concentrations, as in 1111 

(E) (mean +/- s.e.m.; n=4 experiments). 1112 
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 1114 

Figure S6. PfPP1-regulated cellular pathways in coordination with late IDC-stage developmental progression of P. 1115 

falciparum. At an immature state when the parasite is not yet competent to process signals for egress (pre-egress), 1116 

PfPP1 acts on PfPLT-GCα to suppress cGMP levels. PfPP1 acts on PfHECT1 as the parasite matures, and cGMP 1117 

activates the egress program leading to PVM rupture and host cell permeabilization. We propose that PtdC from the 1118 

serum is translocated by PfPLT-GCα, providing a late signal to stimulate egress. 1119 
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Table S1. Proteomic analysis of PfPP1-DD parasites in late IDC-stage parasites. 1121 

Table S2. A second proteomic analysis of PfPP1-DD parasites in late IDC-stage parasites. 1122 

Table S3. Phosphoproteomic analysis of PfPP1-DD parasites in late IDC-stage parasites. 1123 

Table S4. Gene Ontology analysis of proteins upregulated with PfPP1-DD knockdown in late IDC-stage parasites. 1124 

Table S5. Primers used in this study. 1125 
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